WO2017118025A1 - 背光模组、液晶显示器及其制作方法 - Google Patents

背光模组、液晶显示器及其制作方法 Download PDF

Info

Publication number
WO2017118025A1
WO2017118025A1 PCT/CN2016/094985 CN2016094985W WO2017118025A1 WO 2017118025 A1 WO2017118025 A1 WO 2017118025A1 CN 2016094985 W CN2016094985 W CN 2016094985W WO 2017118025 A1 WO2017118025 A1 WO 2017118025A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
backlight
light
diffraction grating
backlight module
Prior art date
Application number
PCT/CN2016/094985
Other languages
English (en)
French (fr)
Inventor
牛小辰
董学
陈小川
赵文卿
杨明
王倩
卢鹏程
高健
王磊
许睿
王鹏鹏
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/505,156 priority Critical patent/US10365438B2/en
Publication of WO2017118025A1 publication Critical patent/WO2017118025A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Definitions

  • Embodiments of the present disclosure relate to a backlight module, a liquid crystal display, and a process for fabricating the same.
  • the laminated structure of the backlight module, the TFT substrate, the lower polarizing plate, the color film substrate, and the upper polarizing plate limits the thickness of the conventional liquid crystal display device, and it is difficult to make it thinner and lighter.
  • the use of color filters consumes at least 60% of the light energy, and can only rely on improving the brightness of the backlight to meet the brightness requirements of real devices, which undoubtedly increases power consumption.
  • Embodiments of the present disclosure provide a backlight module, a liquid crystal display, and a manufacturing process thereof.
  • a backlight module including:
  • the diffraction grating is etched on the backlight, and each of the backlights corresponds to N kinds of grating patterns on the diffraction grating, and N is a natural number greater than 1.
  • the backlight is a direct type backlight.
  • each of the monochrome light-emitting units of the backlight is collimated light.
  • the backlight includes a monochromatic illumination unit that emits three monochromatic collimated lights of red, green, and blue.
  • the diffraction grating is a sinusoidal phase grating or a blazed grating.
  • the diffraction grating is a sinusoidal phase grating
  • the inclination angle is ⁇ G
  • the grating constant is ⁇
  • the grating length is L
  • the thickness is d
  • the complex amplitude projection coefficient is:
  • q represents the diffraction order of the diffraction grating
  • J q represents the first-order Bessel function of the q-order
  • r q ( ⁇ q , ⁇ q , ⁇ q )
  • the direction cosine of the outgoing light; the intensity of the outgoing light is modulated by v 2 ⁇ nd/ ⁇ , ⁇ n is the refractive index of the grating, and ⁇ is the wavelength.
  • the diffraction grating is a sinusoidal phase grating
  • the direction cosine of the incident light of the sinusoidal phase grating is ( ⁇ , ⁇ , ⁇ )
  • the outgoing direction of the outgoing light of the sinusoidal phase grating is ( ⁇ q , ⁇ ) q , ⁇ q )
  • a preset angle exists between various grating patterns on the diffraction grating corresponding to each of the monochrome light-emitting units, so that the incident light emitted by the corresponding monochrome light-emitting unit is emitted at N angles. .
  • the arrangement manners of the N kinds of grating patterns on the diffraction grating corresponding to each of the monochrome light-emitting units of the backlight are not all the same.
  • N kinds of grating patterns on the diffraction grating corresponding to adjacent monochromatic light-emitting units in the backlight are arranged in different manners.
  • Embodiments of the present disclosure also provide a liquid crystal display including the backlight module.
  • the liquid crystal display further includes: a light scattering film disposed over the diffraction grating, and a thin film transistor TFT substrate, a liquid crystal layer, and a polarizing plate sequentially disposed over the light scattering film.
  • the TFT substrate includes an electrode structure of a twisted nematic (TN), an In-Plane Switching (IPS), and a Vertical Alignment (VA) display mode.
  • TN twisted nematic
  • IPS In-Plane Switching
  • VA Vertical Alignment
  • each of the backlights corresponds to N kinds of grating patterns on the diffraction grating, and N is a natural number greater than 1.
  • FIG. 1 is a schematic structural diagram of a liquid crystal display according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a backlight provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of four kinds of grating patterns of a portion of a single-color light-emitting unit corresponding to a backlight on a diffraction grating according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of light emitted by a monochromatic light-emitting unit on a backlight according to an embodiment of the present disclosure, which emits light in four directions after passing through a corresponding grating on a diffraction grating;
