WO2013127181A1 - 透明显示装置 - Google Patents

透明显示装置 Download PDF

Info

Publication number
WO2013127181A1
WO2013127181A1 PCT/CN2012/082803 CN2012082803W WO2013127181A1 WO 2013127181 A1 WO2013127181 A1 WO 2013127181A1 CN 2012082803 W CN2012082803 W CN 2012082803W WO 2013127181 A1 WO2013127181 A1 WO 2013127181A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdlc
color
alignment film
liquid crystal
display device
Prior art date
Application number
PCT/CN2012/082803
Other languages
English (en)
French (fr)
Inventor
鹿岛美纪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US13/825,876 priority Critical patent/US9429787B2/en
Publication of WO2013127181A1 publication Critical patent/WO2013127181A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13342Holographic polymer dispersed liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13476Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which at least one liquid crystal cell or layer assumes a scattering state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • Embodiments of the present invention relate to a transparent display device. Background technique
  • the demand for portable information media has increased in recent years.
  • people have begun to actively research and develop transparent display devices.
  • the transparent display device can see the display information on the display when voltage is applied, and the object on the back of the display can be seen through the display when no voltage is applied.
  • An embodiment of the present invention provides a transparent display device, including: an upper substrate, the upper substrate includes an upper transparent electrode and an upper alignment film in order from top to bottom; and a lower substrate, wherein the lower substrate includes lower transparent from bottom to top An electrode and a lower alignment film; at least one color holographic polymer dispersed liquid crystal (H-PDLC) layer, the color H-PDLC layer being disposed between the upper substrate and the lower substrate.
  • H-PDLC color holographic polymer dispersed liquid crystal
  • the color H-PDLC layer includes: a dichroic dye, a negative liquid crystal, and a polymer.
  • the upper alignment film and the lower alignment film are used to determine an orientation of the negative liquid crystal when the color H-PDLC layer is not applied with a voltage, and a refractive index of the negative liquid crystal and the polymer Index matching.
  • the transparent display device includes a plurality of pixel units, each of which includes a transmissive area and a reflective area, respectively.
  • the upper alignment film and the lower alignment film include a transmissive region alignment film located in the transmissive region.
  • a portion of the color H-PDLC layer corresponding to the transmissive region alignment film is a transmissive color H-PDLC, and the transmissive color H-PDLC includes the polymer as a first polymer;
  • the transmissive area alignment film makes the transmissive color
  • the negative liquid crystal orientation included in the H-PDLC is perpendicular to the upper substrate surface and the lower substrate surface; when the transmissive color H-PDLC is applied with a voltage, the transmissive color H-PDLC includes a negative liquid crystal parallel to the The surface of the substrate is described such that the refractive index of the negative liquid crystal does not match the refractive index of the first polymer, and is used to diffract incident light.
  • the upper alignment film and the lower alignment film further include a reflective region orientation film located in the reflective region.
  • a portion of the color H-PDLC layer corresponding to the reflective film of the reflective region is a reflective color H-PDLC, and the polymer included in the reflective color H-PDLC is a second polymer;
  • the reflective region alignment film causes the reflective color H-PDLC to include a negative liquid crystal orientation at an acute angle to the upper substrate surface and the lower substrate surface;
  • the reflective color H-PDLC includes a negative liquid crystal parallel to the surface of the upper substrate such that the refractive index of the negative liquid crystal and the refractive index of the second polymer are different Matching, used to reflect incident light.
  • the transparent display device includes a plurality of color H-PDLC layers, respectively, which are color H-PDLC layers of different colors, and are separated from each other by a transparent intermediate substrate, the intermediate substrate
  • the upper and lower sides further include a transparent electrode and an alignment film in this order for the color H-PDLC layer on the upper and lower sides thereof.
  • a driving structure is separately provided for each of the plurality of color H-PDLC layers.
  • the transparent display device further includes: a colorless H-PDLC layer disposed under the lower substrate; and a light source disposed on a side of the colorless H-PDLC layer.
  • the alignment film is processed to match the refractive index of the negative liquid crystal with the refractive index of the polymer, thereby achieving transparency; when a voltage is applied to the color H-PDLC layer through the transparent electrode, The negative liquid crystal rotates with the voltage, the refractive index of the negative liquid crystal does not match the refractive index of the polymer, and the color display is realized. Moreover, the voltage of the color H-PDLC layer is controlled to change the refractive index of the negative liquid crystal and the polymer. The degree of matching of the refractive index, in turn, achieves a change in gray scale.
  • the transparent display device provided by the embodiment of the invention does not need to use a polarizing plate, thereby improving the transmittance.
  • FIG. 1 is a schematic structural view of a pixel unit of a transparent display device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a pixel unit of another transparent display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a pixel unit or a sub-pixel unit of another transparent display device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a pixel unit or a sub-pixel unit of another transparent display device according to an embodiment of the present invention.
  • the embodiment of the invention provides a transparent display device, as shown in FIG.
  • the transparent display device includes an upper substrate 1 and a lower substrate 2, and a color holographic polymer dispersed liquid crystal (H-PDLC) layer 5 is disposed between the upper substrate 1 and the lower substrate 2.
  • the upper substrate 1 includes a glass substrate 11, a transparent electrode 3, and an alignment film 4 in this order from top to bottom;
  • the lower substrate 2 includes a glass substrate 11, a transparent electrode 3, and an alignment film 4 in order from bottom to top; that is, the upper substrate 1 and the lower substrate 2
  • the respective transparent electrodes and alignment films are formed on the inner side of the display device.
  • the glass substrate 11 may be replaced with a plastic substrate or a quartz substrate or the like, and the present invention is not limited thereto.
