WO2017201774A1 - 一种背光模组以及液晶显示装置 - Google Patents

一种背光模组以及液晶显示装置 Download PDF

Info

Publication number
WO2017201774A1
WO2017201774A1 PCT/CN2016/085469 CN2016085469W WO2017201774A1 WO 2017201774 A1 WO2017201774 A1 WO 2017201774A1 CN 2016085469 W CN2016085469 W CN 2016085469W WO 2017201774 A1 WO2017201774 A1 WO 2017201774A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
backlight module
collimating
light
refractive index
Prior art date
Application number
PCT/CN2016/085469
Other languages
English (en)
French (fr)
Inventor
樊勇
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/108,298 priority Critical patent/US10175529B2/en
Publication of WO2017201774A1 publication Critical patent/WO2017201774A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133624Illuminating devices characterised by their spectral emissions

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a backlight module and a liquid crystal display device.
  • a liquid-emitting diode (Light-Emitting Diode) is commonly used as a backlight in a liquid crystal display device.
  • the most common white LED is a blue light emitting chip with yellow YAG (Y3Al5O12, yttrium aluminum garnet) phosphor LED.
  • the LED with yellow phosphor material is matched with the LCD screen, the color saturation is low, and the display color is not bright enough.
  • FIG. 1 is a schematic diagram of color saturation comparison of RG phosphor and YAG phosphor in the background art of the present invention.
  • the LED backlight of the RG phosphor is transparent.
  • the spectral FWHM (full width at half maximum) of the R and G pixels is narrower, and the R and G colors are more pure, so that higher color saturation can be achieved.
  • the color gamut can reach the highest quantum dot material containing Cd (cadmium) element. Since Cd has a great influence on human health, and the quantum dot film is very expensive, The development of high color saturation technology without Cd low cost is the trend of high color saturation technology for liquid crystal displays.
  • Cd cadmium
  • the technical problem to be solved by the present invention is to provide a backlight module and a liquid crystal display device, which can increase the color gamut of the display device and improve the color saturation of the display device.
  • a technical solution adopted by the present invention is to provide a backlight module, the backlight module includes: a light source; wherein the light source includes a blue LED, and is disposed on the light emitting surface of the blue LED Yellow phosphor or red-green phosphor.
  • the spectral selection component is disposed in the optical path between the light source and the light exit surface of the backlight module, and limits or blocks the remaining spectra through the red, green, and blue spectra; wherein the spectral selection element is a multilayer component in which high and low refractive index layers are alternately stacked. .
  • the method further includes collimating the light emitted by the light source to collimate or converge to the collimating element of the spectral selection element.
  • the light guide plate further includes a light source and a collimating element disposed adjacent to a side of the light guide plate, and the collimating element is located between the light source and the side of the light guide plate.
  • the high refractive index layer has a refractive index of 2.0 to 2.8 for a wavelength of 550 nm
  • the low refractive index layer has a refractive index of 1.3 to 1.8 for a wavelength of 550 nm
  • the number of layers is greater than 40.
  • the pass rate of the spectral selection element corresponding to the wavelengths of 425-470 nm, 510-560 nm, and 610-730 nm is not less than 80%, and the pass ratio of the corresponding wavelengths of 480-505 nm and 570-605 nm is less than 20%.
  • a backlight module which includes: a light source; a spectral selection component disposed in an optical path between the light source and the light emitting surface of the backlight module, The remaining spectra are limited or blocked by the red, green, and blue spectra.
  • the spectral selection element is a multilayer element in which high and low refractive index layers are alternately laminated.
  • the method further includes collimating the light emitted by the light source to collimate or converge to the collimating element of the spectral selection element.
  • the collimating element is a parabolic collimating mirror
  • the light emitting surface of the light source is disposed at the focus of the parabolic collimating mirror
  • the width of the light emitting surface of the light source is a
  • the distance from the focus to the end surface of the parabolic collimating mirror b the opening width of the collimating parabolic mirror h
  • the light source and the collimating element are disposed adjacent to a side of the light guide plate, and Straight components are located between the light source and the side of the light guide.
  • the high refractive index layer has a refractive index of 2.0 to 2.8 for a wavelength of 550 nm
  • the low refractive index layer has a refractive index of 1.3 to 1.8 for a wavelength of 550 nm
  • the number of layers is greater than 40.
  • the pass rate of the spectral selection element corresponding to the wavelengths of 425-470 nm, 510-560 nm, and 610-730 nm is not less than 80%, and the pass ratio of the corresponding wavelengths of 480-505 nm and 570-605 nm is less than 20%.
  • the light source comprises a blue LED, and a yellow phosphor or a red-green phosphor disposed on the light emitting surface of the blue LED.
