WO2018176761A1 - 反射式光子晶体彩膜、使用其的显示器件及其制造方法 - Google Patents

反射式光子晶体彩膜、使用其的显示器件及其制造方法 Download PDF

Info

Publication number
WO2018176761A1
WO2018176761A1 PCT/CN2017/102822 CN2017102822W WO2018176761A1 WO 2018176761 A1 WO2018176761 A1 WO 2018176761A1 CN 2017102822 W CN2017102822 W CN 2017102822W WO 2018176761 A1 WO2018176761 A1 WO 2018176761A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
color film
reflective
crystal structure
dimensional photonic
Prior art date
Application number
PCT/CN2017/102822
Other languages
English (en)
French (fr)
Inventor
孟宪芹
杨亚锋
吕敬
陈小川
王维
谭纪风
孟宪东
田允允
高健
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/778,280 priority Critical patent/US20210165270A1/en
Publication of WO2018176761A1 publication Critical patent/WO2018176761A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133521Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a reflective photonic crystal color film, a display device using the same, and a method of fabricating the same.
  • the international mainstream color gamut indicators of the three primary colors can not meet the requirements of color saturation in some high-end display fields, such as some professional advertisements, high-definition screens, and the like. Therefore, finding new ways to improve the authenticity of the screen color is one of the most urgent problems to be solved in the display field.
  • the color gamut reproduction capability based on the three primary color LED display device has reached 120% of the NTSC standard color gamut, in the CIE standard color gamut, nearly 40% of the area is outside the three primary color LED display area. How to further expand the range of display color gamut is an important exploration direction for us to meet high-end needs.
  • Photonic crystal refers to an artificial microstructure in which media of different refractive indices are periodically arranged, also known as an artificial periodic dielectric structure having the characteristics of Photonic Band-Gap (PBG).
  • the photonic bandgap material is capable of modulating electromagnetic waves having corresponding wavelengths such that photons with energy in the photonic bandgap cannot enter the photonic crystal.
  • photonic crystals are a new term, substances with such properties already exist in nature, such as opals, butterfly wings, insect eyes, etc. (Fig. 1), that is, light in a specific frequency range is prohibited from propagating in photonic crystals. Reflected into the human eye, so the human eye can perceive the light of these frequencies, that is, the color that opal, peacock, and butterfly wings can display.
  • a reflective photonic crystal color film including:
  • a two-dimensional photonic crystal structure formed on the substrate and periodically distributed on the surface of the substrate, wherein the two-dimensional photonic crystal structure is composed of a material containing silicon.
  • the two-dimensional photonic crystal structure is a columnar or pore-like structure.
  • the two-dimensional photonic crystal structure is a cylindrical or square structure.
  • the two-dimensional photonic crystal structure is a circular hole or a square hole structure.
  • the two-dimensional photonic crystal structure is a cylindrical structure
  • the period of the two-dimensional photonic crystal structure is 330-450 nm
  • the duty ratio of the two-dimensional photonic crystal structure is 20 -30%, wherein the height of the cylinder is 110-130 nm, and the diameter of the cylinder is 190-210 nm.
  • the two-dimensional photonic crystal structure is a circular hole structure
  • the period of the two-dimensional photonic crystal structure is 240-280 nm
  • the duty ratio of the two-dimensional photonic crystal structure is 20-30%
  • the circular hole has a depth of 110-130 nm
  • the circular hole has a diameter of 125-145 nm.
  • the two-dimensional photonic crystal structure is a circular hole structure
  • the period of the two-dimensional photonic crystal structure is 120-200 nm
  • the duty ratio of the two-dimensional photonic crystal structure is 20-30%
  • the circular hole has a depth of 90-110 nm
  • the circular hole has a diameter of 90-110 nm.
  • the two-dimensional photonic crystal structure is a cylindrical structure
  • the period of the two-dimensional photonic crystal structure is 210-230 nm
  • the duty ratio of the two-dimensional photonic crystal structure is 20 -30%, wherein the height of the cylinder is 90-110 nm, and the diameter of the cylinder is 110-130 nm.
  • the two-dimensional photonic crystal structure has a period of 220 nm, the height of the cylinder is 100 nm, and the diameter of the cylinder is 124 nm.
  • the two-dimensional photonic crystal structure is a cylindrical structure
  • the period of the two-dimensional photonic crystal structure is 290-320 nm
  • the duty ratio of the two-dimensional photonic crystal structure is 20 -30%, wherein the height of the cylinder is 110-130 nm, and the diameter of the cylinder is 160-180 nm.
  • the two-dimensional photonic crystal structure has a period of 300 nm, the height of the cylinder is 120 nm, and the diameter of the cylinder is 170 nm.
  • a method of fabricating a reflective photonic crystal color film comprising:
  • a two-dimensional photonic crystal structure periodically distributed on the surface of the substrate is obtained by subjecting the film to exposure etching.
  • the two-dimensional photonic crystal structure is a columnar or pore-like structure.
  • a display device comprising: a reflective photonic crystal color film according to the first aspect of the present disclosure; a liquid crystal formed on the reflective photonic crystal color film; The front light source on the liquid crystal.
  • a method of fabricating a display device comprising:
  • a front light source is formed on the liquid crystal.
  • FIG. 1 shows an example of a photonic crystal existing in nature.
  • FIG. 2 illustrates a side view of a reflective photonic crystal color film in accordance with an example embodiment of the present disclosure.
  • FIG. 3 illustrates a top view of a reflective photonic crystal color film in accordance with an example embodiment of the present disclosure.
  • FIG. 4 illustrates a graph of refractive index and extinction coefficient of a silicon-based material used in a reflective photonic crystal color film according to an example embodiment of the present disclosure.
  • FIG. 5 illustrates a spectrogram in which a reflective photonic crystal color film realizes red according to an exemplary embodiment of the present disclosure.
  • FIG. 6 illustrates a spectrogram of achieving a green color of a reflective photonic crystal color film according to an example embodiment of the present disclosure.
  • FIG. 7 illustrates a spectrogram of achieving a blue color of a reflective photonic crystal color film according to an example embodiment of the present disclosure.
  • FIG. 8 illustrates a spectrogram of achieving a cyan color in a reflective photonic crystal color film according to an example embodiment of the present disclosure.
  • FIG. 9 illustrates a spectrogram of achieving a yellow color of a reflective photonic crystal color film according to an example embodiment of the present disclosure.
  • FIG. 10 illustrates a side view and a plan view of another reflective photonic crystal color film according to an example embodiment of the present disclosure.
  • FIG. 11 illustrates a schematic diagram of a display device using a reflective photonic crystal color film, according to an example embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • the example embodiments can be embodied in a variety of forms, and should not be construed as being limited to the examples set forth herein; the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • numerous specific details are set forth However, one skilled in the art will appreciate that one or more of the specific details may be omitted or other methods, components, devices, steps, etc. may be employed.
  • the present disclosure provides a reflective photonic crystal color film and a display device using the same.