  • H-PDLC is a technology that applies holographic technology to polymer dispersed liquid crystal materials.
  • the technology utilizes a polymer dispersed liquid crystal system to cause photopolymerization reaction under the action of laser interference light field to induce phase separation.
  • the phenomenon of separation forms a refractive index modulation grating including a polymer-rich region corresponding to laser interference light and dark stripes and a liquid crystal region rich in periodic distribution.
  • the orientation of the liquid crystal can be changed by the applied voltage, thereby changing the refractive index of the H-PDLC, and the H-PDLC can be switched between a transparent state and a reflective state, and different gray scales are formed according to the difference in refractive index of the H-PDLC.
  • the color H-PDLC layer 5 includes: a dichroic dye, a negative liquid crystal, and a polymer; the polymer may be formed of a polymerizable monomer, and the polymerizable monomer may be a material such as an acrylate or an epoxy resin.
  • the alignment film 4 is used to determine the orientation of the negative liquid crystal when the color H-PDLC layer 5 is not applied, and to match the refractive index of the negative liquid crystal with the refractive index of the polymer, that is, the refractive index of the negative liquid crystal and the refractive index of the polymer. equal.
  • a polyimide (PI) solution may be coated on a substrate to form an alignment film, and after the PI is cured, the alignment film is treated by rubbing or other alignment treatment, thereby changing the structure of the surface of the alignment film.
  • the processing directions of the alignment films of the upper and lower substrates are uniform, or the rubbing direction of the upper substrate is different from the rubbing direction of the lower substrate by 180 degrees, and both of them can realize parallel orientation of liquid crystal molecules between the upper and lower substrates without distortion angle.
  • the oriented film after orientation treatment can make the negative liquid crystal layer included in the color H-PDLC layer be oriented perpendicular to the surface of the upper substrate; moreover, since the liquid crystal orientation of the surface of the lower substrate is the same as the liquid crystal orientation of the surface of the substrate, when the liquid crystal molecules When the orientation is perpendicular to the surface of the upper substrate, the liquid crystal molecules are also perpendicular to the surface of the lower substrate.
  • the refractive index of the negative liquid crystal matches the refractive index of the polymer, and the incident light can directly pass through the color H-PDLC layer to achieve transparency; when a voltage is applied to the color H-PDLC layer through the transparent electrode, the negative liquid crystal
  • the refractive index of the negative liquid crystal does not match the refractive index of the polymer, and the incident light can be diffracted after entering the color H-PDLC layer, and the refractive index of the negative liquid crystal is changed by controlling the voltage of the color H-PDLC layer.
  • the degree of matching with the refractive index of the polymer thereby realizing the change of the gradation.
  • the embodiment of the present invention realizes the effect of the transparent display device by voltage-controlled transmission and diffraction of the color H-PDLC layer, and the polarizing plate is not required as compared with the prior art, thereby improving the transmittance.
  • the transparent display device includes a plurality of pixel units, each of which includes a transmissive area and a reflective area, thereby obtaining a transflective transparent display device.
  • These pixel units are arranged, for example, as an array.
  • each pixel unit includes a transmissive area 6 and a reflective area 7.
  • the alignment film 4 includes a transmissive region alignment film in the transmissive region 6, and a corresponding transmissive region alignment film in the color H-PDLC layer 5 Part of it is a transmissive color H-PDLC. That is, the alignment film 4 in the transmissive region 6 is a transmissive region alignment film, and the color H-PDLC in the transmissive region 6 is a transmissive color H-PDLC.
  • the polymer in the transmissive color H-PDLC is the first polymer; when the transmissive color H-PDLC is not applied with voltage, the transmissive region alignment film causes the negative liquid crystal included in the transmissive color H-PDLC to be oriented perpendicular to the upper substrate 1
  • the surface and the surface of the lower substrate 2, at which time the refractive index of the negative liquid crystal matches the refractive index of the first polymer, and the incident light can pass directly through the transmission region 6, thereby achieving transparency.
  • the transmissive color H-PDLC When the transmissive color H-PDLC is applied with a voltage, the transmissive color H-PDLC includes a negative liquid crystal parallel to the surface of the upper substrate 1 such that the refractive index of the negative liquid crystal does not match the refractive index of the first polymer, and is used for The incident light is diffracted.
  • the display gradation of the transmissive region 6 is changed by controlling the magnitude of the voltage of the transmissive color H-PDLC to change the degree of matching between the refractive index of the negative liquid crystal and the refractive index of the first polymer.
  • the alignment film 4 further includes a reflective region alignment film in the reflective region 7, and a portion of the color H-PDLC layer 5 corresponding to the reflective region alignment film is a reflective color H-PDLC. That is, the alignment film 4 in the reflection region 7 is a reflection region alignment film, and the color H-PDLC in the reflection region 7 is a reflection type color H-PDLC.
  • the polymer included in the reflective color H-PDLC is a second polymer.
  • the reflective region oriented film has a different surface structure due to the difference from the treatment of the transmissive region oriented film, whereby the entire alignment film 4 can be classified into a transmissive region oriented film and a reflective region oriented film.
  • the reflective region alignment film causes the reflective color H-PDLC to include a negative liquid crystal orientation at an acute angle to the surfaces of the upper substrate 1 and the lower substrate 2, the specific angle being according to the refractive index of the liquid crystal and The refractive index of the second polymer is determined.
  • the refractive index of the negative liquid crystal matches the refractive index of the second polymer, and the incident light can directly pass through the reflection region 7, thereby achieving transparency.