  • a liquid crystal display device including a display panel, a backlight module, and a spectral selection component; the backlight module includes a light source, and the spectral selection component is disposed on The light source is in the optical path between the light-in areas of the display panel, and the remaining spectrum is limited or blocked by the red, green, and blue spectra.
  • the spectral selection element is a multilayer element in which high and low refractive index layers are alternately laminated.
  • the method further includes collimating the light emitted by the light source to collimate or converge to the collimating element of the spectral selection element.
  • the collimating element is a parabolic collimating mirror
  • the light emitting surface of the light source is disposed at the focus of the parabolic collimating mirror
  • the width of the light emitting surface of the light source is a
  • the distance from the focus to the end surface of the parabolic collimating mirror b the opening width of the collimating parabolic mirror h
  • the light guide plate further includes a light source and a collimating element disposed adjacent to a side of the light guide plate, and the collimating element is located between the light source and the side of the light guide plate.
  • the high refractive index layer has a refractive index of 2.0 to 2.8 for a wavelength of 550 nm
  • the low refractive index layer has a refractive index of 1.3 to 1.8 for a wavelength of 550 nm
  • the number of layers is greater than 40.
  • the pass rate of the spectral selection element corresponding to the wavelengths of 425-470 nm, 510-560 nm, and 610-730 nm is not less than 80%, and the pass ratio of the corresponding wavelengths of 480-505 nm and 570-605 nm is less than 20%.
  • the light source comprises a blue LED, and a yellow phosphor or a red-green phosphor disposed on the light emitting surface of the blue LED.
  • the backlight module of the present invention comprises a light source and a spectrum selecting component; wherein the spectral selecting component is disposed in the optical path between the light source and the light emitting surface of the backlight module, and the spectrum selection The component is used to limit or block the remaining spectra through the red, green, and blue spectra.
  • the unnecessary spectrum in the light source can be filtered, and the red, green, and blue spectra required by the display device are selectively increased, the color gamut of the display device is increased, and the color saturation of the display device is improved.
  • FIG. 1 is a schematic view showing the color saturation comparison of RG phosphor and YAG phosphor in the background art of the present invention
  • FIG. 2 is a schematic structural view of a first embodiment of a backlight module of the present invention
  • FIG. 3 is a schematic structural view of a second embodiment of a backlight module of the present invention.
  • FIG. 4 is a partial optical path diagram of a second embodiment of a backlight module of the present invention.
  • Fig. 7 is a schematic view showing the structure of an embodiment of a liquid crystal display device of the present invention.
  • FIG. 2 is a schematic structural diagram of a first embodiment of a backlight module according to the present invention.
  • the backlight module 20 includes a light source 21 and a spectral selection component 22, wherein the spectral selection component 22 is disposed on the light source 21 to the backlight module 20.
  • the spectral selection element 22 is used to limit or block the remaining spectra through the red, green, and blue spectra.
  • the light source 21 includes a blue LED and a yellow phosphor (YAG phosphor) disposed on the light emitting surface of the blue LED.
  • YAG phosphor yellow phosphor
  • the light source 21 includes a blue LED and a red and green phosphor disposed on the light emitting surface of the blue LED. (RG phosphor).
  • the spectral selection element 22 is a multilayer element in which high and low refractive index layers are alternately stacked.
  • the element may be an optical film or an optical film.
  • the number of layers of spectral selection element 22 is greater than 40, wherein the high refractive index layer has a refractive index of 2.0 to 2.8 for a wavelength of 550 nm and the low refractive index layer has a refractive index of 1.3 to 1.8 for a wavelength of 550 nm.
  • the spectral selection element 22 corresponds to a wavelength of 425-470 nm, 510-560 nm, and a pass rate of 610-730 nm of not less than 80%, and a corresponding wavelength of 480-505 nm and a pass rate of 570-605 nm is less than 20%.
  • the spectral selection element 22 corresponds to a wavelength of 425-470 nm, 510-560 nm, and a pass rate of 610-730 nm of not less than 90%, and a corresponding wavelength of 480-505 nm and a pass rate of 570-605 nm of less than 10%.
  • the backlight module of the embodiment includes a light source and a spectrum selecting component; wherein the spectral selecting component is disposed in an optical path between the light source and the light emitting surface of the backlight module, and the spectrum selecting component is used to pass red, green, The blue spectrum limits or blocks the rest of the spectrum.
  • the unnecessary spectrum in the light source can be filtered, and the red, green, and blue spectra required by the display device are selectively increased, the color gamut of the display device is increased, and the color saturation of the display device is improved.
