WO2018176921A1 - 信号生成电路及信号生成方法、发光装置驱动电路及显示装置 - Google Patents

信号生成电路及信号生成方法、发光装置驱动电路及显示装置 Download PDF

Info

Publication number
WO2018176921A1
WO2018176921A1 PCT/CN2017/116510 CN2017116510W WO2018176921A1 WO 2018176921 A1 WO2018176921 A1 WO 2018176921A1 CN 2017116510 W CN2017116510 W CN 2017116510W WO 2018176921 A1 WO2018176921 A1 WO 2018176921A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
change
control word
word information
frequency
Prior art date
Application number
PCT/CN2017/116510
Other languages
English (en)
French (fr)
Inventor
修黎明
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/080,827 priority Critical patent/US10582597B2/en
Publication of WO2018176921A1 publication Critical patent/WO2018176921A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/03Digital function generators working, at least partly, by table look-up
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/017Adjustment of width or dutycycle of pulses
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/305Frequency-control circuits

Definitions

  • Embodiments of the present disclosure relate to a signal generation circuit and a signal generation method, a light-emitting device drive circuit, and a display device.
  • a light-emitting diode consists of a PN junction.
  • a suitable voltage is applied to the light-emitting diode, holes injected from the P region into the N region and electrons injected into the P region from the N region are recombined within a few micrometers near the PN junction to generate spontaneous emission fluorescence (ie, electro-induced Luminescence, electroluminescence).
  • spontaneous emission fluorescence ie, electro-induced Luminescence, electroluminescence.
  • the energy states of electrons and holes in different semiconductor materials are different. The more energy is released when electrons and holes recombine, the shorter the wavelength of the emitted light.
  • LED lamps Compared to incandescent lamps, LED lamps have numerous advantages including, but not limited to, lower energy consumption, longer life, higher reliability, smaller size, and faster switching. LED lamps are used in a wide range of applications, such as flight lighting, automotive headlights, advertising lighting, traffic signal displays, and the like.
  • Embodiments of the present disclosure provide a signal generation circuit including: a control circuit configured to calculate at least one of frequency control word information and duty cycle control word information according to an instruction; and a pulse width adjustment circuit configured to A pulse signal is generated based on at least one of the frequency control word information and the duty cycle control word information.
  • the pulse signal is a pulse signal having a fixed duty and a variable frequency, a pulse signal having a variable duty ratio and a fixed frequency, or a pulse signal having a fixed pulse width and a variable frequency.
  • control circuit includes an input circuit, a creation circuit, a calculation circuit, and an output circuit.
  • the input circuit is configured to receive the instruction; the creation circuit is configured to generate information corresponding to the instruction; the calculation circuit is configured to calculate the frequency control word based on information generated by the creation circuit At least one of information and the duty cycle control word information; the output circuit configured to output at least one of the frequency control word information and the duty cycle control word information.
  • the creation circuit includes a parameter identification sub-circuit configured to identify a change parameter of brightness in accordance with the instruction.
  • the creation circuit further includes a change trend identification sub-circuit configured to identify a trend of change in brightness in accordance with the instruction.
  • the creation circuit further includes a variation reference identification sub-circuit configured to identify a change reference of the brightness based on the instruction.
  • the creation circuit further includes a variation amplitude identification sub-circuit configured to identify a magnitude of change in brightness in accordance with the instruction.
  • the calculation circuit is configured to calculate the frequency control word information and the duty cycle control word information according to at least one of a change parameter, a change trend, a change reference, and a change width of the brightness At least one.
  • the calculation circuit is further configured to: determine a frequency of the pulse signal according to a change parameter, a change trend, a change reference or a change width of the brightness; and calculate the frequency control according to a frequency of the pulse signal Word information.
  • the calculation circuit is further configured to: determine a duty change value of the pulse signal according to a change parameter, a change trend, a change reference or a change width of the brightness; and calculate according to the duty change value
  • the duty cycle controls word information.
  • the pulse width adjustment circuit is a time averaged frequency direct cycle synthesizer.
  • the time averaged frequency direct cycle synthesizer is implemented using a programmable logic device.
  • the instructions include at least one of a user instruction from a user and an instruction automatically generated by the signal generation circuit.
  • the signal generation circuit also includes a sensor for automatically generating the instructions.
  • Embodiments of the present disclosure also provide a light emitting device driving circuit including: a light emitting circuit including a light emitting element; and a signal generating circuit as described above configured to drive the light emitting element to emit light.
  • the lighting circuit further includes a first voltage terminal, a switching element, and a second voltage terminal.
  • the first end and the second end of the light emitting element are respectively connected to the first voltage end and the first pole of the switching element, and the second pole of the switching element is connected to the second voltage end,
  • a control electrode of the switching element is coupled to an output of the signal generating circuit to receive the pulse signal.
  • Embodiments of the present disclosure also provide a display device including the light emitting device driving circuit as described above.
  • An embodiment of the present disclosure further provides a signal generating method, as applied to the signal generating circuit as described above, comprising: receiving an instruction; calculating at least one of frequency control word information and duty control word information according to the instruction; A pulse signal is generated based on at least one of the frequency control word information and the duty cycle control word information.
  • the calculating at least one of the frequency control word information and the duty control word information according to the instruction includes: identifying at least one of a change parameter, a change trend, a change reference, and a change width of the brightness according to the instruction And calculating at least one of the frequency control word information or the duty cycle control word information according to at least one of a change parameter, a change trend, a change reference, and a change width of the brightness.
  • the signal generating method further includes: outputting the pulse signal to the light emitting element to drive the light emitting element to emit light.
  • the pulse signal is a pulse signal having a fixed duty and a variable frequency, a pulse signal having a variable duty ratio and a fixed frequency, or a pulse signal having a fixed pulse width and a variable frequency.
  • calculating the frequency control word information according to at least one of a change parameter, a change trend, a change reference, and a change width of the brightness including: a change parameter, a change trend, a change reference, or a change range according to the brightness Determining a frequency of the pulse signal; and calculating the frequency control word information based on a frequency of the pulse signal.
  • calculating the duty cycle control word information according to at least one of a change parameter, a change trend, a change reference, and a change width of the brightness including: a change parameter according to the brightness, a change trend, a change reference, or a magnitude of change, determining a duty cycle change value of the pulse signal; and calculating the duty cycle control word information based on the duty cycle change value.
  • FIG. 1 is a schematic structural diagram of a signal generating circuit according to an embodiment of the present disclosure
  • FIG. 2 is a second structural schematic diagram of a signal generating circuit according to an embodiment of the present disclosure
  • FIG. 3 is a third structural schematic diagram of a signal generating circuit according to an embodiment of the present disclosure.
  • FIG. 4 is a fourth structural schematic diagram of a signal generating circuit according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a working principle of a pulse width adjusting circuit according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a reference time unit generating circuit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a pulse width adjustment circuit according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a driving circuit of a light emitting device according to an embodiment of the present disclosure.
  • 9A is a second structural schematic diagram of a driving circuit of a light emitting device according to an embodiment of the present disclosure.
  • 9B is a third structural schematic diagram of a driving circuit of a light emitting device according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a signal generating method according to an embodiment of the present disclosure.
  • FIG. 11 is a second flowchart of a signal generating method according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of various pulse signals provided by an embodiment of the present disclosure.
  • the LED can be powered by a drive circuit.
  • the driving circuit needs to supply enough current so that the light emitted by the LED can meet the brightness requirement, and at the same time, it is also necessary to limit the current supplied to avoid damaging the LED due to excessive current.
  • a small increase in the voltage applied to the LED may result in a significant increase in current and, therefore, requires an accurate current source circuit to provide power to the LED illumination.
  • the pulse driving circuit can provide a high current pulse signal to drive the LED to emit light, thereby improving the luminous efficiency of the LED. Between the two pulses, there is a short off period (OFF period) (for example, there is a low level between two high level pulses), during which the LED stops emitting light, the LED The PN junction can also achieve the effect of cooling. As long as the blinking rate of the LED is higher than the human flicker fusion threshold, the LED does not flicker but continues to emit light for the human eye.
  • Pulse-width modulation PWM can change the duty cycle of the pulse.
  • the PWM-based drive circuit is more efficient than the constant current or constant voltage drive circuit, which can improve the efficiency and performance of the LED.
  • Time-Average-Frequency Direct Period Synthesis can generate pulse signals of any frequency. That is to say, the TAF-DPS synthesizer is capable of achieving fine-grained measurement with small granularity. Furthermore, since each individual pulse is constructed directly, the output frequency of the TAF-DPS synthesizer can be changed instantaneously, that is, with the speed of frequency switching. The ability to generate any frequency and enable fast frequency switching is also an advantage of the TAF-DPS synthesizer over conventional frequency sources. Moreover, the TAF-DPS synthesizer can also adjust the duty ratio of the output signal, which can be a specific implementation of the pulse width adjustment circuit in the embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a signal generation circuit and a signal generation method, a light-emitting device drive circuit, and a display device.
  • the signal generation circuit is configured to: receive an instruction; calculate at least one of frequency control word information and duty control word information according to the instruction; and control word information and the duty control word information according to the frequency control word information At least one of generating a pulse signal; and outputting the pulse signal to a light emitting element (eg, an LED) for driving the light emitting element to emit light.