  • the reflective color H-PDLC When the reflective color H-PDLC is applied with a voltage, the reflective color H-PDLC includes a negative liquid crystal parallel to the surface of the upper substrate 1 such that the refractive index of the negative liquid crystal does not match the refractive index of the second polymer, and is used for Reflects incident light.
  • the display gradation of the reflective region 7 is changed by controlling the magnitude of the voltage of the reflective color H-PDLC to change the degree of matching between the refractive index of the negative liquid crystal and the refractive index of the second polymer. In a bright environment, ambient light is reflected through the reflective area 7 for better display.
  • the above transparent display device may further include a colorless H-PDLC layer 8 disposed under the color H-PDLC layer 5.
  • the colorless H-PDLC layer 8 is disposed between the upper and lower glass substrates 11, and may, for example, share a glass substrate 11 with the color H-PDLC layer 5 above it; the side of the colorless H-PDLC layer 8 is provided with a light source 9 .
  • the colorless H-PDLC layer 8 includes a liquid crystal and a polymer, and functions as a light guide plate.
  • the difference in the anchoring effect of the interface causes the difference in the degree of order between the internal liquid crystal droplets to form a difference in refractive index, which causes light to diffuse inside, so the colorless H-PDLC layer 8 can The role of the light guide plate.
  • the liquid crystal and the polymer interface in the colorless H-PDLC layer 8 are refracted and reflected multiple times, and the direction of the light changes, which can be converted into an upper end.
  • the light is emitted to provide a backlight for the transmissive area 6, which has a good display effect in a dark environment.
  • the light source 9 can be a line source such as a cold cathode fluorescent lamp (CCFL) or a point source such as a light emitting diode (LED).
  • the transparent display device of another embodiment of the present invention may further include as shown in FIG. 3 or FIG. 4, except that the single-layer color H-PDLC as shown in FIG. 1 or FIG. 2 can be used to implement a monochrome transparent display device.
  • a color H-PDLC layer is used to improve the color display effect and realize a color transparent display device.
  • the color transparent display device includes a plurality of color H-PDLC layers 5, these color H-PDLC layers 5 may be vertically overlapped to facilitate the fabrication of the transparent display device.
  • Each of the color H-PDLC layers 5 is provided with an upper substrate 1 and a lower substrate 2 above and below, and a pair of adjacent color H-PDLC layers 5 can share a glass substrate 11 to form respective upper substrate 1 and lower substrate 2 .
  • the shared substrate may be referred to as an intermediate substrate, and both of the upper and lower sides may include a transparent electrode and an alignment layer, and serve as a lower substrate of the upper color H-PDLC layer 5 and an upper substrate of the lower color H-PDLC layer 5 jobs.
  • a plurality of color H-PDLC layers 2 are disposed between the upper substrate 1 and the lower substrate 2; the upper and lower transparent electrodes 3 of each layer of the color H-PDLC layer 5 respectively supply voltages for each layer of the color H-PDLC layer 5;
  • the color H-PDLC layers 5 respectively have dichroic dyes of different colors to form color H-PDLC layers of different colors, and may include, for example, a red H-PDLC layer, a blue H-PDLC layer, and a green H-PDLC layer. This corresponds to the three primary colors.
  • a color transparent display device includes a plurality of pixel units, each of which includes a transmissive area and a reflective area, thereby obtaining a transflective color transparent display device.
  • These pixel units are arranged, for example, as an array.
  • each pixel unit includes a transmissive area 6 and a reflective area 7.
  • the alignment film and the liquid crystal material for each of the plurality of color H-PDLC layers 5 can be disposed as in the H-PDLC layer 5 in the embodiment shown in Fig. 2.
  • the color transparent display device may further include a colorless H-PDLC layer 8 disposed under the plurality of color H-PDLC layers 5, which may be combined with the lowermost layer of color H.
  • the PDLC layer 5 shares a glass substrate 11.
  • the side of the colorless H-PDLC layer 8 can be set There is a light source 9.
  • the colorless H-PDLC layer 8 includes a liquid crystal and a polymer, and functions as a light guide plate.
  • the light source 9 can be a line source such as a cold cathode fluorescent lamp (CCFL) or a point source such as a light emitting diode (LED).
  • CCFL cold cathode fluorescent lamp
  • LED light emitting diode
  • each layer of color H-PDLC layers is respectively provided with an independent array driving structure to drive the red H-PDLC layer, the blue H-PDLC layer and the green H, respectively.
  • the PDLC layer implements transparency or display.
  • the array driving structure of each layer includes, for example, a plurality of gate lines and a plurality of data lines, the gate lines and the data lines crossing each other thereby defining pixel units arranged in a matrix, each of the pixel units including a thin film transistor as a switching element and A pixel electrode for controlling the arrangement of liquid crystals.
  • the gate of the thin film transistor of each pixel is electrically connected or integrally formed with the corresponding gate line
  • the source is electrically connected or integrally formed with the corresponding data line
  • the drain is electrically connected or integrally formed with the corresponding pixel electrode.
  • each pixel unit includes a transmissive region and an adjacent reflective region, and display of one pixel is achieved by superposition of a red H-PDLC layer, a blue H-PDLC layer, and a green H-PDLC layer.
  • IC gate driver chip
  • Source Driver Source Driver
  • each pixel unit includes a transmissive region and an adjacent reflective region, and display of one pixel is achieved by superposition of a red H-PDLC layer, a blue H-PDLC layer, and a green H-PDLC layer.
  • the red H-PDLC layer displays color
  • the blue H-PDLC layer and the green H-PDLC layer are transparent, achieving a red display of one pixel.
  • display of other colors can be achieved by controlling the transparent state (grayscale) of each of the red, green, and blue H-PDLC layers in each pixel unit.
  • the transmission and display of the color H-PDLC layer are controlled by voltage, and the polarizing plate is not required, thereby improving the transmittance.
  • the existing transparent display device is difficult to see the content on the display due to the decrease of the incident light, but the embodiment of the present invention realizes the darkness by combining the transmissive region and the reflective region with the colorless H-PDLC layer and the light source. It can display well in bright environments.
  • the transparent display device of the embodiment of the invention can be used in various applications, including but not including television, mobile phones, GPS, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)

