WO2018177076A1 - 空调控制方法及装置 - Google Patents

空调控制方法及装置 Download PDF

Info

Publication number
WO2018177076A1
WO2018177076A1 PCT/CN2018/077924 CN2018077924W WO2018177076A1 WO 2018177076 A1 WO2018177076 A1 WO 2018177076A1 CN 2018077924 W CN2018077924 W CN 2018077924W WO 2018177076 A1 WO2018177076 A1 WO 2018177076A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
user
air conditioner
initial setting
set temperature
Prior art date
Application number
PCT/CN2018/077924
Other languages
English (en)
French (fr)
Inventor
宋世芳
郭丽
程永甫
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Priority to US16/461,704 priority Critical patent/US10890347B2/en
Priority to ES18776869T priority patent/ES2932525T3/es
Priority to EP18776869.2A priority patent/EP3546841B1/en
Publication of WO2018177076A1 publication Critical patent/WO2018177076A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to an air conditioner control method and device.
  • Embodiments of the present invention provide a method and apparatus for controlling an air conditioner.
  • a brief summary is given below. This generalization is not a general comment, nor is it intended to identify key/critical constituent elements or to describe the scope of protection of these embodiments. Its sole purpose is to present some concepts in a simplified form as a prelude to the following detailed description.
  • an air conditioning control method including:
  • the initial setting temperature of the user is adjusted, and the energy consumption corresponding to the adjusted set temperature is lower than the energy consumption corresponding to the initial set temperature of the user.
  • the preset condition when the air conditioner is operating in the heating mode, includes: the indoor temperature is greater than or equal to a first temperature value; and the adjusted set temperature is lower than the initial setting temperature of the user. .
  • the initial setting temperature of the user is less than or equal to the second temperature value
  • the initial setting temperature of the user is turned down, and the adjusted set temperature is greater than or equal to the first temperature value.
  • the preset condition includes: the indoor temperature is less than or equal to a first temperature value; and the adjusted set temperature is higher than the initial setting temperature of the user.
  • the adjusting the initial setting temperature of the user includes:
  • the initial setting temperature of the user is greater than or equal to the second temperature value
  • the initial setting temperature of the user is increased, and the adjusted set temperature is less than or equal to the first temperature value.
  • the method further includes:
  • the indoor temperature and the initial set temperature of the user are continuously acquired from the current time.
  • the method further includes:
  • the method further includes:
  • the air conditioner After transmitting the adjustment instruction to the air conditioner, detecting whether there is a user intervention instruction, where the user intervention instruction is an instruction that the user changes the adjusted set temperature;
  • the user intervention parameter is updated when the user intervention instruction is detected, the user intervention parameter being used to indicate the number of times the user intervention instruction is detected.
  • the method further includes:
  • an air conditioning control apparatus comprising:
  • the obtaining module is configured to obtain an indoor temperature of the air conditioning control area and an initial setting temperature of the air conditioner;
  • An adjustment module configured to: when the indoor temperature acquired by the acquiring module meets a preset condition, adjust an initial setting temperature of the user acquired by the acquiring module, and the energy consumption corresponding to the adjusted set temperature is lower than The user initially sets the energy consumption corresponding to the temperature.
  • the air conditioning control method and device provided by the present invention include: acquiring a current indoor temperature of an air conditioning control area, an initial setting temperature of an air conditioner, and adjusting an initial setting temperature of the user when detecting that the indoor temperature meets a preset condition And the adjusted energy consumption corresponding to the set temperature is lower than the energy consumption corresponding to the initial set temperature of the user.
  • the initial setting temperature of the user is the expected temperature of the air conditioner set by the user according to his own needs, and reflects the user's demand.
  • the invention adjusts the air conditioner based on the temperature set by the user, and ensures that the air conditioning temperature is substantially in line with expectations while reducing Air conditioning energy consumption.
  • FIG. 1 is a schematic flow chart of an air conditioning control method according to an exemplary embodiment
  • FIG. 2 is a graph showing a daily usage of a statistical user air conditioner according to an embodiment of the present invention
  • FIG. 3 is a graph showing the usage of a statistical user air conditioner on another day according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of an air conditioning control apparatus according to an exemplary embodiment
  • FIG. 5 is a block diagram of an air conditioning control apparatus according to an exemplary embodiment.
  • an air conditioning control method provided by the present invention includes:
  • step 101 the current indoor temperature of the air conditioning control area and the user initial set temperature of the air conditioner are acquired.
  • the user initial set temperature is the user's initial set temperature, which is the expected temperature of the air conditioner set by the user according to his own needs, and is the holding temperature of the air conditioner set by the user according to his own habit, which embodies the user's demand.
  • step 102 when the indoor temperature satisfies the preset condition, the user's initial set temperature is adjusted.
  • the air conditioner After the air conditioner is adjusted and adjusted, it will correspond to the first adjusted set temperature.
  • the energy consumption corresponding to the adjusted set temperature is lower than the energy consumption corresponding to the user's initial set temperature.
  • the present invention provides an air conditioning control method, which includes adjusting the initial user after acquiring the current indoor temperature of the air conditioning control area, the initial set temperature of the air conditioner, and detecting that the indoor temperature meets the preset condition.
  • the temperature is set, and the energy consumption corresponding to the adjusted set temperature is lower than the energy consumption corresponding to the initial set temperature of the user.
  • the initial setting temperature of the user is the expected temperature of the air conditioner set by the user according to his own needs, and reflects the user's demand.
  • the invention adjusts the air conditioner based on the temperature set by the user, and ensures that the air conditioning temperature is substantially in line with expectations while reducing Air conditioning energy consumption.
  • the adjustment condition is not immediately reached, so that the startup time of the air conditioner can be recorded.
  • the indoor temperature is continuously obtained from the current time.
  • the user initially sets the temperature to reduce data transfer.
  • the preset duration may be obtained by data statistics, and the time required for the air conditioner to reach the indoor temperature satisfying the preset condition from the initial indoor temperature is determined by the time, and the preset duration is determined by the time.
  • the user turns on the heating mode of the air conditioner.
  • the distribution of the set temperature is relatively discrete, and the proportions of the temperatures of 30 degrees, 26 degrees, and 28 degrees are set to be high.
  • the data of the unheated urban users in the south is counted, and the statistical results of the big data are passed.
  • the 30-degree usage time ratio was the highest, the 26-degree usage ratio was the second, and the 28-degree usage ratio was the third.
  • the dressing is related to the set temperature. Sometimes, the user first sets the set temperature directly to 30 degrees, but waits After the indoor temperature rises, it can accept a lower set temperature, but at this time the user often forgets to adjust the set temperature of the air conditioner again, thus causing waste of energy.
  • user data is randomly selected for statistics.
  • the selected data includes the indoor temperature, outdoor temperature, and set temperature of the user's area.
  • the user air conditioner has been running for 79 days in the heating season. >26 degrees of time accounted for 97.6%, these statistical results are obtained by the curve data shown in Figure 2, Figure 3, and then the user is randomly selected by the same method, the data statistics are basically the same result, and even if the user is centralized Set at 30 degrees, but it is also acceptable for 27 degrees. Therefore, a higher set temperature is set when the user is turned on, and a lower set temperature can be accepted after the indoor temperature rises.
