WO2018090572A1 - 显示基板及其制造方法、和显示面板 - Google Patents

显示基板及其制造方法、和显示面板 Download PDF

Info

Publication number
WO2018090572A1
WO2018090572A1 PCT/CN2017/082420 CN2017082420W WO2018090572A1 WO 2018090572 A1 WO2018090572 A1 WO 2018090572A1 CN 2017082420 W CN2017082420 W CN 2017082420W WO 2018090572 A1 WO2018090572 A1 WO 2018090572A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
optical film
layer
film layer
color filter
Prior art date
Application number
PCT/CN2017/082420
Other languages
English (en)
French (fr)
Inventor
李颖祎
高剑
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/750,747 priority Critical patent/US10859867B2/en
Publication of WO2018090572A1 publication Critical patent/WO2018090572A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • G06F1/1607Arrangements to support accessories mechanically attached to the display housing
    • G06F1/1609Arrangements to support accessories mechanically attached to the display housing to support filters or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133521Interference filters

Definitions

  • Embodiments of the present application generally relate to the field of display technologies, and in particular, to a display substrate, a method of fabricating the same, and a display panel.
  • One of the functions of the display device is to reproduce the color.
  • computer graphics processing can be used to reproduce the color of the image, and whether the color can be completely presented, which involves the color gamut of the display (color Gamut) performance ability.
  • a gamut is a subset of colors. The most common application of a subset of colors is to accurately represent the true color of a particular environment, such as a color space or an output device (such as a display). Color range.
  • a general liquid crystal display device mainly consists of a backlight module and a liquid crystal display panel.
  • the liquid crystal display panel itself does not emit light, and the light source must be provided through the backlight module.
  • the general backlight module uses white LED (ie, 2-color mixed LED) As a light source, the color gamut of a display device composed of such a backlight module is approximately 72% of NTSC (a color gamut space established by the National Television Standards Committee).
  • the wide color gamut is an advanced color technology.
  • the international standard is that the color coverage can reach NTSC92%, which is the wide color gamut.
  • NTSC92% which is the wide color gamut.
  • the color gamut is generally improved by improving the LED light source, the backlight module or the color film substrate, specifically: changing the Y (yellow) powder encapsulated in the LED to the RG phosphor of the red and green colors, Red and green light alone to enhance the color gamut of the display device; or, the backlight module is modified into a quantum dot backlight module, and the blue LED + red/green quantum dot scheme is adopted, so that the color coverage can reach 110% of NTSC; or Adjust the existing color film substrate to enhance the color gamut.
  • a display substrate comprising a substrate substrate and an optical film layer formed on the base substrate, the optical film layer being configured to filter light having a wavelength within a selected wavelength range.
  • the display substrate is an array substrate.
  • the optical film layer also constitutes a gate insulating layer and/or a passivation layer of the array substrate.
  • the array substrate further includes a gate insulating layer and/or a passivation layer, the optical film layer being a different layer than the gate insulating layer and/or the passivation layer.
  • the material forming the optical film layer is selected from the group consisting of materials suitable for forming the gate insulating layer and/or the passivation layer.
  • the display substrate is a color film substrate.
  • the material forming the optical film layer is selected from the group consisting of materials suitable for forming a gate insulating layer and/or a passivation layer of the array substrate of the color filter substrate.
  • the optical film layer is composed of a multilayer film comprising at least two material layers having different refractive indices.
  • the multilayer film includes a first layer of material having a first index of refraction and a second layer of material having a second index of refraction.
  • the selected wavelength range has a center wavelength of 580 nm and/or 485 nm and a half peak width of 25 to 55 nm.
  • the material forming the optical film layer comprises silicon nitride, silicon oxide, silicon oxynitride, amorphous silicon, polycrystalline silicon, gallium nitride, tungsten, graphene, titanium dioxide, silicon carbide, single crystal silicon, Choose from the group of magnesium fluoride.
  • the material forming the optical film layer has a refractive index in the range of 1.2 to 4.
  • the number of layers of the multilayer film is in the range of 5 to 50.
  • the optical film layer is formed on a side of the base substrate of the array substrate facing the color filter substrate, and/or the optical film layer is formed on the back of the base substrate of the array substrate On one side of the color filter substrate.
  • the optical film layer further constitutes a gate insulating layer and a passivation layer of the array substrate, and in an opening or display region of the pixel unit, the gate insulating layer and the passivation layer are in contact with each other.
  • the optical film layer is formed on a side of the base substrate of the color filter substrate facing the array substrate, and/or the optical film layer is formed on the base substrate of the color filter substrate. On the side facing away from the array substrate.
  • the optical film layer is formed at a location corresponding to a selected primary color sub-pixel.
  • a display panel comprising an array substrate and a color filter substrate disposed opposite to each other, wherein the array substrate is the display substrate according to any one of the above aspects or embodiments, and/ Or the color filter substrate is the display base according to any one of the above aspects or embodiments board.
  • the array substrate includes a first substrate and a first optical film layer on the first substrate
  • the color filter substrate includes a second substrate and a second substrate a second optical film layer on the substrate
  • the selected optical wavelength range filtered by the first optical film layer has a center wavelength of 580 nm, a half peak width of 25 to 55 nm, and a center wavelength of the selected wavelength range filtered by the second optical film layer is 485 nm, half.
  • the peak width is 25 to 55 nm; or the selected wavelength range filtered by the first optical film layer has a center wavelength of 485 nm, a half peak width of 25 to 55 nm, and the second optical film layer is selected by filtration.
  • the wavelength range has a center wavelength of 580 nm and a half peak width of 25 to 55 nm.
  • the array substrate includes a first substrate and a first optical film layer and a second optical film layer on the first substrate, and
  • the selected optical wavelength range filtered by the first optical film layer has a center wavelength of 580 nm, a half peak width of 25 to 55 nm, and a center wavelength of the selected wavelength range filtered by the second optical film layer is 485 nm, half.
  • the peak width is 25 to 55 nm.
  • a method of manufacturing a display substrate including the following steps:
  • the optical film layer is configured to filter out light having a wavelength within a selected wavelength range.
  • the base substrate is a base substrate of an array substrate.
  • the optical film layer also constitutes a gate insulating layer and/or a passivation layer of the array substrate.
  • the manufacturing method further includes the step of forming a gate insulating layer and/or a passivation layer different from the optical film layer on the base substrate of the array substrate.
  • the material forming the optical film layer is selected from the group consisting of materials suitable for forming the gate insulating layer and/or the passivation layer.
  • the step of forming an optical film layer on the base substrate comprises: by deposition A process of forming an optical film layer on the base substrate.
  • the base substrate is a base substrate of a color filter substrate.
  • the manufacturing method further includes the step of forming a black resin layer on the optical film layer.
  • the step of forming an optical film layer on the substrate of the color filter substrate comprises:
  • a transparent electrode layer is formed on the optical film layer.
  • the manufacturing method further includes the steps of: forming a plurality of primary color filters on the substrate of the color filter substrate,
  • Forming the optical film layer on the base substrate of the color filter substrate includes: using a mask to form the optical film layer on the selected primary color filter; or
  • the step of forming an optical film layer on the base substrate of the color filter substrate comprises: forming an optical film layer on all the color filters, and etching the optical film layer by an etching process to remove the selected primary color filter Portions on other primary color filters other than to expose portions of the optical film layer on the selected primary color filter.
  • the material forming the optical film layer is selected from the group consisting of materials suitable for forming a gate insulating layer and/or a passivation layer of the array substrate of the color filter substrate.
  • Figure 1 schematically shows the principle of interference of a single layer film formed on a substrate
  • Figure 2 is a schematic illustration of the trapping principle of a multilayer film formed on a substrate
  • Figure 3 is a schematic illustration of a light transmittance curve of an exemplary multilayer film formed in accordance with the principles of Figure 2;
  • FIG. 4 is a schematic view of a display panel integrated with an optical film layer in accordance with an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of an array substrate integrated with an optical film layer, wherein the optical film layer is separately formed on a substrate substrate of the array substrate, according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of an array substrate integrated with an optical film layer formed of a gate insulating layer and/or a passivation layer formed on an array substrate, in accordance with an embodiment of the present disclosure
  • FIG. 7 is a schematic view of a color filter substrate integrated with an optical film layer, wherein an optical film layer is formed between a base substrate of a color filter substrate and a black matrix layer, according to an embodiment of the present disclosure
  • FIG. 8 is a schematic view of a color filter substrate integrated with an optical film layer, wherein the optical film layer is formed only at a position of the color filter substrate corresponding to the selected primary color sub-pixel, according to an embodiment of the present disclosure
  • FIGS. 9(A)-(G) are schematic views showing a flow of a method of manufacturing an array substrate according to an embodiment of the present disclosure.
  • FIGS. 10(A)-(F) are schematic views showing a flow of a method of manufacturing an array substrate according to another embodiment of the present disclosure.
  • FIGS. 11(A)-(E) are diagrams showing a flow of a method of manufacturing a color filter substrate according to an embodiment of the present disclosure
  • FIGS. 12(A)-(E) are diagrams showing a flow of a method of manufacturing a color filter substrate according to another embodiment of the present disclosure.
  • FIGS. 13(A)-(E) are diagrams showing a flow of a method of fabricating a color filter substrate according to another embodiment of the present disclosure, wherein the optical film layer is formed only at a position corresponding to a selected primary color sub-pixel;
  • FIG. 14-16 are schematic views of a display panel according to an embodiment of the present disclosure, wherein FIG. 14 illustrates that two layers of optical film layers are formed on one of the array substrate and the color filter substrate, and FIGS. 15-16 show two layers of optical The film layers are respectively formed on the array substrate and the color film substrate;
  • FIG. 17 is a schematic diagram of an array substrate integrated with an optical film layer formed of a gate insulating layer and a passivation layer formed on the array substrate, according to an embodiment of the present disclosure
  • Figure 19 is a graph showing the refractive index of a material forming an optical film layer having the light transmittance curve shown in Figure 18;
  • Figure 20 is a graph showing the refractive index of another material forming an optical film layer having the light transmittance curve shown in Figure 18;
  • Figure 21 shows simulation results obtained by applying a series of optical film layers of Figure 18 to a display substrate
  • Figure 22 illustrates the effect of using a series of optical film layers of Figure 18 on the color gamut of the display substrate
  • FIG. 23 illustrates a light transmittance curve of a series of optical film layers having different half-peak widths in accordance with an embodiment of the present disclosure
  • Figure 24 shows simulation results obtained by applying a series of optical film layers of Figure 23 to a display substrate
  • Figure 25 is a diagram showing the effect of using a series of optical film layers of Figure 23 on the color gamut of a module of a display substrate;
  • 26 illustrates a light transmittance curve of a series of optical film layers having different cutoff rates in accordance with an embodiment of the present disclosure
  • Figure 27 shows simulation results obtained by using a series of optical film layers of Figure 26 in a display substrate
  • Figure 28 is a diagram showing the effect of using a series of optical film layers of Figure 26 on the color gamut of a module of a display substrate;
  • Figure 30 shows the simulated junction obtained by applying a series of optical film layers of Figure 29 to a display substrate. fruit;
  • Figure 31 shows the results of the effect of using a series of optical film layers of Figure 29 on the color gamut of the display substrate.
  • on may mean that one layer is directly formed or disposed on another layer, and may also represent one.
  • the layers are formed indirectly or on another layer, ie there are other layers between the two layers.
  • the principle of interference of the single layer film and the multilayer film will first be described.
  • a single layer film as shown in Fig. 1, when light is incident on the surface of the film, refraction and reflection occur simultaneously.
  • the reflected beam is destructively interfered, the reflection effect of the film is reduced, and the film at this time is an anti-reflection film; when the reflected beam is interfered by the constructive interference, the reflection effect of the film is enhanced, and the film at this time is a highly reflective film.
  • the multilayer film as shown in Fig.
  • the optical properties of the multilayer film can be such that the multilayer film can effectively filter light in a specific wavelength range (stopband) within the application wavelength range. Or cut off, and has good transmittance for light in the remaining wavelength range.
  • FIG. 3 A light transmittance curve of an exemplary multilayer film is shown, wherein the horizontal axis represents the wavelength (Wavelength) in units of "nm" and the vertical axis represents light transmission (Transmission) or light cutoff rate in units of " %".
  • the multilayer film filters light having a wavelength in the range of about 625 to 638 nm, and causes light in the remaining wavelength range to be substantially 100% transmitted.
  • the optical film layer may be composed of a multilayer film including at least two material layers having different refractive indices.
  • the multilayer film may include alternately stacked first material layers having a first refractive index and second material layers having a second refractive index.
  • the color gamut of the display device is raised by forming (eg, depositing) the above-described optical film layer on the display substrate to form a display substrate integrated with the optical film layer.
  • a display substrate integrated with an optical film layer according to an embodiment of the present disclosure will be described in detail with reference to the accompanying drawings.
  • RGB red, green, and blue
  • the purer the three primary colors the narrower the half-peak width, and the wider the color that can be expressed, that is, the wider the color gamut.
  • the spectral distribution of visible light is shown in Table 1 below:
  • blue light is generally used as the excitation light, and the half-peak width is narrow, and no modulation is required.
  • the blue-green light (cyan light), the yellow light, and the orange light can be filtered to improve the red light and the green light. Color purity, thereby increasing the color gamut of the display substrate.
  • the optical film layer may be designed to have an optical characteristic that the optical film layer can effectively filter or cut off yellow light in the wavelength range of visible light, and in the remaining wavelength range The light has a good transmittance, and at this time, the optical film layer forms a yellow light-cut layer.
  • the display device includes an array substrate 1, a color filter substrate 2, a liquid crystal layer disposed between the array substrate 1 and the color filter substrate 2, and an optical film layer 3 formed on the array substrate 1 or the color filter substrate 2.
  • the optical film layer 3 is formed on the side of the array substrate 1 facing the color filter substrate 2.
  • the optical film layer 3 is formed on the side of the array substrate 1 facing away from the color filter substrate 2.