Abstract

一种透明显示装置,具有提高的透过率。该透明显示装置包括上基板(1),所述上基板(1)自上而下依次包括上透明电极(3)和上取向膜(4);下基板(2),所述下基板(2)自下而上依次包括下透明电极(3)和下取向膜(4);至少一个彩色全息高分子分散液晶(H-PDLC)层(5),所述彩色H-PDLC层(5)设置在所述上基板(1)和下基板(2)之间。

Description

透明显示装置 技术领域
本发明的实施例涉及一种透明显示装置。 背景技术
近年人们对使用便携式信息介质的需求日益增加。 近年来, 人们开始对 透明显示装置积极地研究开发。 透明显示装置在施加电压时可以看到显示屏 上的显示信息, 而在不施加电压时可以通过显示屏看到显示屏背面的物体。
在研究过程中, 发明人发现现有技术中至少存在如下问题: 现有的透明 显示装置结构中, 液晶分子位于两片偏振片之间, 利用电场控制液晶分子转 动, 来改变光的偏振方向, 配合偏振片的作用从而形成不同灰度, 但是偏振 片大大降低了透明显示装置的透过率。 发明内容
本发明的实施例提供一种透明显示装置, 包括: 上基板, 所述上基板自 上而下依次包括上透明电极和上取向膜; 下基板, 所述下基板自下而上依次 包括下透明电极和下取向膜; 至少一个彩色全息高分子分散液晶(H-PDLC ) 层, 所述彩色 H-PDLC层设置在所述上基板和下基板之间。
例如, 所述彩色 H-PDLC层包括: 二向色性染料、 负性液晶和高分子。 例如, 所述上取向膜和下取向膜, 用于在所述彩色 H-PDLC层未加电压 时确定所述负性液晶的取向, 使所述负性液晶的折射率与所述高分子的折射 率匹配。
例如, 所述透明显示装置包括多个像素单元, 每个像素单元分别包括透 射区和反射区。
例如,所述上取向膜和下取向膜包括位于所述透射区内的透射区取向膜。 例如, 所述彩色 H-PDLC层中对应所述透射区取向膜的部分为透射型彩色 H-PDLC, 所述透射型彩色 H-PDLC包括的所述高分子为第一高分子; 所述 透射型彩色 H-PDLC未被施加电压时, 所述透射区取向膜使所述透射型彩色 H-PDLC包括的负性液晶取向垂直于所述上基板表面和下基板表面; 所述透 射型彩色 H-PDLC被施加电压时,所述透射型彩色 H-PDLC包括的负性液晶 平行于所述上基板表面, 使得所述负性液晶的折射率与所述第一高分子的折 射率不匹配, 用于使入射光衍射。
例如, 所述上取向膜和下取向膜还包括位于所述反射区内的反射区取向 膜。 例如, 所述彩色 H-PDLC层中对应所述反射区取向膜的部分为反射型彩 色 H-PDLC, 所述反射型彩色 H-PDLC包括的所述高分子为第二高分子; 当 所述反射型彩色 H-PDLC未加电压时, 所述反射区取向膜使所述反射型彩色 H-PDLC包括的负性液晶取向与所述上基板表面和下基板表面成锐角; 当所 述反射型彩色 H-PDLC加电压时,所述反射型彩色 H-PDLC包括的负性液晶 平行于所述上基板表面, 使得所述负性液晶的折射率与所述第二高分子的折 射率与不匹配, 用于使入射光反射。
例如, 所述透明显示装置包括多个彩色 H-PDLC 层, 所述多个彩色 H-PDLC层分别为不同颜色的彩色 H-PDLC层, 且彼此由透明的中间基板间 隔开, 所述中间基板的上下两侧进一步依次包括透明电极和取向膜, 用于其 上下两侧的彩色 H-PDLC层。
例如, 对于所述多个彩色 H-PDLC层中每一层分别设置驱动结构。
例如,所述透明显示装置还包括:设置在所述下基板下方的无色 H-PDLC 层; 所述无色 H-PDLC层的侧面设置的光源。
本发明实施例提供的透明显示装置, 通过对取向膜进行处理, 使得负性 液晶的折射率与高分子的折射率匹配, 从而实现透明; 当通过透明电极给彩 色 H-PDLC层加电压时, 负性液晶随着电压转动, 负性液晶的折射率与高分 子的折射率不匹配, 实现颜色的显示; 而且, 控制彩色 H-PDLC层的电压大 小从而改变负性液晶的折射率与高分子的折射率的匹配程度, 进而实现灰度 的改变。 本发明实施例提供的透明显示装置无需使用偏振片, 从而提高了透 过率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1 为本发明实施例中一种透明显示装置的一个像素单元的结构示意 图;
图 2为本发明实施例中另一种透明显示装置的一个像素单元的结构示意 图;
图 3为本发明实施例中另一种透明显示装置的一个像素单元或一个子像 素单元的结构示意图;
图 4为本发明实施例中另一种透明显示装置的一个像素单元或一个子像 素单元的结构示意图。
附图标记说明:
1-上基板; 11-玻璃基板; 2-下基板; 3-透明电极; 4-取向膜; 5-彩色 H-PDLC 层; 6-透射区; 7-反射区; 8-无色 H-PDLC层; 9-光源。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