  • FIG. 3 is a schematic structural diagram of a second embodiment of a backlight module according to the present invention.
  • the backlight module includes a light source 31, a collimating element 32, and a spectral selection element 33.
  • the collimating element 32 is used to emit the light source 31.
  • the light is collimated or concentrated and directed to the spectral selection element 33.
  • FIG. 4 is a partial optical path diagram of a second embodiment of the backlight module of the present invention.
  • the collimating element 32 is a parabolic collimating mirror, and the light emitting surface of the light source 31 is disposed at a focus of the parabolic collimating mirror, that is, the light source 31.
  • the center point of the light emitting surface coincides with the focus of the parabolic collimator, and the light emitting surface of the light source 31 is parallel to the opening surface of the parabolic collimator.
  • the spectral selection element 33 is a multilayer optical film spectral conversion film (also called a light color conversion film) in which high and low refractive index layers are alternately laminated, for example, an organic/inorganic composite color conversion film, due to a multilayer optical film spectral conversion film in light.
  • a multilayer optical film spectral conversion film also called a light color conversion film
  • the incident angle is small, it has good RGB filter characteristics, which can narrow the FWHM of the RGB three-color spectrum to achieve high-color saturated liquid crystal display.
  • the RGB filter characteristics are poor.
  • the light source emitting surface width a, the distance from the focus to the end surface of the parabolic collimating mirror b, and the opening width h of the collimating parabolic mirror satisfy the following conditions:
  • the light generated by the light source 31 can be incident on the spectral selection element 33 at a small incident angle ⁇ , improving the color saturation of the display device.
  • the backlight module may further include a light guide plate 34 , a reflective sheet 35 , and an optical film 36 .
  • the light source 31 and the collimating element 32 are disposed adjacent to the side of the light guide plate 34, and the collimating element 33 is located between the light source 31 and the side of the light guide plate 34, and the spectral selecting element 33 is located at the side of the collimating element 32 and the light guide plate 34. between.
  • the spectral selection component 33 can also be disposed on the light-emitting surface of the light guide plate 34.
  • the spectral selection element 33 may also be disposed on a lower surface of a liquid crystal panel (not shown).
  • the spectral selection element 33 may be a high-low refractive index layer directly fixed to the side of the light guide plate 34 or the light-emitting surface of the collimated original.
  • FIG. 5 is a transmittance spectrum diagram corresponding to Table 1 in the second embodiment of the backlight module of the present invention
  • FIG. 6 is a second embodiment of the backlight module of the present invention. 2 corresponding transmittance spectrum map; in Figures 5 and 6, the abscissa indicates the frequency and the ordinate indicates the transmittance.
  • the color saturation of the liquid crystal display can be increased to 110% or more, and the color gamut equivalent to the QDs film can be achieved, and the backlight efficacy portion and QDs can also be achieved.
  • the film is quite. However, in this embodiment, it is not necessary to use a QDs component which is harmful to human health, and the existing white LED can be used, which has good life and reliability, and the cost is much lower than the cost of QDs film.
  • FIG. 7 is a schematic structural diagram of an embodiment of a liquid crystal display device according to the present invention.
  • the liquid crystal display device includes a display panel 71, a backlight module 72, and a spectral selection component 73.
  • the backlight module 72 includes a light source 721 and a spectral selection component 73. In the optical path between the light source 721 and the light incident surface of the display panel 71, the remaining spectrum is limited or blocked by the red, green, and blue spectra.
  • the spectral selection component 73 is a spectral selection component as described in the above embodiments, and its specific implementation principle and structure are similar, and details are not described herein again.
  • FIG. 7 only shows a back-lit backlight module structure.
  • the liquid crystal display device can also be a side-in backlight module, and a liquid crystal with a side-in backlight module.
  • the display device reference may be made to the second embodiment of the above backlight module, and details are not described herein again.
  • the liquid crystal display device of the present embodiment includes a display panel, a backlight module, and a spectrum selection component.
  • the backlight module includes a light source
  • the spectrum selection component is disposed in an optical path between the light source and the light incident surface of the display panel. Red, green, and blue spectra that limit or block the rest of the spectrum.
  • the unnecessary spectrum in the light source can be filtered, and the red, green, and blue spectra required by the display device are selectively increased, the color gamut of the display device is increased, and the color saturation of the display device is improved.

