WO2018177020A1 - 一种复合钢管的制造方法 - Google Patents

一种复合钢管的制造方法 Download PDF

Info

Publication number
WO2018177020A1
WO2018177020A1 PCT/CN2018/074674 CN2018074674W WO2018177020A1 WO 2018177020 A1 WO2018177020 A1 WO 2018177020A1 CN 2018074674 W CN2018074674 W CN 2018074674W WO 2018177020 A1 WO2018177020 A1 WO 2018177020A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
composite steel
composite
clad steel
manufacturing
Prior art date
Application number
PCT/CN2018/074674
Other languages
English (en)
French (fr)
Inventor
焦四海
闫博
周成
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2019548000A priority Critical patent/JP6837155B2/ja
Priority to AU2018246660A priority patent/AU2018246660B2/en
Priority to KR1020197027873A priority patent/KR102365943B1/ko
Priority to EP18777638.0A priority patent/EP3603880A4/en
Priority to US16/493,718 priority patent/US11707773B2/en
Publication of WO2018177020A1 publication Critical patent/WO2018177020A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/065Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes starting from a specific blank, e.g. tailored blank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0826Preparing the edges of the metal sheet with the aim of having some effect on the weld
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/09Making tubes with welded or soldered seams of coated strip material ; Making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/30Finishing tubes, e.g. sizing, burnishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/01Welding by high-frequency current heating by induction heating
    • B23K13/02Seam welding
    • B23K13/025Seam welding for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/383Cladded or coated products