  • the signal generating circuit includes a control circuit and a pulse width adjusting circuit, and the TAF-DPS synthesizer can be used as a pulse width adjusting circuit to drive the light emitting of the light emitting element.
  • Advantages of the signal generation circuit and the signal generation method, the illumination device drive circuit, and the display device provided by the embodiments of the present disclosure include, but are not limited to:
  • the TAF-DPS-based signal generation circuit can be completely digitally designed and burned into a programmable logic device (for example, an FPGA) by HDL coding, and the parameters of the signal generation circuit can be easily reset at any time. Therefore, the function of the signal generation circuit can be realized by using a special FPGA or other programmable device without using a special dedicated circuit. Of course, an ASIC can also be used to implement the function of the signal generating circuit.
  • the signal generating circuit can be formed as a separate chip or integrated in other chips (for example, a signal processing chip, a light emitting device chip, a video processing chip, a system on chip (SoC), etc.).
  • the frequency/period of the pulse output by the TAF-DPS can be precisely controlled, its frequency resolution can reach a billion fraction, and its duty cycle can be precisely controlled.
  • the pulse of the TAF-DPS output is used to control the illumination of the LED, the performance of the LED can be improved.
  • the user can input an instruction to indicate the desired lighting effect of the LED (eg, brightness increase, decrease, periodic increase or periodic decrease, etc.).
  • the signal generating circuit can extract relevant parameters for generating the pulse signal by analyzing user instructions, and then use the relevant parameters to generate a pulse signal, so that when the pulse signal is used to drive the LED to emit light, the desired lighting effect of the user can be achieved.
  • the instructions can also be generated automatically without user intervention.
  • the signal generating circuit may include a sensor for detecting ambient light; when the sensor senses that the ambient light is dimmed, the signal generating circuit may automatically generate an "increase in brightness" command to enhance the illumination of the LED to compensate for ambient light. Weakened.
  • an embodiment of the present disclosure provides a signal generating circuit 10, including: a control circuit 12 configured to calculate at least one of frequency control word information and duty cycle control word information according to an instruction;
  • the pulse width adjustment circuit 14 is configured to generate a pulse signal based on at least one of the frequency control word information and the duty cycle control word information.
  • the instructions include user instructions from a user and/or instructions automatically generated by the signal generation circuitry.
  • the pulse signal may be a pulse signal having a fixed duty ratio and a variable frequency, a pulse signal having a variable duty ratio and a fixed frequency, or a pulse signal having a fixed pulse width and a variable frequency.
  • the pulse signal may be a first pulse signal having a fixed duty ratio and a variable frequency. In the first pulse signal, the period of the signal is varied, and the duty ratio in each period is fixed.
  • the pulse signal may be a second pulse signal having a variable duty cycle and a fixed frequency. In the second pulse signal, the period of the signal is fixed, and the duty ratio in each period is varied.
  • the pulse signal may be a third pulse signal with a fixed pulse width and a variable frequency. In the third pulse signal, the width of each pulse is equal, and the period of the signal is varied, and the duty cycle in each cycle is also varied.
  • the control circuit 12 includes an input circuit 121, a creation circuit 123, a calculation circuit 125, and an output circuit 127.
  • the input circuit 121 is configured to receive the instruction;
  • the creation circuit 123 is configured to generate information corresponding to the instruction;
  • the calculation circuit 125 is configured to calculate the information according to information generated by the creation circuit At least one of frequency control word information and the duty cycle control word information;
  • the output circuit 127 is configured to output at least one of the frequency control word information and the duty cycle control word information.
  • the instructions are user instructions from a user to indicate a desired lighting effect.
  • the illuminating effect can be the display effect that the user desires the display screen can achieve.
  • the illuminating effect may include: the display brightness is increased or decreased, the display brightness is periodically increased or periodically decreased, the display brightness is increased first, then decreased, or decreased first, then increased, and the brightness is displayed with the environment.
  • the light changes while the brightness remains unchanged, the brightness of some areas of the display screen is higher or lower than the brightness of other areas, and the display brightness changes at regular intervals.
  • the illuminating effect desired by the user may also include other various categories, and the disclosure is not limited herein.
  • the user can input an instruction to the input circuit 121 to indicate the desired illumination effect.
  • the input circuit 121 may include a microphone, a knob, a button, a touch screen, a somatosensory device, a camera, a sensor, etc., and the user can use a voice command, turn a knob, press a button, tap a touch screen, or make a body motion (eg, wave).
  • One or more instructions are input to the input circuit 121 in an interactive manner.
  • the signal generation circuit also includes a sensor for automatically generating the instructions.
  • the instructions may also be automatically generated without user intervention.
  • the signal generating circuit may include a sensor for detecting ambient light; when the sensor senses that the ambient light is dimmed, the signal generating circuit may automatically generate an "increase in brightness" command to enhance the illumination of the LED to compensate for ambient light. Weakened.
  • the instructions may also include instructions from the user and automatically generated by the signal generation circuitry.
  • the disclosure is not limited herein.
  • the creation circuit 123 is configured to analyze the instructions and generate parameter information corresponding to the instructions.
  • the creation circuit 123 may include a parameter identification sub-circuit 1231 configured to identify a variation parameter of luminance according to the instruction.
  • the parameter identification sub-circuit 1231 is configured to identify, based on the instruction, whether the user desires a change in display brightness.
  • the creation circuit 123 further includes a change trend identifying sub-circuit 1233 configured to identify a trend of change in brightness according to the instruction.
  • the change trend identifying sub-circuit 1233 is configured to recognize, according to the instruction, a change tendency of the brightness desired by the user to become brighter or darker.
  • the creation circuit 123 further includes a variation reference identification sub-circuit 1235 configured to identify a change reference of the brightness based on the instruction.
  • the change reference identification sub-circuit 1235 is configured to identify a time interval during which the user desires a change in brightness in accordance with the instructions.
  • the change criterion of the brightness may be that the brightness becomes brighter or darker at intervals of T0.
  • the change criterion of the brightness may be that the brightness becomes brighter at intervals of T0, and then the original brightness is restored by a period of time T1.
  • the present disclosure does not limit the basis for changing the brightness here.
  • the creation circuit 123 further includes a variation amplitude identification sub-circuit 1237 configured to identify a magnitude of change in luminance in accordance with the instruction.
  • the change magnitude identification sub-circuit 1237 is configured to identify a magnitude of change in brightness desired by the user based on the instructions.
  • the magnitude of the change in brightness may be such that the changed brightness is higher (or lower) than 5%, 10%, 15%, etc. before the change.
  • the present disclosure does not limit the magnitude of the change in brightness here.
  • the calculation circuit 125 is configured to receive parameters from each of the sub-circuits of the creation circuit 123 (eg, a change parameter of brightness, a trend of change, a change reference or a magnitude of change, etc.).
  • the calculation circuit 125 is configured to calculate at least one of the frequency control word information and the duty cycle control word information according to at least one of a change parameter, a change trend, a change reference, and a change width of the brightness One.
  • the frequency control word information is used to control the frequency of the pulse signal.
  • the pulse width adjustment circuit 14 can use the frequency control word information to generate a pulse signal such that the frequency of the generated pulse signal is a desired frequency. By changing the frequency control word information, the frequency of the generated pulse signal can be changed.
  • the duty cycle control word information is used to control the duty cycle of the pulse signal.
  • the pulse width adjustment circuit 14 can use the duty cycle control word information to generate a pulse signal such that the duty cycle of the generated pulse signal is a desired duty cycle. By changing the duty cycle control word information, the duty cycle of the generated pulse signal can be changed.
  • the calculation circuit 125 determines the parameter information of the pulse signal based on the brightness-related parameters (for example, the change parameter of the brightness, the change trend, the change reference, or the change width, etc.) from the creation circuit 123.
  • the parameter information includes but is not limited to: carrier frequency (f c ) of pulse signal, modulation rate (f m ), maximum frequency deviation ( ⁇ f), range of duty cycle, maximum offset of duty cycle ( ⁇ R )
  • the amount of change in the frequency of the pulse signal for example, the frequency is increased or decreased by 1%, 5%, etc.
  • the amount of change in the duty ratio for example, the duty ratio is increased or decreased by 1%, 5%, etc.
  • the calculation circuit 125 generates frequency control word information and/or duty cycle control word information based on the above parameter information.
  • the brightness trend expected by the user when the brightness trend expected by the user is gradually brightened, it can be realized by increasing the frequency f TAF of the pulse signal while maintaining the duty ratio, or by increasing the pulse while maintaining the frequency unchanged.
  • the duty cycle of the signal is achieved (i.e., the pulse width is increased with the period constant, thereby extending the time during which the light-emitting elements are driven to illuminate in each cycle).
  • the change trend of the brightness is gradually darkening, it can be realized by reducing the frequency f TAF of the pulse signal while maintaining the duty ratio, or by reducing the pulse signal while keeping the frequency constant.
  • the space ratio is achieved (i.e., the width of the pulse is reduced in the case where the period is constant, thereby shortening the time during which the light-emitting element is driven to emit light in each period).
  • the calculation circuit 125 can calculate the frequency control word information F according to the following formula (1):
  • the value of the frequency control word information F can be calculated by the formula (1) by the value of the number K of signals uniformly spaced from the phase.
  • the calculation circuit 125 may determine the duty cycle change value of the pulse signal according to the change parameter of the brightness, the change trend, the change reference or the change amplitude, and the like; then, the calculation circuit 125 may calculate the change according to the duty change value.