  • FIG. 5 is a schematic diagram of an overall grating pattern of a diffraction grating corresponding to an entire display area of a backlight according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of light of different colors that are uniformly propagated in various directions after incident light of different colors of a backlight through a diffraction grating and a light scattering film according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a color display by providing different color backlights for different sub-pixel units on a TFT substrate after the light emitted by the monochromatic light-emitting units of different colors on the backlight is provided by the diffraction grating according to the embodiment of the present disclosure;
  • FIG. 8 is a schematic flow chart of a manufacturing process of a liquid crystal display according to an embodiment of the present disclosure.
  • the embodiments of the present disclosure provide a backlight module, a liquid crystal display, and a preparation method thereof, which can realize a lighter and thinner liquid crystal display, and can improve the light efficiency of the liquid crystal display, reduce power consumption, and product cost.
  • a backlight module provided by an embodiment of the present disclosure includes: a backlight, and a diffraction grating disposed on the backlight.
  • the diffraction grating is etched on the backlight, and each of the backlights corresponds to N kinds of grating patterns on the diffraction grating, and N is a natural number greater than 1.
  • the liquid crystal display including the backlight module can be omitted from the lower polarizing plate and the color film substrate, thereby realizing a lighter and thinner liquid crystal display, improving the light efficiency of the liquid crystal display and reducing power consumption.
  • the added diffraction grating functions to adjust the light exiting direction, which can reduce the density of the backlight array, and can reduce the cost while improving the light efficiency.
  • a thinned liquid crystal display device capable of improving backlight utilization efficiency according to an embodiment of the present disclosure, see FIG. 1, includes: a direct type backlight 1 , a diffraction grating 2, a light scattering film 3, and a film which are sequentially disposed from bottom to top.
  • a Thin Film Transistor (TFT) substrate 4 a liquid crystal layer 5, and a polarizing plate 6.
  • the backlight 1 can be a direct type backlight.
  • the backlight 1 uses red (R), green (G), and blue (B) monochromatic collimated light.
  • the direct type backlight can eliminate the use of the color film substrate, thereby improving the light extraction efficiency, reducing the power consumption, and making the display picture more delicate and realistic.
  • Diffraction grating 2 can reduce backlight The density of the source array, thereby reducing costs.
  • the light-scattering film 3 causes the backlight emitted from the backlight 1 to be uniformly emitted in various directions.
  • the liquid crystal display provided by the embodiment of the present disclosure is provided with only one upper polarizing plate 6 and no lower polarizing plate and color film substrate. Therefore, the thickness of the liquid crystal display provided by the embodiment of the present disclosure is greatly reduced, and is lighter and thinner.
  • the liquid crystal display provided by the embodiment of the present disclosure has no color film substrate, which can improve light efficiency and reduce power consumption.
  • the diffraction grating 2 in the liquid crystal display provided by the embodiment of the present disclosure may be, for example, a sinusoidal phase grating etched on the backlight 1.
  • each monochromatic light-emitting unit corresponds to a portion on the diffraction grating 2 including N kinds of grating patterns, and N is a natural number greater than 1.
  • the function of the diffraction grating 2 is to adjust the light outgoing direction of the light, thereby reducing the density of the monochromatic light emitting unit array on the backlight 1, to save cost.
  • the diffraction grating 2 can also be, for example, a blazed grating.
  • a blazed grating can also be formed on the backlight 1 by etching.
  • a blazed grating means that when the grating is scored in a zigzag-shaped wire channel section (for example, a triangular section), the light energy of the grating is concentrated in a predetermined direction, that is, at a certain spectral level, the intensity of the spectrum is detected from this direction. The largest, this kind of grating is called a blazed grating.
  • each of the monochromatic light-emitting units in the backlight 1 structure corresponds to a portion of the diffraction grating 2 including four kinds of grating patterns, and the gratings corresponding to the four kinds of grating patterns have a certain angle between them, and the angles are different from each other.