  • the reflective photonic crystal color film includes: a substrate; a two-dimensional photonic crystal structure formed on the substrate and periodically distributed on the surface of the substrate, wherein the two-dimensional photonic crystal structure is composed of a material containing silicon.
  • the photonic crystal color film of the present disclosure can not only replace the traditional color film substrate, but also widen the color gamut, realize the cyan and yellow complementary color light that is difficult to be realized by the traditional color film, and combine the RGB three-base color film to realize the RGBCY five colors and restore the natural color. Thereby achieving a more realistic display.
  • the geometric parameters make the spectrum width corresponding to RGB narrower than the conventional color film, achieving relatively high color saturation, thereby realizing a more vivid display.
  • FIG. 2 illustrates a side view of a reflective photonic crystal color film according to an exemplary embodiment of the present disclosure
  • FIG. 3 illustrates an example implementation according to the present disclosure.
  • the reflective photonic crystal color film includes: a substrate 1; a two-dimensional photonic crystal structure 2 formed on the substrate 1 and periodically distributed on the surface of the substrate 1, wherein the two-dimensional photonic crystal structure 2 is composed of silicon-containing Material composition.
  • the substrate 1 may be a glass substrate, but is not limited thereto, and may be made of a transparent other inorganic material or a transparent organic material.
  • the two-dimensional photonic crystal structure 2 is obtained by exposing and etching a silicon-based film formed on the substrate 1.
  • the refractive index n and the extinction coefficient k of silicon are as described in FIG.
  • the thickness of the silicon-based film is between 90 and 130 nm, preferably between 100 and 120 nm in the present disclosure, to achieve the purpose of low absorption of the silicon-based film material in the visible light range, but high reflection.
  • the thickness of the silicon film is slightly different depending on the color of the desired light.
  • a two-dimensional photonic crystal structure is obtained by exposure etching on the silicon-based film.
  • the silicon film material can also be replaced by other materials to realize the reflective or transmissive photonic crystal color film, but the parameters need to be re-optimized and will not be described here.
  • the surface of the silicon film is required to have a good flatness, that is, a small surface roughness to reduce the influence on the wavelength and intensity of the reflected light.
  • the two-dimensional photonic crystal structure 2 is a columnar structure or a pore-like structure, and the columnar structure of the present disclosure, that is, the portion other than the column in the silicon-based film is removed by exposure etching, and only the phases separated on the substrate surface are kept in a cycle.
  • a columnar structure (as shown in FIG.
  • the columnar structure is a cylinder or a square, that is, the columnar structure has a circular or square cross section; and the pore structure described in the present disclosure is reversed, Forming a hole-like structure (not shown) periodically formed in a plane of the silicon-based film (ie, parallel to the plane of the substrate 1) in the silicon-based film by exposure etching, the hole-like structure being a circular hole or a square hole, That is, the cross section of the hole-like structure is circular or square.
  • the period p of the two-dimensional photonic crystal structure, the height of the column/hole depth h, the diameter d of the cylinder/hole and the width l of the block/hole and the duty ratio are determined by the color of the designed light, specific
  • the parameter photonic crystal forbidden band allows certain wavelengths to pass through the photonic crystal and be directly reflected to achieve a specific color of light.
  • the present disclosure only describes the reflective two-dimensional columnar photonic crystal color film, and the purpose can also be through selecting materials, using other shapes such as two-dimensional nanopores, nano-blocks, photonic crystals, etc., or even one-dimensional nanowires or grooves. Realize the design of reflective or transmissive photonic crystal color film.
  • FIGS. 5-9. 5 shows a spectrogram in which a reflective photonic crystal color film realizes red according to an exemplary embodiment of the present disclosure
  • FIG. 6 illustrates a spectrogram in which a reflective photonic crystal color film realizes green according to an exemplary embodiment of the present disclosure
  • 7 illustrates a spectrogram in which a reflective photonic crystal color film realizes blue according to an exemplary embodiment of the present disclosure
  • FIG. 5 shows a spectrogram in which a reflective photonic crystal color film realizes red according to an exemplary embodiment of the present disclosure
  • FIG. 6 illustrates a spectrogram in which a reflective photonic crystal color film realizes green according to an exemplary embodiment of the present disclosure
  • 7 illustrates a spectrogram in which a reflective photonic crystal color film realizes blue according to an exemplary embodiment of the present disclosure
  • FIG. 8 illustrates a spectrogram in which a reflective photonic crystal color film realizes cyan according to an exemplary embodiment of the present disclosure
  • FIG. A spectroscopic photonic crystal color film according to an exemplary embodiment of the present disclosure is shown to achieve a yellow spectrum.
  • Red realization design a two-dimensional cylindrical photonic crystal structure on a 120nm thick silicon-based film (as shown in Figure 2-3).
  • the geometric parameters of the two-dimensional structure nanostructure are: 330-450nm, two-dimensional cylinder
  • the duty ratio is about 20-30%, preferably 25%, and the height of the cylinder is 110-130 nm, preferably 120 nm, that is, the silicon layer is completely etched, and the diameter of the two-dimensional cylinder is 190-210 nm, thereby obtaining 600-780 nm.
  • the incident light is reflected.
  • the geometric parameters of the two-dimensional periodic nanostructures are optimized.
  • FIG. 5 illustrates a red light spectrum of a reflective photonic crystal color film according to an exemplary embodiment of the present disclosure.
  • the obtained half-width (FWHM) of the red photonic crystal color film is much smaller than that of the conventional color. The half width of the film and the red saturation are higher.
  • the green two-dimensional photonic crystal structure is a circular hole.
  • the silicon-based two-dimensional aperture photonic crystal of the present disclosure can also reflect the incident light in the green spectral range by adjusting the relevant parameters of the photonic crystal.
  • the photonic crystal parameters for realizing light emission in the green spectral range are: period is 240-280 nm, the duty ratio of the two-dimensional hole is about 20-30%, preferably 25%, and the depth of the circular hole is 110-130 nm, preferably 120 nm, two-dimensional.
  • the diameter of the circular hole is 125-145 nm, and green light which is emitted in the range of 500-600 nm can be obtained.
  • the geometric parameters of the blue filter, the period and the diameter of the two-dimensional holes are 240 nm and 135 nm, respectively, and the green photonic crystal color film can achieve the same FWHM chromaticity as the conventional color film (as shown in Fig. 6).
  • the blue two-dimensional photonic crystal structure is also a circular hole.
  • the photonic crystal parameters for emitting light in the blue spectral range are: the period is 120-200 nm, and the duty ratio of the two-dimensional hole area is about 20-30%, preferably 25%, the depth of the circular hole is 90-110 nm, preferably 100 nm, and the diameter of the two-dimensional circular hole is 90-110 nm, and blue light in the range of 380-500 nm can be reflected to realize blue light emission.
  • the FWHM of the blue photonic crystal color film is narrower than that of the conventional color film when the diameter of the period and the two-dimensional hole are 180 nm and 102 nm, respectively (as shown in Fig. 7), and the color saturation is higher. High, blue is relatively sharp.