Definitions

  • the present invention relates to a method of manufacturing a steel material, and more particularly to a method of manufacturing a steel pipe.
  • the composite steel pipe has the mechanical properties of the base steel and the corrosion resistance of the composite metal. It is used for corrosive fluid transport or mechanical structure under corrosive environment, and has high cost performance, and thus has been widely used.
  • the composite steel pipe can be divided into a mechanically-bonded composite steel pipe and a metallurgical composite composite steel pipe.
  • the former has a local gap at the joint surface, and the joint strength is low, and interface separation may occur during use.
  • the latter has excellent overall performance.
  • the traditional steel pipe production technology includes seamless steel pipe and welded pipe production technology.
  • the former includes hot-rolled seamless steel pipe and hot-extruded seamless steel pipe, and the latter includes straight seam welded pipe, spiral welded pipe and high-frequency straight seam welded pipe production technology.
  • welded pipe production technology especially high-frequency straight seam welded pipe production technology, uses steel plates as raw materials, with uniform wall thickness, regular geometrical dimensions and low production costs.
  • the rolled composite steel plate has a good metallurgical bonding effect, and the composite layer and the base steel plate have high bonding strength, high dimensional accuracy, and good surface quality. Therefore, it is expected to produce composite steel pipes by using rolled composite steel sheets as raw materials and high-frequency straight seam welded pipe technology.
  • the publication number is CN103978299A, and the publication date is August 13, 2014.
  • the Chinese patent document entitled "Production of Bimetal Metallurgy Composite Pipe Process and Composite Pipe by High Frequency Resistance Welding Method” discloses a method for producing by using high frequency electric resistance welding method. Bimetal metallurgy composite pipe process and composite pipe.
  • the technical solution disclosed in the patent document utilizes a high-frequency electric resistance welding method to produce a bimetal alloy composite pipe, a composite plate as a raw material, a high-frequency electric resistance welding method for producing a corrosion-resistant alloy lining, and a metallurgical composite steel pipe outside the base pipe.
  • the lining layer near the weld is scraped off, and then repaired to achieve the continuity of the lining corrosion resistant alloy layer.
  • this technical solution also needs to increase the offline repair welding process after the high frequency resistance welding.
  • One of the objects of the present invention is to provide a method for manufacturing a composite steel pipe, which can fully utilize the continuous high-efficiency characteristics of the high-frequency straight seam welded pipe unit without increasing the subsequent non-continuous process and ensuring the corrosion resistance of the welded joint of the composite steel pipe. .
  • the present invention provides a method for manufacturing a composite steel pipe, which comprises using a composite steel plate as a raw material to manufacture a composite steel pipe, the composite steel plate comprising a base layer and a composite layer rolled and composited with the base layer; and the manufacturing method of the composite steel pipe
  • the method comprises the steps of: forming, welding and deburring; first bending the two sides of the composite steel plate to the base layer side of the composite steel plate, and then performing the forming step, after the forming step, the open faces of the tube blank are all Multilayer.
  • both sides of the composite steel sheet are skillfully bent toward the base layer side of the composite steel sheet, and then a molding step is performed to obtain a tube blank.
  • the original opening surface of the tube blank is a base layer and a composite layer which is rolled and composited with the base layer.
  • the opening faces of the tube blank are all stratified, making it easy to weld; and because of the bending
  • the height is higher than the thickness of the composite steel plate, so there is no need to increase the offline repair welding process after welding. During welding, the composite metal part is extruded to form burrs.
  • the integrity of the metal layer is preserved at the weld, thereby ensuring the corrosion resistance of the composite steel pipe; while maintaining sufficient welding area to ensure welding Sewing mechanical properties.
  • the angle ⁇ of the bending is 75 to 95°.
  • the angle ⁇ 75° will increase the bending deformation amount, increase the difficulty, and reduce the efficiency; the angle ⁇ >95°, the end of the bent portion will contact in advance before welding, and the welding is reduced. Stability.
  • the height H of the bent portion to be bent is 1-2 times the thickness of the composite steel plate.
  • the multiple layer is located on the outer surface side of the tube blank.
  • the composite layer is located on the inner surface side of the tube blank.
  • the metal material forming the base layer is carbon steel or alloy steel.
  • the metal material forming the double layer is stainless steel or a copper alloy.
