WO2020140771A1 - 彩膜基板、制作方法、显示装置 - Google Patents

彩膜基板、制作方法、显示装置 Download PDF

Info

Publication number
WO2020140771A1
WO2020140771A1 PCT/CN2019/126984 CN2019126984W WO2020140771A1 WO 2020140771 A1 WO2020140771 A1 WO 2020140771A1 CN 2019126984 W CN2019126984 W CN 2019126984W WO 2020140771 A1 WO2020140771 A1 WO 2020140771A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
layer
crystal layer
light
quantum dot
Prior art date
Application number
PCT/CN2019/126984
Other languages
English (en)
French (fr)
Inventor
王琳
宋勇志
王瑞瑞
陈华斌
李兴亮
刘洋
高英强
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/957,947 priority Critical patent/US20210223435A1/en
Publication of WO2020140771A1 publication Critical patent/WO2020140771A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/003Printing processes to produce particular kinds of printed work, e.g. patterns on optical devices, e.g. lens elements; for the production of optical devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/113Fluorescence

Definitions

  • the present disclosure generally relates to the field of display technology, and specifically relates to a color film substrate, a manufacturing method, and a display device.
  • Quantum dots are nano-sized semiconductor crystals that can emit light.
  • the particle size is generally between 1 and 10 nm, which is equivalent to the size of 10 to 50 atoms.
  • Quantum dots When quantum dots are excited by light, they will emit bright visible light with pure spectral color ;
  • Photonic crystal is a periodic dielectric structure with photonic band gap. Due to the existence of photonic band gap, light waves with frequencies falling within the band gap cannot propagate in the photonic crystal, so it can selectively reflect specific frequencies. Light waves, and light with frequencies outside the forbidden band region, can propagate in it.
  • the present disclosure provides a color filter substrate, including: a substrate; and a light channel layer, which is located on one side of the substrate.
  • the optical channel layer includes a first photonic crystal layer and a second photonic crystal layer stacked on top of each other.
  • the optical channel layer includes a plurality of optical channel units that are periodically arranged with optical channel units of three different primary colors, each optical channel
  • the unit includes a photonic crystal block of the first photonic crystal layer and a photonic crystal block of the second photonic crystal layer whose orthographic projections on the substrate overlap each other, and the photon of the photonic crystal block of the first photonic crystal layer
  • the photonic forbidden band is different from one photonic crystal block of the second photonic crystal layer.
  • Each light channel unit is configured to allow only one color of the three primary colors to pass through, and block the other two colors of the three primary colors.
  • the first photonic crystal layer is composed of a plurality of photonic crystal blocks with photonic band gaps located in the first primary color light region and the second primary color light region, respectively, and the second photonic crystal layer is formed by the photonic band gap
  • the second primary color light region and the third primary color light region are composed of a plurality of photonic crystal blocks.
  • the first photonic crystal layer is composed of a plurality of photonic crystal blocks with photonic band gaps located in the blue and red light regions, respectively; the second photonic crystal layer is composed of photonic band gaps in the red and green light regions, respectively. Multiple photonic crystal blocks.
  • the color filter substrate further includes a quantum dot material layer, which is located on a side of the light channel layer away from the substrate, and includes periodically arranged red light quantum dot material regions and green light quantum dot material area.
  • the plurality of light channel units include periodically arranged red light channel units, green light channel units, and blue light channel units.
  • the orthographic projection of the red light quantum dot material region on the substrate overlaps the orthographic projection of the red light channel unit of the optical channel layer on the substrate.
  • the orthographic projection of the green light quantum dot material region on the substrate overlaps with the orthographic projection of the green light channel unit of the light channel layer on the substrate.
  • the color filter substrate further includes: a reflection enhancement layer disposed on a side of the quantum dot material layer away from the substrate, and includes a third photonic crystal layer and a fourth photonic crystal stacked on top of each other Floor.
  • the third photonic crystal layer is composed of photonic crystals with a photonic forbidden band in one of the red and green light regions
  • the fourth photonic crystal layer is composed of another photonic forbidden band in the red and green light regions A photonic crystal composition.
  • the color filter substrate further includes a planarization layer between the quantum dot material layer and the reflection enhancement layer, and the planarization layer covers the red light quantum of the quantum dot material layer The dot material area and the green light quantum dot material area, and fill the space outside the red light quantum dot material area and the green light quantum dot material area to form a flat surface.
  • the photonic crystal blocks at the junction of two adjacent light channel units in the light channel layer penetrate each other.
  • the thickness of each of the first photonic crystal layer and the second photonic crystal layer is 400 nm-80 um.
  • the thickness of each of the third photonic crystal layer and the fourth photonic crystal layer is 400 nm-80 um.
  • the thickness of the quantum dot material layer is 40nm-40um.
  • the materials of the first photonic crystal layer, the second photonic crystal layer, the third photonic crystal layer, and the fourth photonic crystal layer are high-refractive-index monodisperse colloidal microspheres, of which red, green and blue
  • the spherical particle diameters are: 190-210nm, 160-180nm, 130-150nm.
  • a display device in one aspect, includes the above color filter substrate and a blue light source on a side of the reflection enhancement layer away from the substrate.
  • a method for manufacturing a color filter substrate including: providing a substrate; and
  • the optical channel layer is printed on the substrate.
  • the optical channel layer includes a first photonic crystal layer and a second photonic crystal layer stacked on top of each other.
  • the optical channel layer includes a plurality of optical channel units that are periodically arranged with optical channel units of three different primary colors, each optical channel
  • the unit includes a photonic crystal block of the first photonic crystal layer and a photonic crystal block of the second photonic crystal layer whose orthographic projections on the substrate overlap each other, and the photon of the photonic crystal block of the first photonic crystal layer
  • the photonic forbidden band is different from one photonic crystal block of the second photonic crystal layer.
  • Each light channel unit is configured to allow only one color of the three primary colors to pass through, and block the other two colors of the three primary colors.
  • the method further includes printing a layer of quantum dot material on a side of the light channel layer away from the substrate.
  • the quantum dot material layer includes periodically arranged red light quantum dot material regions and green light quantum dot material regions.
  • An orthographic projection of the red light quantum dot material region on the substrate overlaps with an orthographic projection of the red light channel unit of the light channel layer on the substrate; and an orthographic projection of the green light quantum dot material region on the substrate It overlaps with the orthographic projection of the green light channel unit of the light channel layer on the substrate.
  • the method further includes: coating a planarization layer on the quantum dot material layer, the planarization layer covering the red light quantum dot material region and the green light quantum dot of the quantum dot material layer The material area, and fills the space outside the red light quantum dot material area and the green light quantum dot material area to form a flat surface.
  • the method further includes sequentially printing a third photonic crystal layer and a fourth photonic crystal layer on a side of the planarization layer away from the substrate, wherein the third photonic crystal layer is composed of photons A photonic crystal whose forbidden band is located in one of the red light region and the green light region, and the fourth photonic crystal layer is composed of a photonic crystal whose photonic forbidden band is located in the other of the red light region and the green light region.
  • the materials of the first photonic crystal layer, the second photonic crystal layer, the third photonic crystal layer, and the fourth photonic crystal layer are high-refractive-index monodisperse colloidal microspheres, of which red, green and blue
  • the spherical particle diameters are: 190-210nm, 160-180nm, 130-150nm.
  • FIG. 1 is a cross-sectional view of the structure of a color filter substrate according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of various structures of a color filter substrate according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart of a method of manufacturing a color filter substrate according to an embodiment of the present disclosure.
  • quantum dots are mixed into the photonic crystal, and the quantum dots are excited with white light to emit corresponding RGB light waves, and the photonic crystal plays a selective role.
  • one-dimensional photonic crystals with defect states are selectively transmitted through R, G, and B light waves
  • one-dimensional photonic crystals are formed by alternately stacking two different refractive index dielectric materials, usually at least Only ten layers will show its selectivity to light waves, the process is extremely difficult, and one-dimensional photonic crystals usually have angle dependence, that is, the colors of different viewing angles are inconsistent.
  • FIG. 1 is a cross-sectional view of the structure of a color filter substrate according to an embodiment of the present disclosure.
  • the color filter substrate includes: a substrate 1; a light channel layer 2, which is located on one side of the substrate 1 and includes a first photonic crystal layer and a second photonic crystal layer stacked one above the other, and is configured to include Optical channel units arranged in an array.
