WO2020253312A1 - 显示装置及制作方法 - Google Patents

显示装置及制作方法 Download PDF

Info

Publication number
WO2020253312A1
WO2020253312A1 PCT/CN2020/082175 CN2020082175W WO2020253312A1 WO 2020253312 A1 WO2020253312 A1 WO 2020253312A1 CN 2020082175 W CN2020082175 W CN 2020082175W WO 2020253312 A1 WO2020253312 A1 WO 2020253312A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
quantum dot
layer
units
unit
Prior art date
Application number
PCT/CN2020/082175
Other languages
English (en)
French (fr)
Inventor
杨松
祝明
张世玉
方正
石戈
牛海军
刘玉杰
韩佳慧
王宇瑶
张云云
孙艳六
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020253312A1 publication Critical patent/WO2020253312A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the embodiments of the present disclosure relate to a display device and a manufacturing method of the display device.
  • Quantum dot materials refer to semiconductor crystal grains with a particle size of 1-100 nm. When the quantum dot material is excited by an external light source, electrons undergo transitions and emit fluorescence. Due to the narrow half-wave width of the quantum dot material, it can emit high-purity monochromatic light. Display devices based on quantum dot materials have higher luminous efficiency than conventional display devices.
  • At least one embodiment of the present disclosure provides a display device, including: a backlight; a photonic crystal layer, the photonic crystal layer is disposed on one side of the backlight, and the photonic crystal layer includes a plurality of photonic crystal units; A quantum dot layer, the quantum dot layer is disposed on the side of the photonic crystal layer away from the backlight, the quantum dot layer includes a plurality of quantum dot units, the plurality of quantum dot units and the plurality of photons
  • the crystal units are arranged in one-to-one correspondence; wherein, the plurality of photonic crystal units are configured to enable the luminous intensity distribution of the plurality of quantum dot units at different light-emitting angles to be different from that of the electroluminescent device at different light-emitting angles. Match the luminous intensity distribution at different locations.
  • each of the plurality of photonic crystal units includes a plurality of protrusions arranged in an array.
  • each of the plurality of photonic crystal units is configured to increase the luminous intensity of the quantum dot unit at a small light exit angle.
  • each of the plurality of photonic crystal units is configured to reduce the luminous intensity of the quantum dot unit under a large light emitting angle.
  • the refractive index of the material of the plurality of photonic crystal units is greater than 1.6.
  • the material of the plurality of photonic crystal units includes at least one of polysilicon and titanium dioxide.
  • the photonic crystal layer includes at least one of a one-dimensional photonic crystal, a two-dimensional photonic crystal, and a three-dimensional photonic crystal.
  • the backlight source includes a plurality of electroluminescent devices, and the plurality of quantum dot units are arranged in a one-to-one correspondence with the plurality of electroluminescent devices;
  • the electroluminescent devices include organic At least one of a light emitting diode, an inorganic light emitting diode, and a quantum dot light emitting diode.
  • the display device further includes at least one of the following structures: a backlight transflective layer, the backlight transflective layer is disposed on the quantum dot layer away from the photonic crystal layer On one side, the backlight transflective layer covers the quantum dot unit; color film layer, the color film layer is arranged on the side of the backlight transflective layer away from the quantum dot layer, the The color film layer includes a plurality of color resist blocks of different colors; and a first substrate, which is arranged between the backlight source and the photonic crystal layer.
  • the electroluminescent device is a blue electroluminescent device
  • the color film layer includes a red color resist block, a green color resist block, and a blue color resist block.
  • the orthographic projection on the first substrate and the orthographic projection of the quantum dot layer on the first substrate and the orthographic projection of the photonic crystal layer on the first substrate do not overlap, wherein the blue The color resistance block extends to one side of the first substrate and is in contact with the first substrate, or a transparent medium is filled between the blue color resistance block and the first substrate.
  • the electroluminescent device is an ultraviolet photoluminescent device
  • the quantum dot layer includes a red quantum dot unit, a green quantum dot unit, and a blue quantum dot unit
  • the color film layer includes A red color resist block, a green color resist block, and a blue color resist block, and the color resist blocks in the color film layer and the quantum dot units in the quantum dot layer are arranged in a one-to-one correspondence.
  • a method for manufacturing a display device including: manufacturing a plurality of electroluminescent devices; forming a photonic crystal layer on one side of the plurality of electroluminescent devices, and the photonic crystal
  • the layer includes a plurality of photonic crystal units; a quantum dot layer is formed on the side of the photonic crystal layer away from the plurality of electroluminescent devices, the quantum dot layer includes a plurality of quantum dot units, and the quantum dot unit is connected to the
  • the photonic crystal units are arranged in one-to-one correspondence, and the photonic crystal units are configured to make the luminous intensity distribution of the quantum dot unit at different light-emitting angles and the luminous intensity distribution of the electroluminescent device at different light-emitting angles Match.
  • forming the photonic crystal layer includes: depositing a material for forming the photonic crystal layer on one side of the plurality of electroluminescent devices to form a photonic crystal material layer; and The photonic crystal material layer is patterned to form the plurality of photonic crystal units, wherein each of the plurality of photonic crystal units includes protrusions arranged in an array on a side away from the electroluminescent device.
  • a display substrate including: a base substrate; a photonic crystal layer, the photonic crystal layer is disposed on the base substrate, and the photonic crystal layer includes a plurality of photonic crystal units ; Quantum dot layer, the quantum dot layer is arranged on the photonic crystal layer, the quantum dot layer includes a plurality of quantum dot units, the plurality of quantum dot units and the plurality of photonic crystal units are arranged in a one-to-one correspondence
  • the photonic crystal layer is located in the direction of incidence of the incident light of the quantum dot layer, and is configured to increase the luminous intensity of the quantum dot unit at a small light angle and reduce the quantum dot unit at a large light angle The luminous intensity.
  • each of the plurality of photonic crystal units includes a plurality of protrusions arranged in an array.
  • the refractive index of the material of the plurality of photonic crystal units is greater than 1.6.
  • the material of the plurality of photonic crystal units includes at least one of polysilicon and titanium dioxide.
  • the photonic crystal layer includes at least one of a one-dimensional photonic crystal, a two-dimensional photonic crystal, and a three-dimensional photonic crystal.
  • Figure 1 shows a schematic structural diagram of a display device in the related art
  • FIG. 2 shows a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • Figure 3 shows the luminous intensity distribution diagram of quantum dots at different light exit angles
  • Figure 4 shows the luminous intensity distribution diagram of the electroluminescent device at different light exit angles
  • Fig. 5 shows a schematic structural diagram of a photonic crystal unit according to an embodiment of the present disclosure
  • Fig. 6 shows the luminous intensity distribution diagram of the quantum dot unit adjusted by the photonic crystal unit according to an embodiment of the present disclosure at different light output angles
  • FIG. 7 shows a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • FIG. 8 shows a schematic structural diagram of a display device according to another embodiment of the present disclosure.
  • FIG. 9 shows a schematic structural diagram of a display device according to another embodiment of the present disclosure.
  • FIG. 10 shows a schematic flowchart of a method for manufacturing a display device according to an embodiment of the present disclosure
  • FIG. 11 shows a schematic structural diagram of a display substrate according to an embodiment of the present disclosure
  • Figure 12 shows the luminous intensity distribution diagram of the quantum dots at different light exit angles after being excited
  • Fig. 13 shows the luminous intensity distribution diagram of the quantum dot unit after being adjusted by the photonic crystal unit at different light exit angles.
  • the structure of a current display device based on quantum dot materials is shown in Figure 1.
  • the display device includes a backlight 100, a first polarizer 10, a liquid crystal layer 20, a second polarizer 30, a quantum dot layer 300, and a color
  • the film layer 400 wherein the backlight source 100 can be an electroluminescent device (such as an inorganic light emitting diode (LED)), and the light emitted by the backlight source 100 can excite the quantum dots in the quantum dot layer 300 to produce light of the same color as the quantum dots, After the above light passes through the corresponding color resist blocks in the color film layer 400, the display of the display device can be realized.
  • LED inorganic light emitting diode
  • FIG. 3 shows the luminous intensity distribution of quantum dots at different light-emitting angles. Quantum dots have lower luminous intensity in the range of small light-emitting angles (such as -10° to 10°), and higher light-emitting angles in the range of large light-emitting angles. The luminous intensity.
  • Figure 4 which is the luminous intensity distribution diagram of the electroluminescent device at different light emitting angles. The electroluminescent device has a higher luminous intensity in the small light emitting angle (such as -10° to 10°).
  • the luminous intensity distribution of quantum dots at a small light-emitting angle is inconsistent with that of electroluminescent devices at a small light-emitting angle, and the luminous intensity distribution of quantum dots at a large light-emitting angle is the same as that of an electroluminescent device at a large light-emitting angle.
  • the luminous intensity distribution is also inconsistent, resulting in the appearance of visual deviation, which affects the display effect of the display device.
  • the luminous intensity distribution of the quantum dots at different light exit angles refers to the luminous intensity distribution of the light emitted by the quantum dots after passing through the color film layer.
  • the luminous intensity shown in Figures 3 and 4 is the relative intensity after normalization
  • the relative intensity value in Figure 3 does not represent the absolute intensity value of the quantum dot luminous intensity
  • the relative intensity in Figure 4 The intensity value also does not represent the absolute intensity value of the luminous intensity of the electroluminescent device, and is only used to reflect the trend of the luminous intensity of the quantum dots and the electroluminescent device at different light exit angles.
  • the display device includes a backlight source 100, a photonic crystal layer 200, and a quantum dot layer 300.
  • the backlight source 100 may be an electroluminescent device, and the photonic crystal layer 200 is arranged on the light emitting side of the backlight source 100.
  • the photonic crystal layer 200 includes a plurality of photonic crystal units 210.
  • the quantum dot layer 300 is disposed on the side of the photonic crystal layer 200 away from the backlight 100.
  • the quantum dot layer 300 includes a plurality of quantum dot units 310, the quantum dot unit 310 and the photonic crystal unit 210 is arranged in a one-to-one correspondence, and the photonic crystal unit 210 is configured to match the luminous intensity distribution of the quantum dot unit 310 at different light-emitting angles with the luminous intensity distribution of the electroluminescent device at different light-emitting angles.
  • the photonic crystal unit is used to adjust the luminous intensity of the quantum dot unit at different light exit angles, so that the luminous intensity distribution of the quantum dot unit at different light exit angles is comparable to electroluminescence.
  • the luminous intensity distributions of the devices at different light emitting angles are matched, so that the problem of visual deviation can be effectively alleviated, and the display device can realize visual deviation display.
  • the quantum dot unit 310 emits light with a specific color, and the light emitted by the quantum dot unit 310 is partly away from the photon
  • the crystal unit 210 propagates on one side, and part of it propagates to the side close to the photonic crystal unit 210.
  • the photonic crystal unit 210 can adjust the light emission direction of the light emitted by the quantum dot unit 310 and propagated to the photonic crystal unit 210 so that this part of the light propagates to the side away from the photonic crystal unit 210 again.
  • the photonic crystal unit can reflect light of a specific color.
  • the reflectivity of the photonic crystal can be different under different light exit angles.
  • the photonic crystal unit 210 can highly reflect the light emitted by the quantum dot unit at a small light exit angle, and reduce the light emitted by the quantum dot unit at a large light exit angle. reflection. Therefore, through the adjustment of the photonic crystal unit, the luminous intensity distribution of the quantum dot unit at different light-emitting angles can be matched with the luminous intensity distribution of the electroluminescent device at different light-emitting angles.