  • the optical film layer 3 is formed on the side of the color filter substrate 2 facing the array substrate 1. As shown in FIG. 4(D), the optical film layer 3 is formed on the side of the color filter substrate 2 facing away from the array substrate 1.
  • the optical film layer 3 is formed inside the cell, that is, an In-cell structure is formed;
  • the optical film layer 3 is formed outside the cell, that is, an Out-cell structure is formed. That is, in the embodiment of the present disclosure, the optical film layer may be integrated on the array substrate or the color filter substrate, and may also form an In-cell or an Out-cell structure.
  • the expression "the optical film layer formed on the base substrate” or the “optical film layer formed on the array substrate or the color filter substrate” means the layered film structure forming the optical film layer. The process is performed on the base substrate, the array substrate or the color filter substrate, and is not formed into a layered film structure, and then fixed to the base substrate, the array substrate or the color filter substrate by attaching, pasting or the like. .
  • the optical film layer 3 may be adapted to form the array substrate 1
  • the selected material of the group of materials of the gate insulating layer and/or the passivation layer is formed.
  • the gate insulating layer and/or the passivation layer of the array substrate are usually formed of silicon nitride or silicon oxide, and the optical film layer may also be formed of silicon nitride or silicon oxide.
  • the present disclosure is not limited to the above two materials, for example, the gate insulating layer and/or the passivation layer of the array substrate may also be composed of silicon oxynitride, amorphous silicon, polycrystalline silicon, gallium nitride, tungsten, graphene, titanium dioxide.
  • an optical film layer according to an embodiment of the present disclosure may also be formed of these materials. Since the optical film layer according to an embodiment of the present disclosure can be formed of the same material as the gate insulating layer and/or the passivation layer, the embodiment of the present invention can enhance the color gamut at a lower cost.
  • the optical film layer may be formed of a silicon nitride and a silicon oxide material, wherein the refractive index of the silicon nitride material increases as the nitrogen content decreases, it may be used as a high refractive index material, and oxidized.
  • the refractive index of the silicon material is relatively fixed and can be used as a low refractive index material. Since the present disclosure employs a passivation layer material to form an optical film layer, the difference in refractive index of the passivation layer can be large, and the refractive index can range from 1.2 to 4.0.
  • the optical film layer according to an embodiment of the present disclosure may include a multilayer film, and the number of layers of the multilayer film may be controlled within a range of 5 to 50 layers, for example, a film design of 30 layers may be employed in consideration of an actual process, that is, The optical film layer with fewer layers can meet the design requirements, and the thickness of the optical film layer thus designed is usually only tens or hundreds of nanometers, thereby greatly simplifying the film structure of the display substrate and conforming to the display. The trend of thinner modules.
  • some insulating dielectric layers such as silicon dioxide, silicon nitride, silicon oxynitride materials, are usually prepared by a plasma enhanced chemical vapor deposition (PECVD) process. Gate insulating layer and passivation layer.
  • the optical film layer may also be formed by the same process, that is, the optical film layer 3 is formed on the base substrate by a PECVD process.
  • PECVD plasma-enhanced chemical vapor deposition
  • PECVD like the sputtering method, can be used to prepare films of different stress states by changing the deposition process parameters. Therefore, by adopting the PECVD method, the optical characteristics of the optical film layer formed on the base substrate can be adjusted to achieve effective filtering of light of a selected wavelength range, thereby effectively improving the color gamut.
  • the optical film layer can be formed of the same material as the gate insulating layer and/or the passivation layer, and using the same process, and therefore, in the manufacturing process, the manufacturing of the optical film layer can Fully integrated into existing TFT or array processes, it does not affect existing processes; structurally, the optical film layer can be fully integrated onto the array substrate and/or color film substrate without additional cell or backlight The thickness of the module.
  • FIG. 5 shows a schematic diagram of an array substrate according to an embodiment of the present disclosure.
  • the array substrate 1 includes a substrate substrate 51, an optical film layer 3, a gate layer 52, and a gate insulating layer 53 which are sequentially disposed.
  • an ohmic contact layer such as an a-Si layer, may be formed between the active layer 54 and the source/drain layer 55, as described below.
  • the expression “filters out light having a wavelength in a selected wavelength range” or “filters or cuts light having a wavelength in a selected wavelength range to avoid transmission from the optical film layer” is The optical film layer is designed to filter out or cut off light of a selected wavelength range to increase the color purity of the primary color, thereby increasing the color gamut of the display substrate.
  • FIG. 6 shows a schematic diagram of an array substrate according to another embodiment of the present disclosure, as shown in FIG.
  • the array substrate 1 includes a base substrate 61, a gate layer 62, a gate insulating layer 63, an active layer 64, a source/drain layer 65, a passivation layer 66, and a pixel electrode layer 67 which are sequentially disposed.
  • an ohmic contact layer such as an a-Si layer, may be formed between active layer 64 and source/drain layer 65, as described below.
  • the gate insulating layer 63 and/or the passivation layer 66 may simultaneously constitute the optical film layer 3 described above for filtering or blocking light of a selected wavelength range to avoid or prevent the selected selected wavelength range.
  • the gate insulating layer 63 and/or the passivation layer 66 may be a multilayer film by effectively matching the film of each layer in the multilayer film, for example, effectively matching the thickness, material, and material refraction of each layer of the film.
  • the parameters such as the rate can make the gate insulating layer 63 and/or the passivation layer 66 have the following optical characteristics: the multilayer film can effectively filter or cut off light in a specific wavelength range (stopband) within a range of application wavelength bands. And has good transmittance or light transmittance for light in the remaining wavelength range.
  • the gate insulating layer and/or the passivation layer may be combined with the optical film layer described above such that the same layer serves two purposes, or the gate insulating layer and/or the passivation layer are multiplexed or used as having the above An optical film layer of optical properties.
  • the gate insulating layer 63 when the gate insulating layer 63 is formed or multiplexed into an optical film layer, the gate insulating layer 63 can function as an insulating gate layer and can filter or cut off light in a selected wavelength range. .
  • FIG. 7 is a schematic view showing a color filter substrate according to an embodiment of the present disclosure.
  • the color filter substrate 2 includes a substrate substrate 71, an optical film layer 3, a black matrix layer 72, and a color filter which are sequentially disposed.
  • the optical film layer described above may also be formed between the black matrix layer 72 and the transparent electrode layer 75 for filtering or blocking light of a selected wavelength range to avoid or prevent It is transmitted from the optical film layer 3.
  • the color filter substrate 2 includes a substrate substrate 81, a black matrix layer 82, a color filter layer 83, which are sequentially disposed, Protective layer 84 and transparent electrode layer 85.
  • the color filter layer 83 corresponds to a plurality of sub-pixels arranged in an array, and includes an R sub-pixel, a G sub-pixel, and a B sub-pixel in the RGB display substrate. It can be seen from the above discussion that when blue light is used as the excitation light, the half-peak width is narrow and does not require modulation, and the blue-green light can be filtered out.
  • the optical film layer 3 described above may be formed only on the G (green) sub-pixels to effectively filter or cut off yellow light to avoid or prevent transmission of yellow light from the optical film layer 3.
  • a method of manufacturing an array substrate includes the following steps:
  • a gate insulating layer 93 is formed on the base substrate 91 as shown in FIG. 9(C);
  • An a-Si layer 94 and an n + a-Si layer 95 are sequentially formed on the gate insulating layer 93, and an active layer is formed by a patterning process as shown in FIG. 9(D);
  • a via 99 exposing a portion of the drain is formed in the passivation layer, and a transparent electrode layer (ITO layer) 98 is formed on the passivation layer such that the transparent electrode layer 98 is electrically connected to the drain through the via 99, as shown in FIG. (G) is shown.
  • ITO layer transparent electrode layer
  • the other steps are completely the process steps of manufacturing the array substrate, that is, the process steps of forming the optical film layer 3 do not affect the process of manufacturing the array substrate. .
  • the optical film layer 3, the gate metal layer 92, the gate insulating layer 93, the a-Si layer 94, the n + a-Si layer 95, the source/drain layer 96, the passivation layer 97, and the transparent layer are transparent.
  • Electrode layer 98 can all be formed using a deposition process, such as by a plasma enhanced chemical vapor deposition (PECVD) process.
  • PECVD plasma enhanced chemical vapor deposition
  • the process of forming the optical film layer 3 can be identical to the process of forming the other layers of the array substrate.
  • the material forming the optical film layer 3 may be the same as the material forming the gate insulating layer 93 and/or the passivation layer 97.
  • the manufacturing process of the optical film layer according to the embodiment of the present disclosure can be completely integrated in the manufacturing process of the display substrate, and the manufacturer of the display substrate can completely manufacture the optical film layer while manufacturing the display substrate, so the display substrate is
  • the manufacturer can independently manufacture a display device having a high color gamut, and the high color gamut scheme does not require the addition of additional manufacturing equipment and manufacturing materials, thereby not increasing the manufacturing cost.
  • a method of fabricating an array substrate may include the following steps:
  • a gate metal layer 102 is formed on the base substrate 101, and a gate pattern is formed by a patterning process as shown in FIG. 10(A);
  • a gate insulating layer 103 is formed on the base substrate 101 as shown in FIG. 10(B);
  • An a-Si layer 104 and an n + a-Si layer 105 are sequentially formed on the gate insulating layer 103, and an active layer is formed by a patterning process as shown in FIG. 10(C);
  • a via 109 exposing a portion of the drain is formed in the passivation layer, and a transparent electrode layer (ITO layer) 108 is formed on the passivation layer such that the transparent electrode layer 108 is electrically connected to the drain through the via 109, as shown in FIG. (F) is shown.
  • ITO layer transparent electrode layer
  • the step of forming the gate insulating layer 103 and/or the passivation layer 107 includes: forming the gate insulating layer 103 and/or the passivation layer 107 as an optical film layer, and the optical film layer is configured as a filter The wavelength range of light is selected to avoid or prevent light of the selected selected wavelength range from being transmitted from the optical film layer.
  • the step of forming the gate insulating layer 103 and/or the passivation layer 107 includes: using a first refraction The first material of the rate and the second material having the second refractive index higher than the first refractive index alternately form a multilayer film to form the gate insulating layer 103 and/or the passivation layer 107.
  • the first material and/or the second material comprises a material suitable for forming the gate insulating layer and/or the passivation layer, such as from, but not limited to, silicon nitride, silicon oxide, A group selected from the group consisting of silicon oxynitride, amorphous silicon, polycrystalline silicon, gallium nitride, tungsten, graphene, titanium dioxide, silicon carbide, single crystal silicon, and magnesium fluoride.
  • silicon nitride silicon oxide
  • a method of manufacturing a color filter substrate includes the following steps:
  • a black resin layer 1102 is formed on the optical film layer 3, and the black resin layer is patterned to form a plurality of black matrices as shown in FIG. 11(B);
  • a color filter layer 1103 is formed on the patterned black resin layer 1102, and the color filter layer is patterned to form a plurality of color filters corresponding to the plurality of primary color sub-pixels, as shown in FIG. 11(C). ;
  • a protective layer 1104 is formed on the patterned color filter layer 1103 as shown in FIG. 11(D);
  • a transparent electrode layer 1105 is formed on the protective layer 1104 as shown in Fig. 11(E).
  • a method of manufacturing a color filter substrate may include the following steps:
  • a black resin layer 1202 is formed on the base substrate 1201, and the black resin layer is patterned to form a plurality of black matrices as shown in FIG. 12(A);
  • a protective layer 1204 is formed on the patterned color filter layer 1203 as shown in FIG. 12(C);
  • a transparent electrode layer 1205 is formed on the optical film layer 3 as shown in Fig. 12(E).
  • the optical film layer can be completely formed on the base substrate without distinguishing the pixels. This facilitates the manufacture of an optical film layer.
  • the optical film layer may be formed only at a position corresponding to one or some of the sub-pixels to perform filtering or cutting off of light in a specific wavelength range only for the selected primary color sub-pixel. Does not have any effect on other primary color sub-pixels. For example, as can be seen from the above discussion, when blue light is used as the excitation light, the half-peak width is narrow and does not require modulation, and red and green can be improved by filtering out blue-green light (cyan light), yellow light, and orange light. The color purity of the light, thereby increasing the color gamut of the display substrate.
  • the optical film layer described above may be formed only at a position corresponding to the G (green) sub-pixel (eg, only on the G color filter) to effectively filter or cut off yellow light to avoid or prevent yellow light. Transmitted from the optical film layer.
  • a method of fabricating a color filter substrate according to another embodiment of the present disclosure may include the following steps:
  • a black resin layer 1302 is formed on the base substrate 1301, and the black resin layer is patterned to form a plurality of black matrices as shown in FIG. 13(A);
  • a color filter layer 1303 is formed on the patterned black resin layer 1302, and the color filter layer 1303 is patterned to form color filters R, G, and B corresponding to the plurality of primary color sub-pixels, as shown in FIG. 13(B). Shown
  • the optical film layer 3 is formed only on the G color filter as shown in FIG. 13(C);
  • a protective layer 1304 is formed on the optical film layer 3 as shown in FIG. 13(D);
  • a transparent electrode layer 1305 is formed on the protective layer 1304 as shown in Fig. 13(E).
  • the step of forming the optical film layer 3 on the G color filter includes: using a mask to be at only a position corresponding to the selected primary color sub-pixel (G sub-pixel) (ie, only in the G color filter) The optical film layer 3 is formed.
  • the step of forming the optical film layer 3 on the G color filter includes forming an optical film layer at a position corresponding to all sub-pixels (for example, on all of the color filters), and etching the optical film by an etching process a portion of the film at a location corresponding to other primary color sub-pixels other than the selected primary color sub-pixel (eg, engraving the portion of the optical film layer on other primary color filters other than the selected primary color filter) ), only at the position corresponding to the selected primary color sub-pixel (for example, on the selected primary color filter)
  • the optical film layer 3 is formed.
  • the material forming the optical film layer is selected from the group of materials suitable for forming a gate insulating layer and/or a passivation layer of the array substrate of the color filter substrate pair, for example, It is selected from the group consisting of, but not limited to, silicon nitride, silicon oxide, silicon oxynitride, amorphous silicon, polycrystalline silicon, gallium nitride, tungsten, graphene, titanium dioxide, silicon carbide, single crystal silicon, magnesium fluoride.
  • a display panel including an array substrate and a color filter substrate disposed opposite to each other is provided.
  • the array substrate and the color filter substrate may be the array substrate and the color filter substrate described in any of the above embodiments or manufactured by the manufacturing method according to any of the above embodiments.