  • the photonic band gap of the photonic crystal block of the first photonic crystal layer is different from the photonic band gap of the photonic crystal block of the second photonic crystal layer.
  • Each light channel unit is configured to allow only one color of the three primary colors to pass through and block the other two colors of the three primary colors.
  • the color filter substrate further includes a quantum dot material layer 3, which is located on a side of the light channel layer 2 away from the substrate 1, and includes an array of red quantum dot material regions 3-1 and green quantum dot material regions 3- 2.
  • the red light quantum dot material region 3-1 and the green light quantum dot material region 3-2 correspond to the red light channel unit 5 and the green light channel unit 6 in the light channel layer 2, respectively.
  • the quantum dot material layer includes only red and green quantum dot light emitting materials.
  • blue light can be used as the excitation light source, reducing the use of blue quantum dot materials and reducing costs, and due to the primary colors propagated by the photonic crystals within the primary color light channels (ie, red light channel, blue light channel, and green light channel)
  • the light absorption is extremely weak, which can significantly improve the transmittance of the color film substrate.
  • the first photonic crystal layer is composed of a plurality of photonic crystal blocks whose photonic band gaps are located in the first primary color light region and the second primary color light region, respectively, and the second photonic crystal layer consists of The photonic band gap at the location is composed of multiple photonic crystal blocks.
  • the three primary colors of light emitted from the quantum dot material layer can only be emitted above the optical channel layer 2 through the corresponding primary color light channels after being reflected and screened by the first photonic crystal layer and the second photonic crystal layer.
  • the unity of the primary color light (red light, blue light, green light) and the intensity of transmitted light are guaranteed.
  • the design of the photonic crystal is as follows: the basic principle of the structure of the photonic crystal can be explained by Bragg diffraction, and the position of the theoretical reflection peak of the photonic crystal can be calculated according to the basic formula of Bragg diffraction:
  • n eff is the effective refractive index
  • n sphere is the refractive index of the photonic crystal material
  • n air is the refractive index of air
  • f sphere is the ratio of the volume of the spherical nanomaterial in the photonic crystal to the total volume of the photonic crystal
  • f air is the photonic crystal
  • is the angle of incidence of light
  • D is the diameter of the microsphere.
  • the effective refractive index of the photonic crystal is sufficiently large, the influence of the incident angle of light on the diffraction peak of the photonic crystal can be approximately ignored, so a high refractive index material with a refractive index greater than 2 is used.
  • a high refractive index material with a refractive index greater than 2 is used.
  • the particle size of the red, green, and blue subcrystals are respectively located at 190-210nm, 160-180nm, 130-150nm; their corresponding reflections
  • the positions of the peaks are located at 610-680nm (red light area), 520-580nm (green light area), and 420-485nm (blue light area).
  • the color filter substrate further includes: a reflection enhancement layer 4, which is located on the side of the quantum dot material layer away from the substrate 1 and includes a sequence in the direction from the substrate 1 to the quantum dot material layer 3
  • the third photonic crystal layer 4-1 is composed of photonic crystals with photonic band gaps in one of the red and green light regions
  • the fourth photonic crystal layer 4-2 is composed of photonic band gaps in the red and green light regions
  • the other area is composed of photonic crystals.
  • the reflection enhancement layer 4 By providing the reflection enhancement layer 4, the red and green light reflected downward by the quantum dot material layer cannot be propagated in the reflection enhancement layer 4, so that all the light emitted to the light channel layer 2 is reflected along the light exit direction as shown in FIG. 1 Surface, so it can significantly improve the light utilization rate and transmitted light intensity, reduce light loss.
  • the first photonic crystal layer is composed of a plurality of photonic crystal blocks with photonic forbidden bands in the blue and red light regions, respectively; the second photonic crystal layer is composed of photonic forbidden bands in the red and green light regions, respectively. Multiple photonic crystal blocks.
  • the orthographic projections of the plurality of photonic crystal blocks on the substrate 1 of the first photonic crystal layer and the orthographic projections of the plurality of photonic crystal blocks on the substrate 1 of the second photonic crystal layer respectively overlap with each other.
  • the reflection enhancement layer 4 further includes a planarization layer 3-3, and the planarization layer 3-3 is located between the light channel layer 2 and the reflection enhancement layer 4.
  • the planarization layer 3-3 covers the quantum dot material layer 3, that is, covers the red light quantum dot material area 3-1 and the green light quantum dot material area 3-2, and fills the red light quantum dot material area 3-1 and the green light quantum dot In the space other than the material region 3-2, the planarization layer 3-3 has a flat surface on the outside of the quantum dot material layer 3 (that is, the side away from the substrate 1), which is beneficial to increase the transmittance of external light.
  • the substrate 1 is a transparent glass substrate
  • the first photonic crystal layer of the light channel layer 2 is composed of a plurality of photonic crystal blocks R located in the red light region 2-2 by the photonic band gap It is composed of a plurality of photonic crystal blocks B whose photonic band gap is located in the blue region 2-1.
  • the second photonic crystal layer is composed of a plurality of photonic crystal blocks G having a photon forbidden band in the green light region 2-3 and a plurality of photonic crystal blocks R having a photon forbidden band in the red light region 2-2.
  • the photonic forbidden bands of two photonic crystal blocks (for example, B and G) adjacent to each other in the light exit direction of the first photonic crystal layer and the second photonic crystal layer correspond to different colors of light.
  • the orthographic projection of the photonic crystal block B of the first photonic crystal layer on the substrate overlaps the orthographic projection of the corresponding photonic crystal block G of the second photonic crystal layer on the substrate.
  • the photonic crystal block B of the first photonic crystal layer and the corresponding photonic crystal block G of the second photonic crystal layer have photonic forbidden bands located in different color regions.
  • the photonic forbidden band of the photonic crystal block R of the first photonic crystal layer corresponds to red light
  • the photonic forbidden band of the corresponding photonic crystal block G of the second photonic crystal layer corresponds to green light
  • the photonic forbidden band of the photonic crystal block B of the first photonic crystal layer corresponds to blue light
  • the photonic forbidden band of the corresponding photonic crystal block R of the second photonic crystal layer corresponds to red light
  • the photonic bandgap of the photonic crystal block B of the first photonic crystal layer corresponds to blue light
  • the photonic bandgap of the corresponding photonic crystal block G of the second photonic crystal layer corresponds to green light
  • the blue and green light are reflected back, and only the red light can pass through and exit.
  • the colored light emitted from RGB, RGB... will be transmitted on the transparent glass plate, thereby forming the corresponding red light channel unit 5, green light channel unit 6, blue light channel unit 7 The role of propagating light waves.
  • one photonic crystal block refers to a photonic crystal block in which the photonic forbidden band is located in a blue light region, a red light region, or a green light region.
  • the first photonic crystal layer is composed of a plurality of photonic crystal blocks having different photonic band gaps (for example, a plurality of photonic crystal blocks B and a plurality of photonic crystal blocks R), and the second photonic crystal layer is different from the photonic band gap Composed of a plurality of photonic crystal blocks (for example, a plurality of photonic crystal blocks G and a plurality of photonic crystal blocks R).
  • the size of one photonic crystal block in the first photonic crystal layer and the second photonic crystal layer is related to the resolution of the display device.
  • One red light channel unit 5 is composed of two photonic crystal blocks B, G.
  • One green light channel unit 6 is composed of two photonic crystal blocks B and R.
  • One blue light channel unit 7 is composed of two photonic crystal blocks R, G (or photonic crystal blocks R, G).
  • One red light channel unit 5 is equivalent to one red sub-pixel
  • one green light channel unit 6 is equivalent to one green sub-pixel
  • one blue light channel unit 7 is equivalent to one blue sub-pixel.
  • One red light channel unit 5, one green light channel unit 6 and one blue light channel unit 7 constitute one pixel.
  • Photonic crystals have very weak absorption of light waves propagating in the corresponding primary color light channels. For example, in the blue channel unit, red light and green light are reflected, while blue light absorption is extremely weak, blue light gets maximum transmission, which can significantly improve the color film Transmittance of the substrate.
  • the quantum dot material layer can be reduced or not configured with blue quantum dot material, and only the red light quantum dot material in the red light quantum dot material area 3-1 and the green light quantum dot material in the area 3-2 remain The green light quantum dot material, thereby reducing costs.
  • the flattening layer 3-3 can be used to fill and fill the empty positions where the blue quantum dot material should be provided, and then the flattening layer material is coated on the outside to facilitate the incidence of parallel light.
