WO2017118048A1 - 显示装置及其驱动方法 - Google Patents
显示装置及其驱动方法 Download PDFInfo
- Publication number
- WO2017118048A1 WO2017118048A1 PCT/CN2016/096729 CN2016096729W WO2017118048A1 WO 2017118048 A1 WO2017118048 A1 WO 2017118048A1 CN 2016096729 W CN2016096729 W CN 2016096729W WO 2017118048 A1 WO2017118048 A1 WO 2017118048A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- liquid crystal
- display panel
- crystal display
- display device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0056—Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0944—Diffractive optical elements, e.g. gratings, holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/27—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/30—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/13362—Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/32—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/324—Colour aspects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0023—Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
- G02B6/0028—Light guide, e.g. taper
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0066—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
- G02B6/0068—Arrangements of plural sources, e.g. multi-colour light sources
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/30—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
- G02F2201/305—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating
Definitions
- Embodiments of the present invention relate to a display device and a method of driving the same.
- 3D display technology has attracted much attention, which can make the picture stereoscopic.
- the principle of 3D display is that the left eye and the right eye of the viewer respectively receive images with slight differences, and the two images are integrated through the comprehensive analysis of the viewer's brain, so that the viewer perceives the depth of the object presented by the image, thereby generating a three-dimensional sense.
- the known naked-eye 3D display device includes: a liquid crystal display panel 100 and a slit grating 110 on the light-emitting side of the liquid crystal display panel 100; wherein the liquid crystal display panel 100 includes a plurality of first display units 101 and more a second display unit 102, and the first display unit 101 displays a left eye image L, and the second display unit 102 displays a right eye image R; the slit grating 110 includes a light transmitting area 111 and a light shielding area 112, and the slit grating 110 has a minute
- the effect is such that the left eye of the viewer sees only the left eye image L, and the right eye only sees the right eye image R, thereby generating a three-dimensional stereoscopic effect.
- the above 3D display device needs to realize 3D display by means of a slit grating, which increases the overall thickness of the 3D display device, and the color filter function of the color filter layer in the liquid crystal display panel consumes at least 60% of the light energy, and the backlight is improved by
- the brightness of the module satisfies the brightness requirements of the 3D display device, which undoubtedly increases the power consumption of the 3D display device.
- embodiments of the present invention provide a display device and a driving method thereof that can thin the overall thickness of a 3D display device and increase its light transmittance.
- an embodiment of the present invention provides a display device including: a liquid crystal display panel and a backlight module located on a light incident side of the liquid crystal display panel;
- the backlight module is provided with a diffraction grating structure on a surface facing the liquid crystal display panel, and the diffraction grating structure is configured to cause light emitted by the backlight module to be incident on the liquid crystal display panel in a three-dimensional display mode.
- the backlight module includes: a light guide plate and a first light source located at a first side of the light guide plate;
- the diffraction grating structure is located on a surface of the light guide plate facing the liquid crystal display panel;
- the first side surface of the light guide plate is a sloped surface configured to cause light emitted by the first light source to be reflected multiple times in the light guide plate and emitted from the diffraction grating structure.
- the liquid crystal display panel includes: a plurality of gate lines, a plurality of data lines, and a plurality of sub-pixels arranged in a matrix; wherein each of the two adjacent gate lines and each phase Two adjacent data lines of the adjacent one of the sub-pixels;
- Each of the bright stripe patterns corresponds to a column of the sub-pixels
- each of the dark stripe patterns corresponds to a column of the sub-pixels.
- the backlight module further includes: a second light source located on the second side of the light guide plate; the second side is opposite to the first side;
- the second side surface of the light guide plate is a sloped surface configured to cause light emitted by the second light source to be reflected multiple times in the light guide plate and emitted from the diffraction grating structure in a two-dimensional display mode, whereby, a bright stripe pattern having a color different from that of the two bright stripe patterns adjacent to the dark stripe pattern is formed at each of the dark stripe patterns.
- the inclination angle of the first side is different from the inclination angle of the second side.
- the backlight module further includes: a reflective film on a side of the light guide plate facing away from the liquid crystal display panel.
- the backlight module further includes: a scattering film on a side of the light guide plate facing the liquid crystal display panel.
- the first light source and the second light source are polarized light sources;
- the liquid crystal display panel further includes: an opposite array substrate and an opposite substrate, and the array substrate and the array substrate a liquid crystal layer between the opposite substrates;
- the side of the array substrate facing away from the opposite substrate is a light exiting side
- the liquid crystal display panel further includes: a first polarizer located on a side of the array substrate facing away from the opposite substrate; or
- the side of the opposite substrate facing away from the array substrate is a light exiting side
- the liquid crystal display panel further includes: a first polarizer located on a side of the opposite substrate facing away from the array substrate.