  • the incident light of each of the monochromatic light-emitting units of the backlight 1 passes through the grating on the diffraction grating 2, and is emitted at four angles as shown in FIG.
  • the grating arrangement of the diffraction grating 2 on the entire surface display area corresponding to the backlight 1 is as shown in FIG. 5. It should be noted that FIG.
  • the grating angles between different pixels may also be different, that is, each pixel.
  • the grating patterns corresponding to the cells may be the same or different, and may be adjusted according to the light outgoing direction. The principle of operation of the grating of the embodiment of the present disclosure will be described below.
  • the diffraction grating is a sinusoidal phase grating. If the inclination angle is ⁇ G , the grating constant is ⁇ , the grating length is L, and the thickness is d, then the complex amplitude projection coefficient t(r q ) can be obtained by the following formula 1:
  • q represents the diffraction order of the diffraction grating
  • J q represents the first-order Bessel function of the q-order
  • r q ( ⁇ q , ⁇ q , ⁇ q )
  • the direction cosine of the outgoing light; the intensity of the outgoing light is modulated by v 2 ⁇ nd/ ⁇ , ⁇ n is the refractive index of the grating, and ⁇ is the wavelength.
  • the sinusoidal phase grating can modulate the phase of its incident light. For example, when the incident light whose direction cosine is ( ⁇ , ⁇ , ⁇ ) passes through the sinusoidal phase grating, its exit direction becomes ( ⁇ q , ⁇ q , ⁇ q ). , then, they have the relationship shown in the following formula 2:
  • Equation 2 For a sinusoidal phase grating, the exit angle of the light is related to the incident light angle, the grating parameters, and the wavelength ⁇ .
  • the other conditions are constant and only the grating tilt angle ⁇ G is changed, the direction in which the light is emitted also changes, so that the phenomenon as shown in FIG. 4 occurs.
  • the liquid crystal display provided by the embodiment of the present disclosure adds a light-scattering film 3, so that the light emitted through the diffraction grating 2 is in each The position spreads evenly in all directions, as shown in Figure 6.
  • the wavelengths of the three colors of R, G, and B are different, and the grating parameters can be reasonably adjusted to form an effect as shown in FIG. 7, that is, the red single light-emitting unit on the backlight is applied to the TFT substrate through the diffraction grating.
  • the backlight array 10 of Figure 7 includes each monochromatic illumination unit on the backlight; the diffraction grating array 20 of Figure 7 includes each monochromatic transmission The light unit corresponds to a grating; the TFT array 30 in FIG. 7 includes a TFT.
  • the structural design of the liquid crystal display provided by the embodiment of the present disclosure makes the resolution of the display device independent of the density of the backlight array, thereby reducing the cost of the direct type backlight.
  • the number of gratings corresponding to each of the single-color light-emitting units on the backlight is not limited under the condition that the process capability is satisfied, and each of the monochrome light-emitting units corresponds to the embodiment of the present disclosure.
  • the four gratings are taken as an example.
  • the embodiments of the present disclosure are not limited thereto; the arrangement manner of each grating pattern corresponding to each monochromatic light-emitting unit on the backlight is not limited, and the N gratings form a certain angle to make The light is emitted at N angles and can satisfy the pixel composition structure; the electrode structure of the TFT substrate is not limited, for example, the electrode structure of the TN, IPS, VA display mode, the TFT substrate can be a TFT glass substrate; the monochromatic light emission on the backlight
  • the arrangement of the cells is not limited to the pixel rendering structure, for example, Real, BV, and Pentile.
  • a manufacturing process of a liquid crystal display provided by an embodiment of the present disclosure includes:
  • each of the backlights corresponds to N kinds of grating patterns on the diffraction grating, and N is a natural number greater than 1.
  • the technical solution provided by the embodiments of the present disclosure can significantly reduce the module thickness of the liquid crystal display device, improve the light extraction efficiency of the backlight, and reduce device power consumption and product cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组、液晶显示器及其制备方法。背光模组包括:背光源(1)和设置在所述背光源(1)之上的衍射光栅(2)。所述衍射光栅(2)刻蚀在所述背光源(1)上,所述背光源(1)中的每一个单色发光单元对应所述衍射光栅上的N种光栅图案,N为大于1的自然数。