  • the third photonic crystal layer 4-1 of the reflection enhancement layer 4 is composed of a whole photonic crystal
  • the fourth photonic crystal layer 4-2 is composed of a whole photonic crystal constitute.
  • the third photonic crystal layer 4-1 is composed of a whole photonic crystal whose photonic band gap is in the red region
  • the fourth photonic crystal layer 4-2 is composed of a whole photonic crystal whose photonic bandgap is in the green region.
  • the superimposed effect is that the reflection enhancement layer 4 can only pass through A light wave with a wavelength in the blue light region, that is, blue light, makes the third photonic crystal layer 4-1 and the fourth photonic crystal layer 4-2 form a blue light channel, while red and green light waves cannot pass through the third photon
  • the crystal layer 4-1 and the fourth photonic crystal layer 4-2 propagate.
  • the red light and green light propagating in the return direction cannot propagate in the reflection enhancement layer 4, so that they are all reflected on the quantum dot material layer 3, that is, toward the light channel layer 2
  • the direction of the light or the direction of the light so it can significantly improve the light utilization rate and the intensity of the transmitted light, and reduce the light loss.
  • the reflected red light and green light above (from the light channel layer 2) and below (from the reflection enhancement layer 4) of the quantum dot material layer 3 can only be in the red light channel of the light channel layer 2
  • the unit 5 and the green light channel unit 6 propagate, blue light can only propagate in the blue light channel unit 7, and excess stray light cannot propagate in the light channel unit, which can significantly improve the purity of the transmitted light.
  • the photonic bandgap is in red light.
  • the photonic crystal block R in the region, the photonic crystal block B in the blue region and the photonic crystal block G in the green region penetrate each other at the channel boundary 8.
  • the photonic crystal block R in the red light region, the photonic crystal block B in the blue light region, and the photonic crystal block G in the green light region permeate each other at the channel junction 9, as shown in the figure As shown in 1, it will cause the three primary colors of light at the junction 8 or 9 of the channel to be reflected, and the light transmittance will decrease, so that no light shielding film is needed to block the opaque area in the subsequent TFT display device, simplifying the color Film substrate process.
  • the blue light source is used as the excitation light source as an example for description. It is to be noted that, in the present disclosure, a red light source or a green light source may also be used as the excitation light source.
  • the plurality of photonic transistors in the first photonic crystal layer, the plurality of photonic crystal blocks in the second photonic crystal layer, the overall photonic crystal in the third photonic crystal layer, and the fourth The forbidden band of the whole photonic crystal in the photonic crystal layer can be adaptively changed.
  • 2 illustrates a cross-sectional view of various structures of a color filter substrate according to an embodiment of the present disclosure.
  • 2 a to p respectively show various combinations of colors of the photonic crystal and the quantum dot material in the light channel layer 2, the quantum dot material layer 3, and the reflection enhancement layer 4 in the composite color filter substrate. They can all be implemented to form different primary color light channels to achieve the above technical effects.
  • the thickness of each of the first photonic crystal layer and the second photonic crystal layer is 400 nm-80 um.
  • the thickness of each of the third photonic crystal layer 4-1 and the fourth photonic crystal layer 4-2 is 400 nm-80 um.
  • the thickness of the quantum dot material layer 3 is 40nm-40um.
  • the materials of all photonic crystals are monodisperse with high refractive index Colloidal microspheres, in which the particle diameters of red, green and blue microspheres are:
  • the wavelength ranges of the red light, green light, and blue light are:
  • FIG. 3 is a flowchart of a method of manufacturing a color filter substrate according to an embodiment of the present disclosure. As shown in FIG. 3, the method includes steps S100 and S110.
  • an inkjet printing method is used to print a light channel layer 2 on a glass substrate 1, including a first photonic crystal layer and a second photonic crystal layer stacked on top of each other, and the light channel layer 2 includes three different three primary color light channel units Multiple light channel units arranged in an array or periodically arranged.
  • Each optical channel unit includes a photonic crystal block (or one photonic crystal block) in the first photonic crystal layer and a corresponding photonic crystal block (or one corresponding photonic crystal block) in the second photonic crystal layer.
  • the photonic crystal block in the second photonic crystal layer is located on the side of the photonic crystal block in the first photonic crystal layer away from the glass substrate 1, and the photonic crystal block in the first photonic crystal layer is on the glass substrate 1 And the orthographic projection of the corresponding photonic crystal block in the second photonic crystal layer on the glass substrate 1 completely overlap.
  • the photonic band gap of the photonic crystal block of the first photonic crystal layer is different from the photonic band gap of the corresponding photonic crystal block of the second photonic crystal layer.
  • each optical channel unit is configured to allow only red light, green light or blue light to pass through the optical channel unit.
  • the quantum dot material layer 3 on the side of the light channel layer 2 away from the glass substrate 1, which includes red light quantum dot material regions 3-1 and green light quantum dots arranged in an array or periodically Material area 3-2.
  • the red light quantum dot material region 3-1 corresponds to the red light channel unit 5 in the light channel layer 2.
  • the orthographic projection of the red light quantum dot material region 3-1 on the glass substrate 1 and the orthographic projection of the red light channel unit 5 on the glass substrate 1 completely overlap.
  • the green light quantum dot material region 3-2 corresponds to the green light channel unit 6 in the light channel layer 2.
  • the orthographic projection of the green light quantum dot material region 3-2 on the glass substrate 1 and the orthographic projection of the green light channel unit 6 on the glass substrate 1 completely overlap.
  • the position of the quantum dot material layer 3 corresponding to the blue channel unit 7 is not provided with any quantum dot material.
  • the inkjet printing technology is used to realize the rapid and large-area construction of the photonic crystal light channel, the process is less difficult, it is easy to industrialize, and the transmission of the composite color film substrate can be significantly improved Rate and purity of transmitted light.
  • the method further includes: applying a planarization layer 3-3 over the quantum dot material layer 3 to make the surface of the quantum dot material layer 3 flat.
  • the planarization layer 3-3 covers the red light quantum dot material in the red light quantum dot material region 3-1 and the green light quantum dot material in the green light quantum dot material region 3-2, and covers the red light quantum dot material region 3-1 and the green light quantum The space outside the dot material region 3-2, that is, the blue channel unit 7 without any quantum dot material.
  • the method further includes: inkjet printing a reflection enhancement layer 4 on the planarization layer, the reflection enhancement layer 4 is composed of a stacked third photonic crystal layer 4-1 and a fourth photonic crystal layer 4-2 composition.
  • the third photonic crystal layer 4-1 is composed of a whole photonic crystal whose photonic band gap is located in one of the red and green light regions
  • the fourth photonic crystal layer 4-2 is composed of photonic band gap located in the red and green light regions The other one consists of a whole photonic crystal.
  • Using high-refractive-index nano-microspheres as the inkjet printing material for the construction of photonic crystals can avoid the difference in viewing angles of photonic crystals and improve the viewing angle.
  • the material used for the inkjet printing photonic crystals is high-refractive-index monodisperse colloidal nanospheres such as cadmium sulfide, cuprous oxide, titanium oxide, zinc oxide, and zinc sulfide with a refractive index greater than 2.
  • the preparation method of nanometer microspheres can be selected by hydrothermal method, sol-gel method, emulsion polymerization and other methods.
  • the high-refractive-index nanospheres are dispersed in a mixture of high-boiling aids, ethanol, glycerin, surfactants, defoamers, adhesives, modifiers, and deionized water.
  • Monodispersed colloidal nanoparticles can be obtained by ultrasonic dispersion treatment ball.
  • the quantum dot materials that can be used are CdSe, CdTe, graphene and other photoluminescent quantum dot materials.
  • the blue wavelength range matched with the quantum dot materials is 440-460nm; the green light quantum dot material has a luminescence peak of 510-540nm, and the red light quantum dots
  • the luminescence peak of the material is 630-670nm.
  • the light source in the present disclosure may be a blue backlight, for example, a blue electroluminescence light source.
  • the color film substrate is heat treated to completely remove the solvent in the color film, the heating temperature is 100-120°C, and the heating time is 20-30s.
  • the present disclosure also provides a display device, which includes a light source (for example, a blue light source) and a color filter substrate according to any one of the technical solutions arranged in the light exit direction of the blue light source.
  • a light source for example, a blue light source
  • a color filter substrate according to any one of the technical solutions arranged in the light exit direction of the blue light source.
  • the obtained display device can obtain corresponding technical effects, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Optical Filters (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种彩膜基板及其制作方法、显示装置。彩膜基板包括:基板(1);以及光通道层(2),其位于基板(1)的一侧。光通道层(2)包括上下相叠的第一光子晶体层和第二光子晶体层,光通道层(2)包括三种不同三原色的光通道单元(5,6,7)周期排布的多个光通道单元(5,6,7),每个光通道单元(5,6,7)包括在基板(1)上的正投影彼此重叠的第一光子晶体层的光子晶体块(R,B)和第二光子晶体层的相应光子晶体块(G,R),第一光子晶体层的光子晶体块(R,B)的光子禁带与第二光子晶体层的相应光子晶体块(G,R)的光子禁带不同,使得仅允许三原色中的一个颜色的光通过,并且阻挡三原色中的另外两种颜色的光。