- the first light source and the second light source are unpolarized light sources
- the liquid crystal display panel further includes: an opposite array substrate and an opposite substrate, a liquid crystal layer between the array substrate and the opposite substrate, located on a side of the opposite substrate facing away from the array substrate a second polarizer, and a third polarizer on a side of the array substrate facing away from the opposite substrate.
- the diffraction grating structure is a sinusoidal phase grating structure.
- an embodiment of the present invention further provides a driving method of a display device, including:
- the first light source is turned on, and the light emitted by the first light source is incident on the liquid crystal display panel through the diffraction grating to form a light-dark, laterally-arranged and longitudinally extending stripe pattern, arranged in order.
- the at least three bright stripe patterns are a group, and the colors of each of the bright stripe patterns included in each group are different from each other.
- the foregoing driving method further includes:
- the first light source and the second light source are in an on state, and the light emitted by the first light source is incident on the liquid crystal display panel through the diffraction grating to form a light and dark phase and a lateral direction.
- a stripe pattern arranged in a longitudinal direction and a set of at least three bright stripe patterns arranged in sequence, and each of the bright stripe patterns included in each group has a color different from each other; and light emitted by the second light source
- the liquid crystal display panel After passing through the diffraction grating, the liquid crystal display panel is incident, and a bright stripe pattern having a color different from that of the two bright stripe patterns adjacent to the dark stripe pattern is formed at each of the dark stripe patterns.
- the display device includes a liquid crystal display panel and a backlight module on the light incident side of the liquid crystal display panel.
- the backlight module is disposed on the surface of the liquid crystal display panel with a diffraction grating structure.
- the light emitted by the backlight module is incident on the liquid crystal display panel through the diffraction grating structure to form a light-dark, laterally-arranged and longitudinally extending stripe pattern, in which at least three bright stripe patterns are sequentially arranged, and each group contains The colors of the respective stripe patterns are different from each other; thus, by using the diffraction grating structure on the surface of the backlight module instead of the color film layer in the liquid crystal display panel and the slit grating on the light exit side of the liquid crystal display panel, the display device can be thinned not only The overall thickness and the loss of light due to the color film layer of the color resist material can be avoided, thereby improving the light transmittance of the display device and correspondingly reducing the power consumption of the display device.
- FIG. 1 is a schematic structural view of a known three-dimensional display device
- FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of a display device in a two-dimensional display mode or a three-dimensional display mode according to an embodiment of the present invention
- FIG. 4a is a schematic structural diagram of a diffraction grating structure in a display device according to an embodiment of the present invention
- Figure 4b is a cross-sectional view of Figure 4a along the AA direction;
- FIG. 5 and FIG. 6 are respectively a schematic structural diagram of a display device according to an embodiment of the present invention.
- FIG. 7 is a stripe pattern formed by light emitted by a first light source and a second light source in a display device according to an embodiment of the present invention.
- a display device includes: a liquid crystal display panel 1 and a backlight module 2 on the light incident side of the liquid crystal display panel 1; and a backlight module 2 facing the surface of the liquid crystal display panel 1
- the diffraction grating structure 20 is configured to form a light-dark, laterally-arranged and longitudinally extending stripe pattern after the light emitted by the backlight module 2 is incident on the liquid crystal display panel 1 in the three-dimensional display mode;
- the at least three bright stripe patterns arranged in sequence are a group, and the colors of the respective stripe patterns included in each group are different from each other.
- three bright stripe patterns are sequentially arranged in a group (shown by a broken line frame as shown in FIG. 3), and the color of each of the three bright stripe patterns included in each group is red. (R1), green (G1), and blue (B1).
- the light emitted from the diffraction grating forms a light and dark stripe pattern, and is irradiated to the sub-pixel 10 in the liquid crystal display panel, so that the left eye of the viewer can only see the left eye image, and the right eye only sees the right eye image, the left eye.
- the image is slightly different from the right eye image to achieve a 3D display effect.
- the four bright stripe patterns arranged in sequence may be grouped, and the four bright stripe patterns included in each group may have different colors, for example, red, green, blue, and yellow, respectively.
- the embodiments of the present invention are not limited thereto, and will not be described herein.
- the light emitted by the backlight module is incident on the liquid crystal display panel through the diffraction grating structure to form a light-dark, laterally arranged and longitudinally extending stripe pattern, wherein the bright stripe pattern is equivalent to a color backlight.