  • the air conditioning usage data of any day of the month of the user is randomly selected, and the graph relates to changes in the set temperature, the indoor temperature, the power, and the outdoor temperature of the air conditioner as a function of time.
  • the data is recorded every 8 minutes from 19:40 to 23:52.
  • the four curves in Fig. 2 are set to temperature, room temperature, outdoor temperature and power from top to bottom according to the leftmost position.
  • the set temperature is the initial set temperature of 30 degrees
  • the linear indoor temperature with a turning point in the middle is a curve that rises from 15 degrees and finally aligns with the set temperature.
  • the recorded outdoor temperature initial temperature is slightly lower than the indoor temperature.
  • the smaller amplitude curve, the power shown at the bottom of Figure 2 when the user's initial set temperature is lowered, the power is also reduced.
  • the air conditioner usage data of the user in another day in FIG. 2 is shown, and the parameters are the same as the parameters in FIG. 2, and the four curves in FIG. 3 are from the top to the leftmost position.
  • the lower order is set temperature, room temperature, power and outdoor temperature.
  • the air conditioning usage from 21:24 to 22:15 is recorded.
  • the set temperature is the straight line with the initial set temperature of 30 degrees.
  • the indoor temperature rises first and then falls, and some time periods and user initial settings.
  • the curve of temperature coincidence, the power is a curve that is negatively correlated with the indoor temperature, and the outdoor temperature is the lowest curve in FIG.
  • the air conditioner When the user turns on the air conditioner, it is preferred to set a lower set temperature. After the indoor temperature drops, the user can actually accept a higher set temperature.
  • the air conditioning control method proposed by the present invention will be separately adjusted for the above-mentioned cooling and heating conditions.
  • the two cases will be separately explained.
  • the air conditioner works in the heating mode.
  • the current mode of the air conditioner is first determined.
  • the air conditioner is continuously turned on and the heating mode is maintained, the current indoor temperature is continuously obtained, and the user initially sets the temperature.
  • the air conditioner involved is continuously turned on and maintains the heating mode, that is, the mode conversion of the air conditioner is excluded, for example, the case of working in the non-heating mode and then switching to the heating mode. In the case of no heating adjustment.
  • conditional judgment is required.
  • the indoor temperature is greater than or equal to the first temperature value, it is determined that the indoor temperature satisfies the preset condition.
  • the first temperature value is a preset temperature, and the first temperature value is higher than the outdoor temperature, which may be 22 degrees, which is not limited in the present invention.
  • the user's initial set temperature is adjusted when it is determined that the indoor temperature satisfies the condition.
  • the adjusted set temperature is lower than the user's initial set temperature. This adjustment reduces the energy consumption of the air conditioner.
  • different user initial set temperatures correspond to different adjustments. Since the user's initial set temperature is set by the user, which embodies the user's usage habits, during the adjustment process, the user's habits are also considered in the air conditioning adjustment process, and different adjustment strategies are indicated according to this habit.
  • the initial setting temperature of the user is greater than the second temperature value
  • the initial setting temperature of the user is adjusted to the second temperature value.
  • the initial setting temperature of the user When the initial setting temperature of the user is less than or equal to the second temperature value, the initial setting temperature of the user is turned down, and the adjusted set temperature is greater than or equal to the first temperature value.
  • the user initial setting temperature can be lowered to a set value, and the set value is an integer greater than or equal to 1. As long as the user initially sets the temperature to lower the preset value, the obtained adjusted temperature is greater than or equal to the first temperature value. Just fine.
  • the second temperature value is greater than the first temperature value.
  • the first temperature value is 22 degrees
  • the second temperature value is 27 degrees
  • the set value is 1.
  • the initial setting temperature of the user is >27 degrees
  • the adjustment is made according to the high energy consumption standard, that is, the initial setting temperature of the user is adjusted to the second temperature value, that is, the initial setting temperature of the user is 27 degrees
  • the initial setting temperature of the user will be lowered by 1 degree according to the normal energy consumption standard.
  • the current setting temperature should not be too low, so as not to affect the user experience, so here
  • the temperature after the adjustment should not be too low, and the present invention is not lower than the first temperature value, that is, the second temperature adjustment value is at least 22 degrees.
  • the air conditioning temperature is set very low, so as to cool the room as soon as possible, but If the indoor temperature is not lowered, the set temperature is adjusted in time, which not only wastes energy consumption, but also is not conducive to the user's health.
  • the temperature is 26 degrees, which is a comfortable temperature for the human body.
  • the present invention is adjusted based on the appropriate temperature of the human body. The adjustment process is as follows:
  • the indoor temperature is less than or equal to the first temperature value, it is determined that the indoor temperature satisfies the preset condition.
  • the first temperature value in the cooling mode is the same as the first temperature value in the heating mode described above, although the name is the same, but the actual value is different, and the value of the first temperature value of the cooling is higher than that during the heating.
  • the value of the temperature value for example, the first temperature value may be 30 degrees.
  • the initial setting temperature of the user is adjusted to the second temperature value.
  • the initial setting temperature of the user When the initial setting temperature of the user is greater than or equal to the second temperature value, the initial setting temperature of the user is raised, and the adjusted set temperature is less than or equal to the first temperature value.
  • the user initial setting temperature can be increased to a set value, and the set value is an integer greater than or equal to 1, as long as the user initially sets the temperature to increase the preset value, the obtained adjusted temperature is greater than or equal to the first temperature value. Just fine.
  • the first temperature value is 30 degrees and the second temperature value is 26 degrees.
  • the set value for adjusting the initial setting temperature of the user may be 1 degree.
  • the air conditioning control method according to the present invention may be executed by the cloud platform server to instruct the air conditioner, or may be executed by the air conditioner.
  • the cloud platform server obtains the indoor temperature reported by the air conditioner and the initial set temperature of the user, and if the acquired indoor temperature satisfies the preset condition, the adjustment command is generated in combination with the initial set temperature of the user, and the adjustment is performed.
  • the command includes the adjusted set temperature, and then the adjustment command is sent to the air conditioner, so that after receiving the adjustment command, the air conditioner adjusts the initial set temperature of the user according to the adjusted set temperature in the adjustment command.
  • the adjusted set temperature may be the second temperature value, or may be the temperature after the set temperature is lowered or the preset value is increased.
  • the first temperature value, the second temperature value, and the preset value involved in the adjustment process are pre-stored in the cloud platform server.
  • the cloud platform server can also record the boot time reported by the air conditioner, and send a request for obtaining the indoor temperature and the initial set temperature of the user to the air conditioner after the preset time interval of the boot time interval, to obtain the data reported by the air conditioner.
  • the cloud platform server may also detect the number of user intervention commands obtained by the air conditioner, record user intervention parameters, and stop adjusting the air conditioner when the user intervention parameter is greater than or equal to a preset threshold.
