WO2018176979A1 - 一种电池的电极及其制备方法和锂离子电池 - Google Patents

一种电池的电极及其制备方法和锂离子电池 Download PDF

Info

Publication number
WO2018176979A1
WO2018176979A1 PCT/CN2018/071492 CN2018071492W WO2018176979A1 WO 2018176979 A1 WO2018176979 A1 WO 2018176979A1 CN 2018071492 W CN2018071492 W CN 2018071492W WO 2018176979 A1 WO2018176979 A1 WO 2018176979A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
battery
electrode
gas generating
material layer
Prior art date
Application number
PCT/CN2018/071492
Other languages
English (en)
French (fr)
Inventor
陈娜
陈永坤
潘仪
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018176979A1 publication Critical patent/WO2018176979A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery, and more particularly to an electrode for a battery, a method of preparing the same, and a lithium ion battery using the same.
  • thermal management has certain problems in both the circuit and the cooling system, such as the case where the circuit has an acquisition failure; the cooling system can only partially reduce the operating temperature of the battery, and the ability to reduce the temperature is limited, and the cooling system is heavy, The energy density of the battery is greatly reduced.
  • the safety structure of the single battery can control the single battery in time, the current design difficulty is large, the scheme is not perfect, and the high temperature safety problem of the battery cannot be fundamentally solved; the introduction of the flame retardant additive brings New problems, such as increased battery impedance, battery rate and low temperature performance, are affected to varying degrees. Therefore, improving the safety performance of batteries still requires constant exploration.
  • the object of the present invention is to overcome the drawbacks of the prior art that the safety performance of the battery is still unsatisfactory, to provide an electrode for a battery which can greatly improve the safety performance of the battery, a preparation method thereof and a lithium ion battery using the same.
  • a first object of the present invention is to provide an electrode for a battery, the electrode comprising a conductive substrate and a layer of material applied to the surface of the conductive substrate, the material layer comprising a layer of conductive material attached to the conductive substrate and attached to the conductive layer An active material layer on the material layer, the conductive material layer comprising a conductive substance and a gas generating substance, the gas generating substance being subjected to a heat generating gas.
  • a second object of the present invention is to provide a method for producing the above electrode, which comprises first attaching a layer of a conductive material containing a conductive substance and a gas generating substance to a conductive substrate, and then attaching an active material layer to the conductive material layer.
  • a third object of the present invention is to provide a lithium ion battery including a polar core and an electrolyte, the core and the electrolyte being sealed in a battery case, the pole core including a positive electrode, a negative electrode, and a separator, wherein The positive electrode and/or the negative electrode are the above electrodes.
  • the material layer of the electrode of the present invention comprises a conductive material layer attached to the conductive substrate, and the conductive material layer contains a gas generating substance.
  • the battery When the battery is abnormal, the internal temperature of the battery is raised, and the heat causes the gas generating substance to generate gas, so that the active material layer falls off and peels off.
  • the material layer is in an open state, the battery current is not conducting, and the battery core is pre-powered off to ensure that the battery is overheated and the safety hazard is caused before the battery is overheated (especially before the diaphragm is melted and shrunk, if the diaphragm is heated and contracted, the battery is positive and negative)
  • the battery will be short-circuited, which is more likely to cause a safety accident. It fundamentally solves the safety hazard caused by battery overheating failure, and significantly improves the safety of the battery pack.
  • the present invention provides an electrode for a battery, the electrode comprising a conductive substrate and a layer of material applied to the surface of the conductive substrate, wherein the material layer comprises a layer of conductive material attached to the conductive substrate and an active layer attached to the conductive material layer
  • the material layer includes a conductive material and a gas generating substance, and the gas generating material generates a gas by the heat energy, thereby fundamentally solving the safety hazard caused by the battery overheating failure, and significantly improving the safety of the battery pack.
  • the material layer may be located on one side of the conductive substrate or on both sides of the conductive substrate.
  • the electrode may be the positive electrode of the battery or the negative electrode of the battery, and the present invention is preferably applied to the positive electrode, that is, the active material layer is a positive electrode active material layer.
  • the positive electrode active material in the positive electrode active material layer may be a positive electrode active material for various lithium ion batteries, preferably one or more of lithium cobaltate, lithium nickel cobalt manganese oxide ternary material, and lithium cobalt aluminum aluminate ternary material. kind.
  • lithium nickel cobalt manganese oxide ternary material, nickel cobalt aluminum aluminate ternary material are various nickel-cobalt-manganese ternary materials known as those skilled in the art, lithium nickel cobalt aluminate ternary materials, for example, nickel can be changed.
  • the ratio of cobalt to manganese (aluminum) may also contain doping elements and the like.
  • the solution of the invention has better interaction with lithium cobaltate, lithium nickel cobalt manganese oxide ternary material and lithium cobalt aluminum aluminate ternary material, especially for lithium cobalt cobalt manganate and lithium cobalt aluminum aluminate ternary material.
  • ternary materials Due to the thermodynamic stability of ternary materials, ternary materials have significant safety problems.
  • the oxygen in ternary materials is transition metal-oxygen.
  • the octahedron is formed in a layered structure. The structure determines that the chemical stability of the oxygen element in the ternary material is low. In the charged state (electron loss state), the electron energy level drops to the 2p orbital energy band of oxygen, causing the O 2- ion to be oxidized. Therefore, the ternary material in the charged state will precipitate oxygen under the condition of being heated and overcharged, and cause the battery to burn and explode under the strong combustion-supporting effect of oxygen.
  • the positive electrode active material layer is a mixture of a positive electrode active material and a binder and a conductive agent; the weight ratio of the binder, the positive electrode active material, and the conductive agent in the positive electrode active material layer of the present invention is not particularly limited, and a conventional design can be employed.