在本申请中, "上" 、 "下" 、 "内" 、 "外" 等均表示相对位置关系, 以方便说明。 附图仅作为示意之用, 而非按照比例绘制。
本发明实施例提供了一种透明显示装置, 如图 1所示。 该透明显示装置 包括上基板 1和下基板 2, 彩色全息高分子分散液晶 (Holographic Polymer Dispersed Liquid Crystal, H-PDLC )层 5设置在上基板 1和下基板 2之间。 上基板 1 自上而下依次包括玻璃基板 11、 透明电极 3和取向膜 4; 下基板 2 自下而上依次包括玻璃基板 11、 透明电极 3和取向膜 4; 即上基板 1和下基 板 2各自的透明电极和取向膜均形成在显示装置的内侧。 例如, 玻璃基板 11 可以用塑料基板或石英基板等替代, 本发明不限于此。
H-PDLC是将全息技术应用于高分子分散液晶材质中的一种技术。 该技 术利用高分子分散液晶体系在激光干涉光场作用下发生光聚合反应引发相分 离的现象, 形成包括与激光干涉亮、 暗条紋相对应的富高分子区和富液晶区 周期性分布的折射率调制光栅。 外加电压的作用下可以改变液晶的取向, 从 而改变 H-PDLC的折射率, 可使 H-PDLC在透明状态和反射状态之间转换, 并且根据 H-PDLC折射率的不同形成不同灰度。 例如, 彩色 H-PDLC层 5中 包括: 二向色性染料、 负性液晶和高分子; 上述高分子可以由可聚合单体形 成, 可聚合单体可以为丙烯酸酯或环氧树脂等材料。 取向膜 4 用于在彩色 H-PDLC层 5未加电压时确定负性液晶的取向, 使负性液晶的折射率与高分 子的折射率匹配, 即负性液晶的折射率与高分子折射率相等。
例如, 可以将聚酰亚胺(PI )液涂覆在基板上形成取向膜, 而 PI固化后 通过摩擦( Rubbing )或其他取向处理方式处理取向膜, 从而改变取向膜表面 的结构。 例如, 对上下基板的取向膜的处理方向是一致, 或者上基板的摩擦 方向跟下基板的摩擦方向相差 180度, 它们都可以实现上下基板之间的液晶 分子平行取向, 而没有扭曲角。
经过取向处理后的取向膜可以使彩色 H-PDLC层包括的负性液晶取向垂 直于上基板表面; 而且, 由于下基板表面的液晶取向跟上基板表面的液晶取 向是一样, 所以当液晶分子的取向垂直于上基板表面时, 液晶分子是也垂直 于下基板表面。 此时负性液晶的折射率与高分子的折射率匹配, 入射光可以 直接通过彩色 H-PDLC层, 从而实现透明; 当通过透明电极给彩色 H-PDLC 层加电压时, 负性液晶随着电压变化而转动, 负性液晶的折射率与高分子的 折射率不匹配, 入射光进入彩色 H-PDLC层后可以衍射出来, 通过控制彩色 H-PDLC层的电压大小从而改变负性液晶的折射率与高分子的折射率的匹配 程度, 从而实现灰度的改变。 在未加电压时, 二向色性染料不显示颜色, 在 加电压时, 二向色性染料随着负性液晶的转动而转动, 从而显示颜色。
本发明实施例通过电压控制彩色 H-PDLC层的透射与衍射实现透明显示 装置的效果, 与现有技术相比, 无需使用偏振片, 从而提高了透过率。
在另一个示例中, 透明显示装置包括多个像素单元, 每个像素单元包括 透射区和反射区, 由此得到透反型透明显示装置。 这些像素单元例如排列为 阵列。
如图 2所示,每个像素单元包括透射区 6和反射区 7。相应地,取向膜 4 在透射区 6中包括透射区取向膜, 彩色 H-PDLC层 5中对应透射区取向膜的 部分为透射型彩色 H-PDLC。 即,在透射区 6中的取向膜 4为透射区取向膜, 在透射区 6中的彩色 H-PDLC为透射型彩色 H-PDLC。 透射型彩色 H-PDLC 中的高分子为第一高分子; 当透射型彩色 H-PDLC未加电压时, 透射区取向 膜使透射型彩色 H-PDLC包括的负性液晶取向垂直于上基板 1的表面和下基 板 2的表面, 此时负性液晶的折射率与第一高分子的折射率匹配, 入射光可 以直接通过透射区 6, 从而实现透明。 当透射型彩色 H-PDLC加电压时, 该 透射型彩色 H-PDLC包括的负性液晶平行于上基板 1表面, 使得负性液晶的 折射率与第一高分子的折射率不匹配, 用于使入射光衍射。 通过控制透射型 彩色 H-PDLC的电压大小从而改变负性液晶的折射率与第一高分子的折射率 的匹配程度, 进而改变透射区 6的显示灰度。