  • the display panel can include two optical film layers to filter or cut off light in different selected wavelength ranges, respectively.
  • Figures 14, 15, and 16 schematically illustrate the integration of two optical film layers on an array substrate and/or a color filter substrate.
  • the optical film layer 3 may be a yellow light cutoff layer
  • the optical film layer 4 may be a blue-green light cutoff layer.
  • the yellow light-cut layer 3 and/or the blue-green light-cut layer 4 may be integrated on the array substrate 1 and/or the color filter substrate 2 of the display panel by the above-described manufacturing method.
  • both the yellow light-cutting layer 3 and the blue-green light-cutting layer 4 are integrated on one of the array substrate 1 and the color filter substrate 2 of the display substrate.
  • the side of the array substrate 1 and the color filter substrate 2 facing the liquid crystal layer is referred to as the inner side
  • the side facing away from the liquid crystal layer is referred to as the outer side.
  • the yellow light-cutting layer 3 and the blue-green light-cutting layer 4 are integrated on the outer side and the inner side of the array substrate 1, respectively; as shown in FIG. 14(B), the yellow light-cutting layer 3 and the blue-green layer are shown.
  • the light-cutting layers 4 are respectively integrated on the inner side and the outer side of the array substrate 1; as shown in FIG. 14(C), the yellow light-cutting layer 3 and the blue-green light-cutting layer 4 are respectively integrated on the outer side and the inner side of the color filter substrate 2; As shown in FIG. 14(D), the yellow light-cutting layer 3 and the blue-green light-cutting layer 4 are integrated on the inner side and the outer side of the color filter substrate 2, respectively.
  • the yellow light-cutting layer 3 and the blue-green light-cutting layer 4 are integrated on the color filter substrate 2 and the array substrate 1 of the display substrate, respectively.
  • the yellow light cutoff layer 3 is integrated.
  • the blue-green light-cut layer 4 is integrated on the inner side of the array substrate 1; as shown in FIG. 15(B), the yellow light-cut layer 3 is integrated on the inner side of the color filter substrate 2, and The blue-green light cutoff layer 4 is integrated on the outer side of the array substrate 1; as shown in FIG.
  • the yellow light cutoff layer 3 is integrated on the outer side of the color filter substrate 2, and the blue-green light cutoff layer 4 is integrated on the array substrate.
  • the yellow light-cut layer 3 is integrated on the outer side of the color filter substrate 2, and the blue-green light-cut layer 4 is integrated on the outer side of the array substrate 1.
  • the yellow light-cutting layer 3 and the blue-green light-cutting layer 4 are integrated on the array substrate 1 and the color filter substrate 2 of the display substrate, respectively.
  • the yellow light-cut layer 3 is integrated on the inner side of the array substrate 1, and the blue-green light-cut layer 4 is integrated on the inner side of the color filter substrate 2; as shown in FIG. 16(B), yellow The light cutoff layer 3 is integrated on the outer side of the array substrate 1, and the blue-green light cutoff layer 4 is integrated on the outer side of the color filter substrate 2; as shown in FIG. 16(C), the yellow light cutoff layer 3 is integrated on the array substrate 1.
  • the blue-green light-cut layer 4 is integrated on the outer side of the color filter substrate 2; as shown in FIG. 16(D), the yellow light-cut layer 3 is integrated on the outer side of the array substrate 1, and the blue-green light-cut layer 4 It is integrated on the outer side of the color filter substrate 2.
  • both optical film layers may be integrated on the array substrate and form an In-cell structure as shown in FIG.
  • the array substrate 1 includes a substrate substrate 1701, a gate layer 1702, a gate insulating layer 1703, an active layer 1704, a source/drain layer 1705, a passivation layer 1706, and a pixel electrode layer 1707 which are sequentially disposed.
  • an ohmic contact layer such as an a-Si layer, may be formed between active layer 1704 and source/drain layer 1705, as described above.
  • the gate insulating layer 1703 and the passivation layer 1706 may be separately formed or multiplexed into an optical film layer for filtering or cutting off light of a selected wavelength range to avoid or prevent the selected selected wavelength range. Light is transmitted from it.
  • the gate insulating layer 1703 and the passivation layer 1706 may be respectively formed or multiplexed into a yellow light-cut layer and a blue-green light-cut layer for respectively filtering or blocking yellow light and blue-green light to avoid or prevent yellow light. And blue-green light is transmitted from it. As shown in FIG.
  • the gate insulating layer 1703 and the passivation layer 1706 may be a multilayer film by effectively matching each of the multilayer films
  • the layer film for example, effectively matching the thickness, material, material refractive index and the like of each layer of the film, can make the gate insulating layer 1703 and the passivation layer 1706 have the following optical characteristics: the specific film has a specific wavelength in the application band range Light in the range (stop band) (such as yellow light and blue-green light) can be effectively filtered or cut off, while having good transmittance for light in the remaining wavelength range.
  • the intermediate color (yellow) between red and green and the intermediate color (blue-green) between green and blue are filtered out as an example, and the specific description is based on
  • the optical film layer designed by the embodiment of the present disclosure and the display substrate integrated with the optical film layer perform in terms of improving color gamut.
  • the optical film layer 3 integrated on the array substrate 1 or the color filter substrate 2 is a yellow light-cut layer, that is, the optical film layer 3 can effectively filter or cut off the yellow light, and the remaining wavelength range is Light has a good transmittance.
  • the optical characteristics of the optical film layer 3 are represented by the light transmittance curve shown in FIG. 3.
  • the parameters of the light transmittance curve mainly include the band center wavelength, the half peak width, and the band attenuation intensity (ie, the cutoff rate). Parameters, the following simulation effects on the color gamut of these three parameters are as follows.
  • optical film layers have a light transmittance curve with a half-peak width of 35 nm, a spectral cutoff close to 100%, and a center wavelength of the band from 550 nm to 600 nm, as shown in FIG.
  • the abscissa indicates the wavelength of the band center (Wavelength), and the unit is nm; the ordinate indicates the light transmittance (Transmittance), which is generally expressed as a percentage.
  • silicon oxide and silicon nitride are used to form an optical film layer, that is, the optical film layer includes a plurality of films formed of silicon oxide (SiO2) and silicon nitride (SiNx).
  • SiO2 silicon oxide
  • SiNx silicon nitride
  • FIGS. 19 and 20 respectively show refractive index curves of silicon oxide and silicon nitride used in the embodiment.
  • the abscissa indicates the wavelength of incident light in nm; the ordinate indicates the refraction of the material. rate.
  • silicon oxide is used as a low refractive index material, and silicon nitride is used as High refractive index materials are used.
  • the optical film layer comprises 18 layers of film comprising alternating silicon oxide films and silicon nitride films, the thickness of each layer being as shown in Table 2 below, wherein CWL represents the center wavelength.
  • the number of layers of the multilayer film can be controlled at 16 to 30 layers. Within the range, the thickness of each layer can be controlled within the range of 15 to 45 nm.
  • Figure 21 shows the effect of these optical film layers on the spectrum emitted by the display module.
  • the abscissa indicates the wavelength (Wavelength) in nm; the ordinate indicates the light intensity (Radiance).
  • 21 shows that an optical film layer according to an embodiment of the present disclosure is applied to a display device, which can effectively attenuate yellow light, and the half-peak width of the red and green spectra is narrowed, and the light emission is relatively independent. Taking the optical film layer with a center wavelength of 580 nm as an example, the green half-peak width is narrowed from the original 80 nm to 60 nm.
  • the influence of the optical film layers on the color gamut of the display device is as shown in FIG. 22.
  • the abscissa indicates the center wavelength of the band (Central Wavelength), and the unit is nm; the ordinate indicates the NTSC color gamut, and the percentage is Said.
  • the original color gamut of the display device is NTSC 72%.
  • the center wavelength of the band moves from 550 nm to 600 nm, the gamut range first increases and then decreases.
  • the center wavelength of the band is at 580 nm, the color gamut range is increased from 72% of the original module NTSC to 89.18% of NTSC.
  • the optical film layer may still comprise a multilayer film composed of silicon oxide and silicon nitride.
  • Table 3 lists the parameters used for the optical film layer having a light transmittance curve having a center wavelength of 580 nm and a half-peak width of 25 nm.
  • the optical film layer comprises 20 layers of films, the thickness of each layer being as shown in the following table, wherein CWL represents the center wavelength and FWHM represents the half-peak width.
  • the number of layers of the multilayer film can be controlled between 20 and 50 layers, and the thickness of each layer can be controlled in the range of 15 to 45 nm.
  • Figure 24 shows the effect of these optical film layers on the spectrum emitted by the display module.
  • the abscissa indicates the wavelength (Wavelength) in nm; the ordinate indicates the light intensity (Radiance).
  • Figure 24 It is shown that the optical film layer according to the embodiment of the present invention is applied to a display device, which can effectively attenuate yellow light, and the half-peak width of the red and green spectrum is narrowed, and the light emission is relatively independent. Taking an optical film layer with a half-peak width of 55 nm as an example, the green half-peak width is narrowed from the original 80 nm to 40 nm.
  • FIG. 25 the effect of these optical film layers on the color gamut of the display device is shown in FIG. 25.
  • the abscissa indicates a full Width at Half Maximum, and the unit is nm; the ordinate indicates the NTSC color gamut. The percentage is expressed.
  • the original color gamut of the display device is NTSC 72%.
  • the half-peak width of the optical transmittance curve of the optical film layer is gradually widened, the yellow light cutoff between green light and red light becomes larger.
  • the half-peak width of green light and red light is narrowed and the color gamut is gradually increased.
  • the half-width of the light transmittance curve of the optical film layer is 55 nm, the color gamut can reach 93.38%, and the color gamut range is increased by about 21%.
  • optical film layers have a band center wavelength of 580 nm, a half-peak width of 35 nm, and yellow light cutoff ratios of 100%, 95%, 90%, 85%, 80%, and 75, respectively.
  • the light transmittance curve of % is as shown in Fig. 26, in which the abscissa indicates the wavelength (Wavelength) and the unit is nm; the ordinate indicates the light transmittance (Transmittance) or the cutoff rate, which is generally expressed as a percentage.
  • the optical film layer may still comprise a multilayer film composed of silicon oxide and silicon nitride.
  • Table 4 below lists the parameters used for the optical film layer having a light transmittance curve having a center wavelength of 580 nm and a cutoff ratio of 90%.
  • the optical film layer comprises 18 layers of films, the thickness of each layer being as shown in the following table, wherein CWL represents the center wavelength and T represents the cutoff rate.
  • the number of layers of the multilayer film can be controlled between 15 and 50 layers, and the thickness of each layer can be controlled at 15 to 45 nm. In the range.
  • Figure 27 shows the effect of these optical film layers on the spectrum emitted by the display module.
  • the abscissa indicates the wavelength (Wavelength) in nm; the ordinate indicates the light intensity (Radiance).
  • FIG. 27 shows that an optical film layer according to an embodiment of the present disclosure is applied to a display device, which can effectively attenuate yellow light, and red and green light emission are relatively independent. As the yellow light cutoff rate gradually decreases, the effect on the half-peak width of green and red light gradually decreases.
  • the influence of the optical film layers on the color gamut of the display device is as shown in Fig. 28.
  • the abscissa indicates the cutoff rate; the ordinate indicates the NTSC color gamut, expressed as a percentage.
  • the original color gamut of the display device is NTSC 72%.
  • the color gamut range is reduced from 89.18% to 84.28%.
  • the data is displayed in the display module, the increase in yellow light will cause the color gamut to drop.
  • an optical film layer can be used to filter or cut off light in a specific wavelength range (for example, yellow light), thereby effectively improving the color gamut of the original module. If the appropriate optical film layer is used to attenuate the blue-green light between the blue light and the green light, the green light and the blue light light can be made more independent, and the color gamut effect can be improved. Therefore, in one embodiment, the optical film layer can be designed as a blue-green light-cut layer to filter out the inter-color between blue and green, blue-green, to avoid or prevent blue-green from passing through the optical film layer. Ground, as shown in FIG. 4, the optical film layer 3 can also be a blue-green light interception.
  • the stop layer, that is, the blue-green light cutoff layer may be integrated on the array substrate 1 or the color filter substrate 2.
  • the following simulation experiment can be performed on a display device having two optical film layers such as a yellow light-cutting layer and a blue-green light-cutting layer:
  • a series of optical film layers are designed, in which the light transmittance curve of the yellow light cutoff layer has a center wavelength of 580 nm, a half peak width of 35 nm, a cutoff rate close to 100%, and a band of a light transmittance curve of the blue-green light cutoff layer.
  • the central wavelength gradually moves from 480 nm to 500 nm, the half-peak width is 35 nm, and the cutoff rate is close to 100%, as shown in Fig. 29.
  • the abscissa indicates the wavelength in nm; the ordinate indicates the light transmittance, and the percentage is expressed as a percentage.
  • CWL(Blue) in the legend represents the band center wavelength of the light transmittance curve of the optical film layer that cuts off the blue-green light.
  • Figure 30 shows the effect of these optical film layers on the spectrum emitted by the display module.
  • the abscissa indicates the wavelength in nm; the ordinate indicates the light intensity.
  • the effect of these optical film layers on the color gamut of the display device is shown in FIG.
  • the original color gamut of the display device is NTSC 72%.
  • the blue-green light is further cut off based on the yellow light cutoff, which can further reduce the half-peak width of green light, red, green and blue light. More independent.
  • the effect of the center wavelength shift of the blue-green light-cut layer on the color gamut is shown in Figure 31.
  • the gamut of the module first increases and then decreases. Among them, when the center wavelength of the band is 485nm, the color gamut reaches 93.17%, and the corresponding color gamut of the module with only yellow light attenuation is 88.18%, and the color gamut is increased by 5%. If the yellow-green cut-off film color gamut is added to the yellow light cutoff, there is a chance to approach 100%.
  • the display can be effectively improved by forming an optical film layer that filters or cuts off the intermediate colors of the primary colors (for example, yellow light, blue-green light, etc.) on the display substrate.
  • the color gamut of the device can be effectively improved by forming an optical film layer that filters or cuts off the intermediate colors of the primary colors (for example, yellow light, blue-green light, etc.) on the display substrate.
  • the optical film layer is adapted to be integrated on the display substrate from the viewpoint of structure and manufacturing process; moreover, the optical film layer is adapted to be formed by and with the gate insulating layer
  • the passivation layer is made of the same material and can also be combined with the gate insulating layer and the passivation layer or Multiplexing does not add extra thickness to the module, and color gamut can be achieved with a low-cost manufacturing process.
  • color light between other primary colors may be filtered or cut off to effectively increase the color gamut of the display device.
  • one or two optical film layers are formed only on the display substrate, the present invention is not limited thereto, and more than two layers of optical film layers may be formed on the display substrate.
  • the optical film layer according to the embodiment of the present invention can also be applied to a display module such as RGBW.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示基板及其制造方法、以及包括该显示基板的显示面板。该显示基板包括衬底基板(51, 61, 71, 81)和形成在衬底基板(51, 61, 71, 81)上的光学膜层(3),该光学膜层(3)被构造为滤除具有在所选波长范围内的波长的光。该显示基板可以是阵列基板(1)或彩膜基板(2)。