  • the air conditioning control method can also directly perform adjustment without sending an adjustment command by means of a cloud platform server.
  • the air conditioner can obtain the indoor temperature and the initial set temperature of the user through the own processor, and analyze whether the indoor temperature satisfies the preset condition. When it is determined that the indoor temperature satisfies the condition, the air conditioning adjustment standard is determined according to the current user initial set temperature, and the air conditioner is instructed.
  • the temperature adjustment component adjusts the user's initial set temperature so that the air conditioner can maintain the adjusted set temperature after adjustment.
  • the air conditioner can report the data acquired by itself to the cloud platform server, and the cloud platform server can analyze and collect the user usage habit according to the data, and classify the user.
  • the air conditioner executes the adjustment command, it can also detect whether the user is satisfied with the adjustment result to better satisfy the user experience.
  • the adjusted air conditioner receives the command to change the adjusted set temperature by the user, it means that the set temperature after the adjustment is not the result expected by the user.
  • the present invention also detects whether there is a user intervention command after adjusting the air conditioner.
  • a user intervention instruction is detected, a user intervention parameter is updated that is used to indicate the number of times the user intervention instruction was detected.
  • the user intervention parameter is updated, that is, every time a user intervention instruction is detected, the user intervention parameter is incremented by 1 based on the previous intervention parameter.
  • the updated user intervention parameter is recorded. If the user intervention parameter reaches a preset threshold, the air conditioner will not be adjusted during the air conditioner startup process.
  • the air conditioner's one boot process is only adjusted once. If energy-saving interventions are carried out during the day, energy-saving interventions can still be performed at night.
  • FIG. 4 is a block diagram of an air conditioning control device according to the present invention.
  • the device may be disposed in an air conditioner or platform service.
  • the device includes an acquisition module 401 and an adjustment module 402.
  • the obtaining module 401 is configured to acquire an indoor temperature of the air conditioning control area and a user initial set temperature of the air conditioner.
  • the adjustment module 402 is configured to adjust the initial set temperature of the user acquired by the acquisition module 402 when the indoor temperature acquired by the acquisition module 401 meets the preset condition.
  • the energy consumption corresponding to the set temperature adjusted by the adjustment module 402 is lower than the energy consumption corresponding to the initial set temperature of the user.
  • the preset condition includes: the indoor temperature is greater than or equal to the first temperature value; and the adjusted set temperature is lower than the initial set temperature of the user.
  • the air conditioning control device adjusts the user through the adjustment module after acquiring the current indoor temperature of the air conditioning control area and the initial setting temperature of the air conditioner by the acquisition module, and detecting that the indoor temperature meets the preset condition
  • the initial set temperature, and the adjusted set temperature corresponds to the energy consumption corresponding to the user's initial set temperature.
  • the initial setting temperature of the user is the expected temperature of the air conditioner set by the user according to his own needs, and reflects the user's demand.
  • the invention adjusts the air conditioner based on the temperature set by the user, and ensures that the air conditioning temperature is substantially in line with expectations while reducing Air conditioning energy consumption.
  • the adjustment module 402 is further configured to: when the initial setting temperature of the user is greater than the second temperature value, adjust the initial setting temperature of the user to the second temperature value. Alternatively, when the initial setting temperature of the user is less than or equal to the second temperature value, the initial setting temperature of the user is lowered.
  • the set temperature after being adjusted by the adjustment module 402 is greater than or equal to the first temperature value.
  • the preset condition includes: the indoor temperature is less than or equal to the first temperature value; and the adjusted set temperature is higher than the initial set temperature of the user.
  • the adjustment module 402 is further configured to adjust the initial setting temperature of the user to the second temperature value when the initial setting temperature of the user is less than the second temperature value.
  • the initial setting temperature of the user is greater than or equal to the second temperature value
  • the initial setting temperature of the user is raised, and the adjusted set temperature is less than or equal to the first temperature value.
  • the obtaining module 401 includes: a recording submodule 4011 and an obtaining submodule 4012.
  • the recording sub-module 4011 is configured to record the startup time of the air conditioner.
  • the obtaining sub-module 4012 is configured to preset a preset duration between the current time and the booting time, and continuously obtain the indoor temperature and the initial setting temperature of the user from the current moment.
  • the adjustment module 402 includes an instruction generation submodule 4021 and an instruction transmission submodule 4022.
  • the instruction generation sub-module 4021 is configured to generate an adjustment instruction according to a preset temperature of the user.
  • the adjustment command contains the adjusted set temperature.
  • the instruction transmission sub-module 4022 is configured to send an adjustment instruction generated by the instruction generation sub-module 4021 to the air conditioner.
  • the air conditioner adjusts the user's initial set temperature according to the adjusted set temperature.
  • the instruction generation submodule 4021 and the instruction transmission submodule 4022 included in the adjustment module configure the foregoing functions in the cloud platform server.
  • the adjustment module may include an instruction generation submodule that generates an adjustment instruction according to the initial setting temperature of the user, and includes an instruction transmission submodule that sends the adjustment instruction to the temperature adjustment component of the air conditioner. It is also possible to determine how to adjust the air conditioner according to the initial temperature setting of the user without generating an instruction, for example, according to the second temperature value mentioned above or adjusting the preset value of the initial setting temperature of the user, and directly adjusting the user according to the determined adjustment value. Initial set temperature.
  • the air conditioning control device further includes:
  • the detection intervention module 403 is configured to detect whether there is a user intervention instruction after sending the adjustment instruction to the air conditioner.
  • the user intervention command is an instruction for the user to change the adjusted set temperature.
  • the parameter update module 404 is configured to update the user intervention parameter when the user intervention instruction is detected.
  • the user intervention parameter is used to indicate the number of times the user intervention instruction is detected.
  • the detection intervention module 403 and the parameter update module 404 can be configured in an air conditioner or a cloud platform server.
  • the detection intervention module 403 is configured to detect whether there is a user intervention instruction input by the user when the air conditioner is configured in the air conditioner.
  • the cloud platform server is configured, it is detected whether there is a user intervention instruction reported by the air conditioner.
  • the air conditioning control device can also stop adjusting the initial setting temperature of the user when the user intervention parameter is greater than or equal to the preset threshold.
  • FIG. 5 illustrates the configuration of the device in the cloud platform server as an example.
  • the device includes: an obtaining module 401, an adjusting module 402, a detecting intervention module 403, and a parameter updating module 404.
  • the obtaining module 401 includes: a recording submodule 4011 and an obtaining submodule 4012.
  • the adjusting module 402 includes an instruction generating submodule 4021 and an instruction sending submodule 4022.
  • the specific configuration of the related modules is as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调控制方法及装置。该方法包括:获取空调控制区域的当前室内温度、空调的用户初始设定温度,并在检测到室内温度满足预设条件时,调节用户初始设定温度,且调节后的设定温度对应的能耗低于用户初始设定温度对应的能耗。该方法在保证空调温度基本符合预期的同时,降低空调能耗。