Description

彩膜基板、制作方法、显示装置
相关申请的交叉引用
本申请要求2019年1月2日提交的中国专利申请201910002764.7的优先权,其全部内容通过引用合并于此。
技术领域
本公开一般涉及显示技术领域,具体涉及彩膜基板、制作方法、显示装置。
背景技术
量子点是能够发光的纳米级半导体晶体,粒径一般介于1~10nm之间,相当于10~50个原子大小,量子点当受到光的激发时,将会发出明亮的有光谱纯色的可见光;光子晶体是一种具有光子带隙的周期性介电结构,由于光子禁带的存在,频率落在禁带区域内的光波不能在光子晶体中传播,故其能够选择性的反射特定频率的光波,而频率位于禁带区域外的光则能够在其中传播。
发明内容
一方面,本公开提供一种彩膜基板,包括:基板;以及光通道层,其位于所述基板的一侧。所述光通道层包括上下相叠的第一光子晶体层和第二光子晶体层,所述光通道层包括三种不同三原色的光通道单元周期排布的多个光通道单元,每个光通道单元包括在所述基板上的正投影彼此重叠的第一光子晶体层的一个光子晶体块和所述第二光子晶体层的一个光子晶体块,第一光子晶体层的一个光子晶体块的光子禁带与第二光子晶体层的一个光子晶体块的光子禁带不同。每个光通道单元被配置为仅允许三原色中的一个颜色的光通过,并且阻挡三原色中的另外两种颜色的光。
在一个实施例中,第一光子晶体层由光子禁带分别位于第一原色光 区域和第二原色光区域的多个光子晶体块组成,并且第二光子晶体层由光子禁带分别位于所述第二原色光区域和第三原色光区域的多个光子晶体块组成。
在一个实施例中,第一光子晶体层是光子禁带分别位于蓝光区域和红光区域的多个光子晶体块组成;第二光子晶体层由光子禁带分别位于红光区域和绿光区域的多个光子晶体块组成。
在一个实施例中,所述彩膜基板还包括:量子点材料层,其位于所述光通道层远离所述基板的一侧,并且包括周期排布的红光量子点材料区域和绿光量子点材料区域。所述多个光通道单元包括周期排布的红色光通道单元、绿色光通道单元和蓝色光通道单元。所述红光量子点材料区域在所述基板上的正投影和所述光通道层的红光通道单元在基板上的正投影重叠。所述绿光量子点材料区域在所述基板上的正投影和所述光通道层的绿光通道单元在基板上的正投影重叠。
在一个实施例中,所述彩膜基板还包括:反射增强层,设置在所述量子点材料层的远离所述基板的一侧,并且包括上下层叠的第三光子晶体层和第四光子晶体层。所述第三光子晶体层由光子禁带位于红光区域和绿光区域中的一个的光子晶体组成,并且所述第四光子晶体层由光子禁带位于红光区域和绿光区域中的另一个的光子晶体组成。
在一个实施例中,所述彩膜基板还包括平坦化层,其位于所述量子点材料层与所述反射增强层之间,并且所述平坦化层覆盖量子点材料层的所述红光量子点材料区域和所述绿光量子点材料区域,并且填补所述红光量子点材料区域和所述绿光量子点材料区域以外的空间,形成平坦表面。
在一个实施例中,所述光通道层中两个相邻的所述光通道单元的交界处的光子晶体块相互渗透。
在一个实施例中,所述第一光子晶体层和第二光子晶体层中的每个的厚度为400nm-80um。
在一个实施例中,所述第三光子晶体层和第四光子晶体层中的每个的厚度为400nm-80um。
在一个实施例中,所述量子点材料层的厚度为40nm-40um。
在一个实施例中,所述第一光子晶体层、第二光子晶体层、第三光子晶体层和第四光子晶体层的材料均为高折射率的单分散胶体微球,其中红绿蓝微球粒径依次为:190-210nm,160-180nm,130-150nm。
一方面,提供一种显示装置包括上述彩膜基板和位于反射增强层远离所述基板一侧的蓝色光源。
一方面,提供一种制作彩膜基板的方法,包括:提供基板;以及
在所述基板上打印所述光通道层。所述光通道层包括上下相叠的第一光子晶体层和第二光子晶体层,所述光通道层包括三种不同三原色的光通道单元周期排布的多个光通道单元,每个光通道单元包括在所述基板上的正投影彼此重叠的第一光子晶体层的一个光子晶体块和所述第二光子晶体层的一个光子晶体块,第一光子晶体层的一个光子晶体块的光子禁带与第二光子晶体层的一个光子晶体块的光子禁带不同。每个光通道单元被配置为仅允许三原色中的一个颜色的光通过,并且阻挡三原色中的另外两种颜色的光。
在一个实施例中,所述方法还包括:在所述光通道层的远离所述基板的一侧打印量子点材料层。所述量子点材料层包括周期排布的红光量子点材料区域和绿光量子点材料区域。所述红光量子点材料区域在所述基板上的正投影与所述光通道层的红光通道单元在基板上的正投影重叠;并且所述绿光量子点材料区域在所述基板上的正投影与所述光通道层的绿光通道单元在基板上的正投影重叠。
在一个实施例中,所述方法还包括:在所述量子点材料层上涂覆平坦化层,所述平坦化层覆盖量子点材料层的所述红光量子点材料区域和所述绿光量子点材料区域,并且填补所述红光量子点材料区域和所述绿光量子点材料区域以外的空间,形成平坦表面。
在一个实施例中,所述方法还包括:在所述平坦化层的远离所述基板的一侧顺序打印第三光子晶体层和第四光子晶体层,其中所述第三光子晶体层由光子禁带位于红光区域和绿光区域中的一个的光子晶体组成,并且所述第四光子晶体层由光子禁带位于红光区域和绿光区域中的另一个的光子晶体组成。
在一个实施例中,所述第一光子晶体层、第二光子晶体层、 第三光子晶体层和第四光子晶体层的材料均为高折射率的单分散胶体微球,其中红绿蓝微球粒径依次为:190-210nm,160-180nm,130-150nm。
附图说明
参照下面结合附图对本公开实施例的说明,会更加容易地理解本公开的以上和其它目的、特点和优点。附图中的部件只是为了示出本公开的原理。在附图中,相同的或类似的技术特征或部件将采用相同或类似的附图标记来表示。
图1是根据本公开实施例的彩膜基板的结构的截面图;
图2是根据本公开实施例的彩膜基板的各种结构的截面图;以及
图3是根据本公开实施例的彩膜基板的制作方法的流程图。
具体实施方式
在显示技术领域,已经开发了将量子点材料和光子晶体结合用于显示的技术,利用量子点混合到光子晶体内部,用白光激发量子点,使其发出相应RGB光波,光子晶体起到选择性透光的作用;但是存在明显缺陷:量子点位于光子晶体内部,白光到达量子点材料前必然会被光子晶体选择性屏蔽一部分光,只能透过相应少量光到达量子点,影响光利用效率。
另外,采用蓝光激发量子点发出光波,通过具有缺陷态的一维光子晶体选择性透过R、G、B光波时,一维光子晶体由两种不同折射率介质材料交替堆叠而成,通常至少做十层才会体现出其对光波的选择性,工艺难度极高,并且一维光子晶体通常具有角度依存性,即不同视角观看颜色不一致。
图1为根据本公开实施例的彩膜基板的结构的截面图。如图1所示,彩膜基板包括:基板1;光通道层2,其位于所述基板1的一侧并且包括上下相叠的第一光子晶体层和第二光子晶体层,被配置为包括阵列排布的光通道单元。在每个光通道单元中,第一光子晶体层的光子晶体块的光子禁带与第二光子晶体层的光子晶体块的光子禁带不同。每个光通道 单元被配置为仅允许三原色中的一个颜色的光通过,并且阻挡三原色中的另外两种颜色的光。彩膜基板还包括量子点材料层3,其位于所述光通道层2远离所述基板1的一侧,并且包括阵列排布的红光量子点材料区域3-1和绿光量子点材料区域3-2,所述红光量子点材料区域3-1和绿光量子点材料区域3-2分别和所述光通道层2中的红光通道单元5和绿光通道单元6相对应。