  • the type and amount of binder are well known to those skilled in the art, such as fluororesins and polyolefin compounds such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), and cellulose.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • Base polymer etc.
  • the positive electrode conductive substrate may be a conventional positive electrode conductive substrate in a lithium ion battery, such as a stamped metal, a metal foil, a mesh metal, a foamed metal, etc., and an aluminum foil is used as a positive electrode conductive substrate in a specific embodiment of the present invention.
  • the gas generating temperature of the gas generating substance is lower than the decomposition temperature of the positive electrode active material, and the positive electrode active material can be stripped before the battery reaches the thermal runaway temperature, the connection between the positive electrode active material and the conductive substrate is cut off, or the impedance of the electrode is greatly increased. Better to prevent short circuit and thermal runaway in the battery.
  • the gas generating temperature of the gas generating substance is lower than the melting point of the separator of the battery. It can remove the active material before the membrane breaks and shrinks, prevent the diaphragm from being heated and contracted, short circuit between the positive and negative electrodes of the battery, avoid serious safety problems such as fire and explosion, and fundamentally solve the safety problem of the battery.
  • the gas generating temperature of the gas generating substance is 80-180 ° C, and the still more preferable gas generating temperature is 120-180 ° C, which can further prevent the failure of the conventional high temperature use of the battery, and can accurately prevent the heat of the battery. Failure to prevent false triggering and triggering delays.
  • the gas generating substance is selected from one or more of diammonium hydrogen phosphate, ammonium hydrogencarbonate, ammonium carbonate, ammonium nitrate or ammonium chloride, capable of rapidly releasing a large amount of gas under heat, isolating the current collector and
  • the battery active material and the gas generated at the same time are non-flammable gases, which can further prevent the burning and explosion of the battery and further improve the safety performance of the battery.
  • the preferred gas generating material of the present invention is selected from the group consisting of diammonium hydrogen phosphate, which is more compatible with the positive electrode active material of the battery and the separator, and can more accurately prevent the thermal failure of the battery.
  • the conductive material is not limited in the invention, and may be, for example, a conductive polymer or an inorganic conductive agent, and if it is a conductive polymer, a conductive polymer having a binding property may be directly selected.
  • the conductive material of the present invention is selected from one or more of conductive graphite, carbon nanotubes, and graphene.
  • the conductive material layer further contains a binder, that is, the conductive material layer contains a conductive substance, a binder, and a gas generating substance.
  • the layer of electrically conductive material of the present invention further comprises a binder.
  • the content of the conductive material is 60 wt% to 85 wt%
  • the content of the binder is 15 wt% to 40 wt%
  • the content of the gas generating material is 1 wt% to 5 wt% based on the weight percentage of the conductive material layer. %.
  • the conductive material layer has a thickness of 0.5 to 10 ⁇ m.
  • the invention also provides a preparation method of the above electrode, which comprises first attaching a layer of a conductive material containing a conductive substance and a gas generating substance to a conductive substrate, and then attaching an active material layer on the conductive material layer, and the preparation method is simple and safe. No additional pollution, easy to implement and can solve battery safety problems.
  • the method of attaching the conductive material layer to the conductive substrate and then attaching the active material layer may employ various coating methods conventional in the art, for example, the method includes first slurry containing a conductive substance and a gas generating substance and a solvent.
  • the surface of the conductive substrate is coated, dried, calendered or not calendered to form a conductive material layer, and the slurry containing the active material and the solvent is coated on the conductive material layer, dried, calendered or not calendered to form an active material layer.
  • a plurality of conductive material layers and a plurality of active material layers can be formed on the conductive substrate depending on the different needs of the different batteries.
  • the specific preparation process may be: (1) when the binder is selected, the binder is uniformly mixed in the solvent to form a stable binder slurry; (2) the conductive substance and the gas generating substance are added to the binder. In the cement slurry, the mixture is uniformly mixed to form a slurry of the conductive material layer; (3) the slurry of the conductive material layer is uniformly and finely coated on the conductive base aluminum foil to form a uniform conductive material layer, and the thickness is about 0.5. ⁇ 10 ⁇ m.
  • the amount of the solvent used in the slurry containing the conductive material and the gas generating substance, the solvent, and the slurry containing the active material and the solvent for forming the conductive material layer is not particularly limited, and the amount of the solvent enables the slurry to have viscosity and flow. It can be applied to the conductive substrate or the conductive material layer.
  • the solvent may be selected from the group consisting of N-methylpyrrolidone (NMP), dimethylformamide (DMF), diethylformamide (DEF), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and water.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DEF diethylformamide
  • DMSO dimethyl sulfoxide
  • THF tetrahydrofuran
  • One or more of the alcohols; the solvent is preferably water.
  • the invention also provides a lithium ion battery, which comprises a pole core and an electrolyte, the pole core and the electrolyte being sealed in a battery case, the pole core comprising a positive electrode, a negative electrode and a diaphragm, wherein the positive electrode and/or The negative electrode is the above electrode.
  • the positive electrode and the negative electrode of the lithium ion battery of the present invention can adopt the solution, and the positive electrode is preferably the above electrode, which has a faster response and better solves the safety performance of the battery.
  • the improvement of the present invention relates only to the electrode, and therefore, in the lithium ion battery provided by the present invention, the separator and the electrolyte of the battery are not particularly limited, and all types of separators and electrolytes usable in the lithium ion battery can be used. .