  • the value of the duty cycle control word information D For example, suppose that the brightness trend that the user desires is brightness enhancement, and the current duty control word information is D 0 (for example, D 0 can be the initial value of the duty control word information, and can also be set by the user. value). In order to achieve the brightness change desired by the user, the calculation circuit 125 determines that the duty control word information is gradually increased based on the current duty control word information D 0 to achieve a gradual increase in the duty cycle of the pulse signal.
  • the luminance of the light-emitting element is gradually increased.
  • the calculation circuit 125 determines to gradually reduce the duty control word information on the basis of the current duty control word information D 0 to achieve the duty ratio. Gradually decreasing, the luminance of the light-emitting element is gradually weakened.
  • the calculation circuit 125 is based on the current duty control word information D 0 .
  • the duty control word information is further fine-tuned (for example, the duty control word information is gradually increased or decreased on the basis of D1).
  • D2 Duty cycle control word information eg, gradually increasing or decreasing duty cycle control word information on a D2 basis
  • the output circuit 127 is configured to receive the frequency control word information F and/or the duty cycle control word information D from the calculation circuit 125 and to the frequency control word information F and/or the The duty ratio control word information D is output to the pulse width adjustment circuit 14.
  • the pulse width adjustment circuit 14 includes a pulse generation circuit 141 and a reference time unit generation circuit 143.
  • the reference time unit generating circuit 143 generates and outputs K multi-phase signals and a reference time unit ⁇ .
  • the pulse generation circuit 141 receives the frequency control word information F and/or the duty control word information D from the control circuit 12, and the pulse generation circuit 141 also receives the K polyphase signals from the reference time unit generation circuit 143 and the reference time unit ⁇ .
  • the pulse generation circuit 141 generates and outputs a pulse signal that matches the frequency control word information F and/or the duty control word information D.
  • the pulse width adjustment circuit 14 is a time average frequency direct cycle synthesizer (TAF-DPS synthesizer).
  • TAF-DPS synthesizer can be implemented using a programmable logic device (eg, an ASIC or an FPGA). Alternatively, the time averaged frequency direct cycle synthesizer can be implemented using conventional analog circuit devices. The disclosure is not limited herein.
  • the TAF-DPS 510 has an output CLK 550.
  • the CLK 550 is a synthesized time averaged frequency clock signal.
  • Output CLK is a clock train 540 containing both types of periods T A 541 and T B 542. They are used in an interwoven manner.
  • the score r identifies the probability of occurrence of the period type T B , so r also determines the probability of occurrence of T A .
  • T TAF (1-r)*T A +r*T B
  • the period T TAF of the output clock signal CLK of the TAF-DPS 510 is linearly proportional to the control word F.
  • the period T TAF of the output clock signal of the TAF-DPS 510 will also change in the same form.
  • the control circuit 12 can determine the variation characteristic of the frequency of the pulse signal according to the desired luminance variation characteristic, and then generate the frequency control word information having the same or similar variation characteristics according to the variation characteristic of the frequency of the pulse signal, thereby being used by the TAF-DPS 510. A pulse signal having a desired frequency variation characteristic is generated.
  • the reference time unit generating circuit 143 includes:
  • VCO voltage controlled oscillator
  • phase locked loop circuit 560 that locks an output frequency of the voltage controlled oscillator 570 to an output frequency (f ⁇ );
  • K outputs for outputting K phase-equal spaced output signals, where K is a positive integer greater than one.
  • the frequency of the K phase-separated output signals is f ⁇ .
  • the reference time unit ⁇ 520 is typically generated by a multi-stage voltage controlled oscillator 570.
  • is the time span between the outputs of any two adjacent voltage controlled oscillators.
  • the voltage controlled oscillator 570 can be locked to a reference frequency of a known frequency by a phase locked loop (PLL) 560.
  • PLL phase locked loop
  • the output frequency f ⁇ of the voltage controlled oscillator is a known value.
  • the base time unit ⁇ can be calculated using the following formula:
  • the pulse generation circuit 141 includes: a multiplexing circuit 72 for receiving the K phase-equal spaced output signals from the reference time unit generation circuit 143; a first logic control circuit 70 for using the control circuit 12 receiving the frequency control word information F; a second logic control circuit 74 for receiving the duty cycle control word information D from the control circuit 12; and an output circuit 76 for outputting the generated pulse signal.
  • the multiplexing circuit 72 includes:
  • the first K ⁇ 1 multiplexer 721 and the second K ⁇ 1 multiplexer 723 respectively include: a plurality of inputs, a control input end, and an output end for receiving K phase-evenly spaced signals; as well as
  • a 2 ⁇ 1 multiplexer 725 comprising: a first input for receiving an output of the first K ⁇ 1 multiplexer 721, for receiving the second K ⁇ 1 multiplexing The second input of the output of the 723, the control input and the output.
  • the output circuit 76 includes a D flip-flop 761 and an inverter 763.
  • the D flip-flop 761 includes a clock input for receiving an output from an output of the 2 ⁇ 1 multiplexer 725, a data input terminal, and an output terminal for outputting the first clock signal CLK1.
  • the inverter 763 includes: an input terminal for receiving the first clock signal CLK1 and an output terminal for outputting the second clock signal CLK2, wherein the second clock signal is connected to the data of the D flip-flop At the input, the first clock signal includes the pulse signal.
  • the output of the output circuit 76 is for outputting the first clock signal CLK1 as the pulse signal.
  • the pulse signal is a pulse signal having a fixed duty and a variable frequency, a pulse signal having a variable duty ratio and a fixed frequency, or a pulse signal having a fixed pulse width and a variable frequency.
  • the first logic control circuit 70 includes an adder 701, a register 703, and a register 705.
  • the second logic control circuit 74 includes an adder 741, a register 743, and a register 745.
  • the adder 701 adds the frequency control word information F and the most significant bits (for example, 5 bits) stored in the register 703, and then saves the addition result to the register 703 at the rising edge of CLK2; or, addition The 701 adds the frequency control word information F and all the information stored in the register 703, and then saves the addition result to the register 703 at the rising edge of CLK2. At the rising edge of the next CLK2, the most significant bit stored in register 703 will be stored in register 705 and used as the select signal for the first K ⁇ 1 multiplexer 721 for use in the K multiphase input signals. A signal is selected as the first output signal of the first K ⁇ 1 multiplexer 721.
  • the adder 741 adds the duty control word information D and the most significant bit stored in the register 703, and then saves the addition result to the register 743 at the rising edge of CLK2. At the rising edge of the next CLK1, the information stored in register 743 will be stored in register 745 and used as a selection signal for the second K ⁇ 1 multiplexer 723 for selecting one of the K multiphase input signals.
  • the signal acts as a second output signal of the second K ⁇ 1 multiplexer 723.
  • the 2 ⁇ 1 multiplexer 725 will have a first output signal from the first K ⁇ 1 multiplexer 721 and a second output of the second K ⁇ 1 multiplexer 723 at the rising edge of CLK1.
  • One of the signals is selected as the output signal of the 2 ⁇ 1 multiplexer 725 as the input clock signal of the D flip-flop 761.
  • an embodiment of the present disclosure provides a light emitting device driving circuit 80, which includes a light emitting circuit 82 and a signal generating circuit 10 according to an embodiment of the present disclosure.
  • the light emitting circuit 82 includes a light emitting element
  • the signal generating circuit 10 is configured to provide a pulse signal to drive the light emitting element to emit light.
  • the light emitting circuit 82 includes a first voltage terminal VCC, a resistor 821, a light emitting element 823, a switching element 825, and a second voltage terminal 827.
  • the first end and the second end of the light emitting element 823 are respectively connected to the first voltage terminal VCC and the first pole of the switching element 825.
  • the first end of the light emitting element 823 is connected to the first voltage terminal VCC through a resistor 821.
  • the second pole of the switching element is coupled to the second voltage terminal 827.
  • a control electrode of the switching element 823 is coupled to an output of the signal generating circuit 10 to receive the pulse signal.
  • the light emitting element 823 is an LED
  • the switching element 825 is a thin film transistor.
  • the control of the switching element 825 is extremely the gate of the thin film transistor; one of the first and second poles of the switching element 825 is the source of the thin film transistor, and the other is the gate of the thin film transistor.
  • the first voltage terminal VCC provides a voltage VCC and the second voltage terminal 827 is a ground terminal.
  • Embodiments of the present disclosure also provide a display device including the light-emitting device driving circuit and other devices (for example, an array substrate, a color filter substrate, and the like) as described above.
  • an embodiment of the present disclosure further provides a signal generating method that can be applied to a signal generating circuit as described above.
  • the signal generation method includes:
  • Step S10 receiving an instruction
  • Step S12 calculating at least one of frequency control word information and duty control word information according to the instruction
  • Step S14 generating a pulse signal according to at least one of the frequency control word information and the duty control word information.
  • an embodiment of the present disclosure further provides another signal generation method.
  • the signal generation method includes:
  • Step S10 receiving an instruction
  • Step S121 identifying at least one of a change parameter, a change trend, a change reference, and a change width of the brightness according to the instruction;
  • Step S122 calculating at least one of the frequency control word information or the duty control word information according to at least one of a change parameter, a change trend, a change reference, and a change width of the brightness;
  • Step S14 generating a pulse signal according to at least one of the frequency control word information and the duty control word information
  • Step S15 outputting the pulse signal to the light emitting element for driving the light emitting element to emit light.
  • FIG. 10 and FIG. 11 can be implemented by the signal generating circuit 10 in any embodiment of the present disclosure, and similar operations or steps will not be described herein.
  • a signal generating circuit, a signal generating method, a light emitting device driving circuit and a display device have the characteristics of low cost, flexibility, high precision, and strong interactivity.
  • the signal generation circuitry can be implemented using programmable logic devices, and the user can reset the relevant parameters at any time without the use of specially crafted dedicated circuitry.
  • the frequency/period of the generated pulse signal can be precisely controlled, and its duty ratio can also be accurately controlled.
  • the pulse signal is used to drive the light-emitting element to emit light, the performance of the light-emitting element can be improved.
  • the user can also make the illuminating element achieve any illuminating effect desired by the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种信号生成电路(10)及信号生成方法、发光装置驱动电路(80)及显示装置。所述信号生成电路(10)包括:控制电路(12),被配置为根据指令计算频率控制字信息(F)或占空比控制字信息(D)中的至少之一;以及脉冲宽度调节电路(14),被配置为根据所述频率控制字信息(F)和所述占空比控制字信息(D)中的至少之一生成脉冲信号。