  • the manufacturing method of the composite steel pipe according to the present invention uses a composite steel plate as a raw material to manufacture a composite steel pipe, and the manufacturing method fully utilizes the continuous high-efficiency characteristics of the high-frequency straight seam welded pipe unit, does not increase the subsequent non-continuous process, and ensures the composite steel pipe. Corrosion resistance at the weld.
  • Fig. 1 is a view showing a partial structure of a section when a composite steel sheet is bent by the manufacturing method of the present invention.
  • Fig. 2 is a schematic cross-sectional view showing the composite steel pipe of the first embodiment in a molding process.
  • Fig. 3 is a schematic cross-sectional view showing the composite steel pipe of the first embodiment in a welding process.
  • Fig. 4 is a schematic cross-sectional view showing the composite steel pipe of the first embodiment after the deburring process.
  • Fig. 5 is a schematic cross-sectional view showing the composite steel pipe of the second embodiment in a molding process.
  • Fig. 6 is a schematic cross-sectional view showing the composite steel pipe of the second embodiment in a welding process.
  • Fig. 7 is a schematic cross-sectional view showing the composite steel pipe of the second embodiment after the deburring process.
  • Fig. 1 is a view showing a partial structure of a section when a composite steel sheet is bent by the manufacturing method of the present invention.
  • the composite steel plate includes a base layer 1 and a composite layer 2 which is rolled and composited with the base layer 1.
  • the both sides of the composite steel sheet are bent toward the base layer side of the composite steel sheet to form a bent portion 11, and then a molding step is performed to form Tube blank.
  • the opening face of the bent portion 11 is a composite layer 2, i.e., the open face of the tube blank is a composite layer 2.
  • the desired composite steel pipe is obtained by welding and deburring the bent portion 11.
  • represents the angle of the bend
  • H represents the height of the bent portion 11 to be bent
  • t represents the thickness of the composite steel sheet.
  • Fig. 2 is a schematic cross-sectional view showing the composite steel pipe of the first embodiment in a molding process.
  • the composite steel plate used in the composite steel pipe of the first embodiment includes a base layer 1 and a composite layer 2 which is rolled and composited with the base layer 1.
  • the both sides of the composite steel plate are bent toward the base layer side of the composite steel plate to form a bent portion.
  • the height of the bent portion is the same as the height of the composite steel plate, and the formed tube blank is located on the inner surface side of the tube blank.
  • the metal material of the base layer is carbon steel
  • the metal material of the double layer is stainless steel.
  • the metal material of the base layer is carbon steel or alloy steel
  • the metal material of the double layer is stainless steel or copper alloy.
  • FIG. 3 is a schematic cross-sectional view of the composite steel pipe of the first embodiment during the welding process.
  • the outer burr 4 protruding in the radial direction away from the center of the circle and the inner burr 3 protruding in the radial direction toward the center of the circle are formed, and after deburring, the composite steel pipe is as shown in Fig. 4.
  • Fig. 4 is a schematic cross-sectional view showing the composite steel pipe of the first embodiment after the deburring process. After the deburring composite steel pipe is subjected to conventional processes such as heat treatment, sizing and inspection, the metallurgical bonded lining stainless steel composite steel pipe required for the process can be obtained.
  • Fig. 5 is a schematic cross-sectional view showing the composite steel pipe of the second embodiment in a molding process.
  • the composite steel plate used in the composite steel pipe of the second embodiment comprises a base layer 1 and a composite layer 2 which is rolled and composited with the base layer 1.
  • the both sides of the composite steel plate are bent toward the base layer side of the composite steel plate to form a bent portion.
  • the height of the bent portion is the same as the height of the composite steel plate, and the formed tube blank is located on the outer surface side of the tube blank.
  • FIG. 6 is a schematic cross-sectional view of the composite steel pipe of the second embodiment during the welding process.
  • the outer burr 4 projecting in the radial direction away from the center of the circle and the inner burr 3 projecting in the radial direction toward the center of the circle are formed.
  • the composite steel pipe is as shown in Fig. 7.
  • Fig. 7 is a schematic cross-sectional view showing the composite steel pipe of the second embodiment after the deburring process.
  • the composite layer of the composite steel pipe according to the manufacturing method of the present invention can be located on the inner surface of the composite steel pipe or on the outer surface of the composite steel pipe, thereby making the present invention
  • the manufacturing method described is flexible and simple.
  • the manufacturing method of the invention fully utilizes the continuous high-efficiency characteristics of the high-frequency straight seam welded pipe unit, does not increase the subsequent non-continuous process, and ensures the corrosion resistance of the welded joint of the composite steel pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