Description

空调控制方法及装置
本申请基于申请号为201710213740.7、申请日为2017年4月1日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及空调技术领域,特别涉及一种空调控制方法及装置。
背景技术
目前,人们对工作、生活和学习环境要求不断提高,无论外界天气如何,人们总是希望身处于一个舒适的环境,因此空调应用越来越广,逐渐成为人们生活中不可或缺的重要设备之一。但空调在改善和提高办公或居住环境质量的同时,也带来了巨大的电力消耗,因此空调节能开始受到越来越多的关注。近些年,据统计近20几个省市出现过电荒,有些地方甚至为此采取了限电措施,这样虽然在一定程度上节约了电力消耗,然而一刀切的限电措施,限制了空调的功能,无法满足不同用户的不同需求,阻碍了空调的应用。
发明内容
本发明实施例提供了一种空调控制方法及装置。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面,提供了一种空调控制方法,包括:
获取空调控制区域的室内温度、空调的用户初始设定温度;
当所述室内温度满足预设条件时,调节所述用户初始设定温度,调节后的设定温度对应的能耗低于所述用户初始设定温度对应的能耗。
可选的,当所述空调工作在制热模式时,所述预设条件包括:所述室内温度大于等于第一温度值;所述调节后的设定温度低于所述用户初始设定温度。
当所述用户初始设定温度大于第二温度值时,将所述用户初始设定温度调节至所述第二温度值;
当所述用户初始设定温度小于等于所述第二温度值时,将所述用户初始设定温度调低,调节后的设定温度大于等于所述第一温度值。
可选的,当所述空调工作在制冷模式时,所述预设条件包括:所述室内温度小于 等于第一温度值;所述调节后的设定温度高于所述用户初始设定温度。
可选的,所述调节所述用户初始设定温度,包括:
当所述用户初始设定温度小于第二温度值时,将所述用户初始设定温度调节至所述第二温度值;
当所述用户初始设定温度大于等于所述第二温度值时,将所述用户初始设定温度调高,调节后的设定温度小于等于所述第一温度值。
可选的,所述方法还包括:
记录所述空调的开机时刻;
若当前时刻与所述开机时刻间隔预设时长,自所述当前时刻,持续获取所述室内温度、所述用户初始设定温度。
可选的,所述方法还包括:
根据所述用户初始设定温度,生成调节指令,所述调节指令中包含所述调节后的设定温度;
向所述空调发送所述调节指令。
可选的,所述方法还包括:
在向所述空调发送所述调节指令后,检测是否存在用户干预指令,所述用户干预指令为用户变更所述调节后的设定温度的指令;
当检测到所述用户干预指令时,更新用户干预参数,所述用户干预参数用于表示检测到所述用户干预指令的次数。
可选的,所述方法还包括:
当所述用户干预参数大于等于预设阈值时,停止调节所述用户初始设定温度。
根据本发明实施例的第二方面,提供一种空调控制装置,所述装置包括:
获取模块,用于获取空调控制区域的室内温度、空调的用户初始设定温度;
调节模块,用于当所述获取模块获取的所述室内温度满足预设条件时,调节所述获取模块获取到的所述用户初始设定温度,调节后的设定温度对应的能耗低于所述用户初始设定温度对应的能耗。
本发明实施例提供的技术方案可以包括以下有益效果:
本发明提供的一种空调控制方法及装置,包括,获取到空调控制区域的当前室内温度、空调的用户初始设定温度,并在检测到室内温度满足预设条件时,调节用户初始设定温度,且调节后的设定温度对应的能耗低于用户初始设定温度对应的能耗。其中的用户初始设定温度是用户根据自身需求设置的空调预期达到的温度,体现了用户需求,本发明基于用户设定的温度,对空调进行调节,在保证空调温度基本符合预期的同时,降低空调能耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种空调控制方法的流程示意图;
图2是本发明实施例的统计用户空调一天使用情况的曲线图;
图3是本发明实施例的统计用户空调另一天使用情况的曲线图;
图4是根据一示例性实施例示出的一种空调控制装置的框图;
图5是根据一示例性实施例示出的一种空调控制装置的框图。
具体实施方式
以下描述和附图充分地示出本发明的具体实施方案,以使本领域的技术人员能够实践它们。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本发明的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。在本文中,各实施方案可以被单独地或总地用术语“发明”来表示,这仅仅是为了方便,并且如果事实上公开了超过一个的发明,不是要自动地限制该应用的范围为任何单个发明或发明构思。本文中,诸如第一和第二等之类的关系术语仅仅用于将一个实体或者操作与另一个实体或操作区分开来,而不要求或者暗示这些实体或操作之间存在任何实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的结构、产品等而言,由于其与实施例公开的部分相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
为了便于理解,结合图1所示,本发明提供的一种空调控制方法包括:
在步骤101中,获取空调控制区域的当前室内温度、空调的用户初始设定温度。
其中,用户初始设定温度为其中的用户初始设定温度是用户根据自身需求设置的空调预期达到的温度,是用户根据自身习惯设置的空调的保持温度,体现了用户需求。
在步骤102中,当室内温度满足预设条件时,调节用户初始设定温度。
空调通过调节调节后,会对应第一个调节后的设定温度,调节后的设定温度对应的能耗低于用户初始设定温度对应的能耗。