Description

信号生成电路及信号生成方法、发光装置驱动电路及显示装置
本公开要求于2017年3月29日递交的中国专利申请第201710197909.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种信号生成电路及信号生成方法、发光装置驱动电路及显示装置。
背景技术
发光二极管(light-emitting diode,LED)由一个PN结组成。当给发光二极管加载适合的电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内复合,产生自发辐射的荧光(即,电致发光,electroluminescence)。不同的半导体材料中电子和空穴所处的能量状态不同。当电子和空穴复合时释放出的能量越多,则发出的光的波长越短。
相比于白炽灯,LED灯具有众多优点,包括但不限于,更低能量消耗、更长的使用寿命、更高的可靠性、更小的尺寸以及更快速的开关切换。LED灯的应用领域非常广泛,例如,飞行照明、汽车头灯、广告照明、交通信号显示等均可使用。
发明内容
本公开的实施例提供了一种信号生成电路,包括:控制电路,被配置为根据指令计算频率控制字信息和占空比控制字信息中的至少之一;以及脉冲宽度调节电路,被配置为根据所述频率控制字信息和所述占空比控制字信息中的至少之一生成脉冲信号。
例如,所述脉冲信号为占空固定而频率可变的脉冲信号、占空比可变而频率固定的脉冲信号或脉冲宽度固定而频率可变的脉冲信号。
例如,所述控制电路包括输入电路、创建电路、计算电路和输出电路。 所述输入电路被配置为接收所述指令;所述创建电路被配置为生成与所述指令相对应的信息;所述计算电路被配置为根据所述创建电路生成的信息计算所述频率控制字信息和所述占空比控制字信息中的至少之一;所述输出电路被配置为将所述频率控制字信息和所述占空比控制字信息中的至少之一输出。
例如,所述创建电路包括参数识别子电路,被配置为根据所述指令识别亮度的变化参数。
例如,所述创建电路还包括变化趋势识别子电路,被配置为根据所述指令识别亮度的变化趋势。
例如,所述创建电路还包括变化基准识别子电路,被配置为根据所述指令识别亮度的变化基准。
例如,所述创建电路还包括变化幅度识别子电路,被配置为根据所述指令识别亮度的变化幅度。
例如,所述计算电路被配置为:根据所述亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一,计算所述频率控制字信息和所述占空比控制字信息中的至少之一。
例如,所述计算电路还被配置为:根据所述亮度的变化参数、变化趋势、变化基准或变化幅度,确定所述脉冲信号的频率;以及根据所述脉冲信号的频率计算得到所述频率控制字信息。
例如,所述计算电路还被配置为:根据所述亮度的变化参数、变化趋势、变化基准或变化幅度,确定所述脉冲信号的占空比变化值;以及根据所述占空比变化值计算所述占空比控制字信息。
例如,所述脉冲宽度调节电路为时间平均频率直接周期合成器。
例如,所述时间平均频率直接周期合成器使用可编程逻辑器件来实现。
例如,所述指令包括来自用户的用户指令和所述信号生成电路自动生成的指令中的至少之一。
例如,所述信号生成电路还包括传感器,所述传感器用于自动生成所述指令。
本公开实施例还提供一种发光装置驱动电路,包括:发光电路,其包括发光元件;以及如上所述的信号生成电路,被配置为驱动所述发光元件发光。
例如,所述发光电路还包括第一电压端、开关元件、以及第二电压端。所述发光元件的第一端和第二端分别与所述第一电压端和所述开关元件的第一极相连接,所述开关元件的第二极与所述第二电压端相连接,所述开关元件的控制极与所述信号生成电路的输出端相连接,以接收所述脉冲信号。
本公开实施例还提供一种显示装置,包括如上所述的发光装置驱动电路。
本公开实施例还提供一种信号生成方法,应用于如上所述的信号生成电路,包括:接收指令;根据所述指令计算频率控制字信息和占空比控制字信息中的至少之一;以及根据所述频率控制字信息和所述占空比控制字信息中的至少之一生成脉冲信号。
例如,所述根据所述指令计算频率控制字信息和占空比控制字信息中的至少之一,包括:根据所述指令识别亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一;以及根据所述亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一,计算所述频率控制字信息或所述占空比控制字信息中的至少之一。
例如,所述信号生成方法还包括:输出所述脉冲信号至发光元件,用以驱动所述发光元件发光。
例如,所述脉冲信号为占空固定而频率可变的脉冲信号、占空比可变而频率固定的脉冲信号或脉冲宽度固定而频率可变的脉冲信号。
例如,根据所述亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一,计算所述频率控制字信息,包括:根据所述亮度的变化参数、变化趋势、变化基准或变化幅度,确定所述脉冲信号的频率;以及根据所述脉冲信号的频率计算得到所述频率控制字信息。
例如,根据所述亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一,计算所述占空比控制字信息,包括:根据所述亮度的变化参数、变化趋势、变化基准或变化幅度,确定所述脉冲信号的占空比变化值;以及根据所述占空比变化值计算所述占空比控制字信息。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本 公开的一些实施例,而非对本公开的限制,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的信号生成电路的结构性示意图之一;
图2为本公开实施例提供的信号生成电路的结构性示意图之二;
图3为本公开实施例提供的信号生成电路的结构性示意图之三;
图4为本公开实施例提供的信号生成电路的结构性示意图之四;
图5为本公开实施例提供的脉冲宽度调节电路的工作原理示意图;
图6为本公开实施例提供的基准时间单位生成电路的结构性示意图;
图7为本公开实施例提供的脉冲宽度调节电路的结构性示意图;
图8为本公开实施例提供的发光装置驱动电路的结构性示意图之一;
图9A为本公开实施例提供的发光装置驱动电路的结构性示意图之二;
图9B为本公开实施例提供的发光装置驱动电路的结构性示意图之三;以及
图10为本公开实施例提供的一种信号生成方法的流程图之一;
图11为本公开实施例提供的一种信号生成方法的流程图之二;以及
图12为本公开实施例提供的多种脉冲信号的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,以下举实施例对本公开作进一步详细说明。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在电子设备中,可以通过驱动电路为LED提供电源。该驱动电路需要提供足够的电流使得LED发出的光能够满足亮度的要求,同时,也需要限制所提供的电流,避免由于电流过大而损坏该LED。加载到LED的电压的小幅度的提升或许会导致电流的大幅度提升,因此,需要精确的电流源电路为LED照明提供电源。
脉冲驱动电路可以提供高电流的脉冲信号,来驱动LED发光,因此可以提高LED的发光效率。在两个脉冲之间,存在着一个短暂的关闭时段(OFF时段)(例如,两个高电平的脉冲之间,存在着一个低电平),在此关闭时 段,LED停止发光,LED的PN结也可以实现降温的效果。只要LED的闪烁率高于人眼闪烁融合阈值(human flicker fusion threshold),对于人的眼睛来说,LED并没有闪烁而是持续在发光。脉冲宽度调制(pulse-width modulation,PWM)可以改变脉冲的占空比,基于PWM的驱动电路比恒电流或恒电压的驱动电路更有效,可以提高LED的效率和性能。
采用时间平均频率直接周期合成(Time-Average-Frequency Direct Period Synthesis,TAF-DPS)的技术可以生成任何频率的脉冲信号。也就是说,TAF-DPS合成器能够实现小粒度的精细频率测量。此外,因为每个单个脉冲是直接构建的,所以TAF-DPS合成器的输出频率可以瞬间改变,也即具有频率切换的迅速性。能够生成任何频率和能够迅速进行频率切换也是TAF-DPS合成器相比于常规频率源的优点。而且,TAF-DPS合成器还可以调整输出的信号的占空比,可以作为本公开实施例中的脉冲宽度调节电路的一种具体实现方式。
本公开的实施例提供一种信号生成电路及信号生成方法、发光装置驱动电路及显示装置。信号生成电路被配置为:接收指令;根据所述指令计算频率控制字信息和占空比控制字信息中的至少之一;根据所述频率控制字信息和所述占空比控制字信息中的至少之一生成脉冲信号;以及输出所述脉冲信号至发光元件(例如,LED),用以驱动所述发光元件发光。信号生成电路包括控制电路和脉冲宽度调节电路,可以使用TAF-DPS合成器作为脉冲宽度调节电路,来驱动发光元件的发光。
本公开实施例提供的信号生成电路及信号生成方法、发光装置驱动电路及显示装置的优点包括,但不限于:
(1)低成本和实现的灵活性。基于TAF-DPS的信号生成电路可以完全使用数字化设计,通过HDL编码烧制到可编程的逻辑器件中(例如,FPGA),信号生成电路的参数也可以方便地随时重新设置。因此,无需使用特制的专用电路,使用一般的FPGA或其他可编程器件即可实现信号生成电路的功能。当然,也可以采用ASIC来实现信号生成电路的功能。该信号生成电路可以构成独立的芯片,也可以集成于其他芯片中(例如,信号处理芯片、发光装置芯片、视频处理芯片、片上系统(system on chip,SoC)等)。