  • the negative electrode may be a conventional negative electrode, that is, the negative electrode includes a negative electrode conductive substrate and a negative electrode active material layer attached to the negative electrode conductive substrate, wherein the negative electrode conductive substrate may be conventional in a lithium ion battery.
  • a negative electrode conductive substrate such as a stamped metal, a metal foil, a mesh metal, a foamed metal or the like, in the embodiment of the invention, a copper foil is used as the negative electrode conductive substrate.
  • the negative electrode active material layer is not particularly limited and may be a conventional negative electrode active material layer in the art, and the negative electrode active material in the negative electrode active material layer may be a graphite-based material, a silicon-based material, lithium titanate or the like, and the negative electrode active material layer may include
  • the conductive agent is not contained, and the kind and content of the binder in the negative electrode active material layer are well known to those skilled in the art, such as a fluorine-containing resin and a polyolefin compound such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PVF).
  • PVDF polyvinylidene fluoride
  • PVF polytetrafluoroethylene
  • PTFE styrene butadiene rubber
  • the electrolyte solution of the lithium ion battery may be a mixed solution of an electrolyte lithium salt and a nonaqueous solvent, and it is not particularly limited, and a nonaqueous electrolyte solution conventional in the art may be used.
  • the electrolyte lithium salt is selected from one or more of lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium halide, lithium chloroaluminate, and lithium fluorocarbon sulfonate.
  • the organic solvent is a mixed solution of a chain acid ester and a cyclic acid ester, wherein the chain acid ester may be dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and methyl propyl carbonate. (MPC), at least one of dipropyl carbonate (DPC) and other fluorine-containing, sulfur-containing or unsaturated chain-containing chain organic esters, and the cyclic acid ester may be ethylene carbonate (EC) or propylene carbonate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • DPC dipropyl carbonate
  • EC ethylene carbonate
  • propylene carbonate propylene carbonate
  • the injection amount of the electrolyte is generally 1.5 to 4.9 g/Ah, and the concentration of the electrolyte is generally 0.5 to 2.9 mol/liter.
  • the separator of the lithium ion battery is disposed between the positive electrode and the negative electrode, and has electrical insulating properties and liquid retaining properties, and accommodates the polar core and the electrolyte together in the battery can.
  • the separator may be selected from various separators used in lithium ion batteries, such as polyolefin microporous membranes. The location, nature and type of the membrane are well known to those skilled in the art.
  • the carboxymethyl cellulose, styrene-butadiene rubber and water are thoroughly mixed and stirred in a weight ratio of 1:1:90 to obtain a uniform binder slurry, and the nano-conductive graphite and diammonium hydrogen phosphate (chemical formula (NH 4 ) 2 ) HPO 4 , starting gas production at 120 ° C) and the binder slurry were added to the binder slurry in a weight ratio of 10:10:105, thoroughly mixed and homogenized, and the slurry was uniformly coated on a 0.008 mm conductive substrate.
  • nano-conductive graphite and diammonium hydrogen phosphate chemical formula (NH 4 ) 2 ) HPO 4 , starting gas production at 120 ° C
  • Both sides of the aluminum foil were dried at 100 ° C to obtain a conductive material layer having a thickness of 3 ⁇ m; then NCM 111 (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) (thermal decomposition at 290 ° C in a charged state to generate oxygen) , acetylene black, polytetrafluoroethylene and N-methylpyrrolidone are mixed and stirred into a slurry at a weight ratio of 100:3:2:50, and the slurry is uniformly coated on the conductive material layer, and then 110 ° C
  • the positive electrode sheet A1 having a size of 485 mm ⁇ 44 mm ⁇ 0.140 mm was obtained by drying, rolling, and cutting.
  • the natural graphite, carboxymethyl cellulose, styrene-butadiene rubber and water are thoroughly mixed and stirred in a weight ratio of 100:2:2:180 to obtain a uniform slurry, and the slurry is uniformly coated on a conductive base copper foil of 0.008 mm. Both sides were dried at 100 ° C, and finally, a negative electrode sheet having a size of 480 mm ⁇ 45 mm ⁇ 0.156 mm was obtained by cutting.
  • the positive electrode sheet A2 and the lithium ion battery S2 were prepared in the same manner as in Example 1, except that the gas generating substance was ammonium carbonate (chemical formula: (NH 4 ) 2 CO 3 , gas production temperature: 80 ° C).
  • the gas generating substance was ammonium carbonate (chemical formula: (NH 4 ) 2 CO 3 , gas production temperature: 80 ° C).
  • the positive electrode sheet A3 and the lithium ion battery S3 were prepared in the same manner as in Example 1, except that the weight ratio of the nano conductive graphite, the diammonium hydrogen phosphate (chemical formula (NH 4 ) 2 HPO 4 ) to the binder slurry was It is 10:5:105.
  • the positive electrode sheet A4 and the lithium ion battery S4 were prepared in the same manner as in Example 1, except that the weight ratio of the nano conductive graphite, the diammonium hydrogen phosphate (chemical formula (NH 4 ) 2 HPO 4 ) to the binder slurry was It is 10:20:105.
  • the positive electrode sheet A5 and the lithium ion battery S5 were prepared in the same manner as in Example 1, except that the weight ratio of the nano conductive graphite, the diammonium hydrogen phosphate (chemical formula (NH 4 ) 2 HPO 4 ) to the binder slurry was It is 10:2:105.
  • the positive electrode tab A6 and the lithium ion battery S6 were prepared in the same manner as in Example 1, except that ammonium hydrogen phosphate (chemical formula (NH 4 ) 2 HPO 4 ) was used.
  • a lithium ion battery S7 was prepared in the same manner as in Example 2, except that a high melting point aramid membrane (melting point > 300 ° C) was used.
  • NCM111 starting thermal decomposition at 290 ° C to generate oxygen
  • acetylene black, polytetrafluoroethylene and N-methylpyrrolidone are mixed and stirred into a slurry at a weight ratio of 100:3:2:50, and the slurry is slurried.
  • the film was uniformly coated on a conductive base aluminum foil, and then dried, rolled, and cut at 110 ° C to obtain a positive electrode sheet DA1 having a size of 485 mm ⁇ 44 mm ⁇ 0.140 mm.
  • the natural graphite, carboxymethyl cellulose, styrene-butadiene rubber and water are thoroughly mixed and stirred in a weight ratio of 100:2:2:180 to obtain a uniform slurry, and the slurry is uniformly coated on a conductive base copper foil of 0.008 mm. Both sides were dried at 100 ° C, and finally, a negative electrode sheet having a size of 480 mm ⁇ 45 mm ⁇ 0.156 mm was obtained by cutting.
  • Battery 150 ° C furnace heat safety test The batteries S1-S7 and DS1 prepared in the above Examples 1-7 and Comparative Example 1 were subjected to a furnace heat safety test at 150 ° C; test method: 150 ° C furnace heat for 2 hours, the result As shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种电池的电极及其制备方法和使用该电极的锂离子电池。该电池的电极包括导电基体和涂覆于该导电基体表面的材料层,该材料层包括附着在导电基体上的导电材料层和附着在导电材料层上的活性材料层,所述导电材料层包括导电物质及产气物质,所述产气物质受热能产生气体,能从根本上解决电池过热失效带来的安全隐患,显著的提高了电池包的安全性。