  • the luminous intensity distribution of the quantum dot unit at different light exit angles refers to the luminous intensity distribution of the light emitted by the quantum dot unit after passing through the color film layer.
  • FIG. 6 is a luminous intensity distribution diagram of the light emitted by the quantum dot unit after being adjusted by the photonic crystal unit.
  • the quantum dot unit 310 is at a small light emitting angle (such as 0°) has a higher luminous intensity and a lower luminous intensity at a large light-emitting angle.
  • a small light emitting angle such as 0°
  • it has a higher luminous intensity at a small light-emitting angle, and has a higher luminous intensity at a large light-emitting angle.
  • the distribution of low luminous intensity matches.
  • the luminous intensity distribution of the quantum dot unit adjusted by the photonic crystal unit matches the luminous intensity distribution of the electroluminescent device, which can effectively alleviate the problem of visual deviation, and enable the display device to realize visual deviation display.
  • the luminous intensity at different light exit angles of the quantum dot unit after adjustment in Fig. 6 is also the normalized relative intensity, and the relative intensity value in Fig. 6 does not represent the absolute intensity of the luminous intensity of the quantum dot unit The value is only used to reflect the change trend of the luminous intensity of the quantum dot unit at different light emitting angles.
  • the curvature of the luminous intensity curve of the quantum dot unit adjusted by the photonic crystal unit at -50 degrees to 0 degrees is not completely consistent with the curvature of the electroluminescent device at the corresponding light output angle
  • the luminous intensity of the quantum dot unit increases with the light output.
  • the changing trend of the angle is the same as that of the electroluminescent device. As a result, the visual bias problem can be effectively alleviated.
  • the photonic crystal unit 210 is configured to increase the luminous intensity of the quantum dot unit 310 at a small light exit angle. Therefore, it is beneficial to match the luminous intensity distribution of the quantum dot unit with the luminous intensity distribution of the electroluminescent device, so as to alleviate the problem of viewing deviation and improve the display quality of the display device.
  • the photonic crystal unit 210 by adjusting the material and size of the photonic crystal unit 210, the light in a certain frequency range cannot be transmitted in the photonic crystal unit 210, and the photonic crystal unit 210 can reflect the light of a specific color while the photonic crystal unit 210
  • the material and size of the crystal unit 210 are matched with each other, so that at a small light exit angle (such as 0 degrees), the photonic crystal unit 210 matches the wave vector of the reflected light to achieve high reflection, so as to improve the quantum dot unit 310 at a small light exit angle.
  • the photonic crystal unit 210 has a wave vector mismatch with the reflected light, achieving low reflection, so that the luminous intensity of the quantum dot unit 310 at a large light-emitting angle is lower than that at a small light-emitting angle That is to say, the photonic crystal unit 210 can be used to adjust the reflectance of the quantum dot unit 310 from 0 degrees to a large light-emitting angle, so that the quantum dot unit can achieve a positive viewing angle light enhancement, so as to achieve its integration with electroluminescent devices. Matching of luminous intensity distribution.
  • the normal transmission of the photonic crystal unit 210 to the backlight should also be considered, and the excitation of the quantum dot unit is not affected.
  • the material and size of the photonic crystal unit are not particularly limited, as long as the photonic crystal unit can achieve high reflection of a specific color of light at a small angle of light, low reflection at a large angle of light, and at the same time can achieve normal transmission of the backlight.
  • the photonic crystal unit 210 may be composed of a material with a low refractive index. At this time, the photonic crystal unit 210 has a relatively large height.
  • the photonic crystal unit 210 may be composed of a material with a high refractive index, and in this case, the photonic crystal unit 210 has a smaller height.
  • the material and size of the photonic crystal unit are matched with each other, and the joint effect of the material and the size realizes the adjustment of the luminous intensity of the quantum dot unit by the photonic crystal unit.
  • the material of the photonic crystal unit 210 may be a material with a refractive index greater than 1.6.
  • the use of the above-mentioned material with higher refractive index to form the photonic crystal unit can reduce the height of the photonic crystal unit and reduce the processing difficulty.
  • the material of the photonic crystal unit 210 may include at least one of titanium dioxide and polysilicon.
  • the photonic crystal layer 200 may include at least one of a one-dimensional photonic crystal, a two-dimensional photonic crystal, and a three-dimensional photonic crystal.
  • photonic crystals are artificial periodic dielectric structures with photonic band gap characteristics.
  • One-dimensional photonic crystals can adjust the luminous intensity of quantum dot units in one direction
  • two-dimensional photonic crystals can adjust the luminous intensity of quantum dot units in one direction.
  • the three-dimensional photonic crystal can adjust the luminous intensity of the quantum dot unit in three directions.
  • the photonic crystal units 210 corresponding to different quantum dot units 310 may be photonic crystals with the same dimension, or photonic crystals with different dimensions.
  • the photonic crystal unit 210 includes a plurality of protrusions 211 arranged in an array. Therefore, the size of the photonic crystal unit can be controlled simply by controlling the size of the protrusion.
  • the protrusions of the photonic crystal unit are used to adjust the luminous intensity of the quantum dot unit at different light exit angles.
  • the dimensional characteristics of the photonic crystal unit 210 include the width (L as shown in FIG. 5), the length (not shown in FIG. 5), and the height (as shown in FIG. 5) of the protrusion 211. H) and period (d as shown in FIG. 5).
  • the period d is the distance between the centers of two adjacent protrusions 211.
  • the protrusions 211 can be adjusted.
  • the above-mentioned size is designed so that the photonic crystal unit can adjust the luminous intensity of the quantum dot unit.
  • the width and length of the protrusion 211 may be equal, that is, the cross section of the protrusion 211 parallel to the substrate is square.
  • the period of the protrusion 211 can be determined according to formula (1). After the period of the protrusion 211 is determined, The width, length, and height of the protrusion 211 can be determined by simulation software.
  • n neff is the refractive index of the material constituting the photonic crystal unit
  • is the wavelength of the light reflected by the photonic crystal unit
  • P x is the convex period.
  • the quantum dot layer 300 may include a red quantum dot unit and a green quantum dot unit, and the photonic crystal unit 210 corresponding to the red quantum dot unit may be made of polysilicon
  • the width and length of the protrusions in the photonic crystal unit 210 are both 162 nm, the height is 144 nm, and the period is 396 nm.
  • the photonic crystal unit 210 corresponding to the green quantum dot unit can also be composed of polysilicon.
  • the photonic crystal unit 210 The width and length of the protrusion are both 126 nm, the height is 112 nm, and the period is 308 nm.
  • the photonic crystal unit corresponding to the red quantum dot unit can reflect red light and adjust the luminous intensity of the red light
  • the photonic crystal unit corresponding to the green quantum dot unit can reflect green light.
  • adjust the luminous intensity of the green light so that the luminous intensity distribution of the quantum dot unit at different light-emitting angles matches the luminous intensity distribution of the electroluminescent device at different light-emitting angles.
  • the display device may further include at least one of the following structures: a semi-transparent and semi-reflective layer 500, a color film layer 400, and a first substrate 600.
  • the reverse layer 500 is arranged on the side of the quantum dot layer 300 away from the photonic crystal layer 200
  • the backlight transflective layer 500 covers the quantum dot unit 310
  • the color film layer 400 is arranged on the quantum dot layer 300 away from everything.
  • One side of the photonic crystal unit 200 covers the quantum dot layer 300.
  • the color film layer 400 is arranged on the transflective layer away from the quantum dot layer 300 And cover the transflective layer, the color film layer 400 includes a plurality of color resist blocks that are not all the same in color, and the first substrate 600 is disposed between the backlight source 100 and the photonic crystal layer 200 , As the supporting substrate of the photonic crystal layer.
  • the backlight transflective layer can transmit the light emitted by the quantum dot unit on the one hand, and can reflect the backlight that is not absorbed by the quantum dot unit on the other hand, so as to realize the cyclic excitation of the quantum dot unit by the backlight and improve the utilization rate of the backlight ,
  • the color film layer passes through the red, green and blue color resist blocks to filter out the backlight that is not converted into red, green or blue light in the quantum dot layer, improving the purity of monochromatic light and improving the color rendering degree.
  • the first substrate 600 may be a glass substrate, which is not limited in the embodiment of the present disclosure.
  • the material of the backlight transflective layer is not particularly limited, as long as it can pass the light emitted by the quantum dot unit while reflecting the backlight, and those skilled in the art can design according to actual conditions.
  • the transflective layer 500 can be made of photonic crystals, which can reflect the backlight and transmit light of other wavelengths besides the backlight (for example, transmit the red, green or blue light that the backlight is converted into by the quantum dot layer, When the backlight emits blue light, the photonic crystal is a photonic crystal that reflects blue light, and when the backlight emits ultraviolet light, the photonic crystal is a photonic crystal that reflects ultraviolet light).
  • the backlight transflective layer 500 may be a composite film structure composed of high and low refractive index materials (such as a composite film composed of titanium dioxide and silicon dioxide).
  • the backlight transflective layer 500 may be a metal transflective structure (such as metals such as chromium and silver).
  • the backlight transflective layer 500 may be a transflective structure composed of cholesteric liquid crystal.
  • a black matrix is provided between two adjacent color resist blocks in the color filter layer 400 (the black area in FIG. 7 and FIG. 8) to prevent crosstalk between adjacent color resist blocks. .
  • the display device may further include a second substrate 700 disposed on the side of the color filter layer 400 away from the backlight transflective layer 500.
  • the second substrate can protect the internal structure of the display device.
  • the backlight source 100 in the related art display device is a full-surface LED light source.
  • independent control of the quantum dots cannot be achieved.
  • the current input to the LED light source is adjusted.
  • the brightness of the LED light source can be adjusted, the adjustment is the adjustment of the brightness of the entire LED light source. Therefore, the liquid crystal layer 20 and the first polarizer 10 and the second polarizer 30 need to be jointly adjusted to achieve gray.
  • the adjustment of the steps leads to the complexity of the structure of the display device and the complexity of the manufacturing process.
  • the electroluminescent device constituting the backlight source may include a plurality of sub-electroluminescent devices 110, and the quantum dot unit 310 corresponds to the sub-electroluminescent device 110 one-to-one Set up.
  • the sub-electroluminescent device can realize independent control of the quantum dot unit, and the sub-electroluminescent device can adjust the brightness of each sub-electroluminescent device by adjusting the magnitude of the input current, so as to realize the gray scale display of the display device.
  • the adjustment of the display device can save the structure of the liquid crystal layer and the polarizer, while improving the display quality of the display device, further simplifying the structure of the display device and reducing the cost of the display device.
  • the electroluminescent device may include at least one of an organic light emitting diode, an inorganic light emitting diode, and a quantum dot light emitting diode.
  • the light emitted by the backlight source 100 may be light with a wavelength below 470nm, that is, the backlight source 100 is a short-wavelength light source, and the energy level interval of the short-wavelength light is large. After being absorbed by the quantum dot unit, it can emit energy. Long-wavelength light with small step intervals, such as red light and green light.
  • the backlight source 100 may be an ultraviolet photoluminescence device.
  • the quantum dot layer 300 includes a red quantum dot unit 311, a green quantum dot unit 312, and a blue quantum dot unit 313, and a color film layer 400 It includes a red color resist block 410, a green color resist block 420, and a blue color resist block 430.
  • the color resist blocks in the color film layer 400 are arranged in one-to-one correspondence with the quantum dot unit, and the ultraviolet light emitted by the backlight can excite the red quantum dot unit 311 Red light is emitted to excite the green quantum dot unit 312 to emit green light, and the blue quantum dot 313 is excited to emit blue light.