本发明提供的一种空调控制方法,这一方法包括,在获取到空调控制区域的当前室内温度、空调的用户初始设定温度后,并在检测到室内温度满足预设条件时,调节用户初始设定温度,且调节后的设定温度对应的能耗低于用户初始设定温度对应的能耗。其中的用 户初始设定温度是用户根据自身需求设置的空调预期达到的温度,体现了用户需求,本发明基于用户设定的温度,对空调进行调节,在保证空调温度基本符合预期的同时,降低空调能耗。
在实际实现过程中,由于空调刚启动时,并不是立刻达到调节条件,这样可以记录空调的开机时刻,在当前时刻与开机时刻间隔预设时长时,从当前时刻开始,才持续获取室内温度、用户初始设定温度,可以减少数据传输。其中的预设时长可以是通过数据统计得到,空调自开机时刻从初始的室内温度达到满足预设条件的室内温度所需的时间,以此时间来确定该预设时长。
在空调的实际应用过程中,由于外界环境的差异,人们对空调的功能要求不同。比如在冬季,用户开启空调的制热模式,用户最初开启空调调至设定温度,设定温度的分布比较离散,设定30度、26度、28度等各温度的占比都较高。举例来说,为了获取到用户的对空调设定温度的设置习惯,在制热季即12月到次年2月,对南方未供热城市用户数据进行了统计,通过对大数据的统计结果,发现设置30度的使用时长比例最高,26度的使用比例占第二,28度的使用比例占第三。但是用户着装习惯差异化大,在冬季居家时,穿短袖、家居服、棉服等都有可能,着装与设定温度强相关,有时,用户首先直接将设定温度设置为30度,但是待到室内温度升高后,其可以接受更低的设定温度,但是此时用户往往会忘记再次去调整空调的设定温度,因此造成能耗浪费。
在制热季,随机选取了用户数据做统计,选取的数据包括了该用户所在区域的室内温度、室外温度、设定温度等,该用户空调在制热季共运行了79天,设定温度>26度的时长占比97.6%,这些统计结果通过图2、图3示出的曲线数据得到,再通过同样的方法随机抽取用户,进行数据统计得到基本相同的结果,同时发现即使用户集中设定在30度,但也是可以接受27度。因此,在用户开机时设置了较高的设定温度,室内温度升高后,可以接受更低的设定温度。
在图2的曲线图中,示出了随机选取用户的一月份任意一天的空调使用数据,该曲线图中,涉及随时间变化,空调的设定温度、室内温度、功率和室外温度的变化,该时间从19:40到23:52每隔8分钟记录一次数据。图2中的4条曲线,按照最左侧位置从上向下依次为设定温度、室内温度、室外温度和功率。设定温度即初始设定温度为30度,中间有一次转折的直线室内温度为从15度上升最后与设定温度趋于一致的曲线,记录的室外温度初始温度为略低于室内温度的变化幅度较小曲线,功率在该图2的最下方显示的曲线,当调低用户初始设定温度时,功率也随之降低。
在图3示出的曲线图中,示出了图2中用户另一天的空调使用数据,涉及参数与图2中参数种类相同,图3中的4条曲线,按照最左侧位置从上向下依次为设定温度、室内温度、功率和室外温度。该图3中,记录了21:24到次日22:15的空调使用情况,设定温度即初始设置温度为30度的直线,室内温度为先上升后下降,且部分时段与用户初始设定温度重合的曲线,功率为与室内温度成负相关的曲线,室外温度为图3中最下方的曲线。
相应的,在制冷季,即在夏季用户需要空调制冷时,也存在同样的问题。用户一般在开启空调时,会首选设置一个较低的设定温度,待到室内温度降下来之后,该用户其实也可以接受一个较高设定温度。
结合上述实际应用中的情况,本发明提出的空调控制方法,将针对上述的制冷和制热情况分别做出调节。以下将结合上述如图1示出的实施例,对这两种情况,分别做出说明。
首先,空调工作在制热模式时。
在要对空调进行制热调节时,先判断空调的当前模式,该空调持续开机且保持制热模式时,持续获取当前室内温度,用户初始设定温度。
值得指出的是,涉及的空调持续开机且保持制热模式,即排除了空调的模式转换的情况,比如,一开始是工作在非制热模式,然后再切换成制热模式的情况,这种情况下不进行制热调节。
在获取到室内温度和用户初始设定温度后,需要进行条件判断。
当室内温度大于等于第一温度值时,确定室内温度满足预设条件。
这里的是第一温度值是一个预先设置的温度,该第一温度值高于室外温度,可以是22度,本发明对此不进行限制。
在确定了室内温度满足条件时,调节用户初始设定温度。该调节后的设定温度低于用户初始设定温度。这样经过调节后,降低了空调能耗。
在本发明中,不同的用户初始设定温度对应不同的调节。由于用户初始设定温度是用户设置的,体现了用户的使用习惯,因此在调节过程中,对空调调节过程中,也考虑了用户的习惯,并根据这一习惯指示不同的调节策略。
当用户初始设定温度大于第二温度值时,将用户初始设定温度调节至第二温度值。
当用户初始设定温度小于等于第二温度值时,将用户初始设定温度调低,调节后的设定温度大于等于第一温度值。这里可以将用户初始设定温度调低设定值,该设定值为大于等于1的整数,只要用户初始设定温度调低该预设值后,得到的调节后温度大于等于第一温度值即可。
在该制热模式中,第二温度值大于第一温度值。
结合上述描述,比如,以第一温度值为22度、第二温度值为27度、设定值是1为例。当室内温度>=22度,若用户初始设定温度>27度,则按高能耗标准进行调节,即将用户初始设定温度调节至第二温度值,即用户初始设定温度为27度;若用户初始设定温度<=27度,则按普通能耗标准即将用户初始设定温度调低1度,由于是制热模式,当前的设定温度不宜过低,以免影响用户体验,所以这里的调节后温度不宜过低,本实发明以不低于第一温度值为例,即该第二温度调节值最低为22度。
上述是对空调制热模式的介绍,空调工作为制冷模式时,也存在同样的问题。在夏季,虽然用户的穿着一般相同,但是不同用户在设定空调温度时存在较大差异,根据数据统计 有的用户习惯开启空调时,将空调温度设置的非常低,以尽快进行室内降温,但是如不在室内温度降下来以后,及时的调节设定温度,不仅浪费能耗,而且不利于用户的身体健康,通过对用户数据的监测实验,统计得到26度为人体较为舒适的温度,在进行制冷调解时,本发明基于人体适宜温度进行调节。调节过程如下:
当室内温度小于等于第一温度值时,确定室内温度满足预设条件。