Abstract

一种背光模组(20)以及液晶显示装置,该背光模组(20)包括光源(21);光谱选择元件(22),设置于光源(21)至背光模组(20)出光面之间的光路中,通过红、绿、蓝光谱,限制或阻挡其余光谱。通过上述方式,能够增加显示装置的色域,提高显示装置的色彩饱和度。

Description

一种背光模组以及液晶显示装置 【技术领域】
本发明涉及显示技术领域,特别是涉及一种背光模组以及液晶显示装置。
【背景技术】
目前液晶显示器件中,普遍采用白光LED(Light-Emitting Diode,发光二极管)作背光源。而最普遍的白光LED为蓝光发光芯片加黄色YAG(Y3Al5O12,钇铝石榴石)荧光粉的LED,采用黄光荧光粉材料的LED搭配液晶屏后,色彩饱和度较低,显示器颜色不够鲜艳。
参阅图1,图1是本发明背景技术中RG荧光粉和YAG荧光粉的色饱和对比示意图,从图中可以看出,相比YAG荧光粉的LED而言,由于RG荧光粉的LED背光透过R、G像素的光谱FWHM(半高宽)更窄,R、G颜色更纯正,故可以实现更高色彩饱和度。
为了提高色彩饱和度,通常通过把黄色荧光粉更改为RG(红、绿)荧光粉的方式,但这种方式需要更换现有液晶显示装置的LED,无法再采用现有光源的基础上直接提升色域。
目前在高色饱液晶显示器背光技术方面,色域可以达到最高的是含Cd(镉)元素的量子点材料,由于Cd对人体的健康有非常大的影响,且量子点膜片非常昂贵,所以发展一直无Cd低成本的高色饱技术是液晶显示器高色饱技术发展的趋势。
【发明内容】
本发明主要解决的技术问题是提供一种背光模组以及液晶显示装置,能够增加显示装置的色域,提高显示装置的色彩饱和度。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种背光模组,该背光模组包括:光源;其中,光源包括蓝光LED、及设置于蓝光LED发光面 的黄光荧光粉或红绿荧光粉。光谱选择元件,设置于光源至背光模组出光面之间的光路中,通过红、绿、蓝光谱,限制或阻挡其余光谱;其中,光谱选择元件是高低折射率层交替层叠的多层元件。。
其中,进一步包括将光源发出的光线进行准直或会聚后射至光谱选择元件的准直元件。
其中,准直元件是抛物准直镜,光源的发光面设置于抛物准直镜的焦点,光源发光面宽度a、抛物准直镜的焦点到端面的距离b、准直抛物镜的开口宽度h满足以下条件:
Figure PCTCN2016085469-appb-000001
其中,进一步包括导光板,光源、准直元件邻近导光板的侧边设置,且准直元件位于光源、导光板侧边之间。
其中,高折射率层针对波长550nm的折射率为2.0-2.8,低折射率层针对波长550nm的折射率为1.3-1.8,并且层数大于40。
其中,光谱选择元件对应波长425-470nm、510-560nm、610-730nm的通过率不小于80%,对应波长480-505nm、570-605nm的通过率低于20%。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种背光模组,该背光模组包括:光源;光谱选择元件,设置于光源至背光模组出光面之间的光路中,通过红、绿、蓝光谱,限制或阻挡其余光谱。
其中,光谱选择元件是高低折射率层交替层叠的多层元件。
其中,进一步包括将光源发出的光线进行准直或会聚后射至光谱选择元件的准直元件。
其中,准直元件是抛物准直镜,光源的发光面设置于抛物准直镜的焦点,光源发光面宽度a、抛物准直镜的焦点到端面的距离b、准直抛物镜的开口宽度h满足以下条件:
Figure PCTCN2016085469-appb-000002
其中,进一步包括导光板,光源、准直元件邻近导光板的侧边设置,且准 直元件位于光源、导光板侧边之间。
其中,高折射率层针对波长550nm的折射率为2.0-2.8,低折射率层针对波长550nm的折射率为1.3-1.8,并且层数大于40。
其中,光谱选择元件对应波长425-470nm、510-560nm、610-730nm的通过率不小于80%,对应波长480-505nm、570-605nm的通过率低于20%。
其中,光源包括蓝光LED、及设置于蓝光LED发光面的黄光荧光粉或红绿荧光粉。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种液晶显示装置,该液晶显示装置包括显示面板、背光模组及光谱选择元件;背光模组包括光源,光谱选择元件设置于光源至显示面板入光面之间的光路中,通过红、绿、蓝光谱,限制或阻挡其余光谱。