一种复合钢管的制造方法,采用复合钢板为原料制造复合钢管。复合钢板包括基层(1)和与基层(1)轧制复合的复层(2)。复合钢管的制造方法包括步骤:成型、焊接和去毛刺;先将复合钢板的两边向复合钢板的基层(1)一侧折弯,然后再进行成型步骤,在成型步骤后,管坯的开口面全部为复层(2)。复合钢管的制造方法,采用复合钢板为原料制造复合钢管,既充分利用高频直缝焊管机组连续高效的特点,不增加后续的非连续工序,又保证复合钢管焊缝处的耐腐蚀性能。

Description

一种复合钢管的制造方法 技术领域
本发明涉及一种钢材的制造方法,尤其涉及一种钢管的制造方法。
背景技术
复合钢管兼备基层钢材的力学性能和复层金属的耐腐蚀性能,用于腐蚀性流体输送或者腐蚀环境下的机械结构,具有较高的性价比,因而得到越来越广泛的应用。
根据复层金属与基层金属的结合状态,复合钢管可以分为机械结合复合钢管和冶金结合复合钢管,前者结合面存在局部间隙,结合强度较低,在使用过程中可能会出现界面分离等现象,而后者具有优良的综合性能。
一方面,传统钢管生产技术都被尝试用于复合钢管的生产。传统钢管生产技术包括无缝钢管和焊管生产技术,前者包括热轧无缝钢管和热挤压无缝钢管、后者包括直缝焊管、螺旋焊管和高频直缝焊管生产技术。与无缝钢管相比,焊管生产技术尤其是高频直缝焊管生产技术采用钢板为原料,其壁厚均匀,几何尺寸规整,生产成本低。
另一方面,轧制复合钢板具有良好的冶金结合效果,复层与基层钢板结合强度高,尺寸精度高,表面质量好。因此,以轧制复合钢板为原料、采用高频直缝焊管技术生产复合钢管为人们所期待。
以复合钢板为原料、采用高频直缝焊管机组生产复合钢管时,由于复层金属较薄,焊缝处的复层金属会被挤出而成为毛刺的一部分,经过刮毛刺后,焊缝处的复层金属会被刮薄或者被刮除,焊缝处的耐腐蚀性能因此而降低。
公开号为CN103978299A,公开日为2014年8月13日,名称为“利用高频电阻焊法生产双金属冶金复合管工艺及复合管”的中国专利文献公开了一种利用高频电阻焊法生产双金属冶金复合管工艺及复合管。该专利文献所公开的技术方案利用高频电阻焊法生产双金属合金复合管,采用复合板为原料,采用高频电阻焊法生产耐蚀合金衬层在内、基管在外的冶金复合钢管,将焊缝处附近 的衬层刮除,然后进行补焊,实现内衬耐蚀合金层的连续性,然而该技术方案在高频电阻焊之后同样需要增加离线的补焊工序。
期望获得一种复合钢管的制造方法,其能够充分利用高频直缝焊管机组连续高效的特点,不增加后续的非连续工序,同时保证复合钢管焊缝处的耐腐蚀性能。
发明内容
本发明的目的之一在于提供一种复合钢管的制造方法,其能够充分利用高频直缝焊管机组连续高效的特点,不增加后续的非连续工序,同时保证复合钢管焊缝处的耐腐蚀性能。
为了实现上述目的,本发明提出了一种复合钢管的制造方法,其采用复合钢板为原料制造复合钢管,所述复合钢板包括基层和与基层轧制复合的复层;所述复合钢管的制造方法包括步骤:成型、焊接和去毛刺;先将复合钢板的两边向复合钢板的基层一侧折弯,然后再进行所述成型步骤,在所述成型步骤后,管坯的开口面全部为所述复层。
在本发明所述的制造方法中,巧妙地采用复合钢板的两边向复合钢板的基层一侧折弯,随后进行成型步骤,获得管坯。管坯的原开口面为基层和与基层轧制复合的复层,在所述成型步骤后,由于折弯,所以管坯的开口面全部为复层,使其易于焊接操作;且由于折弯高度高于复合钢板厚度,因而,焊接后无需增加离线的补焊工序。焊接时,复层金属部分被挤出,形成毛刺,去除毛刺后,焊缝处仍然保复层金属的完整性,从而保证复合钢管的耐腐蚀性能;同时保持足够的焊合面积,保证了焊缝的力学性能。换言之,只需对传统高频直缝焊管工艺稍作改动,而无需额外增加新的后续工艺即可实现复合钢管的生产,因而相较于现有技术而言,本发明所述的制造方法工艺更为简化,同时保证了复合钢管焊缝处的耐腐蚀性能。
进一步地,在本发明所述的复合钢管的制造方法中,折弯的角度θ为75-95°。在本发明所述的技术方案中,角度θ<75°,将增加折弯变形量,提升难度,降低效率;角度θ>95°,折弯部的端部在焊接前会提前接触,降低焊接的稳定性。