Description

一种电池的电极及其制备方法和锂离子电池
本申请要求于2017年03月31日提交中国专利局、申请号为201710204488.3、发明名称为“一种电池的电极及其制备方法和锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种锂离子二次电池,具体的说,本发明涉及一种电池的电极及其制备方法和使用该电极的锂离子电池。
背景技术
由于便携式电子设备和电动汽车的快速发展和广泛应用,对于高比能量、长循环寿命、高安全性能的锂离子电池的需求十分迫切。
特别是电池的安全性能一直是研究的重点和热点,现有提高电池安全性能的方法主要是从热管理、单体电池的安全结构及电解液中添加阻燃添加剂等方面进行解决的。但热管理无论是从电路还是冷却系统均存在一定的问题,例如电路存在采集失效的情况;冷却系统只能部分地降低电池的工作温度,且降低温度的能力有限,且冷却系统重量大,较大程度的降低了电池的能量密度。单体电池的安全结构虽然能及时对单体电池进行控制,但目前的设计难度均较大,方案均不完善,不能从根本上解决电池的高温安全问题;阻燃添加剂的引入却又带来新的问题,例如电池的阻抗增加,电池的倍率和低温性能都会受到不同程度的影响。因此,提高电池的安全性能仍然需要不断的探索。
发明内容
本发明的目的是克服现有电池的安全性能仍然不理想的缺陷,提供一种能较大程度提高电池安全性能的电池的电极及其制备方法和使用该电极的锂 离子电池。
本发明的第一个目的是提供一种电池的电极,所述电极包括导电基体和涂覆于该导电基体表面的材料层,该材料层包括附着在导电基体上的导电材料层和附着在导电材料层上的活性材料层,所述导电材料层包括导电物质及产气物质,所述产气物质受热能产生气体。
本发明的第二个目的是提供上述电极的制备方法,该方法包括先将含有导电物质及产气物质的导电材料层附着在导电基体上,然后在导电材料层上附着活性材料层。
本发明的第三个目的是提供一种锂离子电池,该电池包括极芯和电解液,所述极芯和电解液密封在电池壳体内,所述极芯包括正极、负极及隔膜,其中,正极和/或负极为上述电极。
本发明电极的材料层包括附着在导电基体上的导电材料层,导电材料层中含产气物质,当电池异常时,电池内部升温,热量使产气物质产生气体,使得活性材料层脱落、剥离,材料层呈现断路状态,电池电流不导通,电芯自身预先断电,保证了电池过热失效带来安全隐患之前(特别是隔膜破膜熔融收缩之前,若隔膜受热收缩,电池正负极之间会短路,较容易引发安全事故)就将电池断路。从根本上解决电池过热失效带来的安全隐患,显著的提高了电池包的安全性。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种电池的电极,该电极包括导电基体和涂覆于该导电基 体表面的材料层,其中,材料层包括附着在导电基体上的导电材料层和附着在导电材料层上的活性材料层,所述导电材料层包括导电物质及产气物质,所述产气物质受热能产生气体,从根本上解决电池过热失效带来的安全隐患,显著的提高了电池包的安全性。
其中,材料层可以位于导电基体的单面也可以位于导电基体的双面。
其中,电极可以是电池的正极也可以是电池的负极,本发明优选应用于正极,即活性材料层为正极活性材料层。正极活性材料层中的正极活性材料可以为各种锂离子电池用正极活性材料,优选为钴酸锂、镍钴锰酸锂三元材料、镍钴铝酸锂三元材料中的一种或几种。其中,镍钴锰酸锂三元材料、镍钴铝酸锂三元材料为本领域技术人员公知的各种镍钴锰酸锂三元材料、镍钴铝酸锂三元材料,例如可以变化镍、钴、锰(铝)的比例,也可以含有掺杂元素等。本发明的方案与钴酸锂、镍钴锰酸锂三元材料、镍钴铝酸锂三元材料拥有更好的相互作用,特别对于镍钴锰酸锂、镍钴铝酸锂类三元材料具有更突出的效果,切实解决了现有三元材料存在的难点问题,因三元材料的热力学稳定性问题,三元材料存在比较显著的安全性问题,三元材料中的氧以过渡金属-氧八面体的形式构成,呈层状结构。该结构决定了三元材料中氧元素的化学稳定系较低,在充电态时(失电子状态),电子能级会下降到氧的2p轨道能带,导致O 2-离子被氧化。因此,充电态的三元材料在受热、过充等状态下会析出氧气,在氧气的强烈助燃效果下引发电池剧烈的燃烧、爆炸,针对这个问题目前所有的电池安全结构只能从表面进行防护,大的厂商为了提高电池的安全性能,尽量采用多重安全防护结构,花费大量的人力物力开发尽可能多的防护结构,但均治标不治本,均没有从根源上进 行解决。而本发明的技术方案能很好的解决三元材料的安全性能,能从电极出发从根源上预防三元电池发生剧烈的热失控。
一般正极活性材料层为正极活性材料和粘合剂、导电剂的混合物;本发明正极活性材料层中粘合剂、正极活性材料、导电剂的重量比没有特别限定,可以采用常规设计。粘合剂的种类和含量为本领域技术人员所公知,例如含氟树脂和聚烯烃化合物如聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、丁苯橡胶(SBR)和纤维素基聚合物等。
正极导电基体可以为锂离子电池中常规的正极导电基体,如冲压金属、金属箔、网状金属、泡沫状金属等,在本发明的具体实施方案中使用铝箔作为正极导电基体。