  • the two-dimensional photonic crystal structure that realizes cyan is a cylinder.
  • the period of the two-dimensional photonic crystal structure is between 210-230 nm
  • the thickness of the silicon film is 90-110 nm, preferably 100 nm
  • the duty ratio is about 20- 30%, preferably 25%
  • the diameter of the cylinder is 110-130 nm
  • a cyan light output of about 450-550 nm can be obtained.
  • the diameter of the cylindrical silicon is 124 nm, and completely etching the 100 nm thick silicon film, the incident light of 505 +/- 50 nm can be reflected back to the system by the photonic band gap of the two-dimensional photonic crystal.
  • a cyan light having a full width at half maximum (FWHM) of about 100 nm is obtained (as shown in FIG. 8).
  • the yellow two-dimensional photonic crystal structure is also a cylinder.
  • the incident light in the yellow spectral range can also be reflected out.
  • the photonic crystal parameters for realizing light in the yellow spectral range are: period is 290-320 nm, duty ratio is 20-30%, preferably about 25%, silicon film thickness is 110-130 nm, preferably 120 nm, and the diameter of the cylinder is 160-180 nm. At the time, the yellow light can be achieved.
  • the yellow light inside (as shown in Figure 9).
  • the present disclosure realizes a complementary color of cyan and yellow by a two-dimensional photonic crystal structure composed of a material containing silicon, and combines the existing RGB three primary colors to realize RGBCY.
  • a portion of the transmitted light can be re-reflected back into the photonic crystal structure by adding a structure at the bottom of the substrate, thereby achieving a second or even multiple resonance exit, thereby achieving the purpose of increasing the reflection efficiency. It is also possible to re-diffract the transmitted light of the photonic crystal back to the photonic crystal by designing a reflective micro-nano structure on the substrate, thereby increasing the light-emitting efficiency, but is not limited to these two designs.
  • the cyan and yellow colors can also be realized by a square-shaped two-dimensional photonic crystal structure having a square cross section, which is described below with reference to FIG. Specific instructions.
  • FIG. 10 illustrates a side view and a plan view of another reflective photonic crystal color film according to an example embodiment of the present disclosure.
  • the reflective photonic crystal color film includes: a substrate 1'; a square-shaped two-dimensional photonic crystal formed on the substrate 1' and periodically distributed on the surface of the substrate 1', that is, a columnar cross-sectional square shape Structure 2'.
  • a columnar cross-sectional square shape Structure 2' The manner of realizing cyan and yellow by a two-dimensional square photonic crystal structure will be specifically described below.
  • a two-dimensional square photonic crystal structure (shown in FIG. 10) is designed on a 100 nm thick silicon-based film with a period of 220 nm, two-dimensional squares.
  • the side length of the photonic crystal that is, the width l is 110 nm, and the 100 nm thick silicon film is completely etched, so that the incident light of 505 +/- 50 nm can be locally reflected back to the system by the photonic band gap of the two-dimensional photonic crystal, thereby obtaining Cyan light.
  • a silicon-based two-dimensional square photonic crystal can also reflect incident light in the yellow spectral range out of light by adjusting the relevant parameters of the photonic crystal.
  • the photonic crystal parameters for realizing the light in the yellow spectral range are: the period is 3000 nm, the side length of the two-dimensional block structure is 150 nm, and the 120 nm thick silicon film is completely etched to obtain yellow in the range of 580 +/- 50 nm. Light.
  • the present disclosure also provides a method of fabricating a reflective photonic crystal color film, comprising: forming a substrate; forming a film made of a material containing silicon on the substrate; and obtaining the surface of the substrate by performing exposure etching on the film A two-dimensional photonic crystal structure that is periodically distributed.
  • the two-dimensional photonic crystal structure is a pillar Shape or pore structure.
  • FIG. 11 illustrates a schematic diagram of a display device using a reflective photonic crystal color film, according to an example embodiment of the present disclosure.
  • a display device using a reflective photonic crystal color film includes: a reflective photonic crystal color film according to the foregoing disclosure; a liquid crystal formed on the reflective photonic crystal color film; formed on the liquid crystal Front light source.
  • the display device may further include a TFT substrate formed under the reflective photonic crystal color film, and an upper polarizing plate formed between the liquid crystal and the front light source, but the present disclosure is not limited thereto.
  • the front light source injects the collimated plane light from top to bottom.
  • the collimated light source can be made by dimming the R, G, B, C, Y five-color semiconductor laser chips, or by dimming the R, G, B, C, Y five-color LED chips with better collimation. It can also be made of white LED chip with better collimation. It can also be made of strip CCFL tube plus some light collimation structure, but it is not limited to these types.
  • the upper polarizing plate may be a high permeability filter and a polarizing iodine-based polarizing plate, but is not limited thereto.
  • Polarizers can be further processed according to the specific requirements of practical applications such as notebook monitors or television monitors. Polarizer studies are not the focus of this published study and will not be described in detail herein.
  • the liquid crystal material may be selected from ADS (IPS or FFS) display mode products, liquid crystal materials suitable for VA display mode products, and blue phase liquid crystal materials, but is not limited thereto. There is no special requirement for the thickness of the liquid crystal, which can be adjusted according to the actual application.
  • ADS IPS or FFS
  • TFT substrate is an active matrix liquid crystal display, and a thin film is deposited on a substrate such as a glass substrate or some special resin materials, such as hydrogenated amorphous silicon a-Si:H or polysilicon p-Si, etc. Limited to this.
  • the array is micromachined on the above film substrate as the drive channel region of each liquid crystal pixel.
  • the present exemplary embodiment is only an example in which the reflective photonic crystal color film of the present disclosure is applied to a high definition liquid crystal display, but the disclosure is not limited thereto, and the reflective photonic crystal color film of the present disclosure may also be applied.
  • the reflective photonic crystal color film of the present disclosure may also be applied.
  • organic light emitting diode display, color LED and other related high-end color display fields are only examples of the reflective photonic crystal color film of the present disclosure.
  • the present disclosure also provides a method of fabricating a display device, including: forming a root A reflective photonic crystal color film according to the present disclosure; forming a liquid crystal on the reflective photonic crystal color film; and forming a front light source on the liquid crystal.
  • the photonic crystal color film of the present disclosure can not only replace the traditional color film substrate, but also widen the color gamut, realize the cyan and yellow complementary color light that is difficult to be realized by the traditional color film, and combine the RGB three-base color film to realize the RGBCY five colors and restore the natural color. Thereby achieving a more realistic display.
  • the spectral width corresponding to RGB is narrower than that of a conventional color film, achieving relatively high color saturation, thereby realizing The displayed picture is more vivid.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)