根据本公开实施例的彩膜基板,通过将量子点材料层设置到光子晶体层的外部,量子点材料层仅包含红、绿量子点发光材料。在一个实施例中,可以采用蓝光作为激发光源,减少蓝光量子点材料的使用,降低成本,并且由于光子晶体对原色光通道(即,红光通道、蓝光通道、绿光通道)内传播的原色光吸收极弱,可显著提高彩膜基板的透过率。
在一个实施例中,第一光子晶体层由光子禁带分别位于第一原色光区域和第二原色光区域的多个光子晶体块组成,第二光子晶体层由与第一光子晶体层的对应位置处的光子禁带不同的多个光子晶体块组成。根据这种设置,从量子点材料层出射的三种原色光,经过第一光子晶体层和第二光子晶体层的反射筛选后,仅能通过对应的原色光通道出射到光通道层2上方,保证了原色光(红光、蓝光、绿光)的单一性和透射光强度。
对于光子晶体的设计如下:光子晶体的结构的基本原理可由Bragg衍射解释,根据Bragg衍射基本公式可计算光子晶体的理论反射峰的位置:
Figure PCTCN2019126984-appb-000001
Figure PCTCN2019126984-appb-000002
Figure PCTCN2019126984-appb-000003
n eff为有效折射率,n sphere为光子晶体材料的折射率,n air为空气的折射率,f sphere为光子晶体中球形纳米材料的体积与光子晶体的总体积的比例;f air为光子晶体中空气体积与光子晶体的总体积的比例,θ为光线的入射角度,D为微球的直径。
若光子晶体的有效折射率足够大,可近似忽略光线的入射角度对光 子晶体的衍射峰的影响,因此采用折射率大于2的高折射率材料。以硫化镉(折射率2.51)纳米微球作为光子晶体的材料为例,红、绿、蓝光子晶体的微球粒径大小分别位于190-210nm,160-180nm,130-150nm;其对应的反射峰的位置分别位于610-680nm(红光区域),520-580nm(绿光区域),420-485nm(蓝光区域)。
在一个实施例中,所述彩膜基板还包括:反射增强层4,其位于量子点材料层的远离基板1的一侧,并且包括从所述基板1至量子点材料层3的方向上顺序层叠的第三光子晶体层4-1和第四光子晶体层4-2。第三光子晶体层4-1由光子禁带位于红光区域和绿光区域中的一个区域的光子晶体组成,第四光子晶体层4-2由光子禁带位于红光区域和绿光区域中的另一区域的光子晶体组成。通过设置反射增强层4,可以使得量子点材料层向下反射的红、绿光不能在反射增强层4中传播,从而沿着如图1所示的出光方向全部反射至光通道层2的出光面,故可显著提高光的利用率及透射光强度、降低光损失。
在一个实施例中,第一光子晶体层由光子禁带分别位于蓝光区域和红光区域的多个光子晶体块组成;第二光子晶体层由光子禁带分别位于红光区域和绿光区域的多个光子晶体块组成。第一光子晶体层的多个光子晶体块在基板1上的正投影与第二光子晶体层的多个光子晶体块在基板1上的正投影分别一一对应重叠。
在一个实施例中,所述反射增强层4还包括平坦化层3-3,所述平坦化层3-3位于所述光通道层2和反射增强层4之间。所述平坦化层3-3覆盖量子点材料层3,即,覆盖红光量子点材料区域3-1和绿光量子点材料区域3-2,并且填补红光量子点材料区域3-1和绿光量子点材料区域3-2以外的空间,平坦化层3-3在量子点材料层3的外侧(即,远离基板1的一侧)具有平坦表面,有利于提高外部光线的透射率。
在一个实施例中,如图1和图2所示,基板1采用透明玻璃基板,光通道层2的第一光子晶体层由光子禁带位于红光区域2-2的多个光子晶体块R和光子禁带位于蓝光区域2-1的多个光子晶体块B组成。第二光子晶体层由光子禁带位于绿光区域2-3的多个光子晶体块G和光子禁带位于红光区域2-2的多个光子晶体块R组成。第一光子晶体层和第二 光子晶体层的沿出光方向上相邻的两个光子晶体块(例如B、G)的光子禁带对应不同颜色的光。在一个实施例中,第一光子晶体层的光子晶体块B在基板上的正投影与第二光子晶体层的相应光子晶体块G在基板上的正投影重叠。所述第一光子晶体层的所述光子晶体块B和所述第二光子晶体层的所述相应光子晶体块G具有位于不同颜色区域的光子禁带。例如,在光通道单元7中,第一光子晶体层的光子晶体块R的光子禁带对应红光,第二光子晶体层的相应光子晶体块G的光子禁带对应绿光,则入射至光通道单元7的RGB光波通过第一光子晶体层和第二光子晶体层后,红光和绿光被反射回,仅蓝光可以透过而出射。在光通道单元6中,第一光子晶体层的光子晶体块B的光子禁带对应蓝光,第二光子晶体层的相应光子晶体块R的光子禁带对应红光,则入射至光通道单元6的RGB光波通过第一光子晶体层和第二光子晶体层后,蓝光和红光被反射回,仅绿光可以透过而出射。在光通道单元5中,第一光子晶体层的光子晶体块B的光子禁带对应蓝光,第二光子晶体层的相应光子晶体块G的光子禁带对应绿光,则入射至光通道单元5的RGB光波通过第一光子晶体层和第二光子晶体层后,蓝光和绿光被反射回,仅红光可以透过而出射。通过光子晶体的阵列排布,在透明玻璃板上将透过出射RGB、RGB…的彩色光线,从而形成对应的红光通道单元5,绿光通道单元6,蓝光通道单元7,起到选择性传播光波的作用。
在本文中,第一光子晶体层和第二光子晶体层中,一个光子晶体块是指光子禁带位于蓝光区域、红光区域或绿光区域的光子晶体块。换句话说,第一光子晶体层由光子禁带不同的多个光子晶体块(例如,多个光子晶体块B和多个光子晶体块R)构成,并且第二光子晶体层由光子禁带不同的多个光子晶体块(例如,多个光子晶体块G和多个光子晶体块R)构成。第一光子晶体层和第二光子晶体层中的一个光子晶体块的尺寸与显示装置的分辨率相关。
一个红光通道单元5由两个光子晶体块B、G构成。一个绿光通道单元6由两个光子晶体块B、R构成。一个蓝光通道单元7由两个光子晶体块R、G(或光子晶体块R、G)构成。
一个红光通道单元5相当于一个红色子像素,一个绿光通道单元6 相当于一个绿色子像素,一个蓝光通道单元7相当于一个蓝色子像素。一个红光通道单元5,一个绿光通道单元6和一个蓝光通道单元7构成一个像素。
光子晶体对在相应原色光通道内传播的光波吸收极弱,例如,在蓝光通道单元中,红光和绿光被反射,而对蓝光吸收极弱,蓝光得到最大的透射,可显著提高彩膜基板的透过率。
在采用蓝光作为激发光源的情况下,量子点材料层可减少或不配置蓝光量子点材料,仅保留红光量子点材料区域3-1中的红光量子点材料和绿光量子点材料区域3-2中的绿光量子点材料,从而降低成本。可以利用平坦化层3-3将本应设置蓝光量子点材料的空位置填充补齐,外侧再涂覆平坦化层材料,有利于平行光线的入射。
与第一光子晶体层和第二光子晶体层不同,反射增强层4的第三光子晶体层4-1由一整块光子晶体构成,并且第四光子晶体层4-2由一整块光子晶体构成。例如,第三光子晶体层4-1由光子禁带位于红色区域的一整块光子晶体构成,并且第四光子晶体层4-2由光子禁带位于绿色区域的一整块光子晶体构成。