进一步地,在本发明所述的复合钢管的制造方法中,被折弯的折弯部的高 度H为复合钢板厚度的1-2倍。
进一步地,在本发明所述的复合钢管的制造方法中,在所述成型步骤后,所述复层位于管坯的外表面一侧。
进一步地,在本发明所述的复合钢管的制造方法中,在所述成型步骤后,所述复层位于管坯的内表面一侧。
进一步地,在本发明所述的复合钢管的制造方法中,形成所述基层的金属材料为碳钢或合金钢。
进一步地,在本发明所述的复合钢管的制造方法中,形成所述复层的金属材料为不锈钢或铜合金。
本发明所述的复合钢管的制造方法,其采用复合钢板为原料制造复合钢管,该制造方法既充分利用高频直缝焊管机组连续高效的特点,不增加后续的非连续工序,又保证复合钢管焊缝处的耐腐蚀性能。
附图说明
图1示意了采用本发明所述的制造方法复合钢板折弯时的断面局部结构。
图2为实施例一的复合钢管在成型工序时的断面示意图。
图3为实施例一的复合钢管在焊接工序时的断面示意图。
图4为实施例一的复合钢管在去毛刺工序后的断面示意图。
图5为实施例二的复合钢管在成型工序时的断面示意图。
图6为实施例二的复合钢管在焊接工序时的断面示意图。
图7为实施例二的复合钢管在去毛刺工序后的断面示意图。
具体实施方式
下面将结合说明书附图和具体的实施例对本发明所述的复合钢管的制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
图1示意了采用本发明所述的制造方法复合钢板折弯时的断面局部结构。
如图1所示,复合钢板包括基层1和与基层1轧制复合的复层2,复合钢板的两边向复合钢板的基层一侧折弯形成了折弯部11,随后进行成型步骤,以形成管坯。由图1中可以看出,折弯部11的开口面为复层2,即管坯的开口面 为复层2。继而,通过将折弯部11焊接和去毛刺后获得所需的复合钢管。
如图1所示,θ表示折弯的角度,H表示被折弯的折弯部11的高度,t表示复合钢板厚度。
图2为实施例一的复合钢管在成型工序时的断面示意图。如图2所示,实施例一的复合钢管所采用的复合钢板包括基层1和与基层1轧制复合的复层2,复合钢板的两边向复合钢板的基层一侧折弯形成了折弯部,折弯部的高度与复合钢板的高度相同,成型后的管坯,其复层2位于管坯的内表面一侧。基层的金属材料为碳钢,复层的金属材料为不锈钢,在其他实施方式中,基层的金属材料为碳钢或合金钢,复层的金属材料为不锈钢或铜合金。
随后对管坯进行高频加热、焊接,图3为实施例一的复合钢管在焊接工序时的断面示意图。如图3所示,焊接时,形成了沿径向方向远离圆心方向突起的外毛刺4以及沿径向方向朝向圆心方向突起的内毛刺3,去毛刺后,复合钢管如图4所示。图4为实施例一的复合钢管在去毛刺工序后的断面示意图。去毛刺后的复合钢管经过常规工艺例如热处理、定径和检验后,即可得到工艺所需的冶金结合内衬不锈钢复合钢管。
图5为实施例二的复合钢管在成型工序时的断面示意图。如图5所示,实施例二的复合钢管所采用的复合钢板包括基层1和与基层1轧制复合的复层2,复合钢板的两边向复合钢板的基层一侧折弯形成了折弯部,折弯部的高度与复合钢板的高度相同,成型后的管坯,其复层2位于管坯的外表面一侧。
随后对管坯进行高频加热、焊接,图6为实施例二的复合钢管在焊接工序时的断面示意图。如图6所示,焊接时,形成了沿径向方向远离圆心方向突起的外毛刺4以及沿径向方向朝向圆心方向突起的内毛刺3,去毛刺后,复合钢管如图7所示。图7为实施例二的复合钢管在去毛刺工序后的断面示意图。去毛刺后的复合钢管经过常规工艺例如热处理、定径和检验后,即可得到工艺所需的冶金结合外覆不锈钢复合钢管。
由实施例一和实施例二可以看出,本发明所述的制造方法所说的复合钢管的复层既可以位于复合钢管的内表面,也可以位于复合钢管的外表面,因而使得本发明所述的制造方法工艺灵活简便。本发明所述的制造方法既充分利用高频直缝焊管机组连续高效的特点,不增加后续的非连续工序,又保证复合钢管焊缝处的耐腐蚀性能。
需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (7)