进一步地, 取向膜 4在反射区 7中还包括反射区取向膜, 彩色 H-PDLC 层 5中对应反射区取向膜的部分为反射型彩色 H-PDLC。 即, 在反射区 7中 的取向膜 4为反射区取向膜, 在反射区 7 中的彩色 H-PDLC为反射型彩色 H-PDLC。 反射型彩色 H-PDLC包括的高分子为第二高分子。 反射区取向膜 由于与透射区取向膜所处理的不同而具有不同的表面结构, 由此可以将整个 取向膜 4划分为透射区取向膜和反射区取向膜。 当反射型彩色 H-PDLC未加 电压时, 反射区取向膜使反射型彩色 H-PDLC包括的负性液晶取向与上基板 1和下基板 2的表面成锐角, 具体的角度根据液晶折射率及第二高分子折射 率决定, 此时负性液晶的折射率与第二高分子的折射率匹配, 入射光可以直 接通过反射区 7, 从而实现透明。 当反射型彩色 H-PDLC加电压时, 反射型 彩色 H-PDLC包括的负性液晶平行于上基板 1表面, 使得负性液晶的折射率 与第二高分子的折射率与不匹配, 用于使入射光反射。 通过控制反射型彩色 H-PDLC的电压大小从而改变负性液晶的折射率与第二高分子的折射率的匹 配程度, 进而改变反射区 7的显示灰度。 在明亮的环境下, 通过反射区 7反 射环境光以实现更佳的显示效果。
进一步地, 上述透明显示装置还可以包括设置在彩色 H-PDLC层 5下方 的无色 H-PDLC层 8。该无色 H-PDLC层 8设置在上下两块玻璃基板 11之间, 而且例如可以与其上方的彩色 H-PDLC层 5 共用一块玻璃基板 11 ; 无色 H-PDLC层 8的侧面设置有光源 9。无色 H-PDLC层 8中包括液晶和高分子, 起到导光板的作用。 由于无色 H-PDLC层 8中内部液晶微滴所造成的散射和 界面锚定作用的不同造成内部的液晶微滴之间有序度差异从而形成的折射率 差异而产生的光散射, 使得光线在内部发生光扩散, 因此, 无色 H-PDLC层 8可以起到导光板的作用。 从侧面光源 9发出的水平光线进入无色 H-PDLC 层 8之后,无色 H-PDLC层 8中的液晶和高分子界面上多次发生折射和反射, 光线的方向改变, 可以转换成向上端出射, 从而为透射区 6提供了背光, 实 现在黑暗的环境下有良好的显示效果。 光源 9 可以为例如冷阴极荧光灯 ( CCFL ) 的线光源或者例如发光二极管 (LED ) 的点光源。
除了如图 1或图 2所示的单层彩色 H-PDLC可以用于实现单色透明显示 装置外, 本发明的另一个实施例的透明显示装置还可以如图 3或图 4所示包 括多个彩色 H-PDLC层, 用于完善彩色显示效果, 实现彩色透明显示装置。
如图 3所示, 当彩色透明显示装置包括多个彩色 H-PDLC层 5时, 这些 彩色 H-PDLC层 5 可上下重叠设置以便于透明显示装置的制作。 每层彩色 H-PDLC层 5上下都设置有上基板 1和下基板 2, 两层相邻的彩色 H-PDLC 层 5之间可以共用一块玻璃基板 11形成各自所需要上基板 1和下基板 2。该 共用的基板可以称为中间基板, 其上下侧均可以包括透明电极和取向层, 同 时作为上侧的彩色 H-PDLC层 5的下基板以及作为下侧的彩色 H-PDLC层 5 的上基板工作。 多个彩色 H-PDLC层 2设置在上基板 1和下基板 2之间; 在 每一层彩色 H-PDLC层 5的上下透明电极 3分别为每一层彩色 H-PDLC层 5 提供电压; 多个彩色 H-PDLC层 5分别具有不同颜色的二向色性染料以形成 不同颜色的彩色 H-PDLC层, 例如可以包括红色 H-PDLC层、 蓝色 H-PDLC 层和绿色 H-PDLC层, 由此对应于三原色。
在另一个示例中, 彩色透明显示装置包括多个像素单元, 每个像素单元 包括透射区和反射区, 由此得到透反型彩色透明显示装置。 这些像素单元例 如排列为阵列。
如图 4所示, 每个像素单元包括透射区 6和反射区 7。 该透射区 6和反 射区 7中, 对于多个彩色 H-PDLC层 5中每一层的取向膜以及液晶材料, 可 以如图 2所示的实施例中的 H-PDLC层 5进行设置。
在另一个示例中, 彩色透明显示装置还可以包括无色 H-PDLC层 8, 该 无色 H-PDLC层 8设置在多个彩色 H-PDLC层 5的下方,可以与最下面一层 彩色 H-PDLC层 5共用一块玻璃基板 11。无色 H-PDLC层 8的侧面可以设置 有光源 9。 无色 H-PDLC层 8中包括液晶和高分子, 起到导光板的作用。 光 源 9可以为例如冷阴极荧光灯( CCFL )的线光源或者例如发光二极管( LED ) 的点光源。
需要说明的是, 如图 3或图 4所示的结构可以为一个像素单元。 例如, 对于三层彩色 H-PDLC层构成的一个像素单元,每层彩色 H-PDLC层分别对 应设置有独立阵列驱动结构, 以分别驱动红色 H-PDLC层、 蓝色 H-PDLC层 和绿色 H-PDLC层实现透明或显示。 每一层的阵列驱动结构例如包括多条栅 线和多条数据线, 这些栅线和数据线彼此交叉由此限定了排列为矩阵的像素 单元, 每个像素单元包括作为开关元件的薄膜晶体管和用于控制液晶排列的 像素电极。 例如, 每个像素的薄膜晶体管的栅极与相应的栅线电连接或一体 形成, 源极与相应的数据线电连接或一体形成, 漏极与相应的像素电极电连 接或一体形成。 下面的描述主要针对单个或多个像素单元进行, 但是其他像 素单元可以相同地形成。