Description

显示基板及其制造方法、和显示面板
本申请主张在2016年11月15日在中国专利局提交的中国专利申请No.201611025463.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请的实施例一般地涉及显示技术领域,尤其涉及一种显示基板及其制造方法、和显示面板。
背景技术
显示装置的功能之一是能重现色彩,在色彩重现的技术中,可利用电脑图形处理将图像的颜色重现,而是否能将色彩完整地呈现出来,其中涉及显示器的色域(color gamut)表现能力。色域是颜色的子集,颜色子集最常见的应用是用来精确地代表一种特定环境下真实的色彩,例如一个色彩空间(color space)或是某个输出装置(如显示器)的显色范围。
一般的液晶显示装置主要由背光模块和液晶显示面板组成,液晶显示面板本身不会发光,必须通过背光模块提供光源。在制作显示装置时,除了一般显示效能(如分辨率、反应时间、对比度、亮度)外,还着重于显示装置的色域大小,目前,一般的背光模块中采用白光LED(即2色混合的LED)作为光源,由这样的背光模块组成的显示装置的色域大约为NTSC(美国国家电视标准委员会制定的一个色域空间)72%。
广色域是一种进阶的色彩技术,国际标准是色彩覆盖率能达到NTSC92%即为广色域。随着人们对显示装置的要求不断提高,广色域显示装置越来越普遍。
目前,一般通过改善LED光源、背光模块或者彩膜基板来进行色域提升,具体为:将LED中封装的Y(黄色)粉改为红绿两种颜色的RG荧光粉,使得 红色、绿色单独发光,从而提升显示装置的色域;或者,将背光模块改造为量子点背光模块,采用蓝色LED+红/绿量子点的方案,以使得色彩覆盖率可以达到NTSC 110%;或者,调整现有的彩膜基板,以提升色域。但是,这些色域提升方案均存在缺陷:这三种方案均不能与现有的显示基板制造工艺集成,需要设置单独的制造工艺,使得它们的制造成本均较高,而且,通过改善LED光源或彩膜基板,只能将显示装置的色域提供至NTSC 85%—95%,虽然量子点背光源能将色域提升至NTSC 110%,但是量子点本身的成本非常高,目前仅定位于高端市场。
另外,一些上游厂商开发了一些能够用于提高色域的膜材,这类膜材可以阻隔部分黄光波段,但是这些薄材通常需要同偏振片复合或者置于背光模块中,从而使得背光模块的厚度大大增加,而且,这类膜材的制造工艺也不能与现有的显示基板制造工艺集成,需要设置单独的制造工艺和设备,因此,这类膜材通常也不能由显示面板的制造厂商单独提供。
发明内容
根据本公开的一个方面,提供一种显示基板,包括衬底基板和形成在衬底基板上的光学膜层,该光学膜层被构造为滤除具有在所选波长范围内的波长的光。
根据一些实施例,所述显示基板为阵列基板。
根据一些实施例,所述光学膜层还构成所述阵列基板的栅绝缘层和/或钝化层。
根据一些实施例,所述阵列基板还包括栅绝缘层和/或钝化层,所述光学膜层是与所述栅绝缘层和/或钝化层不同的层。
根据一些实施例,形成所述光学膜层的材料从适于形成所述栅绝缘层和/或所述钝化层的材料组成的组中选择。
根据一些实施例,所述显示基板为彩膜基板。
根据一些实施例,形成所述光学膜层的材料从适于形成与所述彩膜基板对盒的阵列基板的栅绝缘层和/或钝化层的材料组成的组中选择。
根据一些实施例,该光学膜层由多层薄膜构成,该多层薄膜包括至少两种材料层,该至少两种材料层具有不同的折射率。
根据一些实施例,该多层薄膜包括交替叠置的具有第一折射率的第一材料层和具有第二折射率的第二材料层。
根据一些实施例,所述所选波长范围的中心波长为580nm和/或485nm,半高峰宽为25~55nm。
根据一些实施例,形成所述光学膜层的材料从包括氮化硅、氧化硅、氮氧化硅、非晶硅、多晶硅、氮化镓、钨、石墨烯、二氧化钛、碳化硅、单晶硅、氟化镁的组中选择。
根据一些实施例,形成所述光学膜层的材料的折射率在1.2~4的范围内。
根据一些实施例,所述多层薄膜的层数在5~50的范围内。
根据一些实施例,所述光学膜层形成在所述阵列基板的衬底基板的面向彩膜基板的一侧上,和/或所述光学膜层形成在所述阵列基板的衬底基板的背向彩膜基板的一侧上。
根据一些实施例,所述光学膜层还构成所述阵列基板的栅绝缘层和钝化层,并且在像素单元的开口或显示区域中,所述栅绝缘层和所述钝化层彼此接触。
根据一些实施例,所述光学膜层形成在所述彩膜基板的衬底基板的面向阵列基板的一侧上,和/或所述光学膜层形成在所述彩膜基板的衬底基板的背向阵列基板的一侧上。
根据一些实施例,所述光学膜层形成在与所选基色亚像素对应的位置处。
根据本公开的另一方面,还提供一种显示面板,包括相对设置的阵列基板和彩膜基板,其中,所述阵列基板为根据上述方面或实施例中任一个所述的显示基板,和/或所述彩膜基板是根据上述方面或实施例中任一个所述的显示基 板。
根据一些实施例,所述阵列基板包括第一衬底基板和在该第一衬底基板上的第一光学膜层,和所述彩膜基板包括第二衬底基板和在该第二衬底基板上的第二光学膜层,并且,
所述第一光学膜层滤除的所选波长范围的中心波长为580nm、半高峰宽为25~55nm,并且所述第二光学膜层滤除的所选波长范围的中心波长为485nm、半高峰宽为25~55nm;或者,所述第一光学膜层滤除的所选波长范围的中心波长为485nm、半高峰宽为25~55nm,并且所述第二光学膜层滤除的所选波长范围的中心波长为580nm、半高峰宽为25~55nm。
根据一些实施例,所述阵列基板包括第一衬底基板和在该第一衬底基板上的第一光学膜层和第二光学膜层,并且,
所述第一光学膜层滤除的所选波长范围的中心波长为580nm、半高峰宽为25~55nm,并且所述第二光学膜层滤除的所选波长范围的中心波长为485nm、半高峰宽为25~55nm。
根据本公开的又一方面,还提供一种显示基板的制造方法,包括如下步骤:
提供衬底基板;和
在所述衬底基板上形成光学膜层,
该光学膜层被构造为滤除具有在所选波长范围内的波长的光。
根据一些实施例,所述衬底基板为阵列基板的衬底基板。
根据一些实施例,所述光学膜层还构成所述阵列基板的栅绝缘层和/或钝化层。
根据一些实施例,所述制造方法还包括如下步骤:在所述阵列基板的衬底基板上形成不同于所述光学膜层的栅绝缘层和/或钝化层。
根据一些实施例,形成所述光学膜层的材料从适于形成所述栅绝缘层和/或所述钝化层的材料组成的组中选择。
根据一些实施例,在所述衬底基板上形成光学膜层的步骤包括:通过沉积 工艺,在所述衬底基板上形成光学膜层。
根据一些实施例,所述衬底基板为彩膜基板的衬底基板。
根据一些实施例,所述制造方法还包括如下步骤:在所述光学膜层上形成黑色树脂层。
根据一些实施例,在所述彩膜基板的衬底基板上形成光学膜层的步骤包括:
在所述彩膜基板的衬底基板上形成黑色树脂层;
对黑色树脂层进行图案化;
在图案化后的黑色树脂层上形成所述光学膜层;
在所述光学膜层上形成透明电极层。
根据一些实施例,所述制造方法还包括如下步骤:在所述彩膜基板的衬底基板上形成多个基色滤色器,
在所述彩膜基板的衬底基板上形成光学膜层的步骤包括:使用掩膜版,以在所选基色滤色器上形成所述光学膜层;或者
在所述彩膜基板的衬底基板上形成光学膜层的步骤包括:在全部滤色器上均形成光学膜层,采用蚀刻工艺蚀刻掉所述光学膜层的位于除所选基色滤色器之外的其它基色滤色器上的部分,以暴露所述光学膜层在所选基色滤色器上的部分。
根据一些实施例,形成所述光学膜层的材料从适于形成与所述彩膜基板对盒的阵列基板的栅绝缘层和/或钝化层的材料组成的组中选择。
附图说明
通过下文中参照附图对本公开所作的描述,本公开的其它目的和优点将显而易见,并可帮助对本公开有全面的理解。
图1示意性地示出了形成在基板上的单层薄膜的干涉原理;
图2示意性地示出了形成在基板上的多层薄膜的陷波原理;
图3示意性地示出了根据图2的原理形成的示例性多层薄膜的光透射率曲线;
图4是根据本公开实施例的集成有光学膜层的显示面板的示意图;
图5是根据本公开实施例的集成有光学膜层的阵列基板的示意图,其中光学膜层单独形成在阵列基板的衬底基板上;
图6是根据本公开实施例的集成有光学膜层的阵列基板的示意图,其中光学膜层由阵列基板上形成的栅绝缘层和/或钝化层形成;
图7是根据本公开实施例的集成有光学膜层的彩膜基板的示意图,其中光学膜层形成在彩膜基板的衬底基板与黑矩阵层之间;
图8是根据本公开实施例的集成有光学膜层的彩膜基板的示意图,其中光学膜层仅形成在彩膜基板的与所选基色亚像素对应的位置处所选;
图9(A)-(G)示出根据本公开实施例的阵列基板的制造方法的流程的示意图;
图10(A)-(F)示出根据本公开另一实施例的阵列基板的制造方法的流程的示意图;
图11(A)-(E)示出根据本公开实施例的彩膜基板的制造方法的流程的示意图;
图12(A)-(E)示出根据本公开另一实施例的彩膜基板的制造方法的流程的示意图;
图13(A)-(E)示出根据本公开另一实施例的彩膜基板的制造方法的流程的示意图,其中光学膜层仅形成在与所选基色亚像素对应的位置处所选;
图14-16是根据本公开实施例的显示面板的示意图,其中,图14示出两层光学膜层均形成在阵列基板和彩膜基板中的一个上,图15-16示出两层光学膜层分别形成在阵列基板和彩膜基板上;
图17是根据本公开实施例的集成有光学膜层的阵列基板的示意图,其中光学膜层由阵列基板上形成的栅绝缘层和钝化层形成;
图18示出根据本公开实施例的一系列光学膜层的光透射率曲线,该一系列光透射率曲线具有不同的谱带中心波长;
图19是形成具有图18所示的光透射率曲线的光学膜层的一种材料的折射率曲线图;
图20是形成具有图18所示的光透射率曲线的光学膜层的另一种材料的折射率曲线图;
图21示出将图18中的一系列光学膜层应用于显示基板中所得到的模拟结果;
图22示出利用图18中的一系列光学膜层对显示基板的模组色域的影响结果;
图23示出根据本公开实施例的一系列光学膜层的光透射率曲线,该一系列光透射率曲线具有不同的半高峰宽;
图24示出将图23中的一系列光学膜层应用于显示基板中所得到的模拟结果;
图25示出利用图23中的一系列光学膜层对显示基板的模组色域的影响结果;
图26示出根据本公开实施例的一系列光学膜层的光透射率曲线,该一系列光透射率曲线具有不同的截止率;
图27示出利用图26中的一系列光学膜层于显示基板中所得到的模拟结果;
图28示出利用图26中的一系列光学膜层对显示基板的模组色域的影响结果;
图29示出根据本公开实施例的一系列光学膜层的光透射率曲线,其中,形成有两个光学膜层,并且其中一个光学膜层的一系列光透射率曲线具有不同的谱带中心波长;
图30示出将图29中的一系列光学膜层应用于显示基板中所得到的模拟结 果;
图31示出利用图29中的一系列光学膜层对显示基板的模组色域的影响结果。
具体实施方式
下面通过实施例,并结合附图,对本公开的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本公开实施方式的说明旨在对本公开的总体构思进行解释,而不应当理解为对本公开的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
需要说明的是,本文中所述的“在……上”、“在……上形成”和“设置在……上”可以表示一层直接形成或设置在另一层上,也可以表示一层间接形成或设置在另一层上,即两层之间还存在其它的层。
在详细描述根据本公开实施例的显示基板之前,首先介绍单层薄膜和多层薄膜的干涉原理。对于单层薄膜,如图1所示,当光线入射至薄膜的表面时,同时发生折射和反射。当反射光束相消干涉时,薄膜的反射效果降低,此时的薄膜为减反射膜;当反射光束相长干涉时,薄膜的反射效果增强,此时的薄膜为高反射膜。对于多层薄膜,如图2所示,当光线入射至多层薄膜(由具有不同折射率n1、n2、n3、n4的层构成)时,在不同折射率的薄膜之间均会发生折射和反射,从而发生光干涉效果。通过有效匹配多层薄膜中的各层薄膜,可以使得该多层薄膜的光学特性表现为:在应用波段范围内,该多层薄膜对特定波长范围(阻带)内的光可以进行有效滤除或截止,而对其余波长范围内的光具有良好的透射率。这种多层薄膜的光学特性可以用光透射率曲线表示,图3 示出了一种示例性的多层薄膜的光透射率曲线,其中,横轴表示波长(Wavelength),单位为“nm”,纵轴表示光透射率(Transmission)或光截止率,单位为“%”。在图3的示例中,对于波长范围为550~725nm内的入射光,多层薄膜滤除波长范围为约625~638nm范围内的光,而使得其余波长范围内的光大致100%透射。
据此,在本公开实施例中,光学膜层可以由多层薄膜构成,该多层薄膜包括至少两种材料层,该至少两种材料层具有不同的折射率。可选的,该多层薄膜可以包括交替叠置的具有第一折射率的第一材料层和具有第二折射率的第二材料层。
在根据本公开实施例中,通过将上述的光学膜层形成(例如沉积)在显示基板上,以形成集成有光学膜层的显示基板,从而提升显示装置的色域。下面,结合附图详细描述根据本公开实施例的集成有光学膜层的显示基板。
需要说明的是,下文以RGB(红、绿、蓝)三原色的显示基板为示例进行描述。对于采用RGB(红、绿、蓝)三原色的显示基板而言,三种原色越纯,半高峰宽越窄,可以表现的颜色则越广,即色域就越广。可见光的光谱分布如下表1所示:
表1可见光的光谱分布
可见光的光谱颜色 波长范围(纳米)
红色(R) 约625~740nm
橙色 约590~625nm
黄色 约565~590nm
绿色(G) 约500~565nm
青色 约485~500nm
蓝色(B) 约440~485nm
紫色 约380~440nm
在目前的显示基板中,通常采用蓝光作为激发光,其半高峰宽较窄,不需要调制,可以通过滤除蓝绿色光(青色光)、黄色光、橙色光来提高红光和绿光的颜色纯度,从而提高显示基板的色域。
根据本公开的一个实施例,所述光学膜层可以被设计为具有如下光学特性:在可见光的波长范围内,该光学膜层对黄色光可以进行有效滤除或截止,而对其余波长范围内的光具有良好的透射率,此时,该光学膜层形成黄光截止层。