  1. 一种复合钢管的制造方法,其采用复合钢板为原料制造复合钢管,所述复合钢板包括基层和与基层轧制复合的复层;所述复合钢管的制造方法包括步骤:成型、焊接和去毛刺;其特征在于:先将复合钢板的两边向复合钢板的基层一侧折弯,然后再进行所述成型步骤,在所述成型步骤后,管坯的开口面全部为所述复层。
  2. 如权利要求1所述的复合钢管的制造方法,其特征在于,折弯的角度θ为75-95°。
  3. 如权利要求1或2所述的复合钢管的制造方法,其特征在于,被折弯的折弯部的高度H为复合钢板厚度的1-2倍。
  4. 如权利要求1所述的复合钢管的制造方法,其特征在于,在所述成型步骤后,所述复层位于管坯的外表面一侧。
  5. 如权利要求1所述的复合钢管的制造方法,其特征在于,在所述成型步骤后,所述复层位于管坯的内表面一侧。
  6. 如权利要求1所述的复合钢管的制造方法,其特征在于,形成所述基层的金属材料为碳钢或合金钢。
  7. 如权利要求1或6所述的复合钢管的制造方法,其特征在于,形成所述复层的金属材料为不锈钢或铜合金。
PCT/CN2018/074674 2017-03-27 2018-01-31 一种复合钢管的制造方法 WO2018177020A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019548000A JP6837155B2 (ja) 2017-03-27 2018-01-31 複合鋼管の製造方法
AU2018246660A AU2018246660B2 (en) 2017-03-27 2018-01-31 Method for manufacturing clad steel pipe
KR1020197027873A KR102365943B1 (ko) 2017-03-27 2018-01-31 클래드 강관 제조 방법
EP18777638.0A EP3603880A4 (en) 2017-03-27 2018-01-31 METHOD OF MANUFACTURING A CLADDED STEEL PIPE
US16/493,718 US11707773B2 (en) 2017-03-27 2018-01-31 Method for manufacturing clad steel pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710188759.0 2017-03-27
CN201710188759.0A CN108655664B (zh) 2017-03-27 2017-03-27 一种复合钢管的制造方法