Abstract

一种反射式光子晶体彩膜、使用其的显示器件及其制造方法。反射式光子晶体彩膜包括:基底(1);形成在基底(1)上且在基底(1)表面上周期性分布的二维光子晶体结构(2),其中二维光子晶体结构(2)由包含硅的材料构成。

Description

反射式光子晶体彩膜、使用其的显示器件及其制造方法
交叉引用
本申请要求于2017年3月31日提交的申请号为201710207768.X的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示技术领域,具体而言,涉及一种反射式光子晶体彩膜、使用其的显示器件及其制造方法。
背景技术
目前国际上主流的三基色的色域指标已经不能满足一些高端显示领域的色彩饱和度的要求,比如某些专业广告,高清屏幕等。因此,寻找新的方法来提高屏幕显色的真实性是显示领域最为迫切需要解决的问题之一。虽然基于三基色LED显示设备的色域再现能力已经达到NTSC标准色域的120%,但是,在CIE标准色域图中,还有接近40%的面积在三基色LED显示区域之外。怎样进一步扩大显示色域的范围是我们满足高端需求的重要探索方向。
光子晶体(Photonic Crystal)是指不同折射率的介质周期性排列的人工微结构,也称为具有光子带隙(Photonic Band-Gap,简称为PBG)特性的人造周期性电介质结构。光子带隙材料能够调制具有相应波长的电磁波,使能量处在光子带隙内的光子不能进入光子晶体。光子晶体虽然是个新名词,但自然界中早已存在拥有这种性质的物质,比如蛋白石,蝴蝶翅膀,昆虫眼睛等(如图1),即特定频率范围内的光被禁止在光子晶体中传播,被反射到人的眼睛里,所以人眼能感知到这这些频率的光,即就是蛋白石、孔雀翎、蝴蝶翅膀能显示出的颜色。
应当注意,提供在上述背景部分中公开的信息仅用于更好地理解本公开的背景,并且因此可以包含未形成那些本领域技术人员已知 的现有技术的信息。
发明内容
本公开的目的在于提供一种反射式光子晶体彩膜及使用其的显示器件。
本公开的其他特性和优点将通过下面的详细描述变得清晰,或者部分地通过本公开的实践而习得。
根据本公开的第一方面,提供一种反射式光子晶体彩膜,包括;
基底;
形成在基底上且在基底表面上周期性分布的二维光子晶体结构,其中所述二维光子晶体结构由包含硅的材料构成。
在本公开的一种示例性实施例中,所述二维光子晶体结构为柱状或孔状结构。
在本公开的一种示例性实施例中,所述二维光子晶体结构为圆柱或方块结构。
在本公开的一种示例性实施例中,所述二维光子晶体结构为圆孔或方孔结构。
在本公开的一种示例性实施例中,所述二维光子晶体结构为圆柱结构,所述二维光子晶体结构的周期为330-450nm,所述二维光子晶体结构的占空比为20-30%,其中圆柱的高度为110-130nm,圆柱的直径为190-210nm。
在本公开的一种示例性实施例中,所述二维光子晶体结构为圆孔结构,所述二维光子晶体结构的周期为240-280nm,所述二维光子晶体结构的占空比为20-30%,其中圆孔的深度为110-130nm,圆孔的直径为125-145nm。
在本公开的一种示例性实施例中,所述二维光子晶体结构为圆孔结构,所述二维光子晶体结构的周期为120-200nm,所述二维光子晶体结构的占空比为20-30%,其中圆孔的深度为90-110nm,圆孔的直径为90-110nm。
在本公开的一种示例性实施例中,所述二维光子晶体结构为圆柱结构,所述二维光子晶体结构的周期为210-230nm,所述二维光子晶体结构的占空比为20-30%,其中圆柱的高度为90-110nm,圆柱的直径为110-130nm。
在本公开的一种示例性实施例中,所述二维光子晶体结构的周期为220nm,所述圆柱的高度为100nm,所述圆柱的直径为124nm。
在本公开的一种示例性实施例中,所述二维光子晶体结构为圆柱结构,所述二维光子晶体结构的周期为290-320nm,所述二维光子晶体结构的占空比为20-30%,其中圆柱的高度为110-130nm,圆柱的直径为160-180nm。
在本公开的一种示例性实施例中,所述二维光子晶体结构的周期为300nm,所述圆柱的高度为120nm,所述圆柱的直径为170nm。
根据本公开的第二方面,提供一种反射式光子晶体彩膜的制造方法,包括:
形成基底;
在基底上形成由包含硅的材料构成的薄膜;以及
通过对所述薄膜进行曝光蚀刻得到在基底表面上周期性分布的二维光子晶体结构。
在本公开的一种示例性实施例中,所述二维光子晶体结构为柱状或孔状结构。
根据本公开的第三方面,提供一种显示器件,包括:根据本公开的第一方面所述的反射式光子晶体彩膜;形成在所述反射式光子晶体彩膜上的液晶;形成在所述液晶上的前置光源。
根据本公开的第四方面,提供一种显示器件的制造方法,包括:
形成根据本公开的第一方面所述的反射式光子晶体彩膜;
在所述反射式光子晶体彩膜上形成液晶;以及
在所述液晶上形成前置光源。
应当理解,前面的一般描述和以下详细描述都仅是示例性和说明性的,而不是用于限制本公开。
本节提供本公开中描述的技术的各种实现或示例的概述,并不是所公开技术的全部范围或所有特征的全面公开。
附图说明
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出自然界中存在的光子晶体示例图。
图2示出根据本公开示例实施方式的一反射式光子晶体彩膜的侧视图。
图3示出根据本公开示例实施方式的一反射式光子晶体彩膜的俯视图。
图4示出根据本公开示例实施方式的一反射式光子晶体彩膜使用的硅基材料的折射系数和消光系数图。
图5示出根据本公开示例实施方式的一反射式光子晶体彩膜实现红色的光谱图。
图6示出根据本公开示例实施方式的一反射式光子晶体彩膜实现绿色的光谱图。
图7示根据本公开示例实施方式的一反射式光子晶体彩膜实现蓝色的光谱图。
图8示出根据本公开示例实施方式的一反射式光子晶体彩膜实现青色的光谱图。
图9示出根据本公开示例实施方式的一反射式光子晶体彩膜实现黄色的光谱图。