由于第三光子晶体层4-1和第四光子晶体层4-2的整块光子晶体的光子禁带分别位于红光区域、绿光区域,因此叠加的效果就是反射增强层4仅能透过波长位于蓝光区域的光波,即,蓝光,使得所述第三光子晶体层4-1和所述第四光子晶体层4-2形成蓝光通道,而红、绿色的光波不能在所述第三光子晶体层4-1和所述第四光子晶体层4-2中传播。当蓝光透过反射增强层4以激发红光量子点材料、绿光量子点材料时,红光、绿光的一部分会沿着返回方向(向反射增强层4的方向或与出光方向相反的方向)传播,由于反射增强层4中光子晶体的禁带特性,沿返回方向传播的红光、绿光不能在反射增强层4中传播,从而全部反射到量子点材料层3上,即向光通道层2的方向或出光方向,故可显著提高光的利用率及透射光的强度、降低光损失。此外,由于光子晶体的禁带特性,量子点材料层3上方(来自光通道层2)及下方(来自反射增强层4)的反射红光、绿光只能在光通道层2的红光通道单元5、绿光通道单元6传播,蓝光只能在蓝光通道单元7传播,多余的杂光无法在光 通道单元内传播,可显著提高透射光的纯度。
另外,如图1所示,由于在第一光子晶体层和第二光子晶体层中,不同原色光通道交界8、9处的光子晶体块的光子禁带不同,例如,光子禁带在红光区域的光子晶体块R、光子禁带在蓝光区域的光子晶体块B、光子禁带在绿光区域的光子晶体块G在通道交界8处相互渗透。再例如,光子禁带在红光区域的光子晶体块R、光子禁带在蓝光区域的光子晶体块B、光子禁带在绿光区域的光子晶体块G在通道交界9处相互渗透,如图1中所示,会导致该通道交界8或9处的三种原色光都被反射,透光率下降,这样就无需设置再遮光膜遮挡后续TFT显示装置中的不透光区域,简化了彩膜基板的工艺。
以上实施例以蓝色光源作为激发光源为例进行说明。要注意,在本公开中,还可以采用红色光源或绿色光源作为激发光源。
当采用红色光源或绿色光源作为激发光源时,第一光子晶体层中的多个光子晶体管、第二光子晶体层中的多个光子晶体块、第三光子晶体层中的整体光子晶体和第四光子晶体层中的整体光子晶体的禁带可以适应性的改变。
图2示出根据本公开实施例的彩膜基板的各种结构的截面图。图2中的a至p分别示出了复合彩膜基板中的光通道层2、量子点材料层3及反射增强层4中的光子晶体及量子点材料的颜色的多种组合。它们均可以实施,以形成不同的原色光通道,取得上述的技术效果。
在一个实施例中,所述第一光子晶体层和第二光子晶体层中的每个的厚度为400nm-80um。
在一个实施例中,所述第三光子晶体层4-1和第四光子晶体层4-2中的每个的厚度为400nm-80um。
在一个实施例中,所述量子点材料层3的厚度为40nm-40um。
在一个实施例中,所有光子晶体(即,第一光子晶体层、第二光子晶体层、第三光子晶体层和第四光子晶体层中的光子晶体块)的材料为高折射率的单分散胶体微球,其中红、绿、蓝微球粒径依次为:
190-210nm,160-180nm,130-150nm。
在一个实施例中,所述红光、绿光、蓝光的波长范围分别为:
610-680nm,520-580nm,420-485nm。
图3是根据本公开实施例的彩膜基板的制作方法的流程图。如图3所示,该方法包括步骤S100和S110。
S100:首先,采用喷墨打印方法在玻璃基板1上打印光通道层2,包括上下相叠的第一光子晶体层和第二光子晶体层,光通道层2包括三种不同三原色的光通道单元阵列排布或周期排布的多个光通道单元。每个光通道单元包括第一光子晶体层中的光子晶体块(或一个光子晶体块)和第二光子晶体层中的相应光子晶体块(或一个相应的光子晶体块)。第二光子晶体层中的光子晶体块位于第一光子晶体层中的光子晶体块的远离玻璃基板1的一侧,并且第一光子晶体层中的所述光子晶体块在所述玻璃基板1上的正投影和第二光子晶体层中的所述相应的光子晶体块在玻璃基板1上的正投影完全重叠。在每个光通道单元中,第一光子晶体层的光子晶体块的光子禁带与第二光子晶体层的相应光子晶体块的光子禁带不同,第一光子晶体层的所述光子晶体块的光子禁带与第二光子晶体层的所述相应光子晶体块的光子禁带的组合,每个光通道单元被配置为仅允许红光、绿光或蓝光通过所述光通道单元。
S110:其次,在光通道层2的远离所述玻璃基板1的一侧喷墨打印量子点材料层3,其包括阵列排布或周期排布的红光量子点材料区域3-1和绿光量子点材料区域3-2。红光量子点材料区域3-1与光通道层2中的红光通道单元5相对应。红光量子点材料区域3-1在所述玻璃基板1上的正投影与红光通道单元5在所述玻璃基板1上的正投影完全重叠。绿光量子点材料区域3-2与光通道层2中的绿光通道单元6相对应。绿光量子点材料区域3-2在所述玻璃基板1上的正投影与所述绿光通道单元6在所述玻璃基板1上的正投影完全重叠。量子点材料层3的与蓝光通道单元7相对应的位置不设置任何量子点材料。
根据本公开实施例的彩膜基板的制作方法,采用喷墨打印技术实现光子晶体光通道的快速大面积构建,工艺难度较低,易于工业化,且可显著提高制作的复合彩膜基板的透过率和透射光的纯度。
所述方法还包括:在量子点材料层3上方涂敷平坦化层3-3,使量子点材料层3表面平坦。平坦化层3-3覆盖红光量子点材料区域3-1中 的红光量子点材料和绿光量子点材料区域3-2中的绿光量子点材料,并且覆盖红光量子点材料区域3-1和绿光量子点材料区域3-2之外的空间,即,没有设置任何量子点材料的蓝光通道单元7。
在一个实施例中,所述方法还包括:在所述平坦化层上面喷墨打印反射增强层4,所述反射增强层4由层叠的第三光子晶体层4-1和第四光子晶体层4-2组成。第三光子晶体层4-1由光子禁带位于红光区域和绿光区域之一的一整块光子晶体组成,第四光子晶体层4-2由光子禁带位于红光区域和绿光区域中的另一个的一整块光子晶体组成。
采用高折射率的纳米微球作为构建光子晶体的喷墨打印材料,可避免光子晶体存在的视角差异,提高观察角度。
在一个实施例中,用于喷墨打印光子晶体的材料为折射率大于2的硫化镉、氧化亚铜、氧化钛、氧化锌、硫化锌等高折射率的单分散胶体纳米微球。纳米微球的制备方法可选用水热法、溶胶凝胶法、乳液聚合等方法制备。
高折射率纳米微球分散于高沸点助剂、乙醇、甘油、表面活性剂、消泡剂、胶黏剂、调节剂和去离子水混合物中,通过超声分散处理即可得到单分散胶体纳米微球。
可以采用的量子点材料为CdSe、CdTe、石墨烯等光致发光量子点材料,与量子点材料匹配的蓝光波长范围在440-460nm;绿光量子点材料的发光峰是510-540nm,红光量子点材料的发光峰是630-670nm。本公开中光源可以是蓝色背光源,例如,蓝色电致发光光源。
喷墨打印完成以及平坦化层涂覆完成后,对彩膜基板进行热处理以彻底除去彩膜中的溶剂,加热温度为100-120℃,加热时间20-30s。
本公开还提供一种显示装置,其包括光源(例如,蓝色光源)和布置在所述蓝色光源的出光方向上的根据任一技术方案所述的彩膜基板。
根据上述对彩膜基板及制作方法的说明,获取的显示装置能够获得相应的技术效果,此处不再赘述。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变 型和改进,这些变型和改进也视为本公开的保护范围。