Description

背光模组、液晶显示器及其制作方法 技术领域
本公开的实施例涉及一种背光模组、液晶显示器及其制备工艺。
背景技术
随着显示领域技术的飞速发展,人们对显示器件的要求越来越高。轻薄、节能、画面细腻、降低成本始终是显示器件的发展目标。背光模组、TFT基板、下偏振片、彩膜基板和上偏振片的层叠结构限制了传统液晶显示器件的厚度,很难做到更加轻薄。此外,彩色滤光片的使用至少损耗了60%的光能,只能依靠提高背光亮度来满足现实器件的亮度要求,这无疑增加了功耗。
发明内容
本公开的实施例提供了一种背光模组、液晶显示器及其制备工艺。
根据本公开的实施例,提供一种背光模组,包括:
背光源和设置在所述背光源之上的衍射光栅;
所述衍射光栅刻蚀在所述背光源上,所述背光源中的每一个单色发光单元对应所述衍射光栅上的N种光栅图案,N为大于1的自然数。
例如,所述背光源为直下式背光源。
例如,所述背光源中的每一个单色发光单元发出的光为准直光。
例如,所述背光源包括发出红、绿、蓝三种单色准直光的单色发光单元。
例如,所述衍射光栅为正弦相位光栅或闪耀光栅。
例如,当所述衍射光栅为正弦相位光栅时,若其倾斜角度为θG,光栅常数为Λ,光栅长度为L,厚度为d,那么其复振幅投射系数为:
Figure PCTCN2016094985-appb-000001
其中,q表示衍射光栅的衍射级次;Jq代表q阶第一类贝塞尔函数;u=1/Λ,代表光栅的空间频率;rq=(αqqq)表示出射光的方向余弦;出射光的强度由v=2πΔnd/λ调制,Δn为光栅折射率,λ为波长。
例如,当所述衍射光栅为正弦相位光栅时,若该正弦相位光栅的入射光的方向余弦为(α,β,γ),则该正弦相位光栅的出射光的出射方向为(αqqq),并且满足如下关系:
Figure PCTCN2016094985-appb-000002
例如,所述背光源中的每一个单色发光单元对应的所述衍射光栅上的各种光栅图案之间存在预设夹角,使得对应的单色发光单元发出的入射光呈N个角度出射。
例如,所述背光源中的每一个单色发光单元对应的所述衍射光栅上的N种光栅图案的排布方式不全相同。
例如,所述背光源中的相邻单色发光单元对应的所述衍射光栅上的N种光栅图案的排布方式不同。
本公开的实施例还提供了一种液晶显示器,包括所述的背光模组。
例如,所述液晶显示器还包括:设置在所述衍射光栅之上的光散射膜、以及依次设置在所述光散射膜之上的薄膜晶体管TFT基板、液晶层和偏振片。
例如,所述TFT基板包括扭曲向列型(Twisted Nematic,TN)、平面转换(In-Plane Switching,IPS)、垂直配向(Vertical Alignment,VA)显示模式的电极结构。
本公开实施例提供的一种液晶显示器的制作方法,包括:
制备背光源;
在所述背光源之上形成衍射光栅;
在所述衍射光栅之上形成光散射膜;
在所述光散射膜之上依次形成薄膜晶体管TFT基板、液晶层和偏振片;
其中,所述衍射光栅刻蚀在所述背光源上,所述背光源中的每一个单色发光单元对应所述衍射光栅上的N种光栅图案,N为大于1的自然数。
附图说明
以下将结合附图对本公开的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本公开的实施例,其中:
图1为本公开实施例提供的一种液晶显示器的结构示意图;
图2为本公开实施例提供的背光源的结构示意图;
图3为本公开实施例提供的衍射光栅上对应背光源的一个单色发光单元的部分的四种光栅图案示意图;
图4为本公开实施例提供的背光源上的一个单色发光单元发出的光经衍射光栅上对应的光栅后发出四种方向的出射光示意图;