优选,产气物质的产气温度低于正极活性材料的分解温度,能够在电池达到热失控温度之前,即剥离正极活性材料,切断正极活性材料与导电基体的连接或者大幅度增加电极的阻抗,更好的起到预防电池内短路和热失控的作用。
优选,产气物质的产气温度低于电池的隔膜熔点。能够在隔膜破膜熔融收缩之前使活性材料脱落,防止隔膜受热收缩,电池正负极之间短路,避免起火爆炸等严重的安全问题,从根本上解决电池的安全问题。
本发明进一步优选产气物质的产气温度为80-180℃,进一步更优选的产气温度为120-180℃,能进一步防止电池常规高温使用下的失效,且能较准确的预防电池的热失效,防止误触发及触发延后等情况的出现。
本发明优选,产气物质选自磷酸氢二铵、碳酸氢氨、碳酸铵、硝酸铵或氯化铵中的一种或几种,能够在受热条件下急剧放出大量的气体,隔离集流 体和电池活性物质,同时产生的气体为不可燃气体,能进一步防止电池的燃烧、爆炸,进一步提高电池的安全性能。进一步的本发明优选产气物质选自磷酸氢二铵,与电池的正极活性材料、隔膜更匹配,更能准确的预防电池的热失效。
其中,导电物质本发明没有限制,例如可以为导电聚合物或者无机导电剂,如果为导电聚合物可以直接选用具有粘结性的导电聚合物。本发明优选导电物质选自导电石墨、碳纳米管、石墨烯中的一种或几种。一般如选用无机导电剂时,导电材料层中还会含有粘结剂,即导电材料层中含有导电物质、粘结剂和产气物质。
本发明优选导电材料层还包括粘结剂。进一步优选,以导电材料层的重量百分含量为基准,所述导电物质的含量为60wt%~85wt%,粘结剂的含量为15wt%~40wt%,产气物质的含量为1wt%~5wt%。
优选,导电材料层的厚度为0.5~10μm。
本发明同时提供了上述电极的制备方法,该方法包括先将含有导电物质及产气物质的导电材料层附着在导电基体上,然后在导电材料层上附着活性材料层,制备方法简单、安全、无额外的污染,易实现且能解决电池的安全问题。
将导电材料层附着在导电基体上、然后再附着活性材料层的方法可以采用本领域常规的各种涂覆方法,如,所述方法包括先将含有导电物质和产气物质、溶剂的浆料涂覆在导电基体的表面,干燥,压延或不压延,形成导电材料层,再将含有活性材料和溶剂的浆料涂覆在导电材料层上,干燥,压延或不压延,形成活性材料层。按照本发明,根据不同电池的不同需要,可以 在导电基体上形成多个导电材料层和多个活性材料层。具体的制备工艺可以为:(1)如选用粘结剂时,先将粘结剂在溶剂中混合均匀,形成稳定的粘结剂浆料;(2)将导电物质、产气物质加入到粘结剂浆料中,混合均匀,形成导电材料层的浆料;(3)将导电材料层的浆料均匀、细腻的涂覆在导电基体铝箔上,形成均匀的导电材料层,厚度大概在0.5~10μm。
上述用于形成导电材料层的含有导电物质和产气物质、溶剂的浆料以及含有活性材料和溶剂的浆料中溶剂的用量没有特别限定,溶剂的用量能够使所述浆料具有粘性和流动性,能够涂覆到所述导电基体或导电材料层上即可。所述的溶剂可以选自N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、二乙基甲酰胺(DEF)、二甲基亚砜(DMSO)、四氢呋喃(THF)以及水和醇类中的一种或几种;所述溶剂优选为水。
本发明同时提供了一种锂离子电池,该电池包括极芯和电解液,所述极芯和电解液密封在电池壳体内,所述极芯包括正极、负极及隔膜,其中,正极和/或负极为上述电极。
即本发明所述锂离子电池的正极、负极都可以采用该方案,优选正极为上述电极,更快的响应,更好的解决电池的安全性能。
本发明的改进之处只涉及电极,因此在本发明提供的锂离子电池中,对电池的隔膜和电解液没有特别的限制,可以使用可在锂离子电池中使用的所有类型的隔膜和电解液。
对于本发明优选的电极为正极的技术方案,负极可以采用常规负极,即负极包括负极导电基体及附着在负极导电基体上的负极活性材料层,其中,负极导电基体可以为锂离子电池中常规的负极导电基体,如冲压金属、金属 箔、网状金属、泡沫状金属等,在本发明的具体实施方案中使用铜箔作为负极导电基体。负极活性材料层没有特别限制,可以为本领域常规的负极活性材料层,负极活性材料层中的负极活性材料可以为石墨类材料、硅类材料、钛酸锂等,负极活性材料层中可以含或不含导电剂,负极活性材料层中的粘合剂的种类和含量为本领域技术人员所公知,例如含氟树脂和聚烯烃化合物如聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、丁苯橡胶(SBR)中的一种或几种。
锂离子电池的电解液可以为电解质锂盐和非水溶剂的混合溶液,对它没有特别限定,可以使用本领域常规的非水电解液。比如电解质锂盐选自六氟磷酸锂(LiPF 6)、高氯酸锂、四氟硼酸锂、六氟砷酸锂、卤化锂、氯铝酸锂及氟烃基磺酸锂中的一种或几种。有机溶剂选用链状酸酯和环状酸酯混合溶液,其中链状酸酯可以为碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸甲丙酯(MPC)、碳酸二丙酯(DPC)以及其它含氟、含硫或含不饱和键的链状有机酯类中的至少一种,环状酸酯可以为碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)、γ-丁内酯(γ-BL)、磺内酯以及其它含氟、含硫或含不饱和键的环状有机酯类中的至少一种。电解液的注入量一般为1.5-4.9g/Ah,电解液的浓度一般为0.5-2.9摩/升。