Publications (1)

Publication Number Publication Date
WO2018177020A1 true WO2018177020A1 (zh) 2018-10-04

Family

ID=63674190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074674 WO2018177020A1 (zh) 2017-03-27 2018-01-31 一种复合钢管的制造方法

Country Status (7)

Country Link
US (1) US11707773B2 (zh)
EP (1) EP3603880A4 (zh)
JP (1) JP6837155B2 (zh)
KR (1) KR102365943B1 (zh)
CN (1) CN108655664B (zh)
AU (1) AU2018246660B2 (zh)
WO (1) WO2018177020A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112548499A (zh) * 2020-12-05 2021-03-26 安徽宝恒新材料科技有限公司 一种三层复合钢板的加工方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6662585B2 (ja) * 2015-06-23 2020-03-11 日本発條株式会社 クラッドパイプ及びクラッドパイプの製造方法
CN111197669B (zh) * 2018-11-16 2022-04-05 天津华信机械有限公司 复合管、阀及其安装方法
CN111408633A (zh) * 2020-03-31 2020-07-14 吴丽萍 一种超薄金属板焊接工艺、复合水管及其生产设备
CN111958177A (zh) * 2020-07-07 2020-11-20 北京赛亿科技有限公司 一种桥梁缆索内部通气钢管的制作方法
CN114749869A (zh) * 2021-01-11 2022-07-15 宝山钢铁股份有限公司 一种复合钢管的制造方法及复合钢管
CN112756926A (zh) * 2021-01-26 2021-05-07 苏州亿创特智能制造有限公司 复合钢管及其制备方法
CN114193107A (zh) * 2022-01-20 2022-03-18 青岛力晨新材料科技有限公司 一种采用高频焊制造金属复合材料的方法
CN114769921A (zh) * 2022-03-29 2022-07-22 中国石油集团工程材料研究院有限公司 一种复合卷板通过高频电焊加堆焊加工复合管的方法
CN114669965A (zh) * 2022-03-30 2022-06-28 郭俊凯 带检测功能的烤网生产设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100125559A (ko) * 2009-05-21 2010-12-01 유한회사 평화스테인레스 배관 파이프 및 이의 제조방법
CN103317306A (zh) * 2013-06-09 2013-09-25 宝鸡石油钢管有限责任公司 一种螺旋缝双金属复合焊管的制造方法
CN103753030A (zh) * 2014-01-16 2014-04-30 北京隆盛泰科石油管科技有限公司 金属材料板叠合、机械层压生产复合管的方法
CN103978299A (zh) 2014-05-30 2014-08-13 北京隆盛泰科石油管科技有限公司 利用高频电阻焊法生产双金属冶金复合管工艺及复合管
DE202013010598U1 (de) * 2013-11-27 2015-03-05 Fischer Hydroforming Gmbh Vorrichtung zur Herstellung eines länglichen Profils, insbesondere Rohr, im Innenhochdruckumformverfahren (IHU)
CN104858536A (zh) * 2015-06-05 2015-08-26 江苏德创制管有限公司 一种大口径厚壁直缝埋弧焊管生产方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1316384A (en) * 1919-09-16 Method of electrical welding
US1712090A (en) * 1924-03-22 1929-05-07 George F Murphy Method of making lined piping
US1944096A (en) * 1927-06-01 1934-01-16 Laura S Stevenson Apparatus for making butt joined tubes and pipes
US2199150A (en) * 1937-05-05 1940-04-30 Clad Metals Ind Inc Method of making composite metal pipe
US2691815A (en) * 1951-01-04 1954-10-19 Metals & Controls Corp Solid phase bonding of metals
US2753623A (en) * 1951-01-05 1956-07-10 Metals & Controls Corp Solid phase bonding of metals
US3327383A (en) * 1963-01-03 1967-06-27 Walter C Reed Method of making clad pipe
US3350771A (en) * 1964-07-01 1967-11-07 Texas Instruments Inc Manufacture of seamed metallic tubing
US3610290A (en) * 1968-10-22 1971-10-05 Texas Instruments Inc Metal laminates and tubing embodying such laminates
JPS4937624B1 (zh) * 1970-11-11 1974-10-11
DE2141621C3 (de) * 1971-08-19 1976-01-02 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zum Herstellen von rohrförmigen Leitern, insbes. für supraleitende Kabel
JPS5928410B2 (ja) * 1981-05-29 1984-07-12 新日本製鐵株式会社 厚肉電縫管の成形方法
JPS62244585A (ja) 1986-04-17 1987-10-24 Nippon Light Metal Co Ltd アルミクラツド材の溶接方法
US5344062A (en) * 1993-06-24 1994-09-06 The Idod Trust Method of forming seamed metal tube
JPH08103818A (ja) * 1994-10-04 1996-04-23 Kawasaki Steel Corp テーパー管の連続製造方法
DE19515853C2 (de) * 1995-04-29 2001-01-18 Hewing Gmbh Verfahren zum Ummanteln eines Kunststoffrohres mit einer Metallummantelung
CN1136654A (zh) * 1995-05-19 1996-11-27 王永家 复合钢管的对接方法
JP2000202520A (ja) * 1999-01-06 2000-07-25 Am Technology:Kk アルミニウムを被覆したパイプの製造方法
JP2000199585A (ja) * 1999-01-07 2000-07-18 Mitsubishi Shindoh Co Ltd 金属管およびその製造方法
JP2000288626A (ja) * 1999-03-31 2000-10-17 Mitsubishi Shindoh Co Ltd 電縫管の製造装置および製造方法
JP2003013196A (ja) * 2001-06-29 2003-01-15 Otis:Kk 金属製パイプ
US7569766B2 (en) * 2007-12-14 2009-08-04 Commscope, Inc. Of North America Coaxial cable including tubular bimetallic inner layer with angled edges and associated methods
US7687719B2 (en) * 2007-12-14 2010-03-30 Commscope Inc. Of North Carolina Coaxial cable including tubular bimetallic outer layer with angled edges and associated methods
CN101637983B (zh) * 2008-08-01 2012-12-05 凌星中 一种冶金结合复合钢管、其制造方法及其制造装置
US20110297735A1 (en) * 2010-06-02 2011-12-08 Medinol, Ltd. Method and apparatus for stent manufacturing assembly
WO2012164828A1 (ja) * 2011-05-30 2012-12-06 パナソニック株式会社 電池ブロックおよびその製造方法
CN202327520U (zh) * 2011-11-25 2012-07-11 江阴市龙山管业有限公司 耐腐蚀复合管件
JP6294629B2 (ja) * 2013-10-11 2018-03-14 株式会社ジャパンディスプレイ 液晶表示装置
JP6015686B2 (ja) * 2014-02-07 2016-10-26 Jfeスチール株式会社 電縫鋼管の製造方法
WO2018003248A1 (ja) * 2016-06-30 2018-01-04 Jfeスチール株式会社 電縫溶接ステンレスクラッド鋼管およびその製造方法
KR102179607B1 (ko) * 2016-09-12 2020-11-17 제이에프이 스틸 가부시키가이샤 클래드 용접관 및 그 제조 방법
KR101752733B1 (ko) * 2017-01-19 2017-06-30 주식회사 에코파이프 이중 파이프의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100125559A (ko) * 2009-05-21 2010-12-01 유한회사 평화스테인레스 배관 파이프 및 이의 제조방법
CN103317306A (zh) * 2013-06-09 2013-09-25 宝鸡石油钢管有限责任公司 一种螺旋缝双金属复合焊管的制造方法
DE202013010598U1 (de) * 2013-11-27 2015-03-05 Fischer Hydroforming Gmbh Vorrichtung zur Herstellung eines länglichen Profils, insbesondere Rohr, im Innenhochdruckumformverfahren (IHU)
CN103753030A (zh) * 2014-01-16 2014-04-30 北京隆盛泰科石油管科技有限公司 金属材料板叠合、机械层压生产复合管的方法
CN103978299A (zh) 2014-05-30 2014-08-13 北京隆盛泰科石油管科技有限公司 利用高频电阻焊法生产双金属冶金复合管工艺及复合管
CN104858536A (zh) * 2015-06-05 2015-08-26 江苏德创制管有限公司 一种大口径厚壁直缝埋弧焊管生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3603880A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112548499A (zh) * 2020-12-05 2021-03-26 安徽宝恒新材料科技有限公司 一种三层复合钢板的加工方法