图10示出根据本公开示例实施方式的另一反射式光子晶体彩膜的侧视图及俯视图。
图11示出根据本公开示例实施方式的一使用反射式光子晶体彩膜的显示器件的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。
需要指出的是,在附图中,为了图示的清晰可能会夸大层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
本公开提供一种反射式光子晶体彩膜及使用其的显示器件。反射式光子晶体彩膜包括:基底;形成在基底上且在基底表面上周期性分布的二维光子晶体结构,其中所述二维光子晶体结构由包含硅的材料构成。通过设计调整二维光子晶体结构的几何参数和薄膜厚度,实现仅红(Red)、绿(Green)、蓝(Blue)、青(Cyan)、黄(Yellow)即RGBCY五色被反射。本公开的光子晶体彩膜将不仅能替代传统彩膜基底,而且能拓宽色域,实现传统彩膜难以实现的青色和黄色补色出光,结合RGB三基色彩膜,实现RGBCY五色,还原自然颜色,从而实现更加逼真的显示画面。同时通过优化二维光子晶体结构的各 个几何参数,使RGB对应的频谱宽度较传统彩膜窄,实现相对较高的色饱和度,从而实现显示的画面更加鲜艳。
下面结合附图对本公开的反射式光子晶体彩膜进行具体说明,其中,图2示出根据本公开示例实施方式的一反射式光子晶体彩膜的侧视图,图3示出根据本公开示例实施方式的一反射式光子晶体彩膜的俯视图。
如图2所示,反射式光子晶体彩膜包括:基底1;形成在基底1上且在基底1表面上周期性分布的二维光子晶体结构2,其中二维光子晶体结构2由包含硅的材料构成。
其中,基底1可为玻璃基底,但不限于此,也可以由透明的其他无机材料或透明的有机材料材料构成。
二维光子晶体结构2通过对形成在基底1上的硅基薄膜曝光蚀刻得到。硅的折射系数n和消光系数k如图4所描述。硅基薄膜厚度在本公开中在90-130nm之间,优选在100-120nm之间,以达到硅基薄膜材料在可见光波段具有低吸收,但高反射的目的。硅薄膜的厚度根据所需出光颜色的不同而略有不同。二维光子晶体结构是在该硅基薄膜上曝光蚀刻得到。此处硅薄膜材料也可以由其他材料代替,来实现反射式或者透射式光子晶体彩膜,但各参数需重新优化设计,此处不做赘述。另外,要求硅薄膜表面具有很好的平整度,即较小的表面粗糙度,以减小对反射光出光波长和强度的影响。
二维光子晶体结构2为柱状结构或孔状结构,本公开所述的柱状结构也就是通过曝光蚀刻将硅基薄膜中除柱体以外的其他部分去除仅保留相互分离的在基底表面上呈周期性分布的柱状结构(如图2或3所示),所述柱状结构为圆柱或方块,即所述柱状结构的横截面为圆形或方形;而本公开所述的孔状结构正好相反,是通过曝光蚀刻在硅基薄膜中形成沿硅基薄膜的平面(即平行于基底1的平面)周期性分布的孔状结构(未图示),所述孔状结构为圆孔或方孔,即所述孔状结构的横截面为圆形或方形。
二维光子晶体结构的周期p、柱体高度/孔深度h、圆柱/孔的直径d和方块/孔的宽度l以及占空比由设计出光的颜色决定,特定几 何参数的光子晶体禁带可以让某些特定波长通不过光子晶体而被直接反射,从而实现特定颜色出光。本公开只对反射式二维柱状光子晶体彩膜进行详细说明,该目的也可以通过选择材料,用其他形状如二维纳米孔、纳米方块等的光子晶体等,甚至一维纳米线或槽来实现反射式或者透射式光子晶体彩膜的设计。
下面结合图5-9分别对本公开的反射式光子晶体彩膜实现红(Red)、绿(Green)、蓝(Blue)、青(Cyan)、黄(Yellow)即RGBCY五色的方式进行详细说明,其中,图5示出根据本公开示例实施方式的一反射式光子晶体彩膜实现红色的光谱图,图6示出根据本公开示例实施方式的一反射式光子晶体彩膜实现绿色的光谱图,图7示根据本公开示例实施方式的一反射式光子晶体彩膜实现蓝色的光谱图,图8示出根据本公开示例实施方式的一反射式光子晶体彩膜实现青色的光谱图,图9示出根据本公开示例实施方式的一反射式光子晶体彩膜实现黄色的光谱图。
红色的实现方式:在120nm厚的硅基薄膜上设计一个二维圆柱状光子晶体结构(如图2-3所示),当二维结构纳米结构的几何参数在:330-450nm,二维圆柱的占空比约为20-30%,优选25%,圆柱高度为110-130nm,优选120nm,即硅层被完全刻蚀,二维圆柱的直径为190-210nm,即可得到600-780nm的入射光反射。优化二维周期纳米结构的几何参数,当周期为350nm,二维圆柱的直径为198nm时,从而得到600-700nm范围内的红色出光。图5示出根据本公开示例实施方式的一反射式光子晶体彩膜实现红色的光谱图,由图5可以看到,得到的红色光子晶体彩膜的半峰宽(FWHM)远远小于传统彩膜的半峰宽,红色饱和度较高。
绿色的实现方式:实现绿色的二维光子晶体结构为圆孔,本公开的硅基二维孔状光子晶体同样通过调整光子晶体的相关参数,也可以将绿色光谱范围内入射光反射出光。实现绿色光谱范围内出光的光子晶体参数为:周期是240-280nm,二维孔的占空比约为20-30%,优选25%,圆孔的深度为110-130nm,优选120nm,二维圆孔的直径为125-145nm,即可得到在500-600nm范围内出光的绿色。通过优化 蓝色滤光器的几何参数,周期和二维孔的直径分别是240nm和135nm时,绿色光子晶体彩膜可以实现与传统彩膜相同FWHM的色度(如图6所示)。
蓝色的实现方式:实现蓝色的二维光子晶体结构也为圆孔,同上,实现蓝色光谱范围内出光的光子晶体参数为:周期是120-200nm,二维孔面积的占空比约为20-30%,优选25%,圆孔的深度为90-110nm,优选100nm,二维圆孔的直径为90-110nm,即可将380-500nm范围内的蓝光反射,实现蓝色出光。通过优化蓝色滤光器的几何参数,周期和二维孔的直径分别是180nm和102nm时,蓝色光子晶体彩膜的FWHM比传统彩膜窄(如图7所示),色饱和度较高,蓝色相对较鲜明。