- the dark stripe pattern is equivalent to the slit grating, so that the diffraction grating structure on the surface of the backlight module can be used instead of the color film layer in the liquid crystal display panel and the slit grating on the light exit side of the liquid crystal display panel, which can not only thin the display device
- the overall thickness and the loss of light due to the color film layer of the color resist material can be avoided, thereby improving the light transmittance of the display device and correspondingly reducing the power consumption of the display device.
- the diffraction grating structure may be a sinusoidal phase grating structure, which can modulate the exit angle of the light and cause the light to be dispersed.
- the diffraction grating structure on the surface of the backlight module in the above display device provided by the embodiment of the present invention may be any other known structure capable of generating color stripes between light and dark, which is not limited herein.
- the diffraction grating structure can be formed on the surface of the backlight module by a photolithography process.
- FIG. 4b is a cross-sectional view of FIG. 4a along the AA direction
- the sinusoidal phase grating structure has an inclination angle of ⁇ G , a grating constant of ⁇ , a grating length of L, a grating thickness of d, and a sinusoidal variation.
- the refractive index of the grating is ⁇ n (or, it can be assumed that the thickness d of the sinusoidal phase grating structure is fixed, and the refractive index ⁇ n is sinusoidal), and the complex amplitude projection coefficient is
- J q represents the q-order first-order Bessel function
- r q ( ⁇ q , ⁇ q , ⁇ q ) describes the direction cosine of the outgoing light
- the cosine of the outgoing light becomes ( ⁇ q , ⁇ q , ⁇ q ), the direction cosine of the outgoing light and the cosine of the direction of the incident light have the following relationship:
- the exit angle of the light is only related to the tilt angle ⁇ G of the grating, the grating constant ⁇ , and the wavelength ⁇ of the outgoing light.
- the overall thickness can also avoid light loss caused by the color film layer of the color resist material, thereby improving the light transmittance of the display device and correspondingly reducing the power consumption of the display device.
- the backlight module 2 may include a light guide plate 21 and a first light source 22 located at a first side of the light guide plate 21; 5 is not shown) is located on the surface of the light guide plate 21 facing the liquid crystal display panel 1; the first side surface of the light guide plate 21 is a sloped surface, and is arranged such that the light emitted by the first light source 22 is reflected multiple times in the light guide plate 21 and is diffracted.
- the grating structure is emitted (as shown by the solid line shown in FIG.
- the light emitted by the first light source 22 is reflected to the side of the light guide plate 21 provided with the diffraction grating structure, and can be emitted from the diffraction grating structure, and the first
- the light emitted by the light source 22 is reflected to the other surface of the light guide plate 21, it is reflected back to the surface on which the diffraction grating structure is disposed and is emitted from the diffraction grating structure; when the light emitted by the first light source 22 is white light, the light emitted from the diffraction grating structure is emitted.
- the light forms a light-dark, laterally-arranged, and longitudinally extending stripe pattern, in a group of, for example, three bright stripe patterns, and the three bright stripe patterns included in each group are respectively red (R) Green (G), blue (B).
- the liquid crystal display panel may include a plurality of gate lines, a plurality of data lines, and a plurality of sub-pixels arranged in a matrix; wherein each adjacent two gate lines and Each adjacent two data lines defines one sub-pixel.
- each bright stripe pattern may correspond to a column of sub-pixels
- each dark stripe pattern may correspond to a column of sub-pixels.
- each of the bright stripe patterns may correspond to a plurality of columns of sub-pixels
- each of the dark stripe patterns may correspond to a plurality of columns of sub-pixels, which is not limited herein.
- the parameters of the diffraction grating structure may be set according to actual needs, and the number of columns of sub-pixels corresponding to each of the bright stripe patterns and each dark stripe pattern may be adjusted.
- the The light emitted by a light source is emitted from the diffraction grating to form a light and dark stripe pattern and is irradiated onto the liquid crystal display panel, so that the left eye of the viewer can only see the left eye image, and the right eye only sees the right eye image;
- the left eye image and the right eye image have slight differences, so that the viewer perceives the depth of the object to generate a three-dimensional stereoscopic effect, and realizes a 3D display effect; in the two-dimensional display mode, the left eye image is the same as the right eye image. Achieve 2D display effects.
- the backlight module 2 may further include: a second light source 23 located on the second side of the light guide plate 21; Opposite to the first side; the second side of the light guide plate 21 is a sloped surface, and the light emitted by the second light source 23 is reflected multiple times in the light guide plate 21 and is emitted from the diffraction grating structure (not shown in FIG.