图4示出了将根据本公开实施例的光学膜层形成(例如沉积)在显示基板的阵列基板或彩膜基板上的示意图。如图所示,显示装置包括阵列基板1、彩膜基板2、设置在阵列基板1和彩膜基板2之间的液晶层、和形成在阵列基板1或彩膜基板2上的光学膜层3。如图4(A)所示,光学膜层3形成在阵列基板1面向彩膜基板2的一侧上。如图4(B)所示,光学膜层3形成在阵列基板1背向彩膜基板2的一侧上。如图4(C)所示,光学膜层3形成在彩膜基板2面向阵列基板1的一侧上。如图4(D)所示,光学膜层3形成在彩膜基板2背向阵列基板1的一侧上。当将阵列基板1和彩膜基板2对盒形成模组(cell)后,在图4(A)和4(C)中,光学膜层3形成在cell内部,即形成In-cell结构;在图4(B)和4(D)中,光学膜层3形成在cell外部,即形成Out-cell结构。即,在本公开实施例中,光学膜层可以集成在阵列基板或彩膜基板上,并且还可以形成In-cell或Out-cell结构。
需要说明的是,在本文中,表述“形成在衬底基板上的光学膜层”或“形成在阵列基板或彩膜基板上的光学膜层”是指形成该光学膜层的层状薄膜结构的过程是在衬底基板、阵列基板或彩膜基板上进行的,而并不是先形成层状薄膜结构、然后再通过贴附、粘贴等方式固定到衬底基板、阵列基板或彩膜基板上。
进一步地,在本公开实施例中,光学膜层3可以从由适于形成阵列基板1 的栅绝缘层和/或钝化层的材料的组中选择的材料形成。例如,阵列基板的栅绝缘层和/或钝化层通常由氮化硅、氧化硅形成,那么光学膜层也可以由氮化硅、氧化硅形成。但是,本公开并不局限于上述两种材料,例如,阵列基板的栅绝缘层和/或钝化层还可以由氮氧化硅、非晶硅、多晶硅、氮化镓、钨、石墨烯、二氧化钛、碳化硅、单晶硅或氟化镁形成,相应地,根据本公开实施例的光学膜层也可以由这些材料形成。由于根据本公开实施例的光学膜层可以由与栅绝缘层和/或钝化层相同的材料形成,所以本发明实施例可以以较低的成本提升色域。
在本公开实施例中,由于光学膜层可以由氮化硅和氧化硅材料形成,其中,氮化硅材料的折射率随含氮量降低而升高,其可以作为高折射率材料使用,氧化硅材料的折射率比较固定,可以作为低折射率材料使用。由于本公开采用钝化层材料来形成光学膜层,而钝化层的折射率的差异可以较大,其折射率范围可以达到1.2—4.0。因此根据本公开实施例的光学膜层可以包括多层薄膜,该多层薄膜的层数可以控制在5~50层的范围内,例如,考虑到实际制程中可以采用30层的薄膜设计,即,使用具有较少层数的光学膜层就能满足设计要求,并且这样设计出的光学膜层的厚度通常只有几十或数百纳米,从而极大简化显示基板的膜层结构,并且符合显示模组轻薄化的趋势。
更进一步地,在显示基板的制程中,尤其是在TFT制程中,通常通过等离子增强化学气相沉积(PECVD)工艺制备一些绝缘介质层,例如二氧化硅、氮化硅、氮氧化硅材料构成的栅绝缘层和钝化层。在本公开实施例中,也可以采用相同的工艺形成光学膜层,即,采用PECVD工艺在衬底基板上形成光学膜层3。由于等离子增强化学气相沉积(PECVD)通过将反应气体离子化,使得气体分子分解、化合、激发和电离,促使反应活性基团生成,形成等离子体,所以可以实现在低温下制备薄膜。而且,PECVD技术的优点是借助等离子体的电激活作用实现低温(450~600K)下沉积性能优良薄膜,其操作方法简单灵活,工艺重复性和均匀性较好,不仅可在不同复杂形状的基底上沉积各种薄膜, 而且可通过改变气体流量的比例沉积渐变折射率薄膜。此外,PECVD也同溅射法一样,可通过改变沉积工艺参数的方法制备不同应力状态的薄膜。因此,通过采用PECVD方法,在衬底基板上形成的光学膜层的光学特性可以调整,以实现对所选波长范围的光的有效滤除,从而有效提升色域。
由此可见,在本公开实施例中,光学膜层可以由与栅绝缘层和/或钝化层相同的材料、并且采用相同的工艺形成,因此,在制造工艺上,光学膜层的制造能够完全集成到现有的TFT或array制程中,不会对现有的制程产生影响;在结构上,光学膜层能够完全集成到阵列基板和/或彩膜基板上,不会额外增加cell或背光模块的厚度。
下面,结合图5至10更详细说明光学膜层3与阵列基板1和/或彩膜基板2的集成。
图5示出了根据本公开的一个实施例的阵列基板的示意图,如图5所示,阵列基板1包括依次设置的衬底基板51、光学膜层3、栅极层52、栅绝缘层53、有源层54、源/漏极层55、钝化层56和像素电极层57。即,在阵列基板1的衬底基板51上单独形成有光学膜层3,用于滤除或截止具有在所选波长范围内的波长的光以避免或阻止其从该光学膜层3透射,而允许其它波长范围内的光从该光学膜层3透射。在一些例子中,在有源层54与源/漏极层55之间可以形成有欧姆接触层,如a-Si层,如下文所述。
需要说明的是,虽然现有的衬底基板上的某些可透光的结构或膜层客观上也能滤除一些光线,但本质上,这些结构或膜层应是可透光的,所以,为了提高光透射率,这些结构或膜层应被构造为尽量减少任何波长光线的损失。而在本文中,表述“滤除具有在所选波长范围内的波长的光”或“滤除或截止具有在所选波长范围内的波长的光以避免其从光学膜层透射”表示的是光学膜层被设计为滤除或截止所选波长范围的光,以提高基色的颜色纯度,从而提高显示基板的色域。
图6示出了根据本公开的另一个实施例的阵列基板的示意图,如图6所示, 阵列基板1包括依次设置的衬底基板61、栅极层62、栅绝缘层63、有源层64、源/漏极层65、钝化层66和像素电极层67。在一些例子中,在有源层64与源/漏极层65之间可以形成有欧姆接触层,如a-Si层,如下文所述。在该实施例中,栅绝缘层63和/或钝化层66可以同时构成上述的光学膜层3,用于滤除或截止所选波长范围的光而避免或阻止该所选所选波长范围的光从其透射。作为一个示例,此时,栅绝缘层63和/或钝化层66可以为多层薄膜,通过有效匹配多层薄膜中的各层薄膜,例如,有效匹配各层薄膜的厚度、材料、材料折射率等参数,可以使得栅绝缘层63和/或钝化层66具有如下光学特性:在应用波段范围内,该多层薄膜对特定波长范围(阻带)内的光可以进行有效滤除或截止,而对其余波长范围内的光具有良好的透射率或透光率。也就是说,栅绝缘层和/或钝化层可以与上述的光学膜层复合,以使得同一层兼具两种作用,或者说栅绝缘层和/或钝化层复用或兼用为具有上述光学特性的光学膜层。例如,当栅绝缘层63形成或复用为光学膜层时,该栅绝缘层63既可以起到绝缘栅极层的作用,又可以起到滤除或截止所选波长范围内的光的作用。
图7示出了根据本公开的一个实施例的彩膜基板的示意图,如图7所示,彩膜基板2包括依次设置的衬底基板71、光学膜层3、黑矩阵层72、彩色滤色层73、保护层74和透明电极层75。即,上述的光学膜层3直接形成在彩膜基板2的衬底基板71上,用于滤除或截止所选波长范围的光而避免其从该光学膜层3透射。虽然未示出,但是本领域技术人员应理解,上述的光学膜层也可以形成在黑矩阵层72与透明电极层75之间,用于滤除或截止所选波长范围的光而避免或阻止其从该光学膜层3透射。
图8示出了根据本公开的另一个实施例的彩膜基板的示意图,如图8所示,彩膜基板2包括依次设置的衬底基板81、黑矩阵层82、彩色滤色层83、保护层84和透明电极层85。彩色滤色层83对应成阵列排列的多个亚像素,在RGB显示基板中,包括R亚像素、G亚像素和B亚像素。由上面的讨论可知,在采用蓝光作为激发光时,其半高峰宽较窄而不需要调制,可以通过滤除蓝绿色光 (青色光)、黄色光、橙色光来提高红光和绿光的颜色纯度,从而提高显示基板的色域。在一个示例中,可以仅在G(绿色)亚像素上形成上述光学膜层3,以有效滤除或截止黄光而避免或阻止黄光从该光学膜层3透射。
上面结合附图说明了根据本公开实施例的光学膜层与显示基板(阵列基板/彩膜基板)的集成结构,下面,将进一步结合附图说明根据本公开实施例的光学膜层的制造工艺与显示基板的制造工艺的集成。
根据本公开的一个实施例,如图9所示,一种阵列基板的制造方法包括如下步骤:
提供衬底基板91;
在衬底基板91上形成光学膜层3,如图9(A)所示;
在光学膜层3上形成栅极金属层92,并且通过构图工艺形成栅极图案,如图9(B)所示;
在衬底基板91上形成栅绝缘层93,如图9(C)所示;
在栅绝缘层93上依次形成a-Si层94和n+a-Si层95,并且通过构图工艺形成有源层,如图9(D)所示;
在有源层上形成源/漏极层96,并且通过构图工艺形成源、漏极图案,如图9(E)所示;
在源/漏极层上形成钝化层97,如图9(F)所示;
在钝化层中形成露出漏极的一部分的过孔99,并且在钝化层上形成透明电极层(ITO层)98,使得透明电极层98通过过孔99与漏极电连接,如图9(G)所示。
在上述制造方法中,除形成光学膜层3的步骤之外,其它步骤完全是制造阵列基板的工艺步骤,也就是说,形成光学膜层3的工艺步骤不会对制造阵列基板的工艺产生影响。
在一个实施例中,上述光学膜层3、栅极金属层92、栅绝缘层93、a-Si层94、n+a-Si层95、源/漏极层96、钝化层97和透明电极层98都可以采用沉 积工艺形成,例如,通过等离子增强化学气相沉积(PECVD)工艺形成。由此可见,形成光学膜层3的工艺可以与形成阵列基板其它层的工艺完全相同。而且,形成光学膜层3的材料可以与形成栅绝缘层93和/或钝化层97的材料相同。因此,根据本公开实施例的光学膜层的制造工艺可以完全集成于显示基板的制造工艺中,显示基板的制造厂商完全可以在制造显示基板的同时制造出该光学膜层,所以,显示基板的制造厂商可以独立制造出具有高色域的显示装置,并且该高色域方案还不需要添加额外的制造设备和制造材料,从而不会额外增加制造成本。
根据本公开的另一个实施例,如图10所示,一种阵列基板的制造方法可以包括如下步骤:
提供衬底基板101;
在衬底基板101上形成栅极金属层102,并且通过构图工艺形成栅极图案,如图10(A)所示;
在衬底基板101上形成栅绝缘层103,如图10(B)所示;
在栅绝缘层103上依次形成a-Si层104和n+a-Si层105,并且通过构图工艺形成有源层,如图10(C)所示;
在有源层上形成源/漏极层106,并且通过构图工艺形成源、漏极图案,如图10(D)所示;
在源、漏极层上形成钝化层107,如图10(E)所示;
在钝化层中形成露出漏极的一部分的过孔109,并且在钝化层上形成透明电极层(ITO层)108,使得透明电极层108通过过孔109与漏极电连接,如图10(F)所示。
其中,形成所述栅绝缘层103和/或钝化层107的步骤包括:使得所述栅绝缘层103和/或钝化层107构成为光学膜层,该光学膜层被构造为滤除所选波长范围的光以避免或阻止该所选所选波长范围的光从该光学膜层透射。在一个示例中,形成所述栅绝缘层103和/或钝化层107的步骤包括:使用具有第一折射 率的第一材料和具有高于第一折射率的第二折射率的第二材料交替形成多层薄膜,以形成所述栅绝缘层103和/或钝化层107。在一个实施例中,所述第一材料和/或第二材料包括适于形成所述栅绝缘层和/或所述钝化层的材料,例如从包括但不限于氮化硅、氧化硅、氮氧化硅、非晶硅、多晶硅、氮化镓、钨、石墨烯、二氧化钛、碳化硅、单晶硅、氟化镁的组中选择。
根据本公开的一个实施例,如图11所示,一种彩膜基板的制造方法包括如下步骤:
提供衬底基板1101;
在衬底基板1101上形成所述光学膜层3,如图11(A)所示;
在光学膜层3上形成黑色树脂层1102,并且对黑色树脂层进行图案化,以形成多个黑矩阵,如图11(B)所示;
在图案化后的黑色树脂层1102上形成彩色滤色层1103,并且图案化彩色滤色层,以形成对应于多个基色亚像素的多个彩色滤色器,如图11(C)所示;
在图案化后的彩色滤色层1103上形成保护层1104,如图11(D)所示;
在保护层1104上形成透明电极层1105,如图11(E)所示。
根据本公开的另一个实施例,如图12所示,一种彩膜基板的制造方法可以包括如下步骤:
提供衬底基板1201;
在所述衬底基板1201上形成黑色树脂层1202,并且对黑色树脂层进行图案化,以形成多个黑矩阵,如图12(A)所示;
在所述黑色树脂层1202上形成彩色滤色层1203,并且图案化彩色滤色层,以形成对应于多个基色亚像素的多个彩色滤色器,如图12(B)所示;
在图案化后的彩色滤色层1203上形成保护层1204,如图12(C)所示;
在保护层1204上形成所述光学膜层3,如图12(D)所示;
在所述光学膜层3上形成透明电极层1205,如图12(E)所示。
在上面的制造方法中,光学膜层可以不区分像素而完整地形成在衬底基板 上,便于光学膜层的制造。在可替代的实施例中,光学膜层可以仅形成在与某一个或某一些亚像素对应的位置处,以仅对所选基色亚像素进行特定波长范围内的光的滤除或截止,而对其它基色亚像素不造成任何影响。例如,由上面的讨论可知,当采用蓝光作为激发光时,其半高峰宽较窄而不需要调制,可以通过滤除蓝绿色光(青色光)、黄色光、橙色光来提高红光和绿光的颜色纯度,从而提高显示基板的色域。在一个示例中,可以仅在与G(绿色)亚像素对应的位置处(例如,仅在G滤色器上)形成上述光学膜层,以有效滤除或截止黄光而避免或阻止黄光从该光学膜层透射。
这样,如图13所示,根据本公开的另一个实施例的一种彩膜基板的制造方法可以包括如下步骤:
提供衬底基板1301;
在衬底基板1301上形成黑色树脂层1302,并且对黑色树脂层进行图案化,以形成多个黑矩阵,如图13(A)所示;
在图案化后的黑色树脂层1302上形成彩色滤色层1303,图案化彩色滤色层1303以形成对应于多个基色亚像素的彩色滤色器R、G、B,如图13(B)所示;
仅在G彩色滤色器上形成光学膜层3,如图13(C)所示;
在光学膜层3上形成保护层1304,如图13(D)所示;
在保护层1304上形成透明电极层1305,如图13(E)所示。
更具体地,在G滤色器上形成光学膜层3的步骤包括:使用掩膜版,以仅在与所选基色亚像素(G亚像素)对应的位置处(即仅在G滤色器上)形成所述光学膜层3。可替代地,在G滤色器上形成光学膜层3的步骤包括:在与全部亚像素对应的位置处(例如,在全部滤色器上)均形成光学膜层,采用蚀刻工艺蚀刻掉光学膜层在与除所选基色亚像素之外的其它基色亚像素对应的位置处的部分(例如,刻掉光学膜层在除所选基色滤色器之外的其它基色滤色器上的部分),以仅在与所选基色亚像素对应的位置处(例如,在所选基色滤色器上) 形成光学膜层3。