锂离子电池的隔膜设置于正极和负极之间,它具有电绝缘性能和液体保持性能,并使所述极芯和电解液一起容纳在电池壳中。隔膜可以选自锂离子电池中所用的各种隔膜,如聚烯烃微多孔膜。所述隔膜的位置、性质和种类为本领域技术人员所公知。
下面将通过具体实施例对本发明做进一步的具体描述,但不能理解为是 对本发明保护范围的限定。
实施例1
(1)正极的制备
将羧甲基纤维素、丁苯橡胶和水按照1:1:90的重量比充分混合搅拌得到均匀的粘结剂浆料,将纳米导电石墨、磷酸氢二铵(化学式为(NH 4) 2HPO 4,120℃开始产气)与粘结剂浆料按照10:10:105的重量比添加到粘结剂浆料中充分混合搅匀,将该浆料均匀涂布在0.008毫米的导电基体铝箔的两侧,100℃烘干,得到厚度为3微米的导电材料层;然后将NCM111(LiNi 1/3Mn 1/3Co 1/3O 2)(充电态290℃开始热分解产生氧气)、乙炔黑、聚四氟乙烯和N-甲基吡咯烷酮按照重量比为100:3:2:50的比例混合搅拌成浆料,将该浆料均匀地涂布在导电材料层上,然后110℃下烘干、辊压、裁切制得尺寸为485毫米×44毫米×0.140毫米的正极片A1。
(2)负极的制备
将天然石墨、羧甲基纤维素、丁苯橡胶和水按照100:2:2:180的重量比充分混合搅拌得到均匀的浆料,将该浆料均匀涂布在0.008毫米的导电基体铜箔的两侧,100℃烘干,最后,经裁切制得尺寸为480毫米×45毫米×0.156毫米的负极片。
(3)电池的装配
将上述制备的正极片、负极片与聚丙烯膜(熔点170℃)卷绕成一个方型锂离子电池的极芯,随后将LiPF 6按1摩尔/升的浓度溶解在EC/DMC=1:1的混合溶剂中形成电解液,将该电解液以3.6g/Ah的量注入铝塑膜中,密封, 制成软包装锂离子电池S1。
实施例2
采用与实施例1相同的方法步骤制备正极片A2和锂离子电池S2,不同的是产气物质为碳酸铵(化学式为(NH 4) 2CO 3,产气温度80℃)。
实施例3
采用与实施例1相同的方法步骤制备正极片A3和锂离子电池S3,不同的是纳米导电石墨、磷酸氢二铵(化学式为(NH 4) 2HPO 4)与粘结剂浆料的重量比为10:5:105。
实施例4
采用与实施例1相同的方法步骤制备正极片A4和锂离子电池S4,不同的是纳米导电石墨、磷酸氢二铵(化学式为(NH 4) 2HPO 4)与粘结剂浆料的重量比为10:20:105。
实施例5
采用与实施例1相同的方法步骤制备正极片A5和锂离子电池S5,不同的是纳米导电石墨、磷酸氢二铵(化学式为(NH 4) 2HPO 4)与粘结剂浆料的重量比为10:2:105。
实施例6
采用与实施例1相同的方法步骤制备正极片A6和锂离子电池S6,不同的是磷酸氢铵(化学式为(NH 4) 2HPO 4)。
实施例7
采用与实施例2相同的方法步骤制备锂离子电池S7,不同的是采用高熔点的芳纶隔膜(熔点>300℃)
对比例1
(1)正极的制备
将NCM111(充电态290℃开始热分解产生氧气)、乙炔黑、聚四氟乙烯和N-甲基吡咯烷酮按照重量比为100:3:2:50的比例混合搅拌成浆料,将该浆料均匀地涂布在导电基体铝箔上,然后110℃下烘干、辊压、裁切制得尺寸为485毫米×44毫米×0.140毫米的正极片DA1。
(2)负极的制备
将天然石墨、羧甲基纤维素、丁苯橡胶和水按照100:2:2:180的重量比充分混合搅拌得到均匀的浆料,将该浆料均匀涂布在0.008毫米的导电基体铜箔的两侧,100℃烘干,最后,经裁切制得尺寸为480毫米×45毫米×0.156毫米的负极片。
(3)电池的装配
将上述制备的正极片、负极片与聚丙烯膜(熔点170℃)卷绕成一个方型锂离子电池的极芯,随后将LiPF 6按1摩尔/升的浓度溶解在EC/DMC=1:1的混合溶剂中形成电解液,将该电解液以3.6g/Ah的量注入铝塑膜中,密封,制成软包装锂离子电池DS1。
性能测试
1、电池150℃炉热安全性测试:将上述实施例1-7及对比例1制备的电池S1-S7、DS1进行150℃炉热安全性测试;测试方法:150℃炉热2小时,结果如表1所示。
表1
电池 安全性能
S1 通过,无现象
S2 冒烟,有一定的起火风险
S3 通过,冒烟
S4 通过,无现象
S5 冒烟,有一定的起火风险
S6 通过,冒烟
S7 通过,无现象
DS1 起火,爆炸
从表1结果可以看出,本发明的技术方案能显著提高电池的安全性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围。
本领域技术人员容易知道,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。本发明的保护范围由权利要求书确定。