青色的实现方式:实现青色的二维光子晶体结构为圆柱,当二维光子晶体结构的周期在210-230nm之间,硅薄膜厚度是90-110nm,优选100nm,其占空比大约是20-30%,优选25%,圆柱的直径为110-130nm时,可以得到450-550nm左右的青色出光。优化参数至周期是220nm,圆柱状硅的直径是124nm,将100nm厚的硅薄膜完全蚀刻,即可将505+/-50nm的入射光可被二维光子晶体的光子禁带局域反射回系统,从而得到半峰宽(FWHM)是100nm左右的青色出光(如图8所示)。
黄色的实现方式:实现黄色的二维光子晶体结构也为圆柱,同样的,通过调整光子晶体的相关参数,也可以将黄色光谱范围内入射光反射出光。实现黄色光谱范围内出光的光子晶体参数为:周期是290-320nm,占空比为20-30%,优选25%左右,硅薄膜厚度是110-130nm,优选120nm,圆柱的直径为160-180nm时,即可实现黄色出光。优化黄色出光的参数得到约100nm半峰宽的二维结构的几何参数为:周期为300nm,硅圆柱的直径为170nm,将120nm厚的硅薄膜完全蚀刻,即可得到在580+/-50nm范围内的黄色光(如图9所示)。
由上可见,本公开用由包含硅的材料构成的二维光子晶体结构来实现青色和黄色的补充色,结合现有的RGB三基色,实现RGBCY 五基色显示,扩展色域,实现高饱和度和高色域显示。
此外,为了进一步提高反射效率可以通过在基底底部添加结构,使透射的部分光被重新反射回光子晶体结构中,实现二次甚至多次共振出射,从而达到增大反射效率的目的。也可以通过在基底上设计反射式的微纳米结构,重新将光子晶体的透射光衍射回光子晶体,增大出光效率,但不限于这两种设计。
除了上述实施方式中通过圆柱状二维光子晶体结构来实现青色和黄色外,也可以通过方块状即横截面为方形的柱状的二维光子晶体结构来实现青色和黄色,下面结合图10进行具体说明。
图10示出根据本公开示例实施方式的另一反射式光子晶体彩膜的侧视图及俯视图。如图10所示,反射式光子晶体彩膜包括:基底1’;形成在基底1’上且在基底1’表面上周期性分布的方块状即横截面为方形的柱状的二维光子晶体结构2’。下面分别具体说明通过二维方块状光子晶体结构实现青色和黄色的方式。
青色的实现方式:根据本公开示例实施方式,在100nm厚的硅基薄膜上设计一个二维方块状光子晶体结构(如图10所示),其参数为:周期是220nm,二维方块状光子晶体边长即宽度l为110nm,将100nm厚的硅薄膜完全蚀刻,即可将505+/-50nm的入射光可被二维光子晶体的光子禁带局域反射回系统,从而得到在青色出光。
黄色的实现方式:根据本公开示例实施方式,硅基二维方块状光子晶体同样通过调整光子晶体的相关参数,也可以将黄色光谱范围内入射光反射出光。实现黄色光谱范围内出光的光子晶体参数为:周期是3000nm,二维方块状结构的边长为150nm,将120nm厚的硅薄膜完全蚀刻,即可得到在580+/-50nm范围内的黄色光。
此外,本公开还提供一种反射式光子晶体彩膜的制造方法,包括:形成基底;在基底上形成由包含硅的材料构成的薄膜;以及通过对所述薄膜进行曝光蚀刻得到在基底表面上周期性分布的二维光子晶体结构。
在本公开的一种示例性实施例中,所述二维光子晶体结构为柱 状或孔状结构。
图11示出根据本公开示例实施方式的一使用反射式光子晶体彩膜的显示器件的示意图。
如图11所示,使用反射式光子晶体彩膜的显示器件包括:根据本公开前述的反射式光子晶体彩膜;形成在所述反射式光子晶体彩膜上的液晶;形成在所述液晶上的前置光源。显示器件还可以包括形成在反射式光子晶体彩膜下方的TFT基板,以及形成在所述液晶和前置光源之间的上偏振片,但本公开并不局限于此。
其中,前置光源将准直平面光从上往下入射。准直光源可以由R、G、B、C、Y五色的半导体激光器芯片经过混光后制成,也可由准直性比较好的R、G、B、C、Y五色的LED芯片经过混光后制成,也可由准直性比较好的白光LED芯片制成,也可由条状的CCFL灯管加一些光线准直结构制成,但不限于这些类型。
上偏振片可选用高透过滤和偏光度的碘素系偏振片,但不限于此。偏光片可根据实际应用如笔记本显示器或者电视显示器等的具体要求,对他们做进一步处理。偏光片研究不是本公开研究的重点,在此不做详细描述。
液晶材料可以选择ADS(IPS或FFS)显示模式产品、VA显示模式产品适用的液晶材料,也可以使用蓝相液晶材料,但不限于此。对液晶厚度无特殊要求,可根据实际应用调整。
TFT基板,TFT属于有源矩阵液晶显示器,在玻璃基板或者一些特殊的树脂材料等基板上沉积一层薄膜,如氢化非晶硅a-Si:H或者多晶硅p-Si等硅基材料,也不限于此。在以上薄膜基板上微加工阵列,当做每一个液晶像素点的驱动通道区。
在此需要特别指出的是,本示例实施方式仅为本公开的反射式光子晶体彩膜应用于高清液晶显示的实例,但本公开不限于此,本公开的反射式光子晶体彩膜还可应用于色彩分离、有机发光二极管显示、彩色LED以及其他相关的高端彩色显示领域。
此外,本公开还提供一种显示器件的制造方法,包括:形成根 据本公开前述的反射式光子晶体彩膜;在所述反射式光子晶体彩膜上形成液晶;以及在所述液晶上形成前置光源。
综上所述,根据本公开的一些实施方式,通过设计调整由包含硅的材料构成的二维光子晶体结构的几何参数和薄膜厚度,实现仅红、绿、蓝、青、黄五色被反射。本公开的光子晶体彩膜将不仅能替代传统彩膜基底,而且能拓宽色域,实现传统彩膜难以实现的青色和黄色补色出光,结合RGB三基色彩膜,实现RGBCY五色,还原自然颜色,从而实现更加逼真的显示画面。
根据本公开的一些实施方式,通过优化由包含硅的材料构成的二维光子晶体结构的各个几何参数,使RGB对应的频谱宽度较传统彩膜窄,实现相对较高的色饱和度,从而实现显示的画面更加鲜艳。
本领域技术人员在考虑说明书及实践这里的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (15)