类似地,在上述制造方法中,形成所述光学膜层的材料从适于形成与所述彩膜基板对盒的阵列基板的栅绝缘层和/或钝化层的材料的组中选择,例如从包括但不限于氮化硅、氧化硅、氮氧化硅、非晶硅、多晶硅、氮化镓、钨、石墨烯、二氧化钛、碳化硅、单晶硅、氟化镁的组中选择。
进一步地,根据本公开的一个实施例,提供一种显示面板,该显示面板包括相对设置的阵列基板和彩膜基板。该阵列基板和彩膜基板可以是上述任一个实施例所述的或通过根据上述任一个实施例的制造方法制造的阵列基板和彩膜基板。
在一个实施例中,该显示面板可以包括两个光学膜层,以分别对不同所选波长范围内的光进行滤除或截止。图14、15、16示意性地示出了两个光学膜层集成在阵列基板和/或彩膜基板上。具体地,为了对红光与绿光之间的间色——黄光,以及绿光与蓝光之间的间色——蓝绿光进行滤除或截止,在图14至16示出的实施例中,光学膜层3可以是黄光截止层,光学膜层4可以是蓝绿光截止层。可以通过上文所述的制造方法,将黄光截止层3和/或蓝绿光截止层4集成在显示面板的阵列基板1和/或彩膜基板2上。
在图14所示的实施例中,黄光截止层3和蓝绿光截止层4均集成在显示基板的阵列基板1和彩膜基板2中的一个上。下面,为了描述方便,将阵列基板1和彩膜基板2朝向液晶层的一侧称为内侧,将其背向液晶层的一侧称为外侧。如图14(A)所示,黄光截止层3和蓝绿光截止层4分别集成在阵列基板1的外侧和内侧上;如图14(B)所示,黄光截止层3和蓝绿光截止层4分别集成在阵列基板1的内侧和外侧上;如图14(C)所示,黄光截止层3和蓝绿光截止层4分别集成在彩膜基板2的外侧和内侧上;如图14(D)所示,黄光截止层3和蓝绿光截止层4分别集成在彩膜基板2的内侧和外侧上。
在图15所示的实施例中,黄光截止层3和蓝绿光截止层4分别集成在显示基板的彩膜基板2和阵列基板1上。如图15(A)所示,黄光截止层3集成 在彩膜基板2的内侧上,并且蓝绿光截止层4集成在阵列基板1的内侧上;如图15(B)所示,黄光截止层3集成在彩膜基板2的内侧上,并且蓝绿光截止层4集成在阵列基板1的外侧上;如图15(C)所示,黄光截止层3集成在彩膜基板2的外侧上,并且蓝绿光截止层4集成在阵列基板1的内侧上;如图15(D)所示,黄光截止层3集成在彩膜基板2的外侧上,并且蓝绿光截止层4集成在阵列基板1的外侧上。
在图16所示的实施例中,黄光截止层3和蓝绿光截止层4分别集成在显示基板的阵列基板1和彩膜基板2上。如图16(A)所示,黄光截止层3集成在阵列基板1的内侧上,并且蓝绿光截止层4集成在彩膜基板2的内侧上;如图16(B)所示,黄光截止层3集成在阵列基板1的外侧上,并且蓝绿光截止层4集成在彩膜基板2的外侧上;如图16(C)所示,黄光截止层3集成在阵列基板1的内侧上,并且蓝绿光截止层4集成在彩膜基板2的外侧上;如图16(D)所示,黄光截止层3集成在阵列基板1的外侧上,并且蓝绿光截止层4集成在彩膜基板2的外侧上。
根据本公开的一个实施例,两个光学膜层可以均集成在阵列基板上并且形成In-cell结构,如图17所示。阵列基板1包括依次设置的衬底基板1701、栅极层1702、栅绝缘层1703、有源层1704、源/漏极层1705、钝化层1706和像素电极层1707。在一些例子中,在有源层1704与源/漏极层1705之间可以形成有欧姆接触层,如a-Si层,如上所述。在该实施例中,栅绝缘层1703和钝化层1706可以分别构成或复用为光学膜层,用于滤除或截止所选波长范围的光以避免或阻止该所选所选波长范围的光从其透射。作为一个示例,栅绝缘层1703和钝化层1706可以分别构成或复用为黄光截止层和蓝绿光截止层,用于分别滤除或截止黄光和蓝绿光以避免或阻止黄光和蓝绿光从其透射。如图17所示,在阵列基板1的一个像素结构中,包括显示区域A和非显示区域B,在显示区域A中,栅绝缘层1703和钝化层1706依次形成在衬底基板1701上。栅绝缘层1703和钝化层1706可以为多层薄膜,通过有效匹配多层薄膜中的各 层薄膜,例如,有效匹配各层薄膜的厚度、材料、材料折射率等参数,可以使得栅绝缘层1703和钝化层1706具有如下光学特性:在应用波段范围内,该多层薄膜对特定波长范围(阻带)内的光(例如黄光和蓝绿光)可以进行有效滤除或截止,而对其余波长范围内的光具有良好的透射率。
下面,针对RGB(红、绿、蓝)三原色的显示基板,以滤除红色和绿色之间的间色(黄色)和绿色和蓝色之间的间色(蓝绿色)为示例,具体说明根据本公开实施例设计的光学膜层以及集成有该光学膜层的显示基板在提升色域方面的表现。
返回参考图4,集成在阵列基板1或彩膜基板2上的光学膜层3为黄光截止层,即光学膜层3对黄色光可以进行有效滤除或截止,而对其余波长范围内的光具有良好的透射率。
一般地,光学膜层3的光学特性用图3所示的光透射率曲线表示,该光透射率曲线的参数主要包括谱带中心波长、半高峰宽、波段衰减强度(即截止率)三个参数,下面分别对这三个参数对色域的影响做如下模拟实验。
(1)谱带中心波长对色域的影响
首先,设计一系列光学膜层,这些光学膜层具有以半高峰宽为35nm、光谱截止接近100%、谱带中心波长由550nm移动至600nm的光透射率曲线,如图18所示,在图18中,横坐标表示谱带中心波长(Wavelength),单位为nm;纵坐标表示光透射率(Transmittance),一般用百分比表示。
在一个实施例中,使用氧化硅和氮化硅来形成光学膜层,即,该光学膜层包括多层由氧化硅(SiO2)和氮化硅(SiNx)形成的薄膜。为了有效滤除黄光,需要对所使用的氧化硅和氮化硅的折射率、多层薄膜的层数以及各层薄膜的厚度进行有效匹配。
图19和图20分别示出了该实施例采用的氧化硅和氮化硅的折射率曲线,在图19-20中,横坐标表示入射光的波长,单位为nm;纵坐标表示材料的折射率。如图所示,在该实施例中,氧化硅作为低折射率材料使用,氮化硅作为 高折射率材料使用。
对于多层薄膜的层数和各层薄膜的厚度,下表2列出了滤除中心波长为580nm的所选波长范围的光所采用的参数。由下表可以看出,光学膜层包括18层薄膜,该18层薄膜包括交替形成的氧化硅薄膜和氮化硅薄膜,各层的厚度如下表2所示,其中CWL表示中心波长。
表2:多层薄膜参数表
Figure PCTCN2017082420-appb-000001
类似地,为了滤除中心波长为550、555、560、565、570、575、585、590、595、600nm的所选波长范围内的光,多层薄膜的层数可以控制在16~30层的范围内,各层的厚度可以控制在15~45nm的范围内。
图21示出了这些光学膜层对显示模组发出的光谱的影响,在图21中,横坐标表示波长(Wavelength),单位为nm;纵坐标表示光强(Radiance)。图21显示根据本公开实施例的光学膜层应用于显示装置,可以有效衰减黄光,红色和绿色光谱的半高峰宽变窄,发光相对独立。以谱带中心波长580nm的光学膜层为例,绿光半高峰宽由原始80nm变窄至60nm。
进一步地,这些光学膜层对显示装置的色域影响如图22所示,在图22中,横坐标表示谱带中心波长(Central Wavelength),单位为nm;纵坐标表示NTSC色域,用百分比表示。显示装置的原始色域为NTSC 72%,从图22中可以看出,当谱带中心波长由550nm向600nm移动时,色域范围首先提高然后降低。 当谱带中心波长处于580nm时,色域范围由原始模组NTSC 72%提升至NTSC89.18%。
(2)半高峰宽对色域的影响
首先,设计一系列光学膜层,这些光学膜层具有以580nm为谱带中心、截止率接近100%、谱带半高峰宽为25—55nm的光透射率曲线,如图23所示;在图23中,横坐标表示波长(Wavelength),单位为nm;纵坐标表示光透射率(Transmittance)或截止率,用百分比表示。
同样地,该光学膜层仍可以包括由氧化硅和氮化硅构成的多层薄膜。对于多层薄膜的层数和各层薄膜的厚度,下表3列出了具有中心波长为580nm、半高峰宽为25nm的光透射率曲线的光学膜层所采用的参数。由下表3可以看出,光学膜层包括20层薄膜,各层的厚度如下表所示,其中,CWL表示中心波长,FWHM表示半高峰宽。
表3:多层薄膜参数表
Figure PCTCN2017082420-appb-000002
类似地,对于半高峰宽为30、35、40、45、50、55nm的情况,多层薄膜的层数可以控制在20~50层之间,各层的厚度可以控制在15~45nm的范围内。
图24示出了这些光学膜层对显示模组发出的光谱的影响,在图24中,横坐标表示波长(Wavelength),单位为nm;纵坐标表示光强(Radiance)。图24 显示根据本发明实施例的光学膜层应用于显示装置,可以有效衰减黄光,红色和绿色光谱的半高峰宽变窄,发光相对独立。以半高峰宽为55nm的光学膜层为例,绿光半高峰宽由原始80nm变窄至40nm。
进一步地,这些光学膜层对显示装置的色域影响图25所示,在图25中,横坐标表示半高峰宽(Full Width at Half Maximum),单位为nm;纵坐标表示NTSC色域,用百分比表示。显示装置的原始色域为NTSC 72%,从图25中可以看出,随着光学膜层的光透射率曲线的半高峰宽逐渐变宽,绿光和红光之间的黄光截止量变大,绿光和红光的半高峰宽变窄,色域逐渐增加。当光学膜层的光透射率曲线的半高峰宽为55nm时,色域可以达到93.38%,色域范围提升约21%。
(3)截止率对色域的影响
首先,设计一系列光学膜层,这些光学膜层具有以谱带中心波长为580nm、半高峰宽为35nm、黄光截止率分别为100%、95%、90%、85%、80%和75%的光透射率曲线,如图26所示,其中,横坐标表示波长(Wavelength),单位为nm;纵坐标表示光透射率(Transmittance)或截止率,一般用百分比表示。
同样地,该光学膜层仍可以包括由氧化硅和氮化硅构成的多层薄膜。对于多层薄膜的层数和各层薄膜的厚度,下表4列出了具有中心波长为580nm、截止率为90%的光透射率曲线的光学膜层所采用的参数。由下表4可以看出,光学膜层包括18层薄膜,各层的厚度如下表所示,其中,CWL表示中心波长,T表示截止率。
表4:多层薄膜参数表
Figure PCTCN2017082420-appb-000003
类似地,对于截止率为100%、95%、85%、80%、75%的情况,多层薄膜的层数可以控制在15~50层之间,各层的厚度可以控制在15~45nm的范围内。
图27示出了这些光学膜层对显示模组发出的光谱的影响,在图27中,横坐标表示波长(Wavelength),单位为nm;纵坐标表示光强(Radiance)。图27显示根据本公开实施例的光学膜层应用于显示装置,可以有效衰减黄光,红色和绿色的发光相对独立。随着黄光截止率逐渐降低,对绿光和红光的半高峰宽影响逐渐减小。
进一步地,这些光学膜层对显示装置的色域影响如图28所示,在图28中,横坐标表示截止率;纵坐标表示NTSC色域,用百分比表示。显示装置的原始色域为NTSC 72%,从图28中可以看出,随着黄光截止率从100%降低至75%,色域范围由89.18%降低至84.28%。数据显示在显示模组中,黄光增加会导致色域下降。
上述模拟实验表明:采用一个光学膜层可以对特定波长范围内的光(例如黄光)进行滤除或截止,从而能够有效提升原始模组的色域。如果采用适当的光学膜层对蓝光和绿光之间的蓝绿光进行衰减,可以使绿光和蓝光发光更独立,同样可以达到提升色域的效果。因此,在一个实施例中,可以将光学膜层设计为蓝绿光截止层,以滤除蓝色和绿色之间的间色——蓝绿色而避免或阻止蓝绿色通过该光学膜层,具体地,如图4所示,光学膜层3还可以是蓝绿光截 止层,即,该蓝绿光截止层可以集成在阵列基板1或彩膜基板2上。
与上述黄光截止层的模拟实验类似,对具有黄光截止层和蓝绿光截止层这样的两个光学膜层的显示装置,同样可以进行如下的模拟实验:
设计一系列光学膜层,其中黄光截止层的光透射率曲线的谱带中心波长为580nm,半高峰宽为35nm,截止率接近100%;蓝绿光截止层的光透射率曲线的谱带中心波长从480nm逐渐移动到500nm,半高峰宽为35nm,截止率接近100%,如图29所示,在图29中,横坐标表示波长,单位为nm;纵坐标表示光透射率,用百分比表示;图例中的“CWL(Blue)”表示截止蓝绿光的光学膜层的光透射率曲线的谱带中心波长。
图30示出了这些光学膜层对显示模组发出的光谱的影响,在图30中,横坐标表示波长,单位为nm;纵坐标表示光强。进一步地,这些光学膜层对显示装置的色域影响图31所示。显示装置的原始色域为NTSC 72%,从图30中可以看出,在黄光截止的基础上进一步对蓝绿光进行截止,可以进一步缩小绿光的半高峰宽,红、绿、蓝光发光更独立。蓝绿光截止层的谱带中心波长移动对色域的影响如图31所示,随着谱带中心波长从480nm移动到500nm,模组色域范围首先增加然后降低。其中,当谱带中心波长为485nm时,色域达到93.17%,对应的仅进行黄光衰减的模组色域范围为88.18%,色域提升5%。如果在黄光截止的基础上增加蓝绿光截止的薄膜色域有机会接近100%。
对于半高峰宽和截止率对色域的影响,可以进行与上述黄光截止层类似的模拟实验,在此不再赘述。
通过上面的模拟实验可以看出,在本公开实施例中,通过在显示基板上形成滤除或截止基色的间色(例如黄光、蓝绿光等)的光学膜层,可以有效地提高显示装置的色域。
在根据本公开实施例的显示基板及其制造方法中,从结构和制造工艺的角度看,光学膜层都适于集成在显示基板上;而且,光学膜层适于由与形成栅绝缘层和钝化层的材料相同的材料制成,并且还可以与栅绝缘层和钝化层复合或 复用,不会额外增加模组的厚度,并且可以以低成本的制造工艺实现色域提升。
虽然上面只示意性地说明了滤除或截止黄光、蓝绿光,但是,在本公开的其它的实施例中,可以滤除或截止其它基色间色光,以有效地提高显示装置的色域。相应地,虽然上文中仅在显示基板上形成一层或两层光学膜层,但是,本发明不限于此,可以在显示基板上形成多于两层的光学膜层。
此外,虽然上文以RGB显示模组为模组进行了描述,但是,根据本发明实施例的光学膜层也可以应用于RGBW等显示模组中。
虽然本申请总体构思的一些实施例已被图示和说明,本领域普通技术人员将理解,在不背离本申请总体构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (19)