图5为本公开实施例提供的背光源的整个显示区域对应的衍射光栅的整体光栅图案示意图;
图6为本公开实施例提供的背光源的不同颜色的入射光经过衍射光栅和光散射膜后沿各个方向均匀传播的不同颜色的出射光的示意图;
图7为本公开实施例提供的背光源上的不同颜色的单色发光单元发出的光经衍射光栅作用后,为TFT基板上不同的亚像素单元提供不同颜色背光,从而实现彩色显示的示意图;
图8为本公开实施例提供的一种液晶显示器的制作工艺的流程示意图。
具体实施方式
下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,相关领域普通技术人员在无需创 造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例提供了一种背光模组、液晶显示器及其制备方法,可以实现更加轻薄的液晶显示器,并且可以提高液晶显示器的光效、降低功耗以及产品成本。
本公开实施例提供的一种背光模组,包括:背光源、设置在所述背光源之上的衍射光栅。所述衍射光栅刻蚀在所述背光源上,所述背光源中的每一个单色发光单元对应所述衍射光栅上的N种光栅图案,N为大于1的自然数。以这样的方式,能够使得包含该背光模组的液晶显示器省略下偏振片和彩膜基板,实现了更加轻薄的液晶显示器,提高了液晶显示器的光效、降低功耗。增设的衍射光栅的作用是调整光的出光方向,可以减少背光源阵列的密度,可以在提高光效的同时,降低成本。
本公开实施例提供的一种能够提高背光利用效率的薄型化的液晶显示器件,参见图1,包括:从下至上,依次设置的直下式背光源1、衍射光栅2、光散射膜3、薄膜晶体管(Thin Film Transistor,TFT)基板4、液晶层5、偏振片6。
背光源1可以为直下式背光源。参见图2,背光源1使用红(R)、绿(G)、蓝(B)单色准直光。所述直下式背光源能够免去彩膜基板的使用,从而提高出光效率,降低功耗,使显示画面更加细腻逼真。衍射光栅2可以减少背光 源阵列的密度,从而降低成本。光散射膜3使背光源1发出的背光沿各个方向均匀出射。
本公开实施例提供的液晶显示器,只设有一个上偏振片6,不设置下偏振片和彩膜基板,因此本公开实施例提供的液晶显示器的厚度大大降低,更加轻薄。本公开实施例提供的液晶显示器无彩膜基板,能够提高光效,降低功耗。
本公开实施例提供的液晶显示器中的衍射光栅2,例如可以为正弦相位光栅,刻蚀在背光源1上。背光源1结构中,每一个单色发光单元对应衍射光栅2上的部分包括N种光栅图案,N为大于1的自然数。衍射光栅2的作用是调整光的出光方向,从而降低背光源1上单色发光单元阵列的密度,以节约成本。
衍射光栅2例如也可以为闪耀光栅(blazed grating),例如,也可以通过刻蚀将闪耀光栅形成在背光源1上。闪耀光栅是指当光栅刻划成锯齿形的线槽断面(例如三角形断面)时,光栅的光能量便集中在预定的方向上,即某一光谱级上,从这个方向探测时,光谱的强度最大,这种光栅称为闪耀光栅。
例如,以N=4为例进行说明,如图3所示。背光源1结构中的每一个单色发光单元对应衍射光栅2上的部分包括4种光栅图案,4种光栅图案对应的光栅之间呈一定夹角,角度互不相同。背光源1的每一单色发光单元的入射光经过衍射光栅2上的光栅后,呈四个角度出射,如图4所示。衍射光栅2在背光源1对应的整面显示区域的光栅排布如图5所示,需要说明的是,图5仅为示意图,不同像素之间的光栅角度也可能存在不同,即每一像素单元对应的光栅图案可以相同也可以不同,可以根据出光方向调节。下面对本公开实施例的光栅的作用原理进行说明。
关于衍射光栅的作用原理介绍如下:
例如,衍射光栅为正弦相位光栅,若其倾斜角度为θG,光栅常数为Λ,光栅长度为L,厚度为d,那么其复振幅投射系数t(rq)可以有下面公式一获得:
Figure PCTCN2016094985-appb-000003
其中,q表示衍射光栅的衍射级次;Jq代表q阶第一类贝塞尔函数;u=1/Λ,代表光栅的空间频率;rq=(αqqq)表示出射光的方向余弦;出射光的强度由v=2πΔnd/λ调制,Δn为光栅折射率,λ为波长。
由此可见,正弦相位光栅能够调制其入射光的相位,例如方向余弦为(α,β,γ)的入射光经过正弦相位光栅后,其出射方向变为(αqqq),那么,它们之间具有如下公式二所示的关系:
Figure PCTCN2016094985-appb-000004
由公式二可知,对于正弦相位光栅,光的出射角度与入射光角度、光栅参数和波长λ相关。其他条件不变而只改变光栅倾斜角度θG时,光出射的方向也随之改变,因此会出现如图4所示的现象。
经光栅出射的光只能沿着特定角度传播,因此,进一步,为了扩大可视范围,本公开实施例提供的液晶显示器增加了一层光散射膜3,使经衍射光栅2出射的光线在各个位置沿各个方向均匀传播,如图6所示。
R、G、B三色光的波长不同,合理地调整光栅参数,可以使其形成如图7所示的效果,即:背光源上的红色单一发光单元经衍射光栅作用后,为TFT基板上的四个不同的亚像素单元提供红色背光;背光源上的蓝色单一发光单元经衍射光栅作用后,为TFT基板上的四个不同的亚像素单元提供蓝色背光;背光源上的绿色单一发光单元经衍射光栅作用后,为TFT基板上的四个不同的亚像素单元提供绿背光;各个亚像素单元互不重叠,三个不同颜色的亚像素单元组成一个完整的像素单元,以实现彩色显示。图7中的背光阵列10包括背光源上的每一单色发光单元;图7中的衍射光栅阵列20包括每一单色发 光单元对应的光栅;图7中的TFT阵列30包括TFT。
由此可见,本公开实施例提供的液晶显示器的结构设计使显示器件的分辨率不依赖于背光阵列的密度,从而降低直下式背光源的成本。
需要说明的是,本公开实施例中:背光源上的每一个单色发光单元对应的光栅个数在满足工艺能力条件下是不限的,本公开实施例中以每一个单色发光单元对应4个光栅为例,但是,本公开的实施例并不限于此;背光源上的每一个单色发光单元对应的各个光栅图案的排布方式不限,N个光栅形成一定的夹角使出射光呈N种角度出射并且能够满足像素组成结构;TFT基板的电极结构不限,例如TN、IPS、VA显示模式的电极结构均可,TFT基板可以为TFT玻璃基板;背光源上的单色发光单元的排列方式与像素渲染结构不限,例如,Real,BV,Pentile方式均可。
参见图8,本公开实施例提供的一种液晶显示器的制作工艺,包括:
S101、制备背光源;
S102、在所述背光源之上形成衍射光栅;
S103、在所述衍射光栅之上形成光散射膜;
S104、在所述光散射膜之上依次形成薄膜晶体管TFT基板、液晶层和偏振片;
其中,所述衍射光栅刻蚀在所述背光源上,所述背光源中的每一个单色发光单元对应所述衍射光栅上的N种光栅图案,N为大于1的自然数。
综上所述,本公开实施例提供的技术方案,能够明显减少液晶显示器件的模组厚度,提高背光源的出光效率,并且降低器件功耗、产品成本。
以上所述,仅为本公开的示例性实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的普通技术人员在本公开的实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。
本公开要求于2016年1月8日提交的名称为“一种背光模组、液晶显示器及其制备工艺”的中国专利公开No.201610012307.2的优先权,其全文通过引用合并于本文。