(2)高精度。TAF-DPS输出的脉冲的频率/周期可以精确地控制,其频 率分辨率可以到达十亿分率,其占空比也可以精确地控制。当使用TAF-DPS输出的脉冲控制LED的发光时,可以提高LED的性能。
(3)交互性。用户可以输入指令,用以指示期望的LED的发光效果(例如,亮度增大、减小、周期性地增大或周期性地减小等)。信号生成电路可以通过分析用户指令,提取用于生成脉冲信号的相关参数,然后使用这些相关参数来生成脉冲信号,使得当该脉冲信号用来驱动LED发光时,可以实现用户期望的发光效果。当然,该指令也可以是自动生成的,无需用户干预。例如,信号生成电路可以包括用于检测环境光的传感器;当传感器感测到环境光变暗时,信号生成电路可以自动生成“亮度增大”的指令,使得LED的发光增强以弥补环境光的减弱。
值得注意的是,本公开实施例提供的技术方案的优点并不限于此,在此不再赘述。
下面将结合附图对本公开的实施例进行详细的描述。
如图1所示,本公开实施例提供了一种信号生成电路10,其包括:控制电路12,被配置为根据指令计算频率控制字信息和占空比控制字信息中的至少之一;以及脉冲宽度调节电路14,被配置为根据所述频率控制字信息和所述占空比控制字信息中的至少之一生成脉冲信号。例如,所述指令包括来自用户的用户指令和/或所述信号生成电路自动生成的指令。
所述脉冲信号可以为占空比固定而频率可变的脉冲信号、占空比可变而频率固定的脉冲信号、或脉冲宽度固定而频率可变的脉冲信号。例如,如图12所示,所述脉冲信号可以为占空比固定而频率可变的第一脉冲信号。在该第一脉冲信号中,信号的周期是变化的,而在每个周期中的占空比是固定的。或者,所述脉冲信号可以为占空比可变而频率固定的第二脉冲信号。在该第二脉冲信号中,信号的周期是固定不变的,而在每个周期中的占空比是变化的。或者,所述脉冲信号可以为脉冲宽度固定而频率可变的第三脉冲信号。在该第三脉冲信号中,每个脉冲的宽度是相等的,而信号的周期是变化的,每个周期中的占空比也是变化的。
参见图2,所述控制电路12包括输入电路121、创建电路123、计算电路125和输出电路127。所述输入电路121被配置为接收所述指令;所述创建电路123被配置为生成与所述指令相对应的信息;所述计算电路125被配 置为根据所述创建电路生成的信息计算所述频率控制字信息和所述占空比控制字信息中的至少之一;所述输出电路127被配置为将所述频率控制字信息和所述占空比控制字信息中的至少之一输出。
在一些例子中所述指令为来自用户的、用以指示期望的发光效果的用户指令。发光效果可以为用户所期望的显示屏能达到的显示效果。例如,发光效果可以包括:显示亮度增大或减小、显示亮度周期性地增大或周期性地减小、显示亮度先增大后减小或先减小后增大、显示亮度随着环境光的变化而亮度保持不变、显示屏一些区域的亮度高于或低于另一些区域的亮度、显示亮度每隔一定的时期发生变化等。用户所期望的发光效果还可以包括其他多种类别,本公开在此不作限定。
用户可以输入指令到输入电路121,以指示期望达到的发光效果。例如,输入电路121可以包括麦克风、旋钮、按键、触摸屏、体感装置、摄像头、传感器等器件,用户可以通过语音命令、转动旋钮、按下按键、点击触摸屏或做出肢体动作(例如,挥手)等互动方式输入一或多个指令至输入电路121。
例如,所述信号生成电路还包括传感器,所述传感器用于自动生成所述指令。在一些例子中,所述指令也可以是自动生成的,无需用户干预。例如,信号生成电路可以包括用于检测环境光的传感器;当传感器感测到环境光变暗时,信号生成电路可以自动生成“亮度增大”的指令,使得LED的发光增强以弥补环境光的减弱。
在另一些例子中,所述指令也可以同时包括来自用户的指令和信号生成电路自动生成的指令。本公开在此不作限定。
所述创建电路123被配置为分析所述指令,并生成与所述指令相对应的参数信息。参见图3,所述创建电路123可以包括参数识别子电路1231,被配置为根据所述指令识别亮度的变化参数。例如,所述参数识别子电路1231被配置为根据所述指令来识别所述用户是否期望显示亮度发生变化。
参见图3,所述创建电路123还包括变化趋势识别子电路1233,被配置为根据所述指令识别亮度的变化趋势。例如,所述变化趋势识别子电路1233被配置为根据所述指令来识别所述用户期望的亮度的变化趋势为变得更亮或变得更暗。
所述创建电路123还包括变化基准识别子电路1235,被配置为根据所述 指令识别亮度的变化基准。例如,所述变化基准识别子电路1235被配置为根据所述指令来识别所述用户期望的亮度发生变化的时间间隔。又例如,亮度的变化基准可以为每隔一段时间T0亮度变得更亮或更暗。或者,亮度的变化基准可以为每隔一段时间T0亮度变得更亮,之后再隔一段时间T1恢复原来的亮度。本公开在此不对亮度的变化基准做出限制。
所述创建电路123还包括变化幅度识别子电路1237,被配置为根据所述指令识别亮度的变化幅度。例如,变化幅度识别子电路1237被配置为根据所述指令来识别所述用户期望的亮度的变化幅度。例如,亮度的变化幅度可以为:变化后的亮度比未变化前的亮度高(或低)5%、10%、15%等。本公开在此不对亮度的变化幅度做出限制。
所述计算电路125被配置为接收来自创建电路123的各子电路的参数(例如,亮度的变化参数、变化趋势、变化基准或变化幅度等)。所述计算电路125被配置为根据所述亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一,计算所述频率控制字信息和所述占空比控制字信息中的至少之一。
频率控制字信息被用于控制脉冲信号的频率。脉冲宽度调节电路14可以使用该频率控制字信息来生成脉冲信号,使得生成的脉冲信号的频率为期望的频率。通过改变该频率控制字信息,可以改变生成的脉冲信号的频率。
占空比控制字信息被用于控制脉冲信号的占空比。脉冲宽度调节电路14可以使用该占空比控制字信息来生成脉冲信号,使得生成的脉冲信号的占空比为期望的占空比。通过改变该占空比控制字信息,可以改变生成的脉冲信号的占空比。
例如,计算电路125根据来自创建电路123的与亮度相关的参数(例如,亮度的变化参数、变化趋势、变化基准或变化幅度等),确定脉冲信号的参数信息。该参数信息包括但不限于:脉冲信号的载波频率(f c)、调制率(f m)、最大频率偏离(Δf)、占空比的范围、占空比的最大偏移量(Δ R)、脉冲信号频率的变化量(例如,频率提高或降低1%、5%等)、占空比的变化量(例如,占空比提高或降低1%、5%等)等。计算电路125根据上述参数信息,生成频率控制字信息和/或占空比控制字信息。
例如,当用户期望的亮度变化趋势为逐渐变亮时,可以在保持占空比不 变的情况下通过提高脉冲信号的频率f TAF来实现,或者,在保持频率不变的情况下通过提高脉冲信号的占空比来实现(即,在周期不变的情况下,增大脉冲的宽度,从而延长每个周期内驱动发光元件发光的时间)。当亮度的变化趋势为逐渐变暗时,可以在保持占空比不变的情况下通过降低脉冲信号的频率f TAF来实现,或者,在保持频率不变的情况下通过减小脉冲信号的占空比来实现(即,在周期不变的情况下,减小脉冲的宽度,从而缩短每个周期内驱动发光元件发光的时间)。
计算电路125可以根据下面的公式(1)计算得到频率控制字信息F:
F=K*(f Δ/f TAF)   公式(1)
其中,K为图4和图6中的基准时间单位生成电路143生成的相位均匀间隔的信号的个数(例如,K=16、32或其他数值),f Δ为图6中的压控振荡器的输出频率。在一些例子中,f Δ即为载波频率f c。值得注意的是,图6左侧的电路结构仅是基准时间单位生成电路143的一种示例性的实现方式,而基准时间单位生成电路143的结构并不限于此,还可以由其他电路结构构建而成,本公开在此不作限制。
例如,假设目前的脉冲信号的频率f TAF为5MHz,压控振荡器的输出频率f Δ为5MHz,基准时间单位生成电路143生成的相位均匀间隔的信号的个数K为16个(K=16),则根据公式(1)可以计算得到目前的频率控制字信息为F=16*(5MHz/5MHz)=16。当亮度的变化趋势为变亮时,计算电路125确定将脉冲信号的频率f TAF提高为5.025MHz,则根据公式(1)可以计算得到频率控制字信息为F=16*(5MHz/5.025MHz)=15.9203980099。当亮度的变化趋势为变暗时,计算电路125确定将脉冲信号的频率f TAF降低为4.975MHz,则根据公式(1)可以计算得到频率控制字信息为F=16*(5MHz/4.975MHz)=16.0804020300。也就是说,计算电路125可以根据亮度的变化参数、变化趋势、变化基准或变化幅度等,确定脉冲信号的频率f TAF;然后,计算电路125根据已知的压控振荡器的输出频率f Δ和相位均匀间隔的信号的个数K的值,通过公式(1)可以计算得到频率控制字信息F的值。
在一些例子中,计算电路125可以根据亮度的变化参数、变化趋势、变化基准或变化幅度等,确定脉冲信号的占空比变化值;然后,计算电路125根据该占空比变化值可以计算得到占空比控制字信息D的值。例如,假设用 户期望的亮度变化趋势为亮度增强,而当前的占空比控制字信息为D 0(例如,D 0可以为占空比控制字信息的初始值,也可以为用户设定的其他值)。为了实现用户期望的亮度变化,计算电路125确定在当前的占空比控制字信息D 0的基础上,将占空比控制字信息逐渐增大,以实现脉冲信号占空比的逐渐增大,使得发光元件的发光亮度逐渐增强。或者,当用户期望的亮度变化趋势为亮度减弱时,计算电路125确定在当前的占空比控制字信息D 0的基础上,将占空比控制字信息逐渐减小,以实现占空比的逐渐减小,使得发光元件的发光亮度逐渐减弱。