- FIG. 6 As shown by the dotted line, for example, the light emitted by the second light source 23 is reflected to the side of the light guide plate 21 where the diffraction grating structure is disposed, and can be emitted from the diffraction grating structure, and the light emitted by the second light source 23 is reflected to the guide. The other side of the light plate 21 is reflected back to the side provided with the diffraction grating structure and emerges from the diffraction grating structure; in the two-dimensional display mode, the first light source 22 and the second light source 23 are both in an open state, and the first light source 22 is emitted.
- a light-dark stripe pattern (dark, R1, dark, G1, dark, B1, dark) as shown in FIG. 3 is formed, and the light emitted by the second light source 23 is emitted from the diffraction grating.
- Each of the striped patterns shown in 3 A bright stripe pattern having a color different from that of the two bright stripe patterns adjacent to the dark stripe pattern is formed at the stripe pattern, thereby obtaining a stripe pattern as shown in FIG. 7 (G2, R1, B2, G1, R2, B1). G2); each of the stripe patterns in the stripe pattern shown in FIG.
- the left eye and the right eye of the viewer can respectively receive the images formed by all the sub-pixels in the liquid crystal display panel in the two-dimensional display mode, so that the above-mentioned embodiments provided by the embodiments of the present invention can be
- the resolution of the display device is doubled in the two-dimensional display mode.
- the inclination angle of the first side surface and the inclination angle of the second side surface may be set differently, so that the first light source 22 can be emitted.
- the angle at which the light is incident on the light guide plate 21 is different from the angle at which the light emitted from the second light source 23 enters the light guide plate 21, so that the position of the stripe pattern formed by the light emitted from the first light source 22 from the diffraction grating and the second light source 23 a stripe pattern formed by the emitted light emerging from the diffraction grating
- the positions are different to obtain a stripe pattern as shown in FIG.
- the backlight module 2 may further include: a reflective film 24 located on a side of the light guide plate 21 facing away from the liquid crystal display panel 1;
- a reflective film 24 located on a side of the light guide plate 21 facing away from the liquid crystal display panel 1;
- the light emitted by the second light source 23 is irradiated to the side of the light guide plate 21 where the diffraction grating structure is not disposed, it is totally reflected back to the side on which the diffraction grating structure is disposed and is emitted from the diffraction grating structure, thereby improving The light utilization rate of the second light source 23.
- the backlight module 2 may further include: the light guide plate 21 facing the liquid crystal display panel.
- the scattering film 25 on one side; the light emitted from the diffraction grating structure can be uniformly propagated in various directions after passing through the scattering film 25.
- the first light source and the second light source may be polarized light sources; or the first light source and the second light source may be non-polarized light sources, which are not limited herein.
- the first light source and the second light source in the display device are both polarized light sources.
- the liquid crystal display panel may further include: an opposite array substrate 11 and an opposite direction.
- the side of the array substrate 11 facing away from the array substrate is disposed on the side of the array substrate facing away from the array substrate, that is, the backlight module is located on the side of the opposite substrate facing away from the array substrate.
- the backlight module is located on the side of the opposite substrate facing away from the array substrate.
- the liquid crystal display panel may further include: a first polarizer 14 on a side of the opposite substrate 12 facing away from the array substrate 11,
- a polarizer on the side of the array substrate 11 facing away from the counter substrate 12, which not only can reduce the overall thickness of the display device, but can further improve the light utilization efficiency of the backlight module 2.
- the liquid crystal display panel may further include: a first polarizer located on a side of the array substrate facing away from the opposite substrate, so that it is not necessary to provide a polarizer on a side of the opposite substrate facing away from the array substrate, thereby not only reducing the display device
- the overall thickness can further improve the light utilization efficiency of the backlight module.
- the first light source and the second light source in the display device are both unpolarized light sources.
- the liquid crystal display panel may further include: an array substrate 11 opposite to each other and The opposite substrate 12, the liquid crystal layer 13 between the array substrate 11 and the opposite substrate 12, the second polarizer 15 on the side of the opposite substrate 12 facing away from the array substrate 11, and the array substrate 11 facing away from the opposite substrate 12 The third polarizer 16 on the side.
- the side of the opposite substrate 12 facing away from the array substrate 11 may be disposed as a light exiting side, that is, the backlight module 2 is located on a side of the array substrate 11 facing away from the opposite substrate 12 ;
- the side of the array substrate facing away from the array substrate may be disposed as a light-emitting side, that is, the backlight module is located on a side of the opposite substrate facing away from the array substrate, which is not limited herein.