Claims (14)

  1. 一种背光模组,包括:
    背光源和设置在所述背光源之上的衍射光栅;
    其中,所述衍射光栅刻蚀在所述背光源上,所述背光源中的每一个单色发光单元对应所述衍射光栅上的N种光栅图案,N为大于1的自然数。
  2. 根据权利要求1所述的背光模组,其中,所述背光源为直下式背光源。
  3. 根据权利要求1或2所述的背光模组,其中,所述背光源中的每一个单色发光单元发出的光为准直光。
  4. 根据权利要求1-3任一项所述的背光模组,其中,所述背光源包括发出红、绿、蓝三种单色准直光的单色发光单元。
  5. 根据权利要求1-4任一项所述的背光模组,其中,所述衍射光栅为正弦相位光栅或闪耀光栅。
  6. 根据权利要求5所述的背光模组,其中,当所述衍射光栅为正弦相位光栅时,若其倾斜角度为θG,光栅常数为Λ,光栅长度为L,厚度为d,那么其复振幅投射系数为:
    Figure PCTCN2016094985-appb-100001
    其中,q表示衍射光栅的衍射级次;Jq代表q阶第一类贝塞尔函数;u=1/Λ,代表光栅的空间频率;rq=(αqqq)表示出射光的方向余弦;出射光的强度由v=2πΔnd/λ调制,Δn为光栅折射率,λ为波长。
  7. 根据权利要求6所述的背光模组,其中,当所述衍射光栅为正弦相位光栅时,若该正弦相位光栅的入射光的方向余弦为(α,β,γ),则该正弦相位光栅的出射光的出射方向为(αqqq),并且满足如下关系:
    Figure PCTCN2016094985-appb-100002
  8. 根据权利要求1-7任一项所述的背光模组,其中,所述背光源中的每一个单色发光单元对应的所述衍射光栅上的各种光栅图案之间存在预设夹角,使得对应的单色发光单元发出的入射光呈N个角度出射。
  9. 根据权利要求1-8任一项所述的背光模组,其中,所述背光源中的每一个单色发光单元对应的所述衍射光栅上的N种光栅图案的排布方式不全相同。
  10. 根据权利要求1-8任一项所述的背光模组,其中,所述背光源中的相邻单色发光单元对应的所述衍射光栅上的N种光栅图案的排布方式不同。
  11. 一种液晶显示器,其中,包括权利要求1~10任一权项所述的背光模组。
  12. 根据权利要求11所述的液晶显示器,还包括:设置在所述衍射光栅之上的光散射膜、以及依次设置在所述光散射膜之上的薄膜晶体管TFT基板、液晶层和偏振片。
  13. 根据权利要求12所述的液晶显示器,其中,所述TFT基板包括扭曲向列型TN、平面转换IPS、垂直配向VA显示模式的电极结构。
  14. 一种液晶显示器的制作方法,其中,包括:
    制备背光源;
    在所述背光源之上形成衍射光栅;
    在所述衍射光栅之上形成光散射膜;
    在所述光散射膜之上依次形成薄膜晶体管TFT基板、液晶层和偏振片;
    其中,所述衍射光栅刻蚀形成在所述背光源上,所述背光源中的每一个单色发光单元对应所述衍射光栅上的N种光栅图案,N为大于1的自然数。
PCT/CN2016/094985 2016-01-08 2016-08-12 背光模组、液晶显示器及其制作方法 WO2017118025A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/505,156 US10365438B2 (en) 2016-01-08 2016-08-12 Backlight unit, liquid crystal display and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610012307.2 2016-01-08
CN201610012307.2A CN106959544B (zh) 2016-01-08 2016-01-08 一种背光模组、液晶显示器及其制备工艺