Claims (14)

  1. 一种电池的电极,所述电极包括导电基体和涂覆于该导电基体表面的材料层,其特征在于,所述材料层包括附着在导电基体上的导电材料层和附着在导电材料层上的活性材料层,所述导电材料层包括导电物质及产气物质,所述产气物质受热能产生气体。
  2. 根据权利要求1所述的电极,其特征在于,所述活性材料层为正极活性材料层。
  3. 根据权利要求2所述的电极,其特征在于,所述正极活性材料层中的正极活性材料为钴酸锂、镍钴锰酸锂三元材料、镍钴铝酸锂三元材料中的一种或几种。
  4. 根据权利要求2所述的电极,其特征在于,所述产气物质的产气温度低于所述正极活性材料层中正极活性材料的分解温度。
  5. 根据权利要求1所述的电极,其特征在于,所述产气物质的产气温度低于电池的隔膜熔点。
  6. 根据权利要求1所述的电极,其特征在于,所述产气物质的产气温度80-180℃。
  7. 根据权利要求1所述的电极,其特征在于,所述产气物质选自磷酸氢二铵、碳酸氢氨、碳酸铵、硝酸铵或氯化铵中的一种或几种。
  8. 根据权利要求7所述的电极,其特征在于,所述产气物质为磷酸氢二铵。
  9. 根据权利要求1所述的电极,其特征在于,所述导电物质选自导电石墨、碳纳米管、石墨烯中的一种或几种。
  10. 根据权利要求1所述的电极,其特征在于,所述导电材料层还包括粘结剂。
  11. 根据权利要求10所述的电极,其特征在于,以导电材料层的重量百分含量为基准,所述导电物质的含量为60wt%~85wt%,粘结剂的含量为15wt%~40wt%,产气物质的含量为1wt%~5wt%。
  12. 根据权利要求1所述的电极,其特征在于,所述导电材料层的厚度为0.5~10μm。
  13. 一种电极的制备方法,用于制备如权利要求1-12中任意一项所述电池的电极,其特征在于,该方法包括:先将含有导电物质及产气物质的导电材料层附着在导电基体上,然后在导电材料层上附着活性材料层。
  14. 一种锂离子电池,该电池包括极芯和电解液,所述极芯和电解液密封在电池壳体内,所述极芯包括正极、负极及隔膜,其特征在于,所述正极和/或负极为权利要求1-12中任意一项所述的电池的电极。
PCT/CN2018/071492 2017-03-31 2018-01-05 一种电池的电极及其制备方法和锂离子电池 WO2018176979A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710204488.3A CN108666524B (zh) 2017-03-31 2017-03-31 一种电池的电极及其制备方法和锂离子电池
CN201710204488.3 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018176979A1 true WO2018176979A1 (zh) 2018-10-04