- the embodiment of the present invention further provides a driving method for a display device, which includes: in a three-dimensional display mode, the first light source is turned on, and the light emitted by the first light source is The diffraction grating is then incident on the liquid crystal display panel to form a light-dark, laterally-arranged and longitudinally extending stripe pattern, in which at least three distinct stripe patterns are sequentially arranged, and the color of each bright stripe pattern included in each group Different from each other.
- the light emitted by the first light source is emitted from the diffraction grating to form a light and dark stripe pattern and is irradiated onto the liquid crystal display panel, so that the left eye of the viewer can only see the left eye.
- the right eye only sees the right eye image;
- the left eye image and the right eye image have slight differences, so that the viewer perceives the depth of the object to generate a three-dimensional stereoscopic effect, and realizes a 3D display effect;
- the left eye image is the same as the right eye image, achieving a 2D display effect.
- the driving method provided by the embodiment of the present invention may further include: in the two-dimensional display mode, the first light source and the second light source are in an on state, and the light emitted by the first light source is incident on the liquid crystal after passing through the diffraction grating.
- a light-dark, laterally-arranged and longitudinally extending stripe pattern is formed on the display panel, and the at least three bright stripe patterns are sequentially arranged in a group, and each of the bright stripe patterns included in each group has different colors;
- Light The light emitted from the source is incident on the liquid crystal display panel through the diffraction grating, and a bright stripe pattern having a color different from that of the two bright stripe patterns adjacent to the dark stripe pattern is formed at each dark stripe pattern; thus, in two dimensions In the display mode, the viewer's left and right eyes can respectively receive images formed by all sub-pixels in the liquid crystal display panel, thereby doubling the resolution in the two-dimensional display mode.
- the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, which are not limited herein.
- the embodiment of the present invention provides a display device including a liquid crystal display panel and a backlight module on the light incident side of the liquid crystal display panel, and the backlight module faces the surface of the liquid crystal display panel.
- a diffraction grating structure There is a diffraction grating structure.
- the light emitted by the backlight module is incident on the liquid crystal display panel through the diffraction grating structure to form a light-dark, laterally-arranged and longitudinally extending stripe pattern, in order to arrange at least three
- the stripe pattern is a group, and the color of each bright stripe pattern included in each group is different from each other, so that the diffraction grating structure on the surface of the backlight module is used instead of the color film layer in the liquid crystal display panel and the narrow side of the light emitting side of the liquid crystal display panel.