Publications (1)

Publication Number Publication Date
WO2017118025A1 true WO2017118025A1 (zh) 2017-07-13

Family

ID=59273097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094985 WO2017118025A1 (zh) 2016-01-08 2016-08-12 背光模组、液晶显示器及其制作方法

Country Status (3)

Country Link
US (1) US10365438B2 (zh)
CN (1) CN106959544B (zh)
WO (1) WO2017118025A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959525A (zh) * 2016-01-08 2017-07-18 京东方科技集团股份有限公司 一种双视裸眼3d显示器件及其制作方法、液晶显示装置
US10859870B2 (en) * 2018-06-26 2020-12-08 Applied Materials, Inc. 3D displays
CN108710240B (zh) * 2018-08-06 2021-03-12 京东方科技集团股份有限公司 一种准直背光模组及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052732A1 (en) * 2003-09-10 2005-03-10 Hon Hai Precision Industry Co., Ltd. Light guide plate with diffraction gratings and backlight module using the same
CN101149445A (zh) * 2007-11-09 2008-03-26 清华大学 一种光栅及其背光模组
CN102362215A (zh) * 2009-03-30 2012-02-22 夏普株式会社 显示面板和显示装置
CN103576385A (zh) * 2013-11-18 2014-02-12 京东方科技集团股份有限公司 背光模组及显示装置
WO2014051623A1 (en) * 2012-09-28 2014-04-03 Hewlett-Packard Development Company, L. P. Directional waveguide-based backlight for use in a multivew display screen
CN205281086U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种背光模组及液晶显示器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050232530A1 (en) * 2004-04-01 2005-10-20 Jason Kekas Electronically controlled volume phase grating devices, systems and fabrication methods
KR20080018491A (ko) * 2006-08-24 2008-02-28 삼성전자주식회사 디스플레이장치 및 백라이트 유닛
TWI317433B (en) * 2006-10-04 2009-11-21 Ind Tech Res Inst Light guide plate and back-lighted module having light guide plate
JP4961944B2 (ja) * 2006-10-24 2012-06-27 凸版印刷株式会社 表示体及び印刷物
CN101191995A (zh) * 2006-11-27 2008-06-04 鸿富锦精密工业(深圳)有限公司 光学镜头测试装置
KR101270165B1 (ko) * 2006-12-29 2013-05-31 삼성디스플레이 주식회사 반사 투과형 디스플레이 패널 및 이를 채용한 디스플레이장치
WO2009139093A1 (ja) * 2008-05-16 2009-11-19 シャープ株式会社 バックライトユニットおよび液晶表示装置
TWI416220B (zh) * 2009-03-18 2013-11-21 Wintek Corp 光繞射元件及具有該光繞射元件的背光模組及顯示裝置
EP2622268A4 (en) * 2010-09-27 2018-01-10 Massachusetts Institute of Technology Ultra-high efficiency color mixing and color separation
TWI472841B (zh) * 2011-03-31 2015-02-11 Chi Mei Materials Technology Corp 顯示裝置
TWI476483B (zh) * 2011-03-31 2015-03-11 Chi Mei Materials Technology Corp 顯示裝置及液晶顯示裝置
JP2012226104A (ja) * 2011-04-19 2012-11-15 Sony Corp 表示装置
CN103207470B (zh) * 2012-01-11 2015-11-25 联想(北京)有限公司 液晶显示屏和液晶显示方法
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen
CN103234153B (zh) * 2013-04-28 2015-11-18 京东方科技集团股份有限公司 一种直下式背光源及液晶显示装置
CN103439832B (zh) * 2013-08-20 2016-03-23 京东方科技集团股份有限公司 透明显示装置
CN103487983A (zh) * 2013-09-17 2014-01-01 京东方科技集团股份有限公司 一种阵列基板、显示面板及其显示装置
CN104166177B (zh) * 2014-08-15 2017-02-22 京东方科技集团股份有限公司 光栅及其制作方法、显示基板和显示装置
CN104460115B (zh) * 2014-12-31 2017-09-01 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
US20170153496A1 (en) * 2015-08-11 2017-06-01 Shenzhen China Star Optoelectronics Technology Co. Ltd. Manufacture method of polarization and color filter function integration film and liquid crystal display panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052732A1 (en) * 2003-09-10 2005-03-10 Hon Hai Precision Industry Co., Ltd. Light guide plate with diffraction gratings and backlight module using the same
CN101149445A (zh) * 2007-11-09 2008-03-26 清华大学 一种光栅及其背光模组
CN102362215A (zh) * 2009-03-30 2012-02-22 夏普株式会社 显示面板和显示装置
WO2014051623A1 (en) * 2012-09-28 2014-04-03 Hewlett-Packard Development Company, L. P. Directional waveguide-based backlight for use in a multivew display screen
CN103576385A (zh) * 2013-11-18 2014-02-12 京东方科技集团股份有限公司 背光模组及显示装置
CN205281086U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种背光模组及液晶显示器

Also Published As

Publication number Publication date
CN106959544A (zh) 2017-07-18
CN106959544B (zh) 2020-12-04
US10365438B2 (en) 2019-07-30
US20180031917A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
US11126022B2 (en) Display device and display method thereof
CN106291943B (zh) 一种显示面板及显示装置
WO2018161650A1 (zh) 显示面板和显示装置
WO2015039467A1 (zh) 一种阵列基板、显示面板及其显示装置
KR20110118476A (ko) 컬러 필터 및 이를 채용한 디스플레이 장치
EP3242342B1 (en) Oled device having optical resonance layer and preparation method therefor, and display device
US10203545B2 (en) Display panels and polarizers thereof
WO2017185813A1 (zh) 一种显示装置和显示终端
WO2021018024A1 (zh) 显示基板、显示面板和显示装置
EP3505981B1 (en) Display device and filter thereof
WO2018054138A1 (zh) 阵列基板、显示面板、显示装置及显示面板的设计方法
US20210165270A1 (en) Reflective photonic crystal color film, display device using the same and fabricating method therefor
WO2018129954A1 (zh) 显示面板及其制造方法、显示装置
CN205281086U (zh) 一种背光模组及液晶显示器
WO2017118048A1 (zh) 显示装置及其驱动方法
WO2017118025A1 (zh) 背光模组、液晶显示器及其制作方法
WO2019085288A1 (zh) 显示面板及其制造方法
WO2013127181A1 (zh) 透明显示装置
WO2020015753A1 (zh) 显示面板、显示装置及其控制方法
WO2014183362A1 (zh) 显示装置、彩膜基板及其制作方法
WO2018192298A1 (zh) 显示装置及显示方法
CN206096638U (zh) 一种显示面板及显示装置
CN108227285A (zh) 一种显示装置
WO2017118227A1 (zh) 显示面板和显示装置
WO2018045737A1 (zh) 面板结构及其制作方法、投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883157

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883157

Country of ref document: EP

Kind code of ref document: A1