Family

ID=63674213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071492 WO2018176979A1 (zh) 2017-03-31 2018-01-05 一种电池的电极及其制备方法和锂离子电池

Country Status (2)

Country Link
CN (1) CN108666524B (zh)
WO (1) WO2018176979A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200102B (zh) 2018-11-16 2020-12-29 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN111628218B (zh) * 2020-05-18 2021-08-31 珠海冠宇电池股份有限公司 一种锂离子电池及其制备方法
CN112490407B (zh) * 2020-12-02 2023-12-01 欣旺达动力科技股份有限公司 电极极片及其制备方法和锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195523A (ja) * 1998-12-24 2000-07-14 Kao Corp 非水系二次電池
JP2005011540A (ja) * 2003-06-16 2005-01-13 Toshiba Corp 非水電解液二次電池
CN105810885A (zh) * 2016-04-27 2016-07-27 宁德时代新能源科技股份有限公司 一种正极极片及锂离子电池
CN205542964U (zh) * 2016-02-22 2016-08-31 宁德时代新能源科技股份有限公司 一种电池箱体
CN105932221A (zh) * 2015-02-27 2016-09-07 松下电器产业株式会社 非水电解质二次电池
CN106450156A (zh) * 2016-09-28 2017-02-22 湖南立方新能源科技有限责任公司 一种电极片及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752544B (zh) * 2008-12-01 2012-07-25 比亚迪股份有限公司 硅负极及其制备方法和包括该硅负极的锂离子二次电池
JP5896218B2 (ja) * 2012-02-23 2016-03-30 トヨタ自動車株式会社 密閉型非水電解質二次電池
WO2014050846A1 (ja) * 2012-09-27 2014-04-03 東洋アルミニウム株式会社 導電部材、電極、二次電池、キャパシタ、ならびに、導電部材および電極の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195523A (ja) * 1998-12-24 2000-07-14 Kao Corp 非水系二次電池
JP2005011540A (ja) * 2003-06-16 2005-01-13 Toshiba Corp 非水電解液二次電池
CN105932221A (zh) * 2015-02-27 2016-09-07 松下电器产业株式会社 非水电解质二次电池
CN205542964U (zh) * 2016-02-22 2016-08-31 宁德时代新能源科技股份有限公司 一种电池箱体
CN105810885A (zh) * 2016-04-27 2016-07-27 宁德时代新能源科技股份有限公司 一种正极极片及锂离子电池
CN106450156A (zh) * 2016-09-28 2017-02-22 湖南立方新能源科技有限责任公司 一种电极片及其制作方法

Also Published As

Publication number Publication date
CN108666524B (zh) 2022-02-08
CN108666524A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
JP5314885B2 (ja) 非水電解液及びそれを備えた非水電解液二次電源
JP3959774B2 (ja) 非水電解液及びそれを用いた二次電池
JP2008527615A (ja) リチウムイオン二次電池用電解質
KR20140147412A (ko) 부피 팽창성 물질을 포함하는 전기화학소자용 외장재 및 이를 구비한 전기화학소자
CN107851838B (zh) 锂离子二次电池
CN112574659B (zh) 一种锂二次电池电极片保护层及其制备方法
WO2018176981A1 (zh) 一种锂离子电池电解液及电池
CN106997959B (zh) 添加剂、非水电解液与锂离子电池
US20170338456A1 (en) Lithium Ion Secondary Battery
WO2020063882A1 (zh) 非水电解液、锂离子电池、电池模块、电池包及装置
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
WO2018176979A1 (zh) 一种电池的电极及其制备方法和锂离子电池
KR20170062170A (ko) 내열성 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
CN110676511A (zh) 一种锂离子电池电解液和锂离子二次电池
JP2010015719A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP4458841B2 (ja) 電池用非水電解液及びそれを備えた非水電解液電池
WO2020063885A1 (zh) 非水电解液、锂离子电池、电池模块、电池包及装置
CN112928328A (zh) 一种含有硅烷基磺酰胺化合物的锂离子电池电解液和锂离子二次电池
WO2020063883A1 (zh) 非水电解液、锂离子电池、电池模块、电池包及装置
WO2020063888A1 (zh) 非水电解液、锂离子电池、电池模块、电池包及装置
JP2010015717A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
CN110828897B (zh) 一种热应激型防热失控电解液及其在二次电池中的应用
JP2010015720A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP3778805B2 (ja) 二次電池
WO2020063887A1 (zh) 非水电解液、锂离子电池、电池模块、电池包及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774914

Country of ref document: EP

Kind code of ref document: A1