对于三层彩色 H-PDLC的结构而言, 这些层的阵列驱动结构栅线和数据 线可以分别由同一个栅极驱动(Gate Driver ) 芯片 ( IC )和同一个源极驱动 ( Source Driver ) IC驱动。 对于透反型显示装置, 每个像素单元包括透射区 和其相邻的反射区, 通过红色 H-PDLC层、 蓝色 H-PDLC层和绿色 H-PDLC 层的叠加实现一个像素的显示。 例如, 只有红色 H-PDLC层显示颜色, 而蓝 色 H-PDLC层和绿色 H-PDLC层则为透明状态, 实现一个像素的红色显示。 类似地, 通过控制每个像素单元中红、 绿和蓝色 H-PDLC层中每个的透明状 态 (灰度), 可实现其他颜色的显示。
本发明实施例通过电压控制彩色 H-PDLC层的透射与显示, 无需使用偏 振片, 从而提高了透过率。 现有的透明显示装置在黑暗环境下, 由于入射光 的减少,导致很难看清显示器上的内容,但是本发明实施例通过无色 H-PDLC 层和光源配合透射区以及反射区, 实现在黑暗或明亮的环境下都能有良好的 显示效果。
本发明实施例的透明显示装置, 可用于多种应用, 包括但不包括电视、 手机、 GPS等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此。 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求书
1、 一种透明显示装置, 包括:
上基板, 所述上基板自上而下依次包括上透明电极和上取向膜; 下基板, 所述下基板自下而上依次包括下透明电极和下取向膜; 至少一个彩色全息高分子分散液晶 (H-PDLC )层, 所述彩色 H-PDLC 层设置在所述上基板和下基板之间。
2、 根据权利要求 1所述的透明显示装置, 其中
所述彩色 H-PDLC层包括二向色性染料、 负性液晶和高分子。
3、 根据权利要求 1或 2所述的透明显示装置, 其中
所述上取向膜和下取向膜, 用于在所述彩色 H-PDLC层未加电压时确定 所述负性液晶的取向,使所述负性液晶的折射率与所述高分子的折射率匹配。
4、 根据权利要求 1-3任一所述的透明显示装置, 包括多个像素单元, 每 个像素单元分别包括透射区和反射区。
5、 根据权利要求 4所述的透明显示装置, 其中,
所述上取向膜和下取向膜包括位于所述透射区内的透射区取向膜。
6、 根据权利要求 5所述的透明显示装置, 其中
所述彩色 H-PDLC 层中对应所述透射区取向膜的部分为透射型彩色 H-PDLC, 所述透射型彩色 H-PDLC包括的所述高分子为第一高分子;
所述透射型彩色 H-PDLC未被施加电压时, 所述透射区取向膜使所述透 射型彩色 H-PDLC包括的负性液晶取向垂直于所述上基板和下基板的表面; 所述透射型彩色 H-PDLC被施加电压时,所述透射型彩色 H-PDLC包括 的负性液晶平行于所述上基板表面, 使得所述负性液晶的折射率与所述第一 高分子的折射率不匹配, 用于使入射光衍射。
7、 根据权利要求 4-6任一所述的透明显示装置, 其中
所述上取向膜和下取向膜还包括位于所述反射区内的反射区取向膜.
8、 根据权利要求 7所述的透明显示装置, 其中
所述彩色 H-PDLC 层中对应所述反射区取向膜的部分为反射型彩色 H-PDLC, 所述反射型彩色 H-PDLC包括的所述高分子为第二高分子;
当所述反射型彩色 H-PDLC未加电压时, 所述反射区取向膜使所述反射 型彩色 H-PDLC包括的负性液晶取向与所述上基板和下基板的表面成锐角; 当所述反射型彩色 H-PDLC加电压时,所述反射型彩色 H-PDLC包括的 负性液晶平行于所述上基板表面, 使得所述负性液晶的折射率与所述第二高 分子的折射率与不匹配, 用于使入射光反射。
9、根据权利要求 1-8中任一所述的透明显示装置,包括多个彩色 H-PDLC 中间基板间隔开, 所述中间基板的上下两侧进一步依次包括透明电极和取向 膜, 用于其上下两侧的彩色 H-PDLC层。
10、 根据权利要求 9 所述的透明显示装置, 其中, 对于所述多个彩色 H-PDLC层中每一层分别设置驱动结构。
11、 根据权利要求 1-10任一所述的透明显示装置, 还包括:
设置在所述下基板下方的无色 H-PDLC层;
所述无色 H-PDLC层的侧面设置的光源。
PCT/CN2012/082803 2012-02-29 2012-10-11 透明显示装置 WO2013127181A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/825,876 US9429787B2 (en) 2012-02-29 2012-10-11 Transparent display unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210050681.3A CN102654687B (zh) 2012-02-29 2012-02-29 透明显示装置
CN201210050681.3 2012-02-29