其中,光谱选择元件是高低折射率层交替层叠的多层元件。
其中,进一步包括将光源发出的光线进行准直或会聚后射至光谱选择元件的准直元件。
其中,准直元件是抛物准直镜,光源的发光面设置于抛物准直镜的焦点,光源发光面宽度a、抛物准直镜的焦点到端面的距离b、准直抛物镜的开口宽度h满足以下条件:
Figure PCTCN2016085469-appb-000003
其中,进一步包括导光板,光源、准直元件邻近导光板的侧边设置,且准直元件位于光源、导光板侧边之间。
其中,高折射率层针对波长550nm的折射率为2.0-2.8,低折射率层针对波长550nm的折射率为1.3-1.8,并且层数大于40。
其中,光谱选择元件对应波长425-470nm、510-560nm、610-730nm的通过率不小于80%,对应波长480-505nm、570-605nm的通过率低于20%。
其中,光源包括蓝光LED、及设置于蓝光LED发光面的黄光荧光粉或红绿荧光粉。
本发明的有益效果是:区别于现有技术的情况,本发明的背光模组包括光源和光谱选择元件;其中,光谱选择元件设置于光源至背光模组出光面之间的光路中,光谱选择元件用于通过红、绿、蓝光谱,限制或阻挡其余光谱。通过上述方式,能够过滤光源中的不需要的光谱,而选择性的通过显示装置需要的红、绿、蓝光谱,增加了显示装置的色域,提高了显示装置的色彩饱和度。
【附图说明】
图1是本发明背景技术中RG荧光粉和YAG荧光粉的色饱和对比示意图;
图2是本发明背光模组第一实施方式的结构示意图;
图3是本发明背光模组第二实施方式的结构示意图;
图4是本发明背光模组第二实施方式的局部光路示意图;
图5是本发明背光模组第二实施方式中表1对应的穿透率频谱图;
图6是本发明背光模组第二实施方式中表2对应的穿透率频谱图;
图7是本发明液晶显示装置一实施方式的结构示意图。
【具体实施方式】
参阅图2,图2是本发明背光模组第一实施方式的结构示意图,该背光模组20包括光源21和光谱选择元件22;其中,光谱选择元件22设置于光源21至背光模组20出光面之间的光路中,光谱选择元件22用于通过红、绿、蓝光谱,限制或阻挡其余光谱。
可以理解的,图2示出了一种背入式背光模组的示意图,光源21的数量也不仅限制于一个,可以是阵列分布的多个光源;在其他实施方式中,背光模组20还可以是侧入式的背光模组,即光源21设置于该背光模组20的侧面。
可选的,光源21包括蓝光LED、及设置于蓝光LED发光面的黄光荧光粉(YAG荧光粉)。
可选的,光源21包括蓝光LED、及设置于蓝光LED发光面的红绿荧光粉 (RG荧光粉)。
可选的,光谱选择元件22是高低折射率层交替层叠的多层元件。其中,该元件可以是光学膜片或者光学薄膜。在一种实施方式中,光谱选择元件22的层数大于40,其中,高折射率层针对波长550nm的折射率为2.0-2.8,低折射率层针对波长550nm的折射率为1.3-1.8。
可选的,光谱选择元22件对应波长425-470nm、510-560nm、610-730nm的通过率不小于80%,对应波长480-505nm、570-605nm的通过率低于20%。
优选的,光谱选择元22件对应波长425-470nm、510-560nm、610-730nm的通过率不小于90%,对应波长480-505nm、570-605nm的通过率低于10%。
区别于现有技术,本实施方式的背光模组包括光源和光谱选择元件;其中,光谱选择元件设置于光源至背光模组出光面之间的光路中,光谱选择元件用于通过红、绿、蓝光谱,限制或阻挡其余光谱。通过上述方式,能够过滤光源中的不需要的光谱,而选择性的通过显示装置需要的红、绿、蓝光谱,增加了显示装置的色域,提高了显示装置的色彩饱和度。
参阅图3,图3是本发明背光模组第二实施方式的结构示意图,该背光模组包括光源31、准直元件32、光谱选择元件33,其中,准直元件32用于将光源31发出的光线进行准直或会聚后射至光谱选择元件33。
如图4所示,图4是本发明背光模组第二实施方式的局部光路示意图,准直元件32是抛物准直镜,光源31的发光面设置于抛物准直镜的焦点,即光源31的发光面的中心点与抛物准直镜的焦点重合,且光源31的发光面与抛物准直镜的开口面平行。
其中,光谱选择元件33为高低折射率层交替层叠的多层光学薄膜光谱转换膜(又叫光色彩转换膜),例如有机/无机复合色彩转换膜,由于多层光学薄膜光谱转换膜在光线的入射角度较小的情况下具有很好的RGB滤光特性,可以使RGB三色光光谱的FWHM变窄,从而实现高色饱液晶显示;而对于大角度入射光,RGB的滤光特性差。