该制冷模式下的第一温度值,与上边描述的制热模式下的第一温度值,虽然名称相同,但是实际取值不同,制冷的第一温度值的取值高于制热时第一温度值的取值,比如,该第一温度值可以是30度。
当室内温度满足预设条件时,对用户初始设定温度进行如下调节:
当用户初始设定温度小于第二温度值时,将用户初始设定温度调节至第二温度值。
当用户初始设定温度大于等于第二温度值时,将用户初始设定温度调高,调节后的设定温度小于等于第一温度值。这里可以将用户初始设定温度调高设定值,该设定值为大于等于1的整数,只要用户初始设定温度调高该预设值后,得到的调节后温度大于等于第一温度值即可。
比如,在制冷模式中,可以是,第一温度值为30度,第二温度值为26度,调节用户初始设定温度的设定值可以为1度。
在实际实现过程中,本发明涉及的空调控制方法,可以通过云平台服务器指示空调执行,也可以通过空调执行。
结合如图1所示的方法流程中,云平台服务器获取空调上报的室内温度和用户初始设定温度,如果获取到的室内温度满足预设条件,结合用户初始设定温度生成调节指令,该调节指令中包含了调节后的设定温度,进而将该调节指令发送给空调,以使得空调在接收到调节指令后,根据调节指令中的调节后设定温度来调节用户初始设定温度。结合上述的说明,其中的调节后的设定温度可以是第二温度值,也可以是设定温度调低或者调高预设值后的温度。在调节过程中涉及的第一温度值、第二温度值、预设值预先存储在云平台服务器中。
云平台服务器还可以记录空调上报的开机时刻,自开机时刻间隔预设时长后,向空调发送获取室内温度、用户初始设定温度的请求,以获取空调上报的这些数据。云平台服务器还可以检测空调获取到的用户干预指令的次数,记录用户干预参数,当用户干预参数大于等于预设阈值时,停止对该空调的调节。
另一方面,该空调控制方法也可以不需要借助云平台服务器来发送调节指令,直接进行调节。空调可以通过自身处理器获取室内温度、用户初始设定温度,分析这些室内温度是否满足预设条件,当确定室内温度满足条件时,根据当前的用户初始设定温度确定空调的调节标准,指示空调的温度调节组件调节用户初始设定温度,使得空调能够在调节后保持调节后的设定温度。
当然,虽然整个控制流程可以由空调执行,空调还是可以将自身获取的数据上报云平 台服务器,云平台服务器可以根据这些数据分析统计用户使用习惯,对用户进行分类。
无论是制热模式还是制冷模式下的调节,在空调执行调节指令后,还可以检测用户对调节的结果是否满意,以更好的满足用户体验。对此,如果调节后的空调接收到用户改变调节后的设定温度的指令,则表示此次调节后的设定温度并不是用户期待的结果。为了减少这种情况的出现,本发明在对空调进行调节后,还检测是否存在用户干预指令。当检测到用户干预指令时,更新用户干预参数,该用户干预参数用于表示检测到用户干预指令的次数。这里的更新用户干预参数,即每检测到一次用户干预指令,用户干预参数在之前干预参数的基础上加1。
记录该更新后的用户干预参数,如果该用户干预参数达到预设阈值时,在空调的开机过程中,将不再对空调进行调节。
为了能够更好地提高用户体验,以及用户对空调调节的反馈,空调的一次开机过程只进行一次调节。若白天进行了节能干预夜间仍可进行节能干预,算作一次。
如图4所示,图4是本发明示出的一种空调控制装置的框图,这一装置可以设置在空调或者平台服务中,这一装置包括:获取模块401、调节模块402。
获取模块401,用于获取空调控制区域的室内温度、空调的用户初始设定温度。
调节模块402,用于当获取模块401获取的室内温度满足预设条件时,调节获取模块402获取到的用户初始设定温度。
经过调节模块402调节后的设定温度对应的能耗低于用户初始设定温度对应的能耗。
结合如图4所示出的装置,当空调工作在制热模式时,预设条件包括:室内温度大于等于第一温度值;调节后的设定温度低于用户初始设定温度。
本发明提供的一种空调控制装置,在通过获取模块获取到空调控制区域的当前室内温度、空调的用户初始设定温度后,并在检测到室内温度满足预设条件时,通过调节模块调节用户初始设定温度,且调节后的设定温度对应的能耗低于用户初始设定温度对应的能耗。其中的用户初始设定温度是用户根据自身需求设置的空调预期达到的温度,体现了用户需求,本发明基于用户设定的温度,对空调进行调节,在保证空调温度基本符合预期的同时,降低空调能耗。
在制热模式下,调节模块402还用于:当用户初始设定温度大于第二温度值时,将用户初始设定温度调节至第二温度值。或者,当用户初始设定温度小于等于第二温度值时,将用户初始设定温度调低。
在经过调节模块402调节后的设定温度大于等于第一温度值。
结合如图4所示出的装置,当空调工作在制冷模式时,预设条件包括:室内温度小于等于第一温度值;调节后的设定温度高于用户初始设定温度。
在制冷模式下,调节模块402还用于,当用户初始设定温度小于第二温度值时,将用户初始设定温度调节至第二温度值。
或者,当用户初始设定温度大于等于第二温度值时,将用户初始设定温度调高,调节 后的设定温度小于等于第一温度值。
在空调控制装置的一种可能的构成方式中,获取模块401包括:记录子模块4011、获取子模块4012。
记录子模块4011,用于记录空调的开机时刻。
获取子模块4012,用于在当前时刻与开机时刻间隔预设时长,自该当前时刻,持续获取室内温度、用户初始设定温度。
在空调控制装置的另一种可能的构成方式中,调节模块402包括:指令生成子模块4021、指令发送子模块4022。
指令生成子模块4021,用于根据用户初始设定温度,生成调节指令。
调节指令中包含调节后的设定温度。
指令发送子模块4022,用于向空调发送通过指令生成子模块4021生成的调节指令。
空调根据调节后的设定温度调节用户初始设定温度。
在该调节模块402配置在云平台服务器时,该调节模块包括的上述指令生成子模块4021和指令发送子模块4022在云平台服务器中配置上述功能。