Claims (17)

  1. 一种彩膜基板,包括:
    基板;以及
    光通道层,其位于所述基板的一侧,其中
    所述光通道层包括上下相叠的第一光子晶体层和第二光子晶体层,所述光通道层包括三种不同三原色的光通道单元周期排布的多个光通道单元,每个光通道单元包括在所述基板上的正投影彼此重叠的所述第一光子晶体层的一个光子晶体块和所述第二光子晶体层的一个光子晶体块,所述第一光子晶体层的所述一个光子晶体块的光子禁带与所述第二光子晶体层的所述一个光子晶体块的光子禁带不同,每个所述光通道单元被配置为仅允许三原色中的一种颜色的光通过,并且阻挡三原色中的另外两种颜色的光。
  2. 根据权利要求1所述的彩膜基板,其中,
    所述第一光子晶体层由光子禁带分别位于第一原色光区域和第二原色光区域的多个光子晶体块组成,并且
    所述第二光子晶体层由光子禁带分别位于所述第二原色光区域和第三原色光区域的多个光子晶体块组成。
  3. 根据权利要求2所述的彩膜基板,其中,
    所述第一光子晶体层由光子禁带分别位于蓝光区域和红光区域的所述多个光子晶体块组成;
    所述第二光子晶体层由光子禁带分别位于红光区域和绿光区域的所述多个光子晶体块组成。
  4. 根据权利要求1至3中任意一项所述的彩膜基板,还包括:量子点材料层,其位于所述光通道层远离所述基板的一侧,并且包括周期排布的红光量子点材料区域和绿光量子点材料区域,其中
    所述多个光通道单元包括周期排布的红色光通道单元、绿色光通道 单元和蓝色光通道单元,
    所述红光量子点材料区域在所述基板上的正投影与所述红光通道单元在所述基板上的正投影重叠;并且
    所述绿光量子点材料区域在所述基板上的正投影与所述绿光通道单元在所述基板上的正投影重叠。
  5. 根据权利要求4所述的彩膜基板,还包括:反射增强层,设置在所述量子点材料层的远离所述基板的一侧,并且包括上下层叠的第三光子晶体层和第四光子晶体层,其中
    所述第三光子晶体层由光子禁带位于红光区域和绿光区域中的一个的光子晶体组成,并且
    所述第四光子晶体层由光子禁带位于红光区域和绿光区域中的另一个的光子晶体组成。
  6. 根据权利要求5所述的彩膜基板,还包括:平坦化层,其位于所述量子点材料层与所述反射增强层之间,其中
    所述平坦化层覆盖所述量子点材料层的所述红光量子点材料区域和所述绿光量子点材料区域,并且填补所述红光量子点材料区域和所述绿光量子点材料区域以外的空间,形成平坦表面。
  7. 根据权利要求1至6中任意一项所述的彩膜基板,其中
    所述光通道层中的两个相邻光通道单元的交界处的光子晶体块相互渗透。
  8. 根据权利要求1所述的彩膜基板,其中,所述第一光子晶体层和所述第二光子晶体层中的每个的厚度为400nm-80um。
  9. 根据权利要求5所述的彩膜基板,其中,所述第三光子晶体层和所述第四光子晶体层中的每个的厚度为400nm-80um。
  10. 根据权利要求4所述的彩膜基板,其中,所述量子点材料层的厚度为40nm-40um。
  11. 根据权利要求5所述的彩膜基板,其中,所述第一光子晶体层、所述第二光子晶体层、所述第三光子晶体层和所述第四光子晶体层的材料均为高折射率的单分散胶体微球,其中红绿蓝微球粒径依次为:
    190-210nm,160-180nm,130-150nm。
  12. 一种显示装置,包括根据权利要求1-11任一项所述的彩膜基板和位于反射增强层远离所述基板一侧的蓝色光源。
  13. 一种制作彩膜基板的方法,包括:
    提供基板;以及
    在所述基板上打印所述光通道层,其中
    所述光通道层包括上下相叠的第一光子晶体层和第二光子晶体层,所述光通道层包括三种不同三原色的光通道单元周期排布的多个光通道单元,每个光通道单元包括在所述基板上的正投影彼此重叠的第一光子晶体层的一个光子晶体块和所述第二光子晶体层的一个光子晶体块,所述第一光子晶体层的所述一个光子晶体块的光子禁带与所述第二光子晶体层的所述一个光子晶体块的光子禁带不同,每个光通道单元被配置为仅允许三原色中的一个颜色的光通过,并且阻挡三原色中的另外两种颜色的光。
  14. 根据权利要求13所述的方法,还包括:在所述光通道层的远离所述基板的一侧打印量子点材料层,其中
    所述量子点材料层包括周期排布的红光量子点材料区域和绿光量子点材料区域,
    所述多个光通道单元包括周期排布的红色光通道单元、绿色光通道单元和蓝色光通道单元,
    所述红光量子点材料区域在所述基板上的正投影与所述光通道层的 所述红光通道单元在所述基板上的正投影重叠;并且
    所述绿光量子点材料区域在所述基板上的正投影与所述光通道层的所述绿光通道单元在所述基板上的正投影重叠。
  15. 根据权利要求14所述的方法,还包括:在所述量子点材料层上涂覆平坦化层,其中
    所述平坦化层覆盖量子点材料层的所述红光量子点材料区域和所述绿光量子点材料区域,并且填补所述红光量子点材料区域和所述绿光量子点材料区域以外的空间,形成平坦表面。
  16. 根据权利要求15所述的方法,还包括:在所述平坦化层的远离所述基板的一侧顺序打印第三光子晶体层和第四光子晶体层,其中
    所述第三光子晶体层由光子禁带位于红光区域和绿光区域中的一个的光子晶体组成,并且所述第四光子晶体层由光子禁带位于红光区域和绿光区域中的另一个的光子晶体组成。
  17. 根据权利要求16所述的方法,其中
    所述第一光子晶体层、所述第二光子晶体层、所述第三光子晶体层和所述第四光子晶体层的材料均为高折射率的单分散胶体微球,其中红绿蓝微球粒径依次为:190-210nm,160-180nm,130-150nm。
PCT/CN2019/126984 2019-01-02 2019-12-20 彩膜基板、制作方法、显示装置 WO2020140771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/957,947 US20210223435A1 (en) 2019-01-02 2019-12-20 Color filter substrate, method for manufacturing the same and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910002764.7A CN109581562A (zh) 2019-01-02 2019-01-02 光子晶体复合彩膜、制作方法、彩色滤光基板
CN201910002764.7 2019-01-02