- the slit grating can not only reduce the overall thickness of the display device, but also avoid light loss caused by the color film layer of the color resist material, thereby improving the light transmittance of the display device and correspondingly reducing the power consumption of the display device.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Liquid Crystal (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
Claims (12)
- 一种显示装置,包括:液晶显示面板和位于所述液晶显示面板的入光侧的背光模组;所述背光模组面向所述液晶显示面板的表面设置有衍射光栅结构,所述衍射光栅结构被配置以在三维显示模式下使所述背光模组发出的光入射到所述液晶显示面板后形成明暗相间的、横向排列并且纵向延伸的条纹图案;其中,以依次排列的至少三个明条纹图案为一组,并且每组包含的所述明条纹图案的颜色互不相同。
- 如权利要求1所述的显示装置,其中,所述背光模组包括:导光板和位于所述导光板的第一侧面的第一光源;所述衍射光栅结构位于所述导光板面向所述液晶显示面板的表面;所述导光板的所述第一侧面为斜面并且被配置为使所述第一光源发出的光在所述导光板内发生多次反射并从所述衍射光栅结构出射。
- 如权利要求2所述的显示装置,其中,所述液晶显示面板包括:多条栅线、多条数据线以及呈矩阵排列的多个亚像素;其中,每相邻的两条所述栅线和每相邻的两条所述数据线限定一个所述亚像素;每个所述明条纹图案对应一列所述亚像素,每个暗条纹图案对应一列所述亚像素。
- 如权利要求3所述的显示装置,其中,所述背光模组还包括:位于所述导光板的第二侧面的第二光源,所述第二侧面与所述第一侧面相对;所述导光板的所述第二侧面为斜面并且被配置为在二维显示模式下使所述第二光源发出的光在所述导光板内发生多次反射并从所述衍射光栅结构出射,在每个所述暗条纹图案处形成颜色和与该暗条纹图案相邻的两个所述明条纹图案的颜色不同的明条纹图案。
- 如权利要求4所述的显示装置,其中,所述第一侧面的倾斜角度与所述第二侧面的倾斜角度不同。
- 如权利要求1-5任一项所述的显示装置,其中,所述背光模组还包括:位于所述导光板背离所述液晶显示面板一侧的反射膜。
- 如权利要求1-5任一项所述的显示装置,其中,所述背光模组还包括:位于所述导光板面向所述液晶显示面板一侧的散射膜。
- 如权利要求1-5任一项所述的显示装置,其中,所述第一光源和所述第二光源为偏振光源,并且所述液晶显示面板还包括:相对而置的阵列基板和对向基板,以及位于所述阵列基板与所述对向基板之间的液晶层;其中,所述阵列基板背离所述对向基板的一侧为出光侧,所述液晶显示面板还包括位于所述阵列基板背离所述对向基板一侧的第一偏光片;或者,所述对向基板背离所述阵列基板的一侧为出光侧,所述液晶显示面板还包括位于所述对向基板背离所述阵列基板一侧的第一偏光片。
- 如权利要求1-5任一项所述的显示装置,其中,所述第一光源和所述第二光源为非偏振光源,并且所述液晶显示面板还包括:相对而置的阵列基板和对向基板,位于所述阵列基板与所述对向基板之间的液晶层,位于所述对向基板背离所述阵列基板一侧的第二偏光片,以及位于所述阵列基板背离所述对向基板一侧的第三偏光片。
- 如权利要求1-5任一项所述的显示装置,其中,所述衍射光栅结构为正弦相位光栅结构。
- 一种如权利要求1-10任一项所述的显示装置的驱动方法,包括:在三维显示模式下,将第一光源处于开启状态,使所述第一光源发出的光经衍射光栅后入射到液晶显示面板,形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个明条纹图案为一组,并且每组包含的所述明条纹图案的颜色互不相同。
- 如权利要求11所述的驱动方法,还包括:在二维显示模式下,将所述第一光源和第二光源处于开启状态;使所述第一光源发出的光经所述衍射光栅后入射到所述液晶显示面板,形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个所述明条纹图案为一组,并且每组包含的所述明条纹图案的颜色互不相同;使所述第二光源发出的光经所述衍射光栅后入射到所述液晶显示面板,在每个暗条纹图案处形成颜色和与该暗条纹图案相邻的两个所述明条纹图案的颜色不同的明条纹图案。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/516,800 US10488702B2 (en) | 2016-01-08 | 2016-08-25 | Display device having diffraction grating structure and driving method for the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610012370.6A CN106959551B (zh) | 2016-01-08 | 2016-01-08 | 一种显示装置及其驱动方法 |
CN201610012370.6 | 2016-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017118048A1 true WO2017118048A1 (zh) | 2017-07-13 |
Family
ID=59273327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/096729 WO2017118048A1 (zh) | 2016-01-08 | 2016-08-25 | 显示装置及其驱动方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10488702B2 (zh) |
CN (1) | CN106959551B (zh) |
WO (1) | WO2017118048A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109307935A (zh) * | 2018-11-13 | 2019-02-05 | 深圳创维新世界科技有限公司 | 空间投影显示设备 |
CN113900273A (zh) * | 2021-10-09 | 2022-01-07 | 广东未来科技有限公司 | 裸眼3d显示方法及相关设备 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180010791A (ko) * | 2016-07-22 | 2018-01-31 | 삼성전자주식회사 | 지향성 백라이트 유닛, 이의 제작방법, 이를 포함하는 입체 영상 표시 장치 |
CN107561724B (zh) * | 2017-11-01 | 2020-08-07 | 京东方科技集团股份有限公司 | 立体显示装置和显示设备 |