又例如,假设占空比R的最大偏移量为Δ R,而当前的占空比控制字信息为D 0,对应的占空比为R0。为了快速实现用户期望的亮度变化(例如,变亮),可以先将脉冲信号的占空比在R0的基础上增大最大偏移量的一半,变为R1(占空比R1=R0+Δ R/2),然后在R1的基础上再继续微调占空比(例如,逐渐增大或减小占空比),使得发光元件的发光亮度能够快速达到用户的亮度要求。当然,在占空比变为R1的基础上也可以不进行微调,而是再继续将占空比增大Δ R/4变为R2(占空比R2=R1+Δ R/4),然后在R2的基础上再继续微调占空比(例如,逐渐增大或减小占空比)。以此类推,通过快速调整占空比,使得发光元件的发光亮度快速达到用户的亮度要求。
相对应地,由于占空比由占空比控制字信息来控制,为了实现上述脉冲波的占空比的快速变化,计算电路125在当前的占空比控制字信息D 0的基础上,先将占空比控制字信息增大到与R1对应的占空比控制字信息D1(即,D1为与占空比R1=R0+Δ R/2对应的占空比控制字信息),然后在D1的基础上再继续微调占空比控制字信息(例如,在D1的基础上逐渐增大或减小占空比控制字信息)。当然,在占空比控制字信息增大为D 1的基础上,也可以不进行微调,而是再继续将占空比控制字信息增大到与占空比R2对应的占空比控制字信息D2(即,D2为与占空比R2=R0+Δ R/2+Δ R/4=R1+Δ R/4对应的占空比控制字信息),然后在D2的基础上再继续微调占空比控制字信息(例如,在D2的基础上逐渐增大或减小占空比控制字信息)。以此类推,通过快速调整占空比控制字信息,以实现脉冲信号占空比的快速变化,使得发光元件的发光亮度能够快速满足用户的要求。所述输出电路127被配置为:从所述计算电路125接收所述频率控制字信息F和/或所述占空比控制字信息 D,并将所述频率控制字信息F和/或所述占空比控制字信息D输出到脉冲宽度调节电路14。
参见图4,所述脉冲宽度调节电路14包括脉冲生成电路141和基准时间单位生成电路143。基准时间单位生成电路143生成并输出K个多相位信号以及基准时间单位Δ。脉冲生成电路141接收来自控制电路12的频率控制字信息F和/或占空比控制字信息D,脉冲生成电路141还接收来自基准时间单位生成电路143的K个多相位信号和基准时间单位Δ,脉冲生成电路141生成并输出与频率控制字信息F和/或占空比控制字信息D相匹配的脉冲信号。
所述脉冲宽度调节电路14为时间平均频率直接周期合成器(TAF-DPS合成器)。所述时间平均频率直接周期合成器可以使用可编程逻辑器件(例如,ASIC或FPGA)来实现。或者,所述时间平均频率直接周期合成器可以使用传统的模拟电路器件来实现。本公开在此不作限定。
下面,将参考图5描述基于TAF-DPS的脉冲宽度调节电路的工作原理。
在图5中,基于TAF-DPS的脉冲宽度调节电路被标记为TAF-DPS 510,其具有两个输入:基准时间单位Δ520和频率/周期控制字(F)530,其中F=I+r,I是大于1的整数,r是分数。TAF-DPS 510具有一个输出CLK 550。该CLK550是合成的时间平均频率时钟信号。从基准时间单位520开始,TAF-DPS510产生两种类型的周期T A=I*Δ和T B=(I+1)*Δ。输出CLK是包含两种类型的周期T A541和T B542两者的时钟脉冲串540。它们以交织的方式使用。分数r标识周期类型T B的出现概率,因此,r也确定T A的出现概率。
具体地,如图5所示,对于输出的CLK的周期T TAF,可以用下面的公式表示:
T TAF=(1-r)*T A+r*T B
=T A+r*(T B-T A)=T A+r*△=I*△+r*△=(I+r)*△  公式(2)
因此,当控制字F=I+r时,可以得到:
T TAF=F*△       公式(3)
由上面的公式(3)可知,TAF-DPS 510的输出时钟信号CLK的周期T TAF与控制字F成线性比例。当生成的控制字F发生变化时,TAF-DPS 510的输出时钟信号的周期T TAF也将以相同的形式发生变化。
此外,因为周期T与频率f成反比,所以当满足预定条件下,例如,当 控制字F的变化量非常小时(小于预定阈值时),输出时钟信号的频率也可以近似地以线性方式跟随频率控制字的波形变化。因此,控制电路12可以根据期望的亮度变化特性确定脉冲信号的频率的变化特性,然后根据脉冲信号的频率的变化特性生成具有相同或类似的变化特性的频率控制字信息,从而由TAF-DPS 510生成具有期望的频率变化特性的脉冲信号。
下面,将参考图6描述基准时间单位生成电路143的结构。如图6所示,基准时间单位生成电路143包括:
压控振荡器(VCO)570,所述压控振荡器570以预定振荡频率振荡;
锁相环回路电路560,所述锁相环回路电路560将所述压控振荡器570的输出频率锁定为输出频率(f Δ);以及
K个输出端,用于输出K个相位均匀间隔的输出信号,其中,K为大于1的正整数。所述K个相位均匀间隔的输出信号的频率均为f Δ
具体地,基准时间单位Δ520通常由多级压控振荡器570生成。Δ是任意两个相邻压控振荡器输出之间的时间跨度(time span)。压控振荡器570可以通过锁相环(PLL)560锁定到已知频率的基准频率。例如,压控振荡器的输出频率f Δ是已知的值。基准时间单位Δ可以使用以下公式计算:
Δ=T Δ/K=1/(K·f Δ)     公式(4)
下面,将参考图7描述脉冲生成电路141的结构。例如,脉冲生成电路141包括:复用电路72,用于从所述基准时间单位生成电路143接收所述K个相位均匀间隔的输出信号;第一逻辑控制电路70,用于从所述控制电路12接收所述频率控制字信息F;第二逻辑控制电路74,用于从所述控制电路12接收所述占空比控制字信息D;以及输出电路76,用于输出生成的脉冲信号。
如图7所示,在一个实施例中,所述复用电路72包括:
第一K→1多路复用器721和第二K→1多路复用器723,分别包括:用于接收K个相位均匀间隔的信号的多个输入端、控制输入端和输出端;以及
2→1多路复用器725,包括:用于接收所述第一K→1多路复用器721的输出的第一输入端、用于接收所述第二K→1多路复用器723的输出的第二输入端、控制输入端和输出端。
所述输出电路76包括D触发器761和反相器763。D触发器761包括:用于接收来自所述2→1多路复用器725的输出端的输出的时钟输入端、数 据输入端和用于输出第一时钟信号CLK1的输出端。反相器763包括:用于接收所述第一时钟信号CLK1的输入端和用于输出第二时钟信号CLK2的输出端,其中所述第二时钟信号连接到所述D触发器的所述数据输入端,所述第一时钟信号包含所述脉冲信号。
所述输出电路76的输出端用于输出所述第一时钟信号CLK1作为所述脉冲信号。所述脉冲信号为占空固定而频率可变的脉冲信号、占空比可变而频率固定的脉冲信号或脉冲宽度固定而频率可变的脉冲信号。
所述第一逻辑控制电路70包括加法器701、寄存器703和寄存器705。所述第二逻辑控制电路74包括加法器741、寄存器743和寄存器745。
加法器701将频率控制字信息F和寄存器703存储的最高有效位(most significant bits,例如,5比特)相加,然后在CLK2的上升沿时将相加结果保存到寄存器703中;或者,加法器701将频率控制字信息F和寄存器703存储的所有信息相加,然后在CLK2的上升沿时将相加结果保存到寄存器703中。在下一个CLK2的上升沿时,寄存器703存储的最高有效位将被存储到寄存器705中,并作为第一K→1多路复用器721的选择信号,用于从K个多相位输入信号中选择一个信号作为第一K→1多路复用器721的第一输出信号。
加法器741将占空比控制字信息D和寄存器703存储的最高有效位相加,然后在CLK2的上升沿时将相加结果保存到寄存器743中。在下一个CLK1的上升沿时,寄存器743存储的信息将被存储到寄存器745中,并作为第二K→1多路复用器723的选择信号,用于从K个多相位输入信号中选择一个信号作为第二K→1多路复用器723的第二输出信号。
2→1多路复用器725在CLK1的上升沿时,将从第一K→1多路复用器721的第一输出信号和第二K→1多路复用器723的第二输出信号中选择其中之一作为2→1多路复用器725的输出信号,以作为D触发器761的输入时钟信号。
例如,所述控制字信息以F=I+r的形式设置,其中,I是在[2,2K]的范围内的整数,r是在[0,1)的范围内的分数。
另外,关于TAF-DPS的工作原理,可以参考文献L.XIU,“Nanometer Frequency Synthesis beyond the Phase-Locked Loop”,Piscataway,NJ 08854, USA,John Wiley IEEE-press,2012和L.XIU,“From Frequency to Time-Average-Frequency:a Paradigm Shift in the Design of Electronic System”,Piscataway,NJ 08854,USA,John Wiley IEEE-press,2015。在此通过引用并入其全部内容作为参考。
如图8所示,本公开实施例提供一种发光装置驱动电路80,其包括:发光电路82和本公开实施例所述的信号生成电路10。发光电路82包括发光元件,该信号生成电路10被配置为提供脉冲信号,以便驱动所述发光元件发光。