  • the red light passes through the red color resist block 410, the green light passes through the green color resist block 420, and the blue light passes through the blue color resist block 430.
  • the ultraviolet light emitted but not converted into red light, green light, and blue light is filtered by the red color resist block 410, the green color resist block 420, and the blue color resist block 430 to realize the display of the display device.
  • the backlight transflective layer 500 covers the red quantum dot unit 311, the green quantum dot unit 312, and the blue quantum dot unit 313, so as to convert the non-quantum dot unit 310 and not filtered by the color resist Ultraviolet light is reflected.
  • the backlight source 100 may be a blue electroluminescence device.
  • the quantum dot layer 300 includes a red quantum dot unit 311 and a green quantum dot unit 312, and the color film layer 400 includes a red color resist block. 410, the green color resist block 420 and the blue color resist block 430, the orthographic projection of the blue color resist block 430 on the first substrate 600 and the orthographic projection of the photonic crystal layer 200 on the first substrate 600 and the quantum dot layer 300 on the first substrate 600 The orthographic projections on the substrate 600 do not overlap.
  • the blue color resist block 430 in the color filter layer 400 is directly arranged on the first substrate 600, and the upper surface thereof is flush with the upper surfaces of the red color resist block 410 and the green color resist block 420 .
  • Blue light is short-wavelength light, which can excite the red quantum dot unit to emit red light and the green quantum dot unit to emit green light.
  • the blue electroluminescent device is used as the backlight.
  • the blue quantum can be omitted in the area corresponding to the blue sub-pixel.
  • a blue color resist block can be directly arranged on the first substrate, the blue light emitted by the blue electroluminescent device is emitted through the blue color resist block, and the red light emitted by the red quantum dot unit passes through the red color resist The block is emitted, and the green light emitted by the green quantum dot unit is emitted through the green color blocking block to realize the display of the display device.
  • the backlight transflective layer 500 covers the red quantum dot unit 311 and the green quantum dot unit 312 to reflect the blue light not converted by the quantum dot unit 310.
  • the transparent medium 40 is filled between the blue color resist block 430 and the first substrate 600.
  • the transparent medium may be resin or silicon dioxide, which can transmit blue light, and the embodiment of the present disclosure does not limit the material of the transparent medium.
  • the backlight transflective layer 500 may be a whole-layer structure (as shown in FIG. 7), or the backlight transflective layer 500 may further include a plurality of backlight transflective units 510 (as shown in FIG. 8 or 9), the backlight transflective unit 510 and the quantum dot unit are arranged in one-to-one correspondence.
  • the blue light that is not completely converted by the red quantum dot unit 311 and the green quantum dot unit 312 after being reflected by the backlight transflective layer 500 can be colored by red
  • the blocking block 410 and the green color blocking block 420 absorb and improve the purity of colors, so that the display device can achieve a higher color gamut.
  • the present disclosure proposes a method of manufacturing a display device.
  • the display device manufactured by the method may be the display device described above, and therefore, the display device manufactured by the method may have the same features and advantages as the display device described above, and will not be repeated here. Repeat.
  • the method includes:
  • the backlight source is an electroluminescent device.
  • the electroluminescent device may include a plurality of sub-electroluminescent devices, and the subsequent photonic crystal units and quantum dot units are arranged in a one-to-one correspondence with the sub-electroluminescent devices, so that the backlight can be independent of the quantum dot unit.
  • the backlight can be controlled by adjusting the size of the input current to control the gray scale of the display device. Therefore, the structure of the liquid crystal layer, the polarizer, etc. can be omitted, the structure and manufacturing process of the display device can be simplified, and the cost can be reduced.
  • the light-emitting wavelength and color of the backlight have been described in detail above, and will not be repeated here.
  • a photonic crystal layer is provided on one side of the backlight.
  • to provide a photonic crystal layer on one side of the backlight is to provide a photonic crystal layer on a glass substrate (ie, the first substrate).
  • the glass substrate is located between the backlight and the photonic crystal layer.
  • the photonic crystal layer includes A plurality of photonic crystal units, the subsequent quantum dot unit and the photonic crystal unit are arranged in one-to-one correspondence, and the photonic crystal unit is configured to adjust the luminous intensity of the quantum dot unit, so that the luminous intensity distribution of the quantum dot unit at different light emission angles is consistent with The luminous intensity distribution of the electroluminescent device at different light emitting angles is matched, thus, the problem of visual deviation can be effectively alleviated, so that the display device can realize the visual deviation display.
  • the photonic crystal layer may be formed by the following steps: first, deposit a material for forming the photonic crystal layer on the glass substrate to form a photonic crystal material layer, and then pattern the photonic crystal material layer, An array of protrusions are formed on the side of the photonic crystal material layer away from the glass substrate to obtain a plurality of photonic crystal units, thereby obtaining a photonic crystal layer.
  • the photonic crystal layer can be obtained by a simple method.
  • a quantum dot layer is arranged on the side of the photonic crystal layer away from the backlight.
  • the quantum dot layer includes a plurality of quantum dot units, and the quantum dot units and the photonic crystal units are arranged in a one-to-one correspondence. Therefore, the photonic crystal unit can be used to adjust the luminous intensity of each quantum dot unit.
  • quantum dot unit has been described in detail above, and will not be repeated here.
  • the manufacturing method of the quantum dot layer is not particularly limited, and those skilled in the art can prepare the quantum dot layer according to the usual manufacturing method of the quantum dot layer.
  • the method may further include: disposing a backlight transflective layer on the side of the quantum dot layer away from the photonic crystal layer, the backlight transflective layer covering the quantum dot unit, and the backlight transflective layer A color film layer is arranged on the side away from the quantum dot layer, and a second substrate is arranged on the side of the color film layer away from the backlight transflective layer.
  • the backlight transflective layer can reflect the backlight that has not been converted by the quantum dot unit, realize the cyclic excitation of the quantum dot unit by the backlight, improve the utilization rate of the backlight, and the color film layer filters out the unconverted backlight.
  • the second substrate can protect the structure in the display device.
  • a display substrate including: a base substrate; a photonic crystal layer, the photonic crystal layer is disposed on the base substrate, and the photonic crystal layer includes a plurality of photonic crystal units ; Quantum dot layer, the quantum dot layer is arranged on the photonic crystal layer, the quantum dot layer includes a plurality of quantum dot units, the plurality of quantum dot units and the plurality of photonic crystal units are arranged in a one-to-one correspondence
  • the photonic crystal layer is disposed in the incident direction of the incident light of the quantum dot unit, and is configured to increase the luminous intensity of the quantum dot unit at a small light-emitting angle and reduce the quantum dot unit at a large light-emitting angle The luminous intensity below.
  • the display substrate includes a base substrate 1100, a photonic crystal layer 1200 disposed on the base substrate 1100, and a quantum dot layer 1300 disposed on the photonic crystal layer 1200.
  • the photonic crystal layer 1200 includes a plurality of photonic crystal units 1210
  • the quantum dot layer 1300 includes a plurality of quantum dot units 1310.
  • Each photonic crystal unit is provided with a quantum dot unit, that is, multiple quantum dot units and multiple The photonic crystal units are arranged in one-to-one correspondence.
  • Fig. 12 shows the luminous intensity distribution diagram of the quantum dots at different light exit angles after being excited, where the 0° light exit angle refers to the direction parallel to the incident angle of the incident light.
  • the photonic crystal layer 1200 is disposed in the incident direction of the incident light of the quantum dot layer 1300. After the incident light excites each quantum dot unit 1310 in the quantum dot layer 1300, the quantum dot unit 1310 emits light with a specific color. Part of the light emitted by the quantum dot unit 1310 propagates to the side away from the photonic crystal unit 1210, and part of the light is closer to One side of the photonic crystal unit 1210 propagates.
  • the photonic crystal unit can reflect light of a specific color, and the reflectivity of the photonic crystal under different light exit angles can be different.
  • the material and structure of the photonic crystal are selected so that the photonic crystal unit 1210 highly reflects the light emitted by the quantum dot unit 1310 at a small light-emitting angle, and low-reflects the light emitted by the quantum dot unit 1310 at a large light-emitting angle.
  • the light output intensity at each light output angle adjusted by the photonic crystal unit 1210 of the dot unit 1310 is shown in FIG. 13.
  • the luminous intensity of the quantum dot unit 1310 at a small light-exit angle is increased, and the luminous intensity of the quantum dot unit 1310 at a small light-exit angle is reduced, so that the quantum dot unit 1310 has a large light-exit angle.
  • the luminous intensity is lower than the luminous intensity at a small light-exit angle, so that the quantum dot unit realizes the enhancement of the light output from the front viewing angle, thereby reducing the visual deviation.
  • the material of the photonic crystal unit 1210 may be a material with a refractive index greater than 1.6.
  • the use of the above-mentioned material with higher refractive index to form the photonic crystal unit can reduce the height of the photonic crystal unit and reduce the processing difficulty.
  • the constituent material of the photonic crystal unit 1210 may be at least one of titanium dioxide and polysilicon.
  • the photonic crystal layer 1200 may include at least one of a one-dimensional photonic crystal, a two-dimensional photonic crystal, and a three-dimensional photonic crystal.
  • the photonic crystal is an artificial periodic dielectric structure with photonic band gap characteristics.
  • one-dimensional photonic crystals can adjust the luminous intensity of quantum dot units in one direction
  • two-dimensional photonic crystals can adjust the luminous intensity of quantum dot units in two directions
  • three-dimensional photonic crystals can adjust the luminous intensity of quantum dot units in three directions. Adjust the luminous intensity of the quantum dot unit above.
  • the photonic crystal units 1210 corresponding to different quantum dot units 1310 may be photonic crystals with the same dimension. In some embodiments of the present disclosure, the photonic crystal units 1210 corresponding to different quantum dot units 1310 may also be photonic crystals with different dimensions.
  • the photonic crystal unit 1210 includes a plurality of protrusions arranged in an array.
  • the size of the photonic crystal unit can be controlled simply by controlling the size of the protrusion.
  • the protrusions of the photonic crystal unit are used to adjust the luminous intensity of the quantum dot unit at different light exit angles.
  • the photonic crystal unit may be composed of a material with a low refractive index. In this case, the photonic crystal unit has a relatively large height. In some other embodiments of the present disclosure, the photonic crystal unit may be composed of a material with a high refractive index. In this case, the photonic crystal unit has a smaller height. In other words, the constituent materials and size of the photonic crystal unit are matched with each other, and the combined effect of the material and size realizes the adjustment of the luminous intensity of the quantum dot unit by the photonic crystal unit.
  • the quantum dot unit has a large luminous intensity at a small light-emitting angle and a small luminous intensity at a large light-emitting angle. The problem of color shift when the quantum dot unit is applied to the display panel is solved.
  • the description with reference to the terms “one embodiment”, “another embodiment”, etc. means that the feature, structure, material, or characteristic described in conjunction with the embodiment is included in at least one embodiment of the present disclosure.
  • the schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the described features, structures, materials or characteristics can be combined in any one or more embodiments or examples in a suitable manner.
  • those skilled in the art can combine and combine the different embodiments or examples and the features of the different embodiments or examples described in this specification without contradicting each other.
  • the terms “first” and “second” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示装置,包括:背光源(100);光子晶体层(200),光子晶体层(200)设置在背光源(100)的一侧,光子晶体层(200)包括多个光子晶体单元(210);量子点层(300),量子点层(300)设置在光子晶体层(200)远离背光源(100)的一侧,量子点层(300)包括多个量子点单元(310),多个量子点单元(310)与多个光子晶体单元(210)一一对应设置;多个光子晶体单元(210)被配置为可令多个量子点单元(310)在不同出光角度处的发光强度分布情况,与电致发光器件在不同出光角度处的发光强度分布情况相匹配。还公开了一种显示基板、制作显示装置的方法。