因此,为了使入射到多层光学薄膜光谱转换膜的光达到以较小的入射角α入射,需要在多层光学薄膜光谱转换膜前增加一个抛物准直镜。
具体地,光源发光面宽度a、抛物准直镜的焦点到端面的距离b、准直抛物镜的开口宽度h满足以下条件:
Figure PCTCN2016085469-appb-000004
这样,就可以使得光源31产生的光线以一个较小的入射角α射入光谱选择元件33,提高显示装置的色彩饱和度。
继续参阅图3,可选的,在其他实施方式中,该背光模组还可以包括导光板34、反射片35以及光学膜片36。
其中,光源31、准直元件32邻近导光板34的侧边设置,且准直元件33位于光源31和导光板34侧边之间,光谱选择元件33位于准直元件32和导光板34侧边之间。
可选的,在其他实施方式中,光谱选择元件33还可以设置于导光板34的出光面之上。
可选的,在其他实施方式中,光谱选择元件33还可以设置于液晶面板(图未示)的下表面。
可选的,光谱选择元件33包括玻璃基板和设置于玻璃基板上的高低折射率层;
可选的,光谱选择元件33可以是直接固定于导光板34侧面或准直原件出光面的高低折射率层。
对应参阅下表和图5、图6,其中,图5是本发明背光模组第二实施方式中表1对应的穿透率频谱图,图6是本发明背光模组第二实施方式中表2对应的穿透率频谱图;在图5和图6中,横坐标表示频率,纵坐标表示穿透率。
表1:
Figure PCTCN2016085469-appb-000005
Figure PCTCN2016085469-appb-000006
表2:
Figure PCTCN2016085469-appb-000007
从上述的图表可以看出,通过上述方式,液晶显示器的彩色饱和度可以提升到110%以上,可以达到相当于QDs film(量子点薄膜)所能达到的色域,背光光效部分也和QDs film相当。但本实施方式无需采用含Cd的对人体健康有危害的QDs元件,采用现有的白光LED即可,具有很好的寿命和信赖性,且成本大大低于QDs film成本。
参阅图7,图7是本发明液晶显示装置一实施方式的结构示意图,该液晶显示装置包括显示面板71、背光模组72及光谱选择元件73;背光模组72包括光源721,光谱选择元件73设置于光源721至显示面板71入光面之间的光路中,通过红、绿、蓝光谱,限制或阻挡其余光谱。
可选的,该光谱选择元件73是如以上各个实施方式中所述的光谱选择元件,其具体实施原理和结构类似,这里不再赘述。
可以理解的,图7仅示出了一种背入式背光模组结构,在其他实施方式中,液晶显示装置还可以是侧入式的背光模组,具有侧入式的背光模组的液晶显示装置,可以参考以上背光模组第二实施方式,这里不再赘述。
区别于现有技术,本实施方式的液晶显示装置包括显示面板、背光模组及光谱选择元件;背光模组包括光源,光谱选择元件设置于光源至显示面板入光面之间的光路中,通过红、绿、蓝光谱,限制或阻挡其余光谱。通过上述方式,能够过滤光源中的不需要的光谱,而选择性的通过显示装置需要的红、绿、蓝光谱,增加了显示装置的色域,提高了显示装置的色彩饱和度。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是 利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种背光模组,其中,包括:
    光源;其中,所述光源包括蓝光LED、及设置于所述蓝光LED发光面的黄光荧光粉或红绿荧光粉;
    光谱选择元件,设置于所述光源至所述背光模组出光面之间的光路中,通过红、绿、蓝光谱,限制或阻挡其余光谱;其中,所述光谱选择元件是高低折射率层交替层叠的多层元件。
  2. 根据权利要求1所述的背光模组,其中,
    进一步包括将所述光源发出的光线进行准直或会聚后射至所述光谱选择元件的准直元件。
  3. 根据权利要求2所述的背光模组,其中,
    所述准直元件是抛物准直镜,所述光源的发光面设置于所述抛物准直镜的焦点,所述光源发光面宽度a、所述抛物准直镜的焦点到端面的距离b、所述准直抛物镜的开口宽度h满足以下条件:
    Figure PCTCN2016085469-appb-100001
  4. 根据权利要求2所述的背光模组,其中,
    进一步包括导光板,所述光源、所述准直元件邻近所述导光板的侧边设置,且所述准直元件位于所述光源、所述导光板侧边之间。
  5. 根据权利要求1所述的背光模组,其中,
    所述高折射率层针对波长550nm的折射率为2.0-2.8,所述低折射率层针对波长550nm的折射率为1.3-1.8,并且层数大于40。