  1. 一种反射式光子晶体彩膜,包括;
    基底;
    形成在基底上且在基底表面上周期性分布的二维光子晶体结构,其中所述二维光子晶体结构由包含硅的材料构成。
  2. 根据权利要求1所述的反射式光子晶体彩膜,其中,所述二维光子晶体结构为柱状或孔状结构。
  3. 根据权利要求2所述的反射式光子晶体彩膜,其中,所述二维光子晶体结构为圆柱或方块结构。
  4. 根据权利要求2所述的反射式光子晶体彩膜,其中,所述二维光子晶体结构为圆孔或方孔结构。
  5. 根据权利要求3所述的反射式光子晶体彩膜,其中,所述二维光子晶体结构为圆柱结构,所述二维光子晶体结构的周期为330-450nm,所述二维光子晶体结构的占空比为20-30%,其中圆柱的高度为110-130nm,圆柱的直径为190-210nm。
  6. 根据权利要求4所述的反射式光子晶体彩膜,其中,所述二维光子晶体结构为圆孔结构,所述二维光子晶体结构的周期为240-280nm,所述二维光子晶体结构的占空比为20-30%,其中圆孔的深度为110-130nm,圆孔的直径为125-145nm。
  7. 根据权利要求4所述的反射式光子晶体彩膜,其中,所述二维光子晶体结构为圆孔结构,所述二维光子晶体结构的周期为120-200nm,所述二维光子晶体结构的占空比为20-30%,其中圆孔的深度为90-110nm,圆孔的直径为90-110nm。
  8. 根据权利要求3所述的反射式光子晶体彩膜,其中,所述二维光子晶体结构为圆柱结构,所述二维光子晶体结构的周期为210-230nm,所述二维光子晶体结构的占空比为20-30%,其中圆柱的高度为90-110nm,圆柱的直径为110-130nm。
  9. 根据权利要求8所述的反射式光子晶体彩膜,其中,所述二维光子晶体结构的周期为220nm,所述圆柱的高度为100nm,所述圆柱的直径为124nm。
  10. 根据权利要求3所述的反射式光子晶体彩膜,其中,所述二维光子晶体结构为圆柱结构,所述二维光子晶体结构的周期为290-320nm,所述二维光子晶体结构的占空比为20-30%,其中圆柱的高度为110-130nm,圆柱的直径为160-180nm。
  11. 根据权利要求10所述的反射式光子晶体彩膜,其中,所述二维光子晶体结构的周期为300nm,所述圆柱的高度为120nm,所述圆柱的直径为170nm。
  12. 一种反射式光子晶体彩膜的制造方法,包括:
    形成基底;
    在基底上形成由包含硅的材料构成的薄膜;以及
    通过对所述薄膜进行曝光蚀刻得到在基底表面上周期性分布的二维光子晶体结构。
  13. 根据权利要求12所述的反射式光子晶体彩膜的制造方法,其中,所述二维光子晶体形成为具有如权利要求2-11中任一项所述的结构。
  14. 一种显示器件,包括:根据权利要求1-11所述的反射式光子晶体彩膜;形成在所述反射式光子晶体彩膜上的液晶;形成在所述液晶上的前置光源。
  15. 一种显示器件的制造方法,包括:
    形成根据权利要求1-11所述的反射式光子晶体彩膜;
    在所述反射式光子晶体彩膜上形成液晶;以及
    在所述液晶上形成前置光源。
PCT/CN2017/102822 2017-03-31 2017-09-22 反射式光子晶体彩膜、使用其的显示器件及其制造方法 WO2018176761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/778,280 US20210165270A1 (en) 2017-03-31 2017-09-22 Reflective photonic crystal color film, display device using the same and fabricating method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710207768.X 2017-03-31
CN201710207768.XA CN106773279A (zh) 2017-03-31 2017-03-31 反射式光子晶体彩膜、使用其的显示器件及其制造方法