Description

显示装置及制作方法
本公开要求于2019年6月20日提交的申请号为201910537818.X、发明名称为“显示装置及制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例涉及一种显示装置及一种显示装置的制作方法。
背景技术
量子点材料是指粒径在1-100nm的半导体晶粒。量子点材料在外部光源的激发下,电子发生跃迁,发射荧光,由于量子点材料的半波宽较窄,因而可发出较高纯度的单色光。基于量子点材料的显示装置相比于惯常的显示装置具有更高的发光效率。
发明内容
本公开的至少一个实施例提供了一种显示装置,包括:背光源;光子晶体层,所述光子晶体层设置在所述背光源的一侧,所述光子晶体层包括多个光子晶体单元;量子点层,所述量子点层设置在所述光子晶体层远离所述背光源的一侧,所述量子点层包括多个量子点单元,所述多个量子点单元与所述多个光子晶体单元一一对应设置;其中,所述多个光子晶体单元被配置为可令所述多个量子点单元在不同出光角度处的发光强度分布情况,与所述电致发光器件在不同出光角度处的发光强度分布情况相匹配。
在本公开的一些实施例中,所述多个光子晶体单元中的每一个均包括多个阵列排布的凸起。
在本公开的一些实施例中,所述多个光子晶体单元的每一个均被配置为提高所述量子点单元在小出光角度下的发光强度。
在本公开的一些实施例中,所述多个光子晶体单元的每一个均被配置为降低所述量子点单元在大出光角度下的发光强度。
在本公开的一些实施例中,所述多个光子晶体单元的材料的折射率大于1.6。
在本公开的一些实施例中,所述多个光子晶体单元的材料包括多晶硅以及二氧化钛的至少之一。
在本公开的一些实施例中,所述光子晶体层包括一维光子晶体、二维光子晶体以及三维光子晶体的至少之一。
在本公开的一些实施例中,所述背光源包括多个电致发光器件,所述多个量子点单元与所述多个电致发光器件一一对应设置;所述电致发光器件包括有机发光二极管、无机发光二极管以及量子点发光二极管中的至少之一。
在本公开的一些实施例中,所述显示装置还包括以下结构的至少之一:背光半透半反层,所述背光半透半反层设置在所述量子点层远离所述光子晶体层的一侧,所述背光半透半反层覆盖所述量子点单元;彩膜层,所述彩膜层设置在所述背光半透半反层远离所述量子点层的一侧,所述彩膜层包括多个颜色不同的色阻块;以及第一基板,所述第一基板设置在所述背光源和所述光子晶体层之间。
在本公开的一些实施例中,所述电致发光器件为蓝光电致发光器件,所述彩膜层包括红色色阻块、绿色色阻块以及蓝色色阻块,所述蓝色色阻块在所述第一基板上的正投影与所述量子点层在所述第一基板上的正投影以及所述光子晶体层在所述第一基板上的正投影均不重叠,其中,所述蓝色色阻块向所述第一基板一侧延伸并与所述第一基板相接触,或者,所述蓝色色阻块和所述第一基板之间填充有透明介质。
在本公开的一些实施例中,所述电致发光器件为紫外光电致发光器件,所述量子点层包括红色量子点单元、绿色量子点单元以及蓝色量子点单元,所述彩膜层包括红色色阻块、绿色色阻块以及蓝色色阻块,且所述彩膜层中的色阻块与所述量子点层中的量子点单元一一对应设置。
在本公开的多个实施例中提供了一种制作显示装置的方法,包括:制作多个电致发光器件;在所述多个电致发光器件的一侧形成光子晶体层,所述光子晶体层包括多个光子晶体单元;在所述光子晶体层远离所述多个电致发光器件的一侧形成量子点层,所述量子点层包括多个量子点单元,所述量子点单元与所述光子晶体单元一一对应设置,所述光子晶体单元配置为使所述量子点单元在不同出光角度处的发光强度分布情况,与所述电致发光器件在不同出光角度处的发光强度分布情况相匹配。
在本公开的一些实施例中,形成所述光子晶体层包括:在所述多个电致发光器件的一侧沉积用于形成所述光子晶体层的材料,形成光子晶体材料层;以及对所述光子晶体材料层进行构图,形成所述多个光子晶体单元,其中,所述多个光子晶体单元的每一个在远离所述电致发光器件的一侧包括阵列排布的凸起。
本公开的多个实施例提供了一种显示基板,其包括:衬底基板;光子晶体层,所述光子晶体层设置在所述衬底基板上,所述光子晶体层包括多个光子晶体单元;量子点层,所述量子点层设置在所述光子晶体层上,所述量子点层包括多个量子点单元,所述多个量子点单元与所述多个光子晶体单元一一对应设置;其中,所述光子晶体层位于所述量子点层的入射光的入射方向上,配置为提高所述量子点单元在小出光角度下的发光强度以及降低所述量子点单元在大出光角度下的发光强度。
在本公开的一些实施例中,所述多个光子晶体单元中的每一个均包括多个阵列排布的凸起。
在本公开的一些实施例中,所述多个光子晶体单元的材料的折射率大于1.6。
在本公开的一些实施例中,所述多个光子晶体单元的材料包括多晶硅以及二氧化钛的至少之一。
在本公开的一些实施例中,所述光子晶体层包括一维光子晶体、二维光子晶体以及三维光子晶体的至少之一。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1显示了相关技术中显示装置的结构示意图;
图2显示了根据本公开一个实施例的显示装置的结构示意图;
图3显示了量子点在不同出光角度处的发光强度分布图;
图4显示了电致发光器件在不同出光角度处的发光强度分布图;
图5显示了根据本公开一个实施例的光子晶体单元的结构示意图;
图6显示了根据本公开一个实施例的量子点单元经光子晶体单元调节后在 不同出光角度处的发光强度分布图;
图7显示了根据本公开一个实施例的显示装置的结构示意图;
图8显示了根据本公开另一个实施例的显示装置的结构示意图;
图9显示了根据本公开另一个实施例的显示装置的结构示意图;
图10显示了根据本公开一个实施例的制作显示装置方法的流程示意图;
图11显示了根据本公开的一个实施例的显示基板的结构示意图;
图12显示了量子点受到激发后在不同出光角度处的发光强度分布图;
图13显示了量子点单元经光子晶体单元调整后在不同出光角度处的发光强度分布图。
附图标记:
100:背光源;
110:子电致发光器件;
200:光子晶体层;
210:光子晶体单元;
211:凸起;
300:量子点层;
310:量子点单元;
311:红色量子点单元;
312:绿色量子点单元;
313:蓝色量子点单元;
400:彩膜层;
410:红色色阻块;
420:绿色色阻块;
430:蓝色色阻块;
500:背光半透半反层;
510:背光半透反单元;
600:第一基板;
700:第二基板;
10:第一偏光片;
20:液晶层;
30:第二偏光片;
40:透明介质。
具体实施方式
为使本公开的原理、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
目前基于量子点材料的显示装置的结构如图1所示,该显示装置包括依次层叠设置的背光源100、第一偏光片10、液晶层20、第二偏光片30、量子点层300以及彩膜层400,其中,背光源100可以为电致发光器件(如无机发光二极管(LED)),背光源100发出的光可激发量子点层300中的量子点产生与量子点颜色相同的光,上述光经过彩膜层400中对应的色阻块后,可实现显示装置的显示。
然而发明人发现,量子点在不同出光角度处的发光强度分布情况,与电致发光器件在不同出光角度处的发光强度分布情况不一致,如图3所示。图3为量子点在不同出光角度处的发光强度分布图,量子点在小出光角度(如-10°至10°)范围内具有较低的发光强度,而在大出光角度范围内具有较高的发光强度。参考图4,图4为电致发光器件在不同出光角度处的发光强度分布图,电致发光器件在小出光角度(如-10°至10°)范围内具有较高的发光强度,而在大出光角度范围内具有较低的发光强度。即量子点在小出光角度处的发光强度分布与电致发光器件在小出光角度处的发光强度分布不一致,且量子点在大出光角度处的发光强度分布与电致发光器件在大出光角度处的发光强度分布也不一致,导致视偏的出现,影响显示装置的显示效果。需要说明的是,量子点的在不同出光角度处的发光强度分布情况是指量子点发出的光透过彩膜层后的发光强度分布情况。
需要说明的是,图3和图4所示出的发光强度是经归一化后的相对强度,图3中的相对强度数值并不代表量子点发光强度的绝对强度数值,图4中的相对强度数值也并不代表电致发光器件发光强度的绝对强度数值,仅用于体现量子点和电致发光器件在不同出光角度处发光强度变化的趋势。
本公开的至少一个实施例提出了一种显示装置。如图1所示,该显示装置包括:背光源100、光子晶体层200以及量子点层300,其中,背光源100可以为电致发光器件,光子晶体层200设置在背光源100的出光侧,光子晶体层200 包括多个光子晶体单元210,量子点层300设置在光子晶体层200远离背光源100的一侧,量子点层300包括多个量子点单元310,量子点单元310与光子晶体单元210一一对应设置,且光子晶体单元210配置为可令量子点单元310在不同出光角度处的发光强度分布情况,与电致发光器件在不同出光角度处的发光强度分布情况相匹配。