如图9A和9B所示,例如,所述发光电路82包括第一电压端VCC、电阻821、发光元件823、开关元件825、以及第二电压端827。所述发光元件823的第一端和第二端分别与所述第一电压端VCC和所述开关元件825的第一极相连接。例如,所述发光元件823的第一端通过电阻821与所述第一电压端VCC相连接。所述开关元件的第二极与所述第二电压端827相连接。所述开关元件823的控制极与所述信号生成电路10的输出端相连接,以接收所述脉冲信号。
例如,所述发光元件823为LED,所述开关元件825为薄膜晶体管。所述开关元件825的控制极为薄膜晶体管的栅极;所述开关元件825的第一极和第二极中的一个为薄膜晶体管的源极,另一个为薄膜晶体管的栅极。第一电压端VCC提供电压VCC,第二电压端827为接地端。
本公开实施例还提供一种显示装置,其包括如上所述的发光装置驱动电路以及其他器件(例如,阵列基板、彩膜基板等)。
参考图10,本公开实施例还提供一种信号生成方法,可以应用于如上所述的信号生成电路。该信号生成方法包括:
步骤S10,接收指令;
步骤S12,根据所述指令计算频率控制字信息和占空比控制字信息中的至少之一;以及
步骤S14,根据所述频率控制字信息和所述占空比控制字信息中的至少之一生成脉冲信号。
参考图11,本公开实施例还提供另一种信号生成方法。该信号生成方法包括:
步骤S10,接收指令;
步骤S121,根据所述指令识别亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一;
步骤S122,根据所述亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一,计算所述频率控制字信息或所述占空比控制字信息中的至少之一;
步骤S14,根据所述频率控制字信息和所述占空比控制字信息中的至少之一生成脉冲信号;以及
步骤S15,输出所述脉冲信号至发光元件,用以驱动所述发光元件发光。
值得注意的是,图10和图11所示的信号生成方法可以由本公开任一实施例中的信号生成电路10来实现,在此不再赘述类似的操作或步骤。
本公开实施例提供的一种信号生成电路及信号生成方法、发光装置驱动电路及显示装置具有低成本、实现灵活、精度高、交互性强等特点。例如,信号生成电路可以使用可编程的逻辑器件来实现,用户可以随时重新设置相关参数,而无需使用特制的专用的电路。所生成的脉冲信号的频率/周期可以精确地控制,其占空比也可以精确地控制。当使用该脉冲信号来驱动发光元件发光时,可以提高发光元件的性能。通过用户指令,还可以使发光元件达到用户期望的任何发光效果。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
以上所述,仅为公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想 到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种信号生成电路,包括:
    控制电路,被配置为根据指令计算频率控制字信息和占空比控制字信息中的至少之一;以及
    脉冲宽度调节电路,被配置为根据所述频率控制字信息和所述占空比控制字信息中的至少之一生成脉冲信号。
  2. 根据权利要求1所述的信号生成电路,其中,所述脉冲信号为占空固定而频率可变的脉冲信号、占空比可变而频率固定的脉冲信号或脉冲宽度固定而频率可变的脉冲信号。
  3. 根据权利要求1或2所述的信号生成电路,其中,所述控制电路包括输入电路、创建电路、计算电路和输出电路,
    所述输入电路被配置为接收所述指令;
    所述创建电路被配置为生成与所述指令相对应的信息;
    所述计算电路被配置为根据所述创建电路生成的信息计算所述频率控制字信息和所述占空比控制字信息中的至少之一;
    所述输出电路被配置为将所述频率控制字信息和所述占空比控制字信息中的至少之一输出。
  4. 根据权利要求3所述的信号生成电路,其中,所述创建电路包括参数识别子电路,被配置为根据所述指令识别亮度的变化参数。
  5. 根据权利要求3或4所述的信号生成电路,其中,所述创建电路还包括变化趋势识别子电路,被配置为根据所述指令识别亮度的变化趋势。
  6. 根据权利要求3-5任一项所述的信号生成电路,其中,所述创建电路还包括变化基准识别子电路,被配置为根据所述指令识别亮度的变化基准。
  7. 根据权利要求3-6任一项所述的信号生成电路,其中,所述创建电路还包括变化幅度识别子电路,被配置为根据所述指令识别亮度的变化幅度。
  8. 根据权利要求4-7任一项所述的信号生成电路,其中,所述计算电路被配置为:根据所述亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一,计算所述频率控制字信息和所述占空比控制字信息中的至少之一。
  9. 根据权利要求8所述的信号生成电路,其中,所述计算电路还被配置 为:
    根据所述亮度的变化参数、变化趋势、变化基准或变化幅度,确定所述脉冲信号的频率;以及
    根据所述脉冲信号的频率计算得到所述频率控制字信息。
  10. 根据权利要求8所述的信号生成电路,其中,所述计算电路还被配置为:
    根据所述亮度的变化参数、变化趋势、变化基准或变化幅度,确定所述脉冲信号的占空比变化值;以及
    根据所述占空比变化值计算所述占空比控制字信息。
  11. 根据权利要求3-10任一项所述的信号生成电路,其中,所述脉冲宽度调节电路为时间平均频率直接周期合成器。
  12. 根据权利要求11所述的信号生成电路,其中,所述时间平均频率直接周期合成器使用可编程逻辑器件来实现。
  13. 根据权利要求1所述的信号生成电路,其中,所述指令包括来自用户的用户指令或所述信号生成电路自动生成的指令的至少之一。
  14. 根据权利要求13所述的信号生成电路,还包括传感器,所述传感器用于自动生成所述指令。
  15. 一种发光装置驱动电路,包括:
    发光电路,其包括发光元件;以及
    根据权利要求1-14任一项所述的信号生成电路,被配置为驱动所述发光元件发光。
  16. 根据权利要求15所述的发光装置驱动电路,其中,所述发光电路还包括第一电压端、开关元件、以及第二电压端,
    所述发光元件的第一端和第二端分别与所述第一电压端和所述开关元件的第一极相连接,
    所述开关元件的第二极与所述第二电压端相连接,
    所述开关元件的控制极与所述信号生成电路的输出端相连接,以接收所述脉冲信号。
  17. 一种显示装置,包括根据权利要求15或16所述的发光装置驱动电路。
  18. 一种信号生成方法,包括:
    根据指令计算频率控制字信息和占空比控制字信息中的至少之一;以及
    根据所述频率控制字信息和所述占空比控制字信息中的至少之一生成脉冲信号。
  19. 根据权利要求18所述的信号生成方法,其中,所述根据所述指令计算频率控制字信息或占空比控制字信息中的至少之一,包括:
    根据所述指令识别亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一;以及
    根据所述亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一,计算所述频率控制字信息和所述占空比控制字信息中的至少之一。
  20. 根据权利要求18或19所述的信号生成方法,还包括:输出所述脉冲信号至发光元件,用以驱动所述发光元件发光。
  21. 根据权利要求18-20任一项所述的信号生成方法,其中,所述脉冲信号为占空固定而频率可变的脉冲信号、占空比可变而频率固定的脉冲信号或脉冲宽度固定而频率可变的脉冲信号。
  22. 根据权利要求19所述的信号生成方法,其中,根据所述亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一,计算所述频率控制字信息,包括:
    根据所述亮度的变化参数、变化趋势、变化基准或变化幅度,确定所述脉冲信号的频率;以及
    根据所述脉冲信号的频率计算得到所述频率控制字信息。
  23. 根据权利要求19所述的信号生成方法,其中,根据所述亮度的变化参数、变化趋势、变化基准和变化幅度中的至少之一,计算所述占空比控制字信息,包括:
    根据所述亮度的变化参数、变化趋势、变化基准或变化幅度,确定所述脉冲信号的占空比变化值;以及
    根据所述占空比变化值计算所述占空比控制字信息。
PCT/CN2017/116510 2017-03-29 2017-12-15 信号生成电路及信号生成方法、发光装置驱动电路及显示装置 WO2018176921A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/080,827 US10582597B2 (en) 2017-03-29 2017-12-15 Signal generating circuit and signal generating method, driving circuit of light emitting device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710197909.4A CN108668399B (zh) 2017-03-29 2017-03-29 信号生成电路及信号生成方法、发光装置驱动电路及显示装置
CN201710197909.4 2017-03-29