Also Published As

Publication number Publication date
CN108655664A (zh) 2018-10-16
EP3603880A4 (en) 2021-04-07
KR102365943B1 (ko) 2022-02-21
US11707773B2 (en) 2023-07-25
JP6837155B2 (ja) 2021-03-03
CN108655664B (zh) 2021-04-13
AU2018246660A1 (en) 2019-10-03
US20200001339A1 (en) 2020-01-02
EP3603880A1 (en) 2020-02-05
AU2018246660B2 (en) 2020-10-29
KR20190128182A (ko) 2019-11-15
JP2020511310A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2018177020A1 (zh) 一种复合钢管的制造方法
JP5868891B2 (ja) 異径管状部品の製造方法
CN103722346B (zh) 一种耐腐蚀冶金复合双金属直缝埋弧焊钢管及制备方法
JP6109406B2 (ja) 多層の大径管を製造する方法
CN104607512B (zh) 一种高精度大管径小弯径比的大角度管道的弯曲成形方法
JP2019521859A (ja) 二重パイプの製造方法
US10907752B2 (en) Pipe body, pipe and method of making pipe
CN103753030B (zh) 金属材料板叠合、机械层压生产复合管的方法
CN104438509B (zh) 一种超薄不锈钢弯管成形方法
JP2013066911A (ja) 銅管とステンレス鋼管の接続体及びその製造方法
JP2006247664A (ja) 鋼管の冷間曲げ加工方法
CN202126200U (zh) 一种传热管
JP5220394B2 (ja) 多重巻鋼管
CN114749869A (zh) 一种复合钢管的制造方法及复合钢管
JP2018183787A (ja) 鋼管の製造方法
CN207486256U (zh) 一种新型金属管
JP4998086B2 (ja) クラッド管用ビレットおよびクラッド管の製造方法
JP2008184686A (ja) 建築用低yr角鋼管の製造方法
WO2013159531A1 (zh) 双金属复合管用球形膨胀节及加工方法
JP5867071B2 (ja) 厚肉電縫鋼管の製造方法
JP2005319482A (ja) 金属製マフラーシェルの製造方法
CN112756926A (zh) 复合钢管及其制备方法
CN116441349A (zh) 一种多层金属复合材料卷曲结构管的成型工艺
JPS6343777A (ja) クラツド鋼管の製造方法
JP2004034060A (ja) テイラードチューブおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548000

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027873

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018246660

Country of ref document: AU

Date of ref document: 20180131

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018777638

Country of ref document: EP

Effective date: 20191028