在该调节模块配置在空调中时,调节模块中,可以包括根据用户初始设定温度生成调节指令的,指令生成子模块,并包括将调节指令发送给空调中温度调节组件的指令发送子模块,也可以不生成指令,直接根据用户初始设定温度,确定如何对空调进行调节,比如根据上述的第二温度值或是将用户初始设定温度调节预设值,直接根据确定的调节值调节用户初始设定温度。
在空调控制装置的另一种可能的构成方式中,空调控制装置,还包括:
检测干预模块403,用于在向空调发送调节指令后,检测是否存在用户干预指令。
其中,用户干预指令为用户变更调节后的设定温度的指令。
参数更新模块404,用于当检测到用户干预指令时,更新用户干预参数。
其中,用户干预参数用于表示检测到用户干预指令的次数。
该装置中的,检测干预模块403、参数更新模块404,可配置在空调中或者是云平台服务器中。其中的,检测干预模块403配置在空调时,检测是否存在用户输入的用户干预指令;配置在云平台服务器时,检测是否存在空调上报的用户干预指令。
该空调控制装置,还可以在用户干预参数大于等于预设阈值时,停止调节用户初始设定温度。
为了较为清晰的示出空调控制装置的结构,本发明示出了在图5中示出了,该空调控制装置的示意结构,图5以该装置配置在云平台服务器为例进行说明,空调控制装置包括:获取模块401、调节模块402、检测干预模块403、参数更新模块404。其中,获取模块401包括:记录子模块4011、获取子模块4012;调节模块402包括:指令生成子模块4021、指令发送子模块4022。相关模块的具体配置情况如上述说明。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块 的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的流程及结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种空调控制方法,其特征在于,包括:
    获取空调控制区域的室内温度、空调的用户初始设定温度;
    当所述室内温度满足预设条件时,调节所述用户初始设定温度,调节后的设定温度对应的能耗低于所述用户初始设定温度对应的能耗。
  2. 根据权利要求1所述的方法,其特征在于,当所述空调工作在制热模式时,所述预设条件包括:所述室内温度大于等于第一温度值;所述调节后的设定温度低于所述用户初始设定温度。
  3. 根据权利要求2所述的方法,其特征在于,所述调节所述用户初
    当所述用户初始设定温度大于第二温度值时,将所述用户初始设定温度调节至所述第二温度值;
    当所述用户初始设定温度小于等于所述第二温度值时,将所述用户初始设定温度调低,调节后的设定温度大于等于所述第一温度值。
  4. 根据权利要求1所述的方法,其特征在于,当所述空调工作在制冷模式时,所述预设条件包括:所述室内温度小于等于第一温度值;所述调节后的设定温度高于所述用户初始设定温度。
  5. 根据权利要求4所述的方法,其特征在于,所述调节所述用户初始设定温度,包括:
    当所述用户初始设定温度小于第二温度值时,将所述用户初始设定温度调节至所述第二温度值;
    当所述用户初始设定温度大于等于所述第二温度值时,将所述用户初始设定温度调高,调节后的设定温度小于等于所述第一温度值。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    记录所述空调的开机时刻;
    若当前时刻与所述开机时刻间隔预设时长,自所述当前时刻,持续获取所述室内温度、所述用户初始设定温度。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述用户初始设定温度,生成调节指令,所述调节指令中包含所述调节后的设定温度;
    向所述空调发送所述调节指令。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    在向所述空调发送所述调节指令后,检测是否存在用户干预指令,所述用户干预指令为用户变更所述调节后的设定温度的指令;
    当检测到所述用户干预指令时,更新用户干预参数,所述用户干预参数用于表示检测 到所述用户干预指令的次数。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    当所述用户干预参数大于等于预设阈值时,停止调节所述用户初始设定温度。
  10. 一种空调控制装置,其特征在于,所述装置包括:
    获取模块,用于获取空调控制区域的室内温度、空调的用户初始设定温度;
    调节模块,用于当所述获取模块获取的所述室内温度满足预设条件时,调节所述获取模块获取到的所述用户初始设定温度,调节后的设定温度对应的能耗低于所述用户初始设定温度对应的能耗。
PCT/CN2018/077924 2017-04-01 2018-03-02 空调控制方法及装置 WO2018177076A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/461,704 US10890347B2 (en) 2017-04-01 2018-03-02 Method and device for controlling air conditioner
ES18776869T ES2932525T3 (es) 2017-04-01 2018-03-02 Método y dispositivo para controlar un aire acondicionado
EP18776869.2A EP3546841B1 (en) 2017-04-01 2018-03-02 Method and device for controlling air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710213740.7A CN106885344A (zh) 2017-04-01 2017-04-01 空调控制方法及装置
CN201710213740.7 2017-04-01