Publications (1)

Publication Number Publication Date
WO2018176921A1 true WO2018176921A1 (zh) 2018-10-04

Family

ID=63674259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116510 WO2018176921A1 (zh) 2017-03-29 2017-12-15 信号生成电路及信号生成方法、发光装置驱动电路及显示装置

Country Status (3)

Country Link
US (1) US10582597B2 (zh)
CN (1) CN108668399B (zh)
WO (1) WO2018176921A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220311606A1 (en) * 2020-06-10 2022-09-29 Beijing Boe Technology Development Co., Ltd. Optical communication apparatus, optical communication system and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270441B (zh) * 2017-01-04 2021-12-28 京东方科技集团股份有限公司 频率可调的频率源和相关的系统、方法和电子设备
CN110047266B (zh) * 2018-01-17 2021-01-22 京东方科技集团股份有限公司 信息表示方法、多进制计算电路及电子系统
WO2020154989A1 (zh) * 2019-01-30 2020-08-06 华为技术有限公司 占空比调整方法、控制器芯片及闪存设备
CN110518906B (zh) * 2019-08-30 2023-04-07 京东方科技集团股份有限公司 信号生成电路及其方法、数字时间转换电路及其方法
CN110764492B (zh) * 2019-11-15 2021-06-29 北京广利核系统工程有限公司 一种多通道开关量信号发生装置及soe事件模拟器
CN111327301B (zh) * 2020-04-14 2022-04-19 京东方科技集团股份有限公司 脉冲宽度调制电路、调制方法及电子设备
KR20220021505A (ko) 2020-08-14 2022-02-22 삼성전자주식회사 듀티 조절 회로, 이를 포함하는 지연 동기 루프 회로 및 반도체 메모리 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109589A (ja) * 2006-10-27 2008-05-08 Iwatsu Test Instruments Corp 信号発生装置
CN102147093A (zh) * 2011-02-28 2011-08-10 高鹏 基于发光二极管的调光调色系统
CN102625527A (zh) * 2012-03-07 2012-08-01 深圳世强电讯有限公司 Led调光装置、系统以及方法
CN104284489A (zh) * 2014-09-30 2015-01-14 中山市德斯邦电子科技有限公司 照明控制装置及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389177A (zh) * 2007-09-14 2009-03-18 群康科技(深圳)有限公司 调光电路
US20090189842A1 (en) * 2008-01-24 2009-07-30 Industrial Technology Research Institute Backlight control apparatus
TW201102718A (en) * 2009-07-08 2011-01-16 Dynascan Technology Corp Decay fast detection method of LED backlight-board liquid crystal display and its display
TWI422269B (zh) * 2010-07-14 2014-01-01 Richtek Technology Corp 具有去除閃爍功能之led控制器及led去除閃爍電路與相關方法
CN101902861B (zh) * 2010-08-10 2013-09-11 友达光电股份有限公司 发光二极管驱动方法及驱动电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109589A (ja) * 2006-10-27 2008-05-08 Iwatsu Test Instruments Corp 信号発生装置
CN102147093A (zh) * 2011-02-28 2011-08-10 高鹏 基于发光二极管的调光调色系统
CN102625527A (zh) * 2012-03-07 2012-08-01 深圳世强电讯有限公司 Led调光装置、系统以及方法
CN104284489A (zh) * 2014-09-30 2015-01-14 中山市德斯邦电子科技有限公司 照明控制装置及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220311606A1 (en) * 2020-06-10 2022-09-29 Beijing Boe Technology Development Co., Ltd. Optical communication apparatus, optical communication system and method

Also Published As

Publication number Publication date
US20190261472A1 (en) 2019-08-22
CN108668399A (zh) 2018-10-16
US10582597B2 (en) 2020-03-03
CN108668399B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2018176921A1 (zh) 信号生成电路及信号生成方法、发光装置驱动电路及显示装置
US10036945B2 (en) Light emission control circuit, light source apparatus, and projection-type video display device
US7679296B2 (en) Light emitting diode drive circuit
US8278831B2 (en) LED driver circuit and method, and system and method for estimating the junction temperature of a light emitting diode
JP4982239B2 (ja) クロック周波数拡散装置
TWI504315B (zh) 使用可調式振盪器之高解析度脈衝寬度調變(pwm)頻率控制
Lin et al. An LED driver with pulse current driving technique
TWI416449B (zh) 用於真空螢光顯示器之絲線電源供應器電路
TWI394485B (zh) 發光元件驅動電路及其方法
JP2006108260A (ja) 発光ダイオード駆動用半導体回路、及びそれを有する発光ダイオード駆動装置
US8594174B2 (en) Rotating pulse-width modulator
US8525609B1 (en) Pulse width modulation circuits, systems and methods
TW201218865A (en) Light Emitting Diode circuit, light emitting diode driving circuit, and method for driving light emitting diode channels
JP2010080524A (ja) 発光素子駆動制御回路
US8519637B2 (en) Digital PWM generator and apparatus for driving light emitting device
TW201306660A (zh) 發光元件驅動電路
JP2011249145A (ja) Led駆動回路
JP6805808B2 (ja) 発光制御回路、光源装置、及び、電子機器
JP5599279B2 (ja) 調光回路及び照明装置
TW201044913A (en) LED controlling driver and method thereof
JPH09180880A (ja) El素子駆動回路およびこれを用いるel素子照明装置
TWI520121B (zh) 以鎖相迴路為基礎使用外部時脈以產生內部時脈的驅動發光元件以及相關顯示器的驅動器與方法
JP2019071269A (ja) 発光制御回路、光源装置、及び、投写型映像表示装置
JP2003086364A (ja) El駆動回路、制御方法及び電子機器
JP6382702B2 (ja) スイッチング電源回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903419

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17903419

Country of ref document: EP

Kind code of ref document: A1