CN109799003A (zh) * | 2019-02-27 | 2019-05-24 | 广西师范大学 | 一种基于新型mim布拉格光栅的温度传感器 |
CN112305779A (zh) * | 2020-11-25 | 2021-02-02 | 万维科研有限公司 | 显示装置及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020001107A1 (en) * | 1995-07-06 | 2002-01-03 | Nobuhiko Ichikawa | Hologram color filter, and its fabrication method |
CN101339310A (zh) * | 2007-07-02 | 2009-01-07 | 财团法人工业技术研究院 | 三维影像显示装置以及双模式影像显示装置 |
CN203630766U (zh) * | 2013-12-11 | 2014-06-04 | 深圳市宇顺电子股份有限公司 | 3d显示电容式触摸屏模组 |
CN104601974A (zh) * | 2014-12-30 | 2015-05-06 | 深圳市亿思达科技集团有限公司 | 基于人眼追踪的全息显示器及全息显示装置 |
CN105044962A (zh) * | 2015-07-13 | 2015-11-11 | 上海理工大学 | 一种彩色全息聚合物分散液晶光栅的制备方法 |
CN205334016U (zh) * | 2016-01-08 | 2016-06-22 | 京东方科技集团股份有限公司 | 一种显示装置 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HU0401057D0 (en) * | 2004-05-26 | 2004-08-30 | Balogh Tibor | Method and apparatus for generating 3d images |
WO2008001825A1 (en) * | 2006-06-27 | 2008-01-03 | Nec Lcd Technologies, Ltd. | Display panel, display device, and terminal device |
TWI317433B (en) * | 2006-10-04 | 2009-11-21 | Ind Tech Res Inst | Light guide plate and back-lighted module having light guide plate |
US20100053992A1 (en) * | 2006-11-22 | 2010-03-04 | Koninklijke Philips Electronics N.V. | Illumination system and display device |
EP1983513A1 (en) * | 2007-04-19 | 2008-10-22 | Deutsche Thomson OHG | Apparatus for reading from and/or writing to holographic storage media |
TWI372264B (en) * | 2008-10-13 | 2012-09-11 | Ind Tech Res Inst | Three-dimensional image displaying apparatus |
CN102236201B (zh) * | 2010-04-30 | 2014-06-04 | 京东方科技集团股份有限公司 | 双视显示器、双视彩膜结构及其制造方法 |
JP5825254B2 (ja) * | 2010-05-19 | 2015-12-02 | 株式会社ニコン | 形状測定装置及び形状測定方法 |
US9778202B2 (en) * | 2010-10-12 | 2017-10-03 | Indian Institute Of Technology Kanpur | Systems and methods for imaging characteristics of a sample and for identifying regions of damage in the sample |
KR101724065B1 (ko) * | 2010-11-01 | 2017-04-07 | 삼성전자주식회사 | 지향성 도광판, 지향성 면광원 및 지향성 면광원을 채용한 3d 영상 디스플레이 장치 |
KR101921172B1 (ko) * | 2011-05-18 | 2018-11-23 | 삼성디스플레이 주식회사 | 표시장치 및 이의 제조 방법 |
TWI476482B (zh) * | 2012-02-06 | 2015-03-11 | Innocom Tech Shenzhen Co Ltd | 液晶顯示器 |
CN102799024A (zh) * | 2012-08-09 | 2012-11-28 | 深圳市华星光电技术有限公司 | 可切换二维/三维影像的液晶显示器 |
CN102830555B (zh) * | 2012-08-31 | 2015-01-07 | 北京京东方光电科技有限公司 | 一种触控液晶光栅及3d触控显示装置 |
CN102944961B (zh) * | 2012-11-15 | 2016-03-30 | 深圳市华星光电技术有限公司 | 裸眼3d显示装置及其液晶透镜 |
CN103135280B (zh) * | 2012-11-15 | 2016-05-25 | 中航华东光电有限公司 | 一种液晶障栅立体显示系统 |
TWI504988B (zh) * | 2012-11-28 | 2015-10-21 | Innocom Tech Shenzhen Co Ltd | 背光模組及液晶顯示裝置 |
JP5915556B2 (ja) * | 2013-01-30 | 2016-05-11 | オムロン株式会社 | 導光板 |
TW201431714A (zh) * | 2013-02-08 | 2014-08-16 | Ind Tech Res Inst | 影像分層組合結構 |
CN104238185B (zh) * | 2013-06-19 | 2017-04-12 | 扬升照明股份有限公司 | 光源模块、显示装置及驱动光源模块的方法 |
CN103345068B (zh) * | 2013-07-10 | 2016-01-20 | 京东方科技集团股份有限公司 | 一种立体显示装置 |
TWI495904B (zh) * | 2013-07-12 | 2015-08-11 | Vision Technology Co Ltd C | 配合軟體光柵來產生立體影像的場色序法液晶顯示器及配合軟體光柵來產生立體影像的方法 |
CN105579770B (zh) * | 2013-07-22 | 2019-04-12 | 赢创罗姆有限公司 | 导光板及其制造方法 |
CN104508353B (zh) * | 2013-07-30 | 2018-08-31 | 镭亚股份有限公司 | 基于多束衍射光栅的背光照明 |
KR102367515B1 (ko) * | 2014-11-19 | 2022-02-25 | 삼성전자주식회사 | 백라이트 유닛, 이를 포함하는 디스플레이 장치 및 백라이트 유닛 제조방법 |