  1. 一种显示基板,包括:
    衬底基板;和
    形成在衬底基板上的光学膜层,
    其中,该光学膜层被构造为滤除具有在所选波长范围内的波长的光。
  2. 根据权利要求1所述的显示基板,其中,所述光学膜层包括多层薄膜,该多层薄膜包括至少两种材料层,该至少两种材料层具有不同的折射率。
  3. 根据权利要求2所述的显示基板,其中,所述多层薄膜包括交替叠置的具有第一折射率的第一材料层和具有第二折射率的第二材料层。
  4. 根据权利要求2所述的显示基板,其中,所述多层薄膜的层数在5~50的范围内。
  5. 根据权利要求1所述的显示基板,其中,所述构成光学膜层的材料的折射率在1.2~4的范围内。
  6. 根据权利要求1所述的显示基板,其中,所述显示基板为阵列基板。
  7. 根据权利要求6所述的显示基板,其中,所述光学膜层还构成所述阵列基板的栅绝缘层和/或钝化层。
  8. 根据权利要求6所述的显示基板,其中,所述阵列基板还包括栅绝缘层和/或钝化层,所述光学膜层是与所述栅绝缘层和/或钝化层不同的层。
  9. 根据权利要求1所述的显示基板,其中,所述显示基板为彩膜基板,所述光学膜层位于与所选基色亚像素对应的位置处。
  10. 根据权利要求1-9中任一项所述的显示基板,其中,所述所选波长范围的中心波长为580nm和/或485nm,半高峰宽为25~55nm。
  11. 一种显示面板,包括相对设置的阵列基板和彩膜基板,其中,所述阵列基板为根据上述权利要求1-8和10中任一项所述的显示基板,和/或所述彩膜基板是根据上述权利要求1-5和9-10中任一项所述的显示基板。
  12. 根据权利要求11所述的显示面板,其中,所述阵列基板包括第一衬底基板和在该第一衬底基板上的第一光学膜层,并且所述彩膜基板包括第二衬底基板和在该第二衬底基板上的第二光学膜层,并且
    其中,所述第一光学膜层滤除的所选波长范围的中心波长为580nm、半高峰宽为25~55nm,并且所述第二光学膜层滤除的所选波长范围的中心波长为485nm、半高峰宽为25~55nm;或者,所述第一光学膜层滤除的所选波长范围的中心波长为485nm、半高峰宽为25~55nm,并且所述第二光学膜层滤除的所选波长范围的中心波长为580nm、半高峰宽为25~55nm。
  13. 根据权利要求11所述的显示面板,其中,所述阵列基板包括第一衬底基板和在该第一衬底基板上的第一光学膜层和第二光学膜层,并且
    其中,所述第一光学膜层滤除的所选波长范围的中心波长为580nm、半高峰宽为25~55nm,并且所述第二光学膜层滤除的所选波长范围的中心波长为485nm、半高峰宽为25~55nm。
  14. 一种显示基板的制造方法,包括如下步骤:
    提供衬底基板;和
    在所述衬底基板上形成光学膜层,
    其中,该光学膜层被构造为滤除具有在所选波长范围内的波长的光。
  15. 根据权利要求14所述的制造方法,其中,所述衬底基板为阵列基板的衬底基板。
  16. 根据权利要求15所述的制造方法,其中,所述光学膜层还构成所述阵列基板的栅绝缘层和/或钝化层。
  17. 根据权利要求15所述的制造方法,还包括如下步骤:
    在所述阵列基板的衬底基板上形成不同于所述光学膜层的栅绝缘层和/或钝化层。
  18. 根据权利要求14-17中任一项所述的制造方法,其中,在所述衬底基板上形成光学膜层的步骤包括:通过沉积工艺,在所述衬底基板上形成光学膜层。
  19. 根据权利要求14所述的制造方法,其中,所述衬底基板为彩膜基板的衬底基板,所述制造方法还包括如下步骤:在所述彩膜基板的衬底基板上形成多个基色滤色器,并且
    其中,在所述彩膜基板的衬底基板上形成光学膜层的步骤包括:使用掩膜版,以在所选基色滤色器上形成所述光学膜层;或者
    在所述彩膜基板的衬底基板上形成光学膜层的步骤包括:在全部基色滤色器上均形成光学膜层,采用蚀刻工艺蚀刻掉光学膜层位于除所选基色滤色器之外的其它基色滤色器上的部分,以保留光学膜层在所选基色滤色器上的部分。
PCT/CN2017/082420 2016-11-15 2017-04-28 显示基板及其制造方法、和显示面板 WO2018090572A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/750,747 US10859867B2 (en) 2016-11-15 2017-04-28 Display substrate and method of manufacturing the same, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611025463.9A CN106526949B (zh) 2016-11-15 2016-11-15 显示基板及其制造方法
CN201611025463.9 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018090572A1 true WO2018090572A1 (zh) 2018-05-24