Publications (1)

Publication Number Publication Date
WO2018176761A1 true WO2018176761A1 (zh) 2018-10-04

Family

ID=58965598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102822 WO2018176761A1 (zh) 2017-03-31 2017-09-22 反射式光子晶体彩膜、使用其的显示器件及其制造方法

Country Status (3)

Country Link
US (1) US20210165270A1 (zh)
CN (1) CN106773279A (zh)
WO (1) WO2018176761A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773279A (zh) * 2017-03-31 2017-05-31 京东方科技集团股份有限公司 反射式光子晶体彩膜、使用其的显示器件及其制造方法
CN107632453B (zh) * 2017-10-31 2021-03-02 京东方科技集团股份有限公司 显示面板及制造方法和显示装置
US10503007B1 (en) * 2018-02-27 2019-12-10 Facebook Technologies, Llc Directional color conversion using photonic crystals with quantum dots
CN108919402B (zh) 2018-07-24 2021-11-16 京东方科技集团股份有限公司 彩色滤光基板及其制作方法、显示装置
CN109581565B (zh) * 2019-01-03 2021-01-26 京东方科技集团股份有限公司 反射式滤光器件、显示面板、显示装置及控制方法
CN109634047A (zh) * 2019-01-28 2019-04-16 前海申升科技(深圳)有限公司 一种护眼高清光子晶体影像膜
CN115335766A (zh) * 2020-10-31 2022-11-11 华为技术有限公司 反射式显示器件、显示面板及显示屏

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050263675A1 (en) * 2004-06-01 2005-12-01 Chandra Mouli Photonic crystal-based filter for use in an image sensor
US20090284696A1 (en) * 2008-05-13 2009-11-19 Samsung Electronics Co., Ltd. Photonic crystal type color filter and reflective liquid crystal display device having the same
US20110170042A1 (en) * 2010-01-14 2011-07-14 Samsung Electronics Co., Ltd. Reflective color filters and display devices including the same
CN104865732A (zh) * 2015-05-28 2015-08-26 京东方科技集团股份有限公司 彩膜基板及其制造方法、显示装置
CN105093679A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板和显示装置
CN106773279A (zh) * 2017-03-31 2017-05-31 京东方科技集团股份有限公司 反射式光子晶体彩膜、使用其的显示器件及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050263675A1 (en) * 2004-06-01 2005-12-01 Chandra Mouli Photonic crystal-based filter for use in an image sensor
US20090284696A1 (en) * 2008-05-13 2009-11-19 Samsung Electronics Co., Ltd. Photonic crystal type color filter and reflective liquid crystal display device having the same
US20110170042A1 (en) * 2010-01-14 2011-07-14 Samsung Electronics Co., Ltd. Reflective color filters and display devices including the same
CN104865732A (zh) * 2015-05-28 2015-08-26 京东方科技集团股份有限公司 彩膜基板及其制造方法、显示装置
CN105093679A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板和显示装置
CN106773279A (zh) * 2017-03-31 2017-05-31 京东方科技集团股份有限公司 反射式光子晶体彩膜、使用其的显示器件及其制造方法

Also Published As

Publication number Publication date
CN106773279A (zh) 2017-05-31
US20210165270A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
WO2018176761A1 (zh) 反射式光子晶体彩膜、使用其的显示器件及其制造方法
TWI536080B (zh) 液晶透鏡顯示裝置及其製作方法
US10663641B2 (en) Display panel and display device
US9146419B1 (en) Quantum rod based color pixel backlight for LCD
US9201270B2 (en) Directional backlight with a modulation layer
WO2018161650A1 (zh) 显示面板和显示装置
US9927651B2 (en) Display device
US9658381B2 (en) Backlight module and liquid crystal display including same
KR102013505B1 (ko) 광학 공명층을 구비한 oled 소자, 그 제조방법 및 모니터
US10481428B2 (en) Display substrate and display device
US9857626B1 (en) Substrates for liquid crystal panels and liquid crystal panels
WO2014176818A1 (zh) 液晶显示装置
KR20090118310A (ko) 광결정형 컬러 필터 및 이를 구비하는 반사형 액정디스플레이 장치
EP2859402A1 (en) Directional backlight with a modulation layer
WO2015039467A1 (zh) 一种阵列基板、显示面板及其显示装置
KR20030085667A (ko) 포토닉 크리스탈을 이용한 반사형 디스플레이 장치
WO2019076175A1 (zh) 光转换结构、背光模组、彩膜基板以及显示装置
WO2018223874A1 (zh) 彩色滤光片、显示面板及显示装置
US20200264355A1 (en) Color filter
US10146082B2 (en) Display devices and the color filters thereof
WO2018090572A1 (zh) 显示基板及其制造方法、和显示面板
WO2019206021A1 (zh) 光子晶体、显示面板、光转换器件以及眼镜
CN109541838B (zh) 液晶显示模块及液晶显示装置
WO2020253312A1 (zh) 显示装置及制作方法
WO2017118025A1 (zh) 背光模组、液晶显示器及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903349

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17903349

Country of ref document: EP

Kind code of ref document: A1