Publications (1)

Publication Number Publication Date
WO2020140771A1 true WO2020140771A1 (zh) 2020-07-09

Family

ID=65915848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126984 WO2020140771A1 (zh) 2019-01-02 2019-12-20 彩膜基板、制作方法、显示装置

Country Status (3)

Country Link
US (1) US20210223435A1 (zh)
CN (1) CN109581562A (zh)
WO (1) WO2020140771A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581562A (zh) * 2019-01-02 2019-04-05 京东方科技集团股份有限公司 光子晶体复合彩膜、制作方法、彩色滤光基板
CN110119005A (zh) * 2019-05-28 2019-08-13 苏州大学 一种宽波段反射镜
CN110264881B (zh) * 2019-06-20 2021-09-24 京东方科技集团股份有限公司 显示装置及制作方法
CN113451363A (zh) * 2020-03-27 2021-09-28 咸阳彩虹光电科技有限公司 一种oled显示面板、显示装置
CN111490082A (zh) * 2020-04-17 2020-08-04 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN113448084B (zh) * 2021-07-12 2023-03-24 杭州电子科技大学 一种高温热源色调制方法
CN115032807B (zh) * 2022-08-11 2022-11-29 成都理工大学工程技术学院 一种立体成像装置及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697021A (zh) * 2009-11-05 2010-04-21 上海交通大学 基于一维金属光子晶体的带偏振功能的彩色滤光片
CN102645786A (zh) * 2012-03-29 2012-08-22 京东方科技集团股份有限公司 彩膜基板、显示装置及彩膜基板的制备方法
CN103472516A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 反射式滤光片及其制备方法、显示装置
CN104064658A (zh) * 2014-07-05 2014-09-24 福州大学 一种led显示屏及其3d显示装置
US20170052382A1 (en) * 2013-10-16 2017-02-23 Emmett Dunham Color-changing panel for active camouflage configurations
CN108919402A (zh) * 2018-07-24 2018-11-30 京东方科技集团股份有限公司 彩色滤光基板及其制作方法、显示装置
CN109581562A (zh) * 2019-01-02 2019-04-05 京东方科技集团股份有限公司 光子晶体复合彩膜、制作方法、彩色滤光基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106681046B (zh) * 2016-11-21 2020-03-17 京东方科技集团股份有限公司 一种彩膜基板及显示装置
TWI791528B (zh) * 2017-06-02 2023-02-11 法商奈科斯多特股份公司 照明源及具有該照明源之顯示裝置
CN109031649A (zh) * 2017-06-09 2018-12-18 京东方科技集团股份有限公司 一种反射器件及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697021A (zh) * 2009-11-05 2010-04-21 上海交通大学 基于一维金属光子晶体的带偏振功能的彩色滤光片
CN102645786A (zh) * 2012-03-29 2012-08-22 京东方科技集团股份有限公司 彩膜基板、显示装置及彩膜基板的制备方法
CN103472516A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 反射式滤光片及其制备方法、显示装置
US20170052382A1 (en) * 2013-10-16 2017-02-23 Emmett Dunham Color-changing panel for active camouflage configurations
CN104064658A (zh) * 2014-07-05 2014-09-24 福州大学 一种led显示屏及其3d显示装置
CN108919402A (zh) * 2018-07-24 2018-11-30 京东方科技集团股份有限公司 彩色滤光基板及其制作方法、显示装置
CN109581562A (zh) * 2019-01-02 2019-04-05 京东方科技集团股份有限公司 光子晶体复合彩膜、制作方法、彩色滤光基板

Also Published As

Publication number Publication date
US20210223435A1 (en) 2021-07-22
CN109581562A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2020140771A1 (zh) 彩膜基板、制作方法、显示装置
US11397347B2 (en) Color filter substrate, manufacturing method thereof, and display device
KR102651856B1 (ko) 색 변환 소자 및 이를 포함하는 표시 장치
CN106681046B (zh) 一种彩膜基板及显示装置
WO2017092131A1 (zh) 彩膜基板的制作方法及液晶显示装置
WO2016082392A1 (zh) 显示面板和显示装置
US7535171B2 (en) System and method for total light extraction from flat-panel light-emitting devices
US20180341055A1 (en) Color Liquid Crystal Displays and Display Backlights
WO2017075879A1 (zh) 量子点彩膜基板及其制作方法与液晶显示装置
KR102430426B1 (ko) 컬러 액정 디스플레이 및 디스플레이 백라이트
WO2019024434A1 (zh) 显示面板及显示装置
CN104155803A (zh) 背光模块及液晶显示装置
WO2019019560A1 (zh) 显示面板及显示装置
WO2020253312A1 (zh) 显示装置及制作方法
CN110707146B (zh) 盖板、有机发光显示面板、显示装置
JP2022096625A (ja) 表示素子、及び表示装置
CN110426890B (zh) 液晶显示面板以及液晶显示装置
WO2015078157A1 (zh) 彩膜基板及其制作方法、显示装置
WO2021077501A1 (zh) 量子点彩膜基板和液晶显示装置
WO2022246690A1 (zh) 显示面板、其制备方法和显示装置
WO2021143641A1 (zh) 彩膜基板、显示面板和显示装置
JP6687349B2 (ja) 液晶表示装置
TW201944616A (zh) 彩色液晶顯示器及顯示器背光
KR20200049938A (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
WO2023234066A1 (ja) 表示素子、及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907718

Country of ref document: EP

Kind code of ref document: A1