Publications (1)

Publication Number Publication Date
WO2018177076A1 true WO2018177076A1 (zh) 2018-10-04

Family

ID=59182403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077924 WO2018177076A1 (zh) 2017-04-01 2018-03-02 空调控制方法及装置

Country Status (5)

Country Link
US (1) US10890347B2 (zh)
EP (1) EP3546841B1 (zh)
CN (1) CN106885344A (zh)
ES (1) ES2932525T3 (zh)
WO (1) WO2018177076A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111657777A (zh) * 2019-03-08 2020-09-15 爱信精机株式会社 座便装置
CN115789889A (zh) * 2022-11-29 2023-03-14 珠海格力电器股份有限公司 一种空调的控制方法和装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106885344A (zh) * 2017-04-01 2017-06-23 青岛海尔空调器有限总公司 空调控制方法及装置
CN107576001B (zh) * 2017-08-18 2020-01-31 广东美的暖通设备有限公司 预估能耗计算方法、系统及空调
CN110631211A (zh) * 2018-06-21 2019-12-31 青岛海尔空调器有限总公司 空调控制方法及装置
CN109592362B (zh) 2019-01-10 2020-10-23 孔含之 一种led灯加工用的传送调控装置及其使用方法
CN111426000B (zh) * 2019-01-10 2021-08-06 青岛海尔空调电子有限公司 空调控制的方法、装置及计算机存储介质
CN112648713A (zh) * 2020-09-09 2021-04-13 江苏振宁半导体研究院有限公司 一种用于空调温控器的控制系统
CN114484777A (zh) * 2020-10-26 2022-05-13 广州联动万物科技有限公司 一种空调调节室温的控制方法及空调
CN112594891A (zh) * 2021-01-14 2021-04-02 广东积微科技有限公司 一种空调防尘的控制方法、室外机及空调
CN113669880A (zh) * 2021-07-29 2021-11-19 青岛海尔空调器有限总公司 空调控制方法、装置、电子设备及存储介质
CN114838463A (zh) * 2022-04-07 2022-08-02 广州云雷智能科技有限公司 温度调节系统集中控制方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146255A (ja) * 1998-11-16 2000-05-26 Takeda Denshi Kogyo Kk 空気調和システムおよび該システム用の温冷感監視モジュール
JP2001235197A (ja) * 1999-12-13 2001-08-31 Kazuo Miwa 室内冷暖房における省エネルギー方法及び装置並びにシステム
CN103344028A (zh) * 2013-07-01 2013-10-09 青岛海信日立空调系统有限公司 空调节能控制方法及空调
CN203364349U (zh) * 2013-08-01 2013-12-25 周立杰 空调节电智能控制器
CN104456824A (zh) * 2013-09-18 2015-03-25 珠海格力电器股份有限公司 空调器的控制方法和空调器
CN104764162A (zh) * 2015-03-31 2015-07-08 广东美的制冷设备有限公司 一种空调器的节能控制方法、控制系统及空调器
CN106885344A (zh) * 2017-04-01 2017-06-23 青岛海尔空调器有限总公司 空调控制方法及装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657179A (en) * 1984-12-26 1987-04-14 Honeywell Inc. Distributed environmental/load control system
KR101270621B1 (ko) 2007-12-21 2013-06-03 엘지전자 주식회사 공기조화 시스템
US8141791B2 (en) * 2009-03-26 2012-03-27 Howard Rosen Energy management improvement for a heating system with reduced setpoint temperature during no occupancy based upon historical sampling of room thermal response with highest power heat applied
US9124130B2 (en) * 2009-07-30 2015-09-01 Lutron Electronics Co., Inc. Wall-mountable temperature control device for a load control system having an energy savings mode
US9244445B2 (en) * 2009-12-22 2016-01-26 General Electric Company Temperature control based on energy price
US9157646B2 (en) * 2010-09-13 2015-10-13 Honeywell International Inc. Automatic changeover control for an HVAC system
CN103221755B (zh) * 2010-12-28 2016-10-19 欧姆龙株式会社 空调信息推定装置、空调信息推定装置的控制方法、以及控制程序
US8880226B2 (en) * 2011-05-17 2014-11-04 Honeywell International Inc. System and method to predict optimized energy consumption
JP2013088087A (ja) * 2011-10-21 2013-05-13 Hitachi Appliances Inc 空気調和機
CN103868196B (zh) * 2012-12-17 2016-08-17 珠海格力电器股份有限公司 空调的控制方法、控制装置及具有该控制装置的空调
EP3040633A4 (en) * 2013-08-29 2017-06-14 Mitsubishi Electric Corporation Air conditioning system
CN105588255A (zh) * 2014-10-27 2016-05-18 曹进 一种节能型空调控制方法
KR101675466B1 (ko) * 2015-03-30 2016-11-11 (주)테스코리아 현열냉방기 제어방법
US9964322B2 (en) * 2015-04-01 2018-05-08 Emerson Electric Co. Controller set point adjustment based on outdoor temperature
US10510127B2 (en) * 2015-09-11 2019-12-17 Johnson Controls Technology Company Thermostat having network connected branding features
US10451302B2 (en) * 2016-08-29 2019-10-22 Iot Cloud Technologies Inc. Weather anticipating programmable thermostat and wireless network PTAC control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146255A (ja) * 1998-11-16 2000-05-26 Takeda Denshi Kogyo Kk 空気調和システムおよび該システム用の温冷感監視モジュール
JP2001235197A (ja) * 1999-12-13 2001-08-31 Kazuo Miwa 室内冷暖房における省エネルギー方法及び装置並びにシステム
CN103344028A (zh) * 2013-07-01 2013-10-09 青岛海信日立空调系统有限公司 空调节能控制方法及空调
CN203364349U (zh) * 2013-08-01 2013-12-25 周立杰 空调节电智能控制器
CN104456824A (zh) * 2013-09-18 2015-03-25 珠海格力电器股份有限公司 空调器的控制方法和空调器
CN104764162A (zh) * 2015-03-31 2015-07-08 广东美的制冷设备有限公司 一种空调器的节能控制方法、控制系统及空调器
CN106885344A (zh) * 2017-04-01 2017-06-23 青岛海尔空调器有限总公司 空调控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3546841A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111657777A (zh) * 2019-03-08 2020-09-15 爱信精机株式会社 座便装置
CN115789889A (zh) * 2022-11-29 2023-03-14 珠海格力电器股份有限公司 一种空调的控制方法和装置

Also Published As

Publication number Publication date
CN106885344A (zh) 2017-06-23
EP3546841A1 (en) 2019-10-02
EP3546841A4 (en) 2020-01-08
US10890347B2 (en) 2021-01-12
ES2932525T3 (es) 2023-01-20
EP3546841B1 (en) 2022-11-02
US20190360710A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
WO2018177076A1 (zh) 空调控制方法及装置
WO2018214704A1 (zh) 用于空调控制的方法及装置
CN104089378B (zh) 光伏空调系统的控制方法、控制装置及光伏空调系统
CN103940041A (zh) 空调及其舒适睡眠控制方法和系统
CN105465955B (zh) 一种天气联动空调控制方法
CN103884078A (zh) 空调器的控制方法、控制系统和空调器
CN103335377A (zh) 空调控制装置及其定时开机的控制方法
CN105573135A (zh) 一种智能家电的控制方法及装置
CN103982986A (zh) 空调器及其舒适控制方法和装置
CN103994543A (zh) 一种室内恒温恒湿智能控制系统及方法
CN102865647A (zh) 基于云计算技术具备云适应功能的云空调及其云适应方法
CN105115101A (zh) 一种夜间睡眠时自动控制空调温度的方法及设备
CN105546756A (zh) 空调控制方法和装置
CN102607138B (zh) 综合节能建筑的空调控制方法及系统
CN104898600B (zh) 一种基于智能家居系统的信息推送方法及装置
CN105652826A (zh) 一种智能家居控制方法、控制器、移动终端以及系统
CN110631211A (zh) 空调控制方法及装置
JP2009254219A (ja) 電力制御装置及びプログラム
CN104279711A (zh) 一种空调器及其室温自适应调节控制方法和系统
CN107355946A (zh) 一种基于用户体验的家居智能舒适节能控制系统及方法
WO2019128069A1 (zh) 一种自适应发电机空调控制方法及装置
KR20130088485A (ko) 전기 기기의 에너지 사용 패턴을 분석하여 에너지를 관리하는 에너지 관리 장치 및 방법
CN104712573A (zh) 风扇及其控制方法
CN107504657A (zh) 一种睡眠环境智能化调节方法
CN103940033A (zh) 一种信息处理方法及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018776869

Country of ref document: EP

Effective date: 20190624

NENP Non-entry into the national phase

Ref country code: DE