KR102372085B1 (ko) * | 2015-01-27 | 2022-03-08 | 삼성전자주식회사 | 2차원/3차원 전환 가능한 백라이트 유닛 및 이를 이용한 영상표시 장치 |
KR102364848B1 (ko) * | 2015-08-20 | 2022-02-18 | 삼성전자주식회사 | 곡면형 백라이트 유닛 및 이를 포함하는 곡면형 디스플레이 장치 |
KR102390375B1 (ko) * | 2015-08-26 | 2022-04-25 | 삼성전자주식회사 | 백라이트 유닛 및 이를 포함한 입체 영상 표시 장치 |
KR102458240B1 (ko) * | 2016-01-06 | 2022-10-24 | 삼성전자주식회사 | 백라이트 유닛 및 이를 포함하는 디스플레이 장치 |
-
2016
- 2016-01-08 CN CN201610012370.6A patent/CN106959551B/zh active Active
- 2016-08-25 WO PCT/CN2016/096729 patent/WO2017118048A1/zh active Application Filing
- 2016-08-25 US US15/516,800 patent/US10488702B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020001107A1 (en) * | 1995-07-06 | 2002-01-03 | Nobuhiko Ichikawa | Hologram color filter, and its fabrication method |
CN101339310A (zh) * | 2007-07-02 | 2009-01-07 | 财团法人工业技术研究院 | 三维影像显示装置以及双模式影像显示装置 |
CN203630766U (zh) * | 2013-12-11 | 2014-06-04 | 深圳市宇顺电子股份有限公司 | 3d显示电容式触摸屏模组 |
CN104601974A (zh) * | 2014-12-30 | 2015-05-06 | 深圳市亿思达科技集团有限公司 | 基于人眼追踪的全息显示器及全息显示装置 |
CN105044962A (zh) * | 2015-07-13 | 2015-11-11 | 上海理工大学 | 一种彩色全息聚合物分散液晶光栅的制备方法 |
CN205334016U (zh) * | 2016-01-08 | 2016-06-22 | 京东方科技集团股份有限公司 | 一种显示装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109307935A (zh) * | 2018-11-13 | 2019-02-05 | 深圳创维新世界科技有限公司 | 空间投影显示设备 |
CN109307935B (zh) * | 2018-11-13 | 2023-12-01 | 深圳创维新世界科技有限公司 | 空间投影显示设备 |
CN113900273A (zh) * | 2021-10-09 | 2022-01-07 | 广东未来科技有限公司 | 裸眼3d显示方法及相关设备 |
CN113900273B (zh) * | 2021-10-09 | 2023-12-26 | 广东未来科技有限公司 | 裸眼3d显示方法及相关设备 |
Also Published As
Publication number | Publication date |
---|---|
US20180267359A1 (en) | 2018-09-20 |
US10488702B2 (en) | 2019-11-26 |
CN106959551B (zh) | 2023-12-19 |
CN106959551A (zh) | 2017-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017118048A1 (zh) | 显示装置及其驱动方法 | |
US10429567B2 (en) | Multi-view pixel directional backlight module and naked-eye 3D display device | |
US10082613B2 (en) | Directional backlight with a modulation layer | |
US10684408B2 (en) | Display device and image display method | |
US10627664B2 (en) | Display panel, display device and display method | |
CN205334016U (zh) | 一种显示装置 | |
WO2018072508A1 (zh) | 显示装置及其显示方法 | |
WO2017148024A1 (zh) | 液晶显示器以及电子设备 | |
TWI474080B (zh) | Liquid crystal display device | |
CN108474943B (zh) | 用于执行子像素压缩以减少包括多个显示器的显示系统中的莫尔干涉的方法和系统 | |
WO2017117907A1 (zh) | 一种3d显示装置 | |
CN109031760B (zh) | 一种3d液晶显示面板、显示装置和驱动方法 | |
WO2017148010A1 (zh) | 液晶显示器以及电子设备 | |
WO2017152521A1 (zh) | 显示装置 | |
JP5657508B2 (ja) | 液晶表示装置、電子機器、および光学装置 | |
KR20150092424A (ko) | 표시 장치 | |
CN208297887U (zh) | 一种显示装置 | |
US10705349B2 (en) | Dual-view naked-eye 3D display device and manufacturing method thereof, liquid crystal display device | |
CN105842925A (zh) | 一种显示面板及显示方法、显示装置 | |
JPWO2014196125A1 (ja) | 画像表示装置及び液晶レンズ | |
WO2019210785A1 (zh) | 液晶显示装置以及显示方法 | |
WO2017161656A1 (zh) | 显示眼镜及其驱动方法 | |
KR20130080766A (ko) | 표시 장치 | |
CN107656393A (zh) | 一种裸眼3d显示器件及液晶显示装置 | |
US10854146B1 (en) | Directional optical waveguide, directional backlight module, and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15516800 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16883178 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16883178 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16883178 Country of ref document: EP Kind code of ref document: A1 |