  6. 根据权利要求1所述的背光模组,其中,
    所述光谱选择元件对应波长425-470nm、510-560nm、610-730nm的通过率不小于80%,对应波长480-505nm、570-605nm的通过率低于20%。
  7. 一种背光模组,其中,包括:
    光源;
    光谱选择元件,设置于所述光源至所述背光模组出光面之间的光路中,通过红、绿、蓝光谱,限制或阻挡其余光谱。
  8. 根据权利要求7所述的背光模组,其中,
    所述光谱选择元件是高低折射率层交替层叠的多层元件。
  9. 根据权利要求8所述的背光模组,其中,
    进一步包括将所述光源发出的光线进行准直或会聚后射至所述光谱选择元件的准直元件。
  10. 根据权利要求9所述的背光模组,其中,
    所述准直元件是抛物准直镜,所述光源的发光面设置于所述抛物准直镜的焦点,所述光源发光面宽度a、所述抛物准直镜的焦点到端面的距离b、所述准直抛物镜的开口宽度h满足以下条件:
    Figure PCTCN2016085469-appb-100002
  11. 根据权利要求9所述的背光模组,其中,
    进一步包括导光板,所述光源、所述准直元件邻近所述导光板的侧边设置,且所述准直元件位于所述光源、所述导光板侧边之间。
  12. 根据权利要求8所述的背光模组,其中,
    所述高折射率层针对波长550nm的折射率为2.0-2.8,所述低折射率层针对波长550nm的折射率为1.3-1.8,并且层数大于40。
  13. 根据权利要求8所述的背光模组,其中,
    所述光谱选择元件对应波长425-470nm、510-560nm、610-730nm的通过率不小于80%,对应波长480-505nm、570-605nm的通过率低于20%。
  14. 一种液晶显示装置,其中,
    包括显示面板、背光模组及光谱选择元件;
    所述背光模组包括光源,所述光谱选择元件设置于所述光源至所述显示面板入光面之间的光路中,通过红、绿、蓝光谱,限制或阻挡其余光谱。
  15. 根据权利要求14所述的液晶显示装置,其中,
    所述光谱选择元件是高低折射率层交替层叠的多层元件。
  16. 根据权利要求15所述的液晶显示装置,其中,
    进一步包括将所述光源发出的光线进行准直或会聚后射至所述光谱选择元件的准直元件。
  17. 根据权利要求16所述的液晶显示装置,其中,
    所述准直元件是抛物准直镜,所述光源的发光面设置于所述抛物准直镜的焦点,所述光源发光面宽度a、所述抛物准直镜的焦点到端面的距离b、所述准直抛物镜的开口宽度h满足以下条件:
    Figure PCTCN2016085469-appb-100003
  18. 根据权利要求16所述的液晶显示装置,其中,
    进一步包括导光板,所述光源、所述准直元件邻近所述导光板的侧边设置,且所述准直元件位于所述光源、所述导光板侧边之间。
  19. 根据权利要求15所述的液晶显示装置,其中,
    所述高折射率层针对波长550nm的折射率为2.0-2.8,所述低折射率层针对波长550nm的折射率为1.3-1.8,并且层数大于40。
  20. 根据权利要求15所述的液晶显示装置,其中,
    所述光谱选择元件对应波长425-470nm、510-560nm、610-730nm的通过率不小于80%,对应波长480-505nm、570-605nm的通过率低于20%。
PCT/CN2016/085469 2016-05-24 2016-06-12 一种背光模组以及液晶显示装置 WO2017201774A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/108,298 US10175529B2 (en) 2016-05-24 2016-06-12 Backlight module and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610349813.0 2016-05-24
CN201610349813.0A CN105867024A (zh) 2016-05-24 2016-05-24 一种背光模组以及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2017201774A1 true WO2017201774A1 (zh) 2017-11-30

