WO2020015753A1 - 显示面板、显示装置及其控制方法 - Google Patents

显示面板、显示装置及其控制方法 Download PDF

Info

Publication number
WO2020015753A1
WO2020015753A1 PCT/CN2019/096880 CN2019096880W WO2020015753A1 WO 2020015753 A1 WO2020015753 A1 WO 2020015753A1 CN 2019096880 W CN2019096880 W CN 2019096880W WO 2020015753 A1 WO2020015753 A1 WO 2020015753A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
liquid crystal
light
crystal layer
substrate
Prior art date
Application number
PCT/CN2019/096880
Other languages
English (en)
French (fr)
Other versions
WO2020015753A9 (zh
Inventor
谭纪风
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP19837276.5A priority Critical patent/EP3825759B1/en
Priority to US16/635,020 priority patent/US10831059B2/en
Publication of WO2020015753A1 publication Critical patent/WO2020015753A1/zh
Publication of WO2020015753A9 publication Critical patent/WO2020015753A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel, a display device, and a control method thereof.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • a display panel in one aspect, includes a liquid crystal layer, a first substrate and a second substrate provided on opposite sides of the liquid crystal layer, and a control electrode provided on the first substrate.
  • the control electrode is configured to receive an electrical signal, control the light incident on the liquid crystal layer to propagate through total reflection, or form a liquid crystal grating so that the totally reflected light in the liquid crystal layer couples out light on one side of the first substrate.
  • control electrode includes a plurality of first electrodes and a plurality of second electrodes, and the plurality of first electrodes and the plurality of second electrodes are insulated from each other.
  • the display panel further includes a plurality of sub-pixels arranged in an array. A first electrode is correspondingly disposed in each sub-pixel. Each of the first electrodes includes a plurality of first sub-electrodes spaced and electrically connected.
  • a second electrode is correspondingly disposed in each of the sub-pixels.
  • Each of the second electrodes includes a plurality of second sub-electrodes spaced and electrically connected.
  • the second sub-electrode and the first sub-electrode are spaced apart in a direction parallel to the first substrate.
  • the plurality of sub-pixels include sub-pixels configured to emit monochromatic light of different wavelengths.
  • the wavelength of the monochromatic light emitted by each sub-pixel is inversely proportional to the number of corresponding first sub-electrodes therein.
  • the sub-pixels emitting monochromatic light with different wavelengths include a red-emitting sub-pixel, a green-emitting sub-pixel, and a blue-emitting sub-pixel.
  • the number of first sub-electrodes in each sub-pixel configured to emit red light is smaller than the number of first sub-electrodes in each sub-pixel configured to emit green light.
  • the number of first sub-electrodes in each sub-pixel configured to emit green light is smaller than the number of first sub-electrodes in each sub-pixel configured to emit blue light.
  • the display panel further includes an insulating flat layer disposed on a side of the control electrode near the liquid crystal layer.
  • the refractive index of the material of the insulating flat layer is equal to the refractive index of the material of the control electrode, and the shapes of the insulating flat layer and the control electrode are complementary, so that the insulating flat layer is close to the liquid crystal layer.
  • the surface is flat.
  • the display panel further includes: a first alignment layer disposed on the first substrate and located on a side of the insulating flat layer close to the liquid crystal layer; and, disposed on the first substrate A second alignment layer on the second substrate.
  • the total reflection interface corresponding to the total reflection light is between the liquid crystal layer and the first substrate, and between the liquid crystal layer and the second substrate.
  • the total reflection interface corresponding to the total reflection light is between the liquid crystal layer and the insulating flat layer, and between the liquid crystal layer and the second substrate.
  • the total reflection interface corresponding to the total reflection light is on a side of the first substrate remote from the liquid crystal layer, and on a side of the second substrate remote from the liquid crystal layer.
  • the display panel further includes a color filter layer disposed on the first substrate and located on a side of the control electrode away from the liquid crystal layer.
  • a display device in another aspect, includes a light source and a display panel as described above.
  • the light source is disposed on a light incident surface of the display panel in a thickness direction.
  • the light source is configured to provide incident light incident on the liquid crystal layer, and a range of a refraction angle of the incident light incident on the liquid crystal layer is ( ⁇ 0 -90 °, 90 ° - ⁇ 0 ); wherein, ⁇ 0 is the total reflection critical angle of the total reflection interface corresponding to the total reflection light in the liquid crystal layer.
  • the display device further includes a transparent cover plate disposed on a light exit side of the display panel. There is an air barrier between the transparent cover plate and the first substrate in the display panel.
  • the light source includes at least three monochromatic sub-light sources of different colors.
  • the light source is a white light source.
  • the display panel includes a plurality of sub-pixels of different colors.
  • the liquid crystal grating in the display panel includes a plurality of liquid crystal sub-gratings.
  • the plurality of liquid crystal sub-gratings correspond one-to-one with the plurality of sub-pixels.
  • the wavelength ⁇ of light that can be emitted by each of the sub-pixels satisfies the following formula:
  • n 1 sin ⁇ 1 -n 2 sin ⁇ 2 m ⁇ ⁇ / ⁇ ;
  • ⁇ 1 is the incident angle of the total reflection light incident on the corresponding total reflection interface
  • n 1 is the refractive index of the optical dense medium corresponding to the total reflection interface
  • n 2 is the optical density corresponding to the total reflection interface.
  • m is the diffraction order of the liquid crystal sub-grating corresponding to each of the sub-pixels
  • is the period of the liquid crystal sub-grating corresponding to each of the sub-pixels
  • ⁇ 2 is each A light emitting angle corresponding to the sub-pixel.
  • a method for controlling a display device includes: controlling a light source to provide incident light to the liquid crystal layer, and a range of a refraction angle of the incident light incident on the liquid crystal layer is ( ⁇ 0 -90 °, 90 ° - ⁇ 0 ); wherein ⁇ 0 is the total reflection critical angle of the total reflection interface corresponding to the total reflection