Publications (1)

Publication Number Publication Date
WO2013127181A1 true WO2013127181A1 (zh) 2013-09-06

Family

ID=46730327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082803 WO2013127181A1 (zh) 2012-02-29 2012-10-11 透明显示装置

Country Status (2)

Country Link
CN (1) CN102654687B (zh)
WO (1) WO2013127181A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429787B2 (en) 2012-02-29 2016-08-30 Boe Technology Group Co., Ltd. Transparent display unit
CN102654687B (zh) * 2012-02-29 2015-06-03 京东方科技集团股份有限公司 透明显示装置
CN105158958B (zh) * 2015-09-28 2018-08-21 华南师范大学 一种电响应调光玻璃
CN106873209B (zh) * 2015-09-30 2021-05-11 乐金显示有限公司 光控制装置、包括其的透明显示装置及其制造方法
TWI622840B (zh) 2016-11-25 2018-05-01 宏碁股份有限公司 顯示面板
CN108663849A (zh) * 2018-05-28 2018-10-16 信利光电股份有限公司 一种pdlc组件、制作方法、显示屏组件以及终端
CN111176045A (zh) * 2020-03-02 2020-05-19 辽宁科技大学 可开关控制透明显示的tft液晶显示模组

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040213A (zh) * 1988-04-11 1990-03-07 肯特州大学 包含有弥散在双折射聚合基体中的液晶微滴的光调制材料
US5712695A (en) * 1995-07-13 1998-01-27 Sharp Kabushiki Kaisha Liquid crystal display device and fabrication process thereof
KR20030077820A (ko) * 2002-03-27 2003-10-04 비오이 하이디스 테크놀로지 주식회사 홀로그래피 고분자 분사형 액정표시장치
CN1534346A (zh) * 2003-03-31 2004-10-06 ��������ʾ���Ƽ���˾ 彩色高分子分散液晶显示装置及其制造方法
KR100850022B1 (ko) * 2007-11-28 2008-08-04 부산대학교 산학협력단 폴리우레탄을 매트릭스로 하는 반투과 홀로그램 표시소자
TW200834152A (en) * 2007-02-02 2008-08-16 Chi Mei Optoelectronics Corp Transflective liquid crystal display panel and fabricating method thereof
CN201725122U (zh) * 2010-04-21 2011-01-26 陈国平 高透光率的场序驱动彩色液晶显示器
CN102150076A (zh) * 2008-09-25 2011-08-10 夏普株式会社 光量调整装置、背光源单元、液晶显示面板和液晶显示装置
CN102253527A (zh) * 2011-07-29 2011-11-23 南京中电熊猫液晶显示科技有限公司 半穿透半反射透明显示器的显示面板及其子像素结构
CN102654687A (zh) * 2012-02-29 2012-09-05 京东方科技集团股份有限公司 透明显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1111289C (zh) * 1996-11-04 2003-06-11 周志谦 高反射率聚合物分散液晶光阀显示装置
CN101059607A (zh) * 2006-04-17 2007-10-24 孙刚 电控液晶调光玻璃和薄膜

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1040213A (zh) * 1988-04-11 1990-03-07 肯特州大学 包含有弥散在双折射聚合基体中的液晶微滴的光调制材料
US5712695A (en) * 1995-07-13 1998-01-27 Sharp Kabushiki Kaisha Liquid crystal display device and fabrication process thereof
KR20030077820A (ko) * 2002-03-27 2003-10-04 비오이 하이디스 테크놀로지 주식회사 홀로그래피 고분자 분사형 액정표시장치
CN1534346A (zh) * 2003-03-31 2004-10-06 ��������ʾ���Ƽ���˾ 彩色高分子分散液晶显示装置及其制造方法
TW200834152A (en) * 2007-02-02 2008-08-16 Chi Mei Optoelectronics Corp Transflective liquid crystal display panel and fabricating method thereof
KR100850022B1 (ko) * 2007-11-28 2008-08-04 부산대학교 산학협력단 폴리우레탄을 매트릭스로 하는 반투과 홀로그램 표시소자
CN102150076A (zh) * 2008-09-25 2011-08-10 夏普株式会社 光量调整装置、背光源单元、液晶显示面板和液晶显示装置
CN201725122U (zh) * 2010-04-21 2011-01-26 陈国平 高透光率的场序驱动彩色液晶显示器
CN102253527A (zh) * 2011-07-29 2011-11-23 南京中电熊猫液晶显示科技有限公司 半穿透半反射透明显示器的显示面板及其子像素结构
CN102654687A (zh) * 2012-02-29 2012-09-05 京东方科技集团股份有限公司 透明显示装置

Also Published As

Publication number Publication date
CN102654687A (zh) 2012-09-05
CN102654687B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2018076948A1 (zh) 显示面板和显示装置
US9581858B2 (en) Mirror display device
WO2013127181A1 (zh) 透明显示装置
JP6144762B2 (ja) 液晶表示装置
US8610845B2 (en) Display device having color filter and polymer-dispersed liquid crystal (PDLC) layer
JP2007047732A (ja) 液晶表示装置及び電子機器
WO2009139199A1 (ja) 液晶表示装置
US10845648B2 (en) Switching mirror panel and switching mirror device
WO2016049960A1 (zh) 液晶显示装置
US11231614B2 (en) Display panel and display method thereof, display device
US7336332B2 (en) Reflective type continuous domain in-plane switching liquid crystal display
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
WO2018076750A1 (zh) 显示面板及其制作方法和显示设备
CN215813616U (zh) 视角可切换的显示装置
KR20120049018A (ko) 표시 장치
CN106959544B (zh) 一种背光模组、液晶显示器及其制备工艺
TWI635335B (zh) Display device
US20050157231A1 (en) Transflective mode liquid crystal display
KR20010066252A (ko) 위상차 필름을 포함하는 반사형 액정표시장치와반사투과형 액정표시장치
US9429787B2 (en) Transparent display unit
JP2003195288A (ja) 半透過型の液晶表示装置
KR100851181B1 (ko) 액정표시장치
KR20070034697A (ko) 액정 표시 장치 및 이의 구동방법
JP2004029413A (ja) 液晶表示素子
KR20130033618A (ko) 투명 액정표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13825876

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.01.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12870026

Country of ref document: EP

Kind code of ref document: A1