Family

ID=56636020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085469 WO2017201774A1 (zh) 2016-05-24 2016-06-12 一种背光模组以及液晶显示装置

Country Status (3)

Country Link
US (1) US10175529B2 (zh)
CN (1) CN105867024A (zh)
WO (1) WO2017201774A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106681055A (zh) * 2017-03-14 2017-05-17 深圳市华星光电技术有限公司 一种显示装置
CN107167962A (zh) * 2017-06-08 2017-09-15 深圳市华星光电技术有限公司 一种led光源、背光模组及显示装置
CN109597246B (zh) * 2019-01-31 2021-12-21 京东方科技集团股份有限公司 背光模组及液晶显示装置
CN109709719B (zh) * 2019-02-18 2022-09-23 京东方科技集团股份有限公司 背光模组及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234132A (ja) * 2004-02-18 2005-09-02 Sony Corp 液晶表示用バックライト光源装置及びその波長選択フィルタ並びにカラー液晶表示装置及びそのフィルタ構成方法
JP2005234134A (ja) * 2004-02-18 2005-09-02 Sony Corp 液晶表示用バックライト光源装置及びカラー液晶表示装置
JP2006145885A (ja) * 2004-11-19 2006-06-08 Sony Corp 光学フィルタ及びバックライト装置
CN105068303A (zh) * 2015-09-11 2015-11-18 深圳市华星光电技术有限公司 阵列基板和液晶显示面板
CN105093662A (zh) * 2015-09-11 2015-11-25 深圳市华星光电技术有限公司 滤光片及背光模组
CN105182612A (zh) * 2015-10-26 2015-12-23 深圳市华星光电技术有限公司 用于背光模组的光源组件、背光模组以及液晶显示器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2082168A4 (en) * 2006-10-18 2011-07-20 Real D FILTERS FOR LED ILLUMINATORS
JPWO2009125618A1 (ja) * 2008-04-11 2011-08-04 ハリソン東芝ライティング株式会社 発光装置
CN105339836B (zh) * 2013-01-04 2019-01-04 瑞尔D股份有限公司 用于多功能有源矩阵液晶显示器的多基色背光源
US20150070900A1 (en) * 2013-09-12 2015-03-12 3M Innovative Properties Company Catadioptric spotlight
US10416369B2 (en) * 2014-10-03 2019-09-17 Signify Holding B.V. Light concentrator for use in a lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234132A (ja) * 2004-02-18 2005-09-02 Sony Corp 液晶表示用バックライト光源装置及びその波長選択フィルタ並びにカラー液晶表示装置及びそのフィルタ構成方法
JP2005234134A (ja) * 2004-02-18 2005-09-02 Sony Corp 液晶表示用バックライト光源装置及びカラー液晶表示装置
JP2006145885A (ja) * 2004-11-19 2006-06-08 Sony Corp 光学フィルタ及びバックライト装置
CN105068303A (zh) * 2015-09-11 2015-11-18 深圳市华星光电技术有限公司 阵列基板和液晶显示面板
CN105093662A (zh) * 2015-09-11 2015-11-25 深圳市华星光电技术有限公司 滤光片及背光模组
CN105182612A (zh) * 2015-10-26 2015-12-23 深圳市华星光电技术有限公司 用于背光模组的光源组件、背光模组以及液晶显示器

Also Published As

Publication number Publication date
US10175529B2 (en) 2019-01-08
US20180101065A1 (en) 2018-04-12
CN105867024A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
US8860907B2 (en) Backlight unit, liquid crystal display apparatus using the same, and light-emitting diode used therefor
US10481428B2 (en) Display substrate and display device
WO2016026181A1 (zh) 彩色液晶显示模组结构及其背光模组
WO2017201774A1 (zh) 一种背光模组以及液晶显示装置
WO2015144068A1 (zh) 液晶显示装置
US20180203296A1 (en) Backlight module
US10754195B2 (en) Lighting device and display device
WO2018090572A1 (zh) 显示基板及其制造方法、和显示面板
JP4124684B2 (ja) 半透過型液晶表示装置
WO2017181477A1 (zh) 背光模组及显示装置
TW201426114A (zh) 液晶顯示器
US11009746B2 (en) Backlight device and liquid crystal display apparatus
WO2019062290A1 (zh) 发光装置及其发光光谱的调节方法、背光模组以及液晶显示装置
US20160377788A1 (en) Backlight module and liquid crystal display device using the same
JP2008052067A (ja) 光源装置、表示装置および発光ダイオードチップ
CN110473892B (zh) 显示装置
WO2016155115A1 (zh) 导光板及具有该导光板的背光模块和液晶显示器
US8223300B2 (en) Color filters and display device having color filters
US11036076B2 (en) Display device having eye protection
WO2017118162A1 (zh) 显示面板及显示装置
TWI691765B (zh) 顯示裝置
KR101947073B1 (ko) 액정표시장치
KR102272351B1 (ko) 백라이트 유닛 및 이를 포함하는 액정표시장치
WO2015149402A1 (zh) Lcd显示装置实现高色饱的方法及背光模组
US11709304B2 (en) Light source module and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15108298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902763

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902763

Country of ref document: EP

Kind code of ref document: A1