通过上述技术方案,通过在显示装置中设置光子晶体层,利用光子晶体单元调节量子点单元在不同出光角度处的发光强度,使得量子点单元在不同出光角度处的发光强度分布情况与电致发光器件在不同出光角度处的发光强度分布情况相匹配,从而可有效缓解视偏问题,使得显示装置实现无视偏显示。
下面结合本公开的实施例,对该显示装置的各个结构进行详细说明。
根据本公开的实施例,背光源100发出的光激发量子点层300中的各量子点单元310后,量子点单元310发出具有特定颜色的光,量子点单元310发出的光,部分向远离光子晶体单元210的一侧传播,部分向靠近光子晶体单元210的一侧传播。光子晶体单元210可对量子点单元310发出的且向光子晶体单元210传播的光的发光方向进行调节,使得该部分光重新向远离光子晶体单元210的一侧传播。根据本公开的实施例,通过改变光子晶体的构成材料以及光子晶体的尺寸,可以使光子晶体单元反射特定颜色的光。并且,可使光子晶体在不同出光角度下的反射率不同。例如,可通过对光子晶体单元的材料以及结构进行调整,使光子晶体单元210在小出光角度处对量子点单元发出的光进行高反射,在大出光角度处对量子点单元发出的光进行低反射。由此,经过光子晶体单元的调节,可令量子点单元在不同出光角度处的发光强度的分布情况,与电致发光器件在不同出光角度处的发光强度的分布情况相匹配。需要说明的是,量子点单元在不同出光角度处的发光强度分布是指量子点单元发出的光透过彩膜层后的发光强度的分布情况。
根据本公开的实施例,参考图6,图6为量子点单元发出的光经光子晶体单元调节后的发光强度分布图,经光子晶体单元210调节后,量子点单元310在小出光角度(如0度)处具有较高的发光强度,在大出光角度处具有较低的发光强度,与图4中电致发光器件在小出光角度处具有较高的发光强度,在大出光角度处具有较低的发光强度的分布情况相匹配。由此,经光子晶体单元调节后的量子点单元的发光强度分布与电致发光器件的发光强度分布相匹配,可有效缓解视偏问题,使得显示装置实现无视偏显示。需要说明的是,图6中量子 点单元经调节后的不同出光角度处的发光强度也是经归一化后的相对强度,图6中的相对强度数值并不代表量子点单元发光强度的绝对强度数值,仅用于体现量子点单元在不同出光角度处发光强度变化的趋势。且虽然量子点单元经光子晶体单元调节后的发光强度曲线在-50度至0度的曲率与电致发光器件在对应出光角度处的曲率并不完全一致,但量子点单元发光强度随着出光角度的变化趋势是与电致发光器件相同的。由此,可以有效缓解视偏问题。
根据本公开的实施例,参考图6和图4,只要量子点单元经光子晶体单元调节后的发光强度的变化趋势与电致发光器件的变化趋势一致即可。例如,可以令小出光角度处的发光强度增大,或令大出光角度处的发光光强减小,或者在令小出光角度处的发光强度增大的同时,令大出光角度处的发光强度减小。例如,光子晶体单元210配置为提高量子点单元310在小出光角度下的发光强度。由此,有利于使量子点单元的发光强度分布情况与电致发光器件的发光强度分布相匹配,以缓解视偏问题,提高显示装置的显示质量。
根据本公开的实施例,通过调整光子晶体单元210的材料及尺寸,令某一频率范围内的光不能在光子晶体单元210内进行传播,可以使光子晶体单元210反射特定颜色的光,同时光子晶体单元210的材料和尺寸相互配合,使得在小出光角度(如0度)处,光子晶体单元210与其反射的光发生波矢匹配,实现高反射,以提高量子点单元310在小出光角度处的发光强度,在大出光角度处,光子晶体单元210与其反射的光发生波矢失配,实现低反射,使得量子点单元310在大出光角度处的发光强度低于小出光角度处的发光强度,也即是说,可利用光子晶体单元210实现对量子点单元310从0度到大出光角度的反射率的调节,进而使量子点单元实现正视角出光增强,以实现其与电致发光器件发光强度分布情况的匹配。
根据本公开的实施例,在对光子晶体单元210的材料及尺寸进行调整时,还需考虑光子晶体单元210对背光的正常透射,不影响量子点单元的激发。
关于光子晶体单元的材料和尺寸不受特别限制,只要光子晶体单元可实现对特定颜色的光在小出光角度处高反射,大出光角度处低反射,同时可实现对背光的正常透射即可,本领域技术人员可以根据情况进行调整。例如,根据本公开的实施例,光子晶体单元210可由低折射率的材料构成,此时,光子晶体单元210具有较大的高度。根据本公开的另一些实施例,光子晶体单元210可由高折射率的材料构成,此时,光子晶体单元210具有较小的高度。也即是说, 光子晶体单元的材料和尺寸是相互配合的,材料和尺寸的共同作用实现光子晶体单元对量子点单元发光强度的调节。
在本公开的一些实施例中,光子晶体单元210的材料可以为折射率大于1.6的材料。由此,利用上述折射率较高的材料构成光子晶体单元,可以减小光子晶体单元的高度,降低加工难度。例如,光子晶体单元210的材料可以包括二氧化钛以及多晶硅中的至少之一。
根据本公开的实施例,光子晶体层200可以包括一维光子晶体、二维光子晶体以及三维光子晶体中的至少一个。本领域技术人员所熟悉的是,光子晶体为具有光子带隙特性的人造周期性电介质结构,,一维光子晶体可以在一个方向上对量子点单元发光强度的调节,二维光子晶体可以在两个方向上对量子点单元发光强度的调节,三维光子晶体可以在三个方向上对量子点单元发光强度的调节。根据本公开的实施例,对应不同量子点单元310的光子晶体单元210可以为维数相同的光子晶体,还可以为维数不同的光子晶体。
根据本公开的实施例,参考图5,光子晶体单元210包括多个阵列排布的凸起211。由此,可以简便地通过控制凸起的尺寸,实现对光子晶体单元尺寸的控制。利用光子晶体单元的凸起实现对量子点单元不同出光角度处发光强度的调节。
根据本公开的实施例,光子晶体单元210的尺寸特征包括凸起211的宽度(如图5所示出的L)、长度(图5中未示出)、高度(如图5中所示出的H)及周期(如图5中所示出的d),周期d为相邻两个凸起211的中心之间的距离,在光子晶体单元210的构成材料确定后,可对凸起211的上述尺寸进行设计,以使光子晶体单元实现对量子点单元发光强度的调节。根据本公开的实施例,凸起211的宽度和长度可以相等,即,凸起211平行于基板的横截面为正方形。
根据本公开的实施例,在光子晶体单元210的构成材料以及光子晶体单元210反射的光的波长确定后,可根据公式(1)确定凸起211的周期,在凸起211的周期确定后,可通过仿真软件确定凸起211的宽度、长度和高度。
Figure PCTCN2020082175-appb-000001
其中,n neff为光子晶体单元构成材料的折射率,λ为光子晶体单元反射的光的波长,P x为凸起的周期。
根据本公开的一些实施例,以背光源100为蓝色背光为例,量子点层300可以包括红色量子点单元和绿色量子点单元,与红色量子点单元对应设置的光 子晶体单元210可以由多晶硅构成,该光子晶体单元210中凸起的宽度和长度均为162nm,高度为144nm,周期为396nm;与绿色量子点单元对应设置的光子晶体单元210也可以由多晶硅构成,该光子晶体单元210中凸起的宽度和长度均为126nm,高度为112nm,周期为308nm。由此,与红色量子点单元对应设置的光子晶体单元可实现对红光的反射,并对红光的发光强度进行调节,与绿色量子点单元对应设置的光子晶体单元可实现对绿光的反射,并对绿光的发光强度进行调节,使得量子点单元在不同出光角度处的发光强度的分布情况,与电致发光器件在不同出光角度处的发光强度的分布情况相匹配。
根据本公开的实施例,参考图7和图8,所述显示装置还可以包括以下结构的至少之一:半透半反层500、彩膜层400以及第一基板600,所述半透半反层500设置在所述量子点层300远离所述光子晶体层200的一侧,背光半透半反层500覆盖量子点单元310,所述彩膜层400设置所述量子点层300远离所述光子晶体单元200的一侧并覆盖所述量子点层300,在设置有半透半反层的时候,所述彩膜层400设置在所述半透半反层远离所述量子点层300的一侧,并覆盖所述半透半反层,所述彩膜层400包括多个颜色不全部相同的色阻块,所述第一基板600设置在背光源100和光子晶体层200之间,作为光子晶体层的支撑衬底。由此,背光半透半反层一方面可透过量子点单元发出的光,另一方面可反射未被量子点单元吸收的背光,实现背光对量子点单元的循环激发,提高背光的利用率,彩膜层通过红色色阻块、绿色色阻块和蓝色色阻块,滤除在量子点层未被转化为红光或绿光或蓝光的背光,提高单色光的纯度并提高颜色呈现度。
例如,第一基板600可为玻璃基板,本公开的实施例对此不做限定。
关于背光半透半反层的材料不受特别限制,只要可以通过量子点单元发出的光,同时反射背光即可,本领域技术人员可根据实际情况进行设计。例如,半透半反层500可由光子晶体制成,可反射背光,同时透过除背光以外的其他波长的光(例如,透射背光经量子点层后转化成的红光、绿光或蓝光,当背光源发蓝光时,光子晶体为反射蓝光的光子晶体,当背光源发紫外光时,光子晶体为反射紫外光的光子晶体)。或者,背光半透半反层500可为由高低折射率材料共同构成的复合膜结构(如二氧化钛和二氧化硅构成的复合膜)。或者,背光半透半反层500可为金属半透反结构(如铬、银等金属)。或者,背光半透半反层500可为胆甾型液晶构成的半透反结构。由此,利用上述背光半透半反层可实现背光对量子点单元的循环激发,提高背光的使用率。