Family

ID=58353082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082420 WO2018090572A1 (zh) 2016-11-15 2017-04-28 显示基板及其制造方法、和显示面板

Country Status (3)

Country Link
US (1) US10859867B2 (zh)
CN (1) CN106526949B (zh)
WO (1) WO2018090572A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638613A (zh) * 2019-03-01 2020-09-08 鸿富锦精密工业(深圳)有限公司 显示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526949B (zh) 2016-11-15 2019-08-27 京东方科技集团股份有限公司 显示基板及其制造方法
CN106773226A (zh) * 2017-02-27 2017-05-31 深圳市华星光电技术有限公司 高色域阵列基板及液晶显示面板
CN108107622B (zh) * 2017-12-06 2020-07-28 深圳市华星光电技术有限公司 可控开关光学膜与液晶显示器
CN109116615A (zh) * 2018-08-20 2019-01-01 深圳市华星光电技术有限公司 彩膜基板及液晶面板
EP3617757B1 (en) * 2018-08-27 2021-02-24 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Optical filter, optical filter system, spectrometer and method of fabrication thereof
CN110082977B (zh) * 2019-05-15 2020-11-24 深圳市华星光电技术有限公司 一种tft阵列基板及显示面板
CN114578616A (zh) 2022-02-14 2022-06-03 惠州华星光电显示有限公司 背光模组及显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090284687A1 (en) * 2004-09-06 2009-11-19 Sony Corporation Liquid crystal display
CN104485429A (zh) * 2014-12-31 2015-04-01 北京维信诺科技有限公司 一种具有光学谐振层的oled器件及其制备方法、显示器
CN105093685A (zh) * 2015-09-25 2015-11-25 京东方科技集团股份有限公司 一种显示设备
CN105158963A (zh) * 2015-09-30 2015-12-16 冠捷显示科技(厦门)有限公司 一种实现广色域显示的方法及使用该方法的显示装置和设备
CN105182595A (zh) * 2015-08-28 2015-12-23 京东方科技集团股份有限公司 显示基板、显示装置及其制作方法
CN105932038A (zh) * 2016-05-23 2016-09-07 深圳市华星光电技术有限公司 Woled显示装置
CN106405921A (zh) * 2016-09-23 2017-02-15 京东方科技集团股份有限公司 一种显示装置
CN106526949A (zh) * 2016-11-15 2017-03-22 京东方科技集团股份有限公司 显示基板及其制造方法
CN106773260A (zh) * 2017-01-04 2017-05-31 京东方科技集团股份有限公司 显示面板、显示设备、彩膜基板及阵列基板
CN106773226A (zh) * 2017-02-27 2017-05-31 深圳市华星光电技术有限公司 高色域阵列基板及液晶显示面板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046320B2 (en) * 2002-03-14 2006-05-16 Nitto Denko Corporation Optical element and surface light source device using the same, as well as liquid crystal display
JP2008262048A (ja) * 2007-04-12 2008-10-30 Nof Corp ディスプレイ用減反射性近赤外線低減材及びこれを用いた電子画像表示装置
EP2748810A4 (en) * 2011-08-24 2015-04-15 Dolby Lab Licensing Corp ENERGY EFFICIENT DISPLAYS WITH HIGH DYNAMIC RANGE AND WIDE COLOR SCALE
JP2015084000A (ja) * 2012-02-07 2015-04-30 シャープ株式会社 表示素子、照明装置
US20130235559A1 (en) * 2012-03-06 2013-09-12 Nokia Corporation Spectrally Transflective Display
CN103676288A (zh) 2012-09-10 2014-03-26 宏腾光电股份有限公司 广色域膜及其制作方法和具有广色域膜的显示装置
US9041644B2 (en) * 2012-11-14 2015-05-26 Shenzhen China Star Optoelectronics Technology Co., Ltd. Electro-phoretic display and display method thereof
US20140176859A1 (en) * 2012-12-20 2014-06-26 Extend Optronics Corp. Wide-color gamut film, display apparatus with the wide-color gamut film, and method for manufacturing the film
CN103278963B (zh) * 2013-05-23 2017-04-19 京东方科技集团股份有限公司 彩色滤光阵列基板及其制造方法、显示装置
CN105070728B (zh) 2015-08-21 2018-07-10 京东方科技集团股份有限公司 一种显示基板及其制备方法、透明显示装置
CN105093377B (zh) * 2015-09-17 2019-03-01 京东方科技集团股份有限公司 蓝光衰减器件及制备方法、基板、显示器、智能穿戴产品
CN106019444B (zh) * 2016-05-25 2019-03-15 张家港康得新光电材料有限公司 黄光吸收结构及具有其的背光模组

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090284687A1 (en) * 2004-09-06 2009-11-19 Sony Corporation Liquid crystal display
CN104485429A (zh) * 2014-12-31 2015-04-01 北京维信诺科技有限公司 一种具有光学谐振层的oled器件及其制备方法、显示器
CN105182595A (zh) * 2015-08-28 2015-12-23 京东方科技集团股份有限公司 显示基板、显示装置及其制作方法
CN105093685A (zh) * 2015-09-25 2015-11-25 京东方科技集团股份有限公司 一种显示设备
CN105158963A (zh) * 2015-09-30 2015-12-16 冠捷显示科技(厦门)有限公司 一种实现广色域显示的方法及使用该方法的显示装置和设备
CN105932038A (zh) * 2016-05-23 2016-09-07 深圳市华星光电技术有限公司 Woled显示装置
CN106405921A (zh) * 2016-09-23 2017-02-15 京东方科技集团股份有限公司 一种显示装置
CN106526949A (zh) * 2016-11-15 2017-03-22 京东方科技集团股份有限公司 显示基板及其制造方法
CN106773260A (zh) * 2017-01-04 2017-05-31 京东方科技集团股份有限公司 显示面板、显示设备、彩膜基板及阵列基板
CN106773226A (zh) * 2017-02-27 2017-05-31 深圳市华星光电技术有限公司 高色域阵列基板及液晶显示面板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638613A (zh) * 2019-03-01 2020-09-08 鸿富锦精密工业(深圳)有限公司 显示装置

Also Published As

Publication number Publication date
US10859867B2 (en) 2020-12-08
CN106526949B (zh) 2019-08-27
CN106526949A (zh) 2017-03-22
US20200089046A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2018090572A1 (zh) 显示基板及其制造方法、和显示面板
US7811725B2 (en) Color filter substrate
KR102013505B1 (ko) 광학 공명층을 구비한 oled 소자, 그 제조방법 및 모니터
US11022836B2 (en) Polarizer and display device
US20130242237A1 (en) Liquid crystal display apparatus including interference filters
US20150022765A1 (en) Display device and method of manufacturing the same
US10146082B2 (en) Display devices and the color filters thereof
TW201910886A (zh) 顯示單元結構及使用量子棒之顯示元件
WO2020025054A1 (zh) 一种发光装置及其制备方法
CN106707623A (zh) 一种显示基板及显示装置
US20200264355A1 (en) Color filter
WO2021128976A1 (zh) 一种背光模组及液晶显示器
JP5662396B2 (ja) 干渉フィルタ、表示装置および表示装置の製造方法
WO2017201774A1 (zh) 一种背光模组以及液晶显示装置
TWI316631B (en) Electro-optical device and electronic apparatus
JP2008052067A (ja) 光源装置、表示装置および発光ダイオードチップ
WO2015078157A1 (zh) 彩膜基板及其制作方法、显示装置
CN111538186A (zh) 一种背光模组及其制备方法、液晶显示装置
JP4019781B2 (ja) 液晶表示装置
KR20170051839A (ko) 광학필터 기판과 그 제조 방법 및 이를 구비한 액정 표시 장치
WO2017118162A1 (zh) 显示面板及显示装置
KR101783133B1 (ko) 높은 색재현성 플라즈모닉 컬러 필터
US10394074B2 (en) Color film substrate and method of manufacturing the same, liquid crystal panel
KR20170027264A (ko) 박막 트랜지스터 및 표시 장치
CN104538431A (zh) 一种oled器件及其制备方法、显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872444

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17872444

Country of ref document: EP

Kind code of ref document: A1