本领域技术人员能够理解的是,彩膜层400中相邻两个色阻块之间设置有黑矩阵(如图7和图8中的黑色区域),防止相邻色阻块之间的串扰。
根据本公开的实施例,参考图7和图8,该显示装置还可以包括第二基板700,第二基板700设置在彩膜层400远离背光半透半反层500的一侧。由此,第二基板可对显示装置内部结构进行保护。
发明人发现,相关技术中的显示装置(参考图2)中的背光源100为整面LED光源,一方面,无法实现对量子点的独立控制,另一方面,通过调节输入至LED光源的电流的大小,虽然可以实现对LED光源亮度的调节,然而该调节是对整面LED光源亮度的调节,所以仍需通过液晶层20和第一偏光片10、第二偏光片30的共同调控实现灰阶的调节,导致显示装置结构复杂化,以及制作工艺的复杂化。
根据本公开的实施例,参考图7和图8,本公开中,构成背光源的电致发光器件可以包括多个子电致发光器件110,量子点单元310与子电致发光器件110一一对应设置。由此,子电致发光器件可实现对量子点单元的独立控制,且子电致发光器件可通过调节输入电流的大小实现每个子电致发光器件亮度的调节,从而实现对显示装置显示灰阶的调控,可省去液晶层以及偏光片等结构,在提高显示装置显示质量的情况下,进一步简化显示装置的结构,降低显示装置的成本。例如,电致发光器件可以包括有机发光二极管、无机发光二极管以及量子点发光二极管的至少之一。
根据本公开的实施例,背光源100发出的光可以为波长在470nm以下的光,即背光源100为短波长光源,短波长光的能级间隔大,经量子点单元吸收后,可发射能级间隔小的长波长的光,如红光、绿光。
根据本公开的实施例,背光源100可以为紫外光电致发光器件,参考图7,量子点层300包括红色量子点单元311、绿色量子点单元312以及蓝色量子点单元313,彩膜层400包括红色色阻块410、绿色色阻块420以及蓝色色阻块430,彩膜层400中的色阻块与量子点单元一一对应设置,背光源发出的紫外光可激发红色量子点单元311发红光,激发绿色量子点单元312发绿光,激发蓝色量子点313发蓝光,红光经过红色色阻块410射出,绿光经绿色色阻块420射出,蓝光经蓝色色阻块430射出,而未转化为红光、绿光和蓝光的紫外光被红色色阻块410、绿色色阻块420以及蓝色色阻块430滤除,以实现显示装置的显示。在本实施例中,背光半透半反层500覆盖红色量子点单元311、绿色量子点单元 312以及蓝色量子点单元313,以对未量子点单元310转化并未被色阻块滤除的紫外光进行反射。
在本公开的一些实施例中,背光源100可以为蓝光电致发光器件,参考图8,量子点层300包括红色量子点单元311以及绿色量子点单元312,彩膜层400包括红色色阻块410、绿色色阻块420以及蓝色色阻块430,蓝色色阻块430在第一基板600上的正投影与光子晶体层200在第一基板600上的正投影以及量子点层300在第一基板600上的正投影均不重叠,彩膜层400中的蓝色色阻块430直接设置在第一基板600上,其上表面与红色色阻块410和绿色色阻块420的上表面齐平。蓝光为短波长光,可激发红色量子点单元发红光,激发绿色量子点单元发绿光,且以蓝光电致发光器件为背光源,在对应于蓝色子像素的区域可以省略蓝色量子点单元以及光子晶体层,在该区域可以在第一基板上直接设置蓝色色阻块,蓝光电致发光器件发出的蓝光经蓝色色阻块射出,红色量子点单元发出的红光经红色色阻块射出,绿色量子点单元发出的绿光经绿色色阻块射出,实现显示装置的显示。在本实施例中,背光半透半反层500覆盖红色量子点单元311以及绿色量子点单元312,以对未被量子点单元310转化的蓝光进行反射。
或者,参考图9,背光源100为蓝光电致发光器件时,蓝色色阻块430和第一基板600之间填充有透明介质40。由此,背光源发出的蓝光可透过透明介质经蓝色色阻块滤出。例如,透明介质可以为树脂或者二氧化硅,可以透过蓝光,本公开的实施例对透明介质的材料不做限制。
根据本公开的实施例,背光半透半反层500可以为整层结构(如图7所示),或者,背光半透半反层500还可以包括多个背光半透反单元510(如图8或9所示),背光半透反单元510与量子点单元一一对应设置。
根据本公开的实施例,背光源100为蓝光电致发光器件时,经背光半透半反层500反射后未完全被红色量子点单元311以及绿色量子点单元312转化的蓝光,可被红色色阻块410和绿色色阻块420吸收,改善色彩的纯度,以使显示装置实现更高的色域。
在本公开的另一方面,本公开提出了一种制作显示装置的方法。根据本公开的实施例,由该方法制作的显示装置可以为前面描述的显示装置,由此,由该方法制作的显示装置可以具有与前面描述的显示装置相同的特征以及优点,在此不再赘述。
根据本公开的实施例,参考图10,该方法包括:
S100:制作背光源。
在该步骤中,制作背光源。根据本公开的实施例,背光源为电致发光器件。例如,电致发光器件可以包括多个子电致发光器件,后续设置的光子晶体单元、量子点单元均与子电致发光器件一一对应设置,由此,背光源可实现对量子点单元的独立控制,且背光源可通过调节输入电流的大小实现对显示装置灰阶的控制,由此,可省去液晶层、偏光片等结构,简化显示装置的结构以及制作工艺,降低成本。
关于背光源的发光波长及颜色,前面已经进行了详细描述,在此不再赘述。
S200:形成光子晶体层。
在该步骤中,在背光源的一侧设置光子晶体层。根据本公开的实施例,在背光源的一侧设置光子晶体层,是在玻璃基板(即第一基板)上设置光子晶体层,玻璃基板位于背光源和光子晶体层之间,光子晶体层包括多个光子晶体单元,后续设置的量子点单元与光子晶体单元一一对应设置,光子晶体单元被配置为调节量子点单元的发光强度,使得量子点单元在不同出光角度处的发光强度分布,与电致发光器件在不同出光角度处的发光强度分布相匹配,由此,可有效缓解视偏问题,使得显示装置实现无视偏显示。
关于光子晶体单元的材料、尺寸以及光子晶体单元调节量子点单元发光强度的原理,前面已经进行了详细描述,在此不再赘述。
根据本公开的实施例,光子晶体层可以是通过以下步骤形成的:首先,在玻璃基板上沉积用于形成光子晶体层的材料,形成光子晶体材料层,随后,对光子晶体材料层进行构图,在光子晶体材料层远离玻璃基板的一侧形成阵列排布的凸起,得到多个光子晶体单元,从而获得光子晶体层。由此,利用简单的方法即可获得光子晶体层。
S300:在光子晶体层远离背光源的一侧设置量子点层。
在该步骤中,在光子晶体层远离背光源的一侧设置量子点层。根据本公开的实施例,量子点层包括多个量子点单元,量子点单元与光子晶体单元一一对应设置。由此,可以利用光子晶体单元实现对每个量子点单元发光强度的调节。
关于量子点单元的类型,前面已经进行了详细描述,在此不再赘述。
关于量子点层的制作方法不受特别限制,本领域技术人员可以根据量子点层的常用制作方法进行制备。
根据本公开的实施例,该方法还可以包括:在量子点层远离光子晶体层的一侧设置背光半透半反层,背光半透半反层覆盖量子点单元,在背光半透半反层远离量子点层的一侧设置彩膜层,以及在彩膜层远离背光半透半反层的一侧设置第二基板。由此,利用背光半透半反层可对未被量子点单元转化的背光进行反射,实现背光对量子点单元的循环激发,提高背光的利用率,彩膜层滤除未被转化的背光,第二基板可对显示装置中的结构起到保护作用。
关于背光半透半反层、彩膜层与量子点单元的位置关系,前面已经进行了详细描述,在此不再赘述。
本公开的多个实施例提供了一种显示基板,其包括:衬底基板;光子晶体层,所述光子晶体层设置在所述衬底基板上,所述光子晶体层包括多个光子晶体单元;量子点层,所述量子点层设置在所述光子晶体层上,所述量子点层包括多个量子点单元,所述多个量子点单元与所述多个光子晶体单元一一对应设置;其中,所述光子晶体层设置在所述量子点单元的入射光的入射方向上,配置为提高所述量子点单元在小出光角度下的发光强度以及降低所述量子点单元在大出光角度下的发光强度。
如图11所示,所述显示基板包括衬底基板1100、设置在所述衬底基板1100上的光子晶体层1200以及设置在所述光子晶体层1200上的量子点层1300。所述光子晶体层1200包括多个光子晶体单元1210,所述量子点层1300包括多个量子点单元1310,每个光子晶体单元上设置有一个量子点单元,即,多个量子点单元与多个光子晶体单元一一对应设置。
量子点层1300中的各量子点单元1310被外部输入的光激发后,在不同出光角度的发光强度分布情况不一致。在图12中示出了量子点受到激发后在不同出光角度处的发光强度分布图,其中的0°出光角度指的是与入射光的入射角度平行的方向。在量子点层应用于显示面板中时,量子点层在背光源的激发下发光,但由于其在不同出光角度处的发光强度分布,导致显示面板中存在视偏。
在本公开的实施例中,所述光子晶体层1200设置在所述量子点层1300的入射光的入射方向上。入射光激发量子点层1300中的各量子点单元1310后,量子点单元1310发出具有特定颜色的光,量子点单元1310发出的光的一部分向远离光子晶体单元1210的一侧传播,一部分向靠近光子晶体单元1210的一侧传播。通过选择光子晶体的材料和光子晶体的尺寸,可以使光子晶体单元反射特定颜色的光,并且使不同出光角度下光子晶体的反射率不同。例如,选择 光子晶体的材料以及结构,使光子晶体单元1210在小出光角度处对量子点单元1310发出的光进行高反射,在大出光角度处对量子点单元1310发出的光进行低反射,量子点单元1310的经光子晶体单元1210调整后的各个出光角度上的出光强度如图13所示。从而,提高了所述量子点单元1310在小出光角度处的发光强度,并降低了所述量子点单元1310在小出光角度处的发光强度,使所述量子点单元1310在大出光角度处的发光强度低于小出光角度处的发光强度,使量子点单元实现正视角出光增强,从而降低视偏。
在本公开的一些实施例中,光子晶体单元1210的材料可以为折射率大于1.6的材料。由此,利用上述折射率较高的材料构成光子晶体单元,可以减小光子晶体单元的高度,降低加工难度。例如,光子晶体单元1210的构成材料可以为二氧化钛以及多晶硅的至少之一。
在本公开的一些实施例中,光子晶体层1200可以包括一维光子晶体、二维光子晶体以及三维光子晶体的至少之一。本领域技术人员所熟悉的是,光子晶体为具有光子带隙特性的人造周期性电介质结构。其中,一维光子晶体可以实现在一个方向上对量子点单元发光强度的调节,二维光子晶体可以实现在两个方向上对量子点单元发光强度的调节,三维光子晶体可以实现在三个方向上对量子点单元发光强度的调节。在本公开的一些实施例中,对应不同量子点单元1310的光子晶体单元1210可以为维数相同的光子晶体。在本公开的一些实施例中,对应不同量子点单元1310的光子晶体单元1210还可以为维数不同的光子晶体。
在本公开的实施例中,光子晶体单元1210包括多个阵列排布的凸起。光子晶体单元的结构可以参照图5,在此不再赘述。由此,可以简便的通过控制凸起的尺寸,实现对光子晶体单元尺寸的控制。利用光子晶体单元的凸起实现对量子点单元不同出光角度处发光强度的调节。
关于光子晶体单元的具体构成材料和具体尺寸不受特别限制,只要光子晶体单元可实现对特定颜色的光在小出光角度处高反射,大出光角度处低反射,同时可实现对背光的正常透射即可,本领域技术人员可以根据实际情况进行设计。例如,在本公开的一些实施例中,光子晶体单元可由低折射率的材料构成,此时,光子晶体单元具有较大的高度。在本公开的另一些实施例中,光子晶体单元可由高折射率的材料构成,此时,光子晶体单元具有较小的高度。也即是说,光子晶体单元的构成材料和尺寸是相互配合的,材料和尺寸的共同作用实 现光子晶体单元对量子点单元发光强度的调节。
在本公开的实施例中,通过选择光子晶体单元的材料、结构以及光子晶体的维数,使量子点单元在小出光角度处具有大的发光强度而在大出光角度处具有小的发光强度,解决了量子点单元应用于显示面板时的色偏问题。
在本公开的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开而不是要求本公开必须以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的特征、结构、材料或者特点包含于本公开的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上所述仅为本申请的示例实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种显示装置,包括:
    背光源;
    光子晶体层,所述光子晶体层设置在所述背光源的一侧,所述光子晶体层包括多个光子晶体单元;
    量子点层,所述量子点层设置在所述光子晶体层远离所述背光源的一侧,所述量子点层包括多个量子点单元,所述多个量子点单元与所述多个光子晶体单元一一对应设置;
    其中,所述多个光子晶体单元被配置为可令所述多个量子点单元在不同出光角度处的发光强度分布情况,与所述电致发光器件在不同出光角度处的发光强度分布情况相匹配。
  2. 根据权利要求1所述的显示装置,其中,所述多个光子晶体单元中的每一个均包括多个阵列排布的凸起。
  3. 根据权利要求1或2所述的显示装置,其中,所述多个光子晶体单元的每一个均被配置为提高所述量子点单元在小出光角度下的发光强度。
  4. 根据权利要求1或2所述的显示装置,其中,所述多个光子晶体单元的每一个均被配置为降低所述量子点单元在大出光角度下的发光强度。
  5. 根据权利要求1至4中任何一项所述的显示装置,其中,所述多个光子晶体单元的材料的折射率大于1.6。
  6. 根据权利要求1至5中任何一项所述的显示装置,其中,所述多个光子晶体单元的材料包括多晶硅以及二氧化钛的至少之一。
  7. 根据权利要求1至6中任何一项所述的显示装置,其中,所述光子晶体层包括一维光子晶体、二维光子晶体以及三维光子晶体的至少之一。
  8. 根据权利要求1-7中任何一项所述的显示装置,其中,所述背光源包括多个电致发光器件,所述多个量子点单元与所述多个电致发光器件一一对应设置;
    所述电致发光器件包括有机发光二极管、无机发光二极管以及量子点发光二极管中的至少之一。
  9. 根据权利要求1至8中任何一项所述的显示装置,其还包括以下结构的至少之一:
    背光半透半反层,所述背光半透半反层设置在所述量子点层远离所述光子晶体层的一侧,所述背光半透半反层覆盖所述量子点单元;
    彩膜层,所述彩膜层设置在所述背光半透半反层远离所述量子点层的一侧,所述彩膜层包括多个颜色不同的色阻块;以及
    第一基板,所述第一基板设置在所述背光源和所述光子晶体层之间。
  10. 根据权利要求8所述的显示装置,其中,所述电致发光器件为蓝光电致发光器件,所述彩膜层包括红色色阻块、绿色色阻块以及蓝色色阻块,所述蓝色色阻块在所述第一基板上的正投影与所述量子点层在所述第一基板上的正投影以及所述光子晶体层在所述第一基板上的正投影均不重叠,
    其中,所述蓝色色阻块向所述第一基板一侧延伸并与所述第一基板相接触,或者,所述蓝色色阻块和所述第一基板之间填充有透明介质。
  11. 根据权利要求8所述的显示装置,其中,所述电致发光器件为紫外光电致发光器件,所述量子点层包括红色量子点单元、绿色量子点单元以及蓝色量子点单元,所述彩膜层包括红色色阻块、绿色色阻块以及蓝色色阻块,且所述彩膜层中的色阻块与所述量子点层中的量子点单元一一对应设置。
  12. 一种制作显示装置的方法,包括:
    制作多个电致发光器件;
    在所述多个电致发光器件的一侧形成光子晶体层,所述光子晶体层包括多 个光子晶体单元;
    在所述光子晶体层远离所述多个电致发光器件的一侧设置量子点层,所述量子点层包括多个量子点单元,所述量子点单元与所述光子晶体单元一一对应设置;
    所述光子晶体单元配置为使所述量子点单元在不同出光角度处的发光强度分布情况,与所述电致发光器件在不同出光角度处的发光强度分布情况相匹配。
  13. 根据权利要求12所述的方法,其中,设置所述光子晶体层包括:
    在所述多个电致发光器件的一侧沉积用于形成所述光子晶体层的材料,形成光子晶体材料层;
    对所述光子晶体材料层进行构图,形成所述多个光子晶体单元,其中,所述多个光子晶体单元的每一个在远离所述电致发光器件的一侧包括阵列排布的凸起。
  14. 一种显示基板,其包括:
    衬底基板;
    光子晶体层,所述光子晶体层设置在所述衬底基板上,所述光子晶体层包括多个光子晶体单元;
    量子点层,所述量子点层设置在所述光子晶体层上,所述量子点层包括多个量子点单元,所述多个量子点单元与所述多个光子晶体单元一一对应设置;
    其中,所述光子晶体层设置在所述量子点层的入射光的入射方向上,配置为提高所述量子点单元在小出光角度下的发光强度以及降低所述量子点单元在大出光角度下的发光强度。
  15. 根据权利要求14所述的显示基板,其中,所述多个光子晶体单元中的每一个均包括多个阵列排布的凸起。
  16. 根据权利要求14或15所述的显示基板,其中,所述多个光子晶体单元的材料的折射率大于1.6。
  17. 根据权利要求14至16中任何一项所述的显示基板,其中,所述多个光子晶体单元的材料包括多晶硅以及二氧化钛的至少之一。
  18. 根据权利要求14至17中任何一项所述的显示基板,其中,所述光子晶体层包括一维光子晶体、二维光子晶体以及三维光子晶体的至少之一。
PCT/CN2020/082175 2019-06-20 2020-03-30 显示装置及制作方法 WO2020253312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910537818.XA CN110264881B (zh) 2019-06-20 2019-06-20 显示装置及制作方法
CN201910537818.X 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020253312A1 true WO2020253312A1 (zh) 2020-12-24

Family

ID=67919999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082175 WO2020253312A1 (zh) 2019-06-20 2020-03-30 显示装置及制作方法

Country Status (2)

Country Link
CN (1) CN110264881B (zh)
WO (1) WO2020253312A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721191A (zh) * 2021-01-06 2022-07-08 京东方科技集团股份有限公司 显示面板及其制作方法、显示模组、显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110264881B (zh) * 2019-06-20 2021-09-24 京东方科技集团股份有限公司 显示装置及制作方法
WO2022261945A1 (zh) * 2021-06-18 2022-12-22 京东方科技集团股份有限公司 显示面板、显示装置和显示面板的制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054880A1 (en) * 2004-09-14 2006-03-16 Sanjay Krishna High performance hyperspectral detectors using photon controlling cavities
CN106206976A (zh) * 2016-09-30 2016-12-07 Tcl集团股份有限公司 一种基于光子晶体结构的qled及制备方法
CN106681046A (zh) * 2016-11-21 2017-05-17 京东方科技集团股份有限公司 一种彩膜基板及显示装置
CN109545832A (zh) * 2018-11-29 2019-03-29 京东方科技集团股份有限公司 有机发光二极管显示基板及其制备方法、显示装置
CN110264881A (zh) * 2019-06-20 2019-09-20 京东方科技集团股份有限公司 显示装置及制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353556B (zh) * 2015-12-09 2017-12-29 深圳市华星光电技术有限公司 显示装置
CN108666445B (zh) * 2018-05-16 2020-04-24 云谷(固安)科技有限公司 有机电致发光器件和有机电致发光装置
CN108766273A (zh) * 2018-08-15 2018-11-06 南方科技大学 一种微型发光二极管显示面板及显示装置
CN109581562A (zh) * 2019-01-02 2019-04-05 京东方科技集团股份有限公司 光子晶体复合彩膜、制作方法、彩色滤光基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054880A1 (en) * 2004-09-14 2006-03-16 Sanjay Krishna High performance hyperspectral detectors using photon controlling cavities
CN106206976A (zh) * 2016-09-30 2016-12-07 Tcl集团股份有限公司 一种基于光子晶体结构的qled及制备方法
CN106681046A (zh) * 2016-11-21 2017-05-17 京东方科技集团股份有限公司 一种彩膜基板及显示装置
CN109545832A (zh) * 2018-11-29 2019-03-29 京东方科技集团股份有限公司 有机发光二极管显示基板及其制备方法、显示装置
CN110264881A (zh) * 2019-06-20 2019-09-20 京东方科技集团股份有限公司 显示装置及制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114721191A (zh) * 2021-01-06 2022-07-08 京东方科技集团股份有限公司 显示面板及其制作方法、显示模组、显示装置
CN114721191B (zh) * 2021-01-06 2024-05-14 京东方科技集团股份有限公司 显示面板及其制作方法、显示模组、显示装置

Also Published As

Publication number Publication date
CN110264881B (zh) 2021-09-24
CN110264881A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
WO2020253312A1 (zh) 显示装置及制作方法
CN105093682B (zh) 液晶显示器
US11397347B2 (en) Color filter substrate, manufacturing method thereof, and display device
EP3690530B1 (en) Light guide structure for a direct type backlight, direct backlight module and display panel
US10310324B2 (en) Backlight module
CN107918233B (zh) 一种显示装置
WO2012035760A1 (ja) バックライト装置、およびそのバックライト装置を用いた液晶表示装置、およびそれらに用いる発光ダイオード
US20190324186A1 (en) Backlight module, display device and its driving method
CN105676522A (zh) 显示装置
WO2017071344A1 (zh) 彩膜基板、显示面板及显示装置
WO2018223874A1 (zh) 彩色滤光片、显示面板及显示装置
WO2020140771A1 (zh) 彩膜基板、制作方法、显示装置
US10073293B2 (en) Optical microcavity for a high-contrast display
CN106647042B (zh) 一种光源器件及显示装置
CN105988243A (zh) 光学构件、背光单元以及显示装置
JP2007003825A (ja) 表示装置及び発光パネル
KR20200006049A (ko) 컬러 액정 디스플레이 및 디스플레이 백라이트
CN206096638U (zh) 一种显示面板及显示装置
WO2020258765A1 (zh) 色彩转化组件及其制作方法、显示面板
CN113451483A (zh) 一种颜色转换装置及其制备方法、显示背板
KR20220066395A (ko) 발광 장치, 디스플레이 장치용 백라이트 유닛, 및 디스플레이 장치
CN110794612A (zh) 量子点彩膜基板和液晶显示装置
WO2020133816A1 (zh) 显示面板及其制备方法
WO2019000973A1 (zh) 彩膜基板、显示装置
TWI759464B (zh) 彩色液晶顯示器及顯示器背光

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825689

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20825689

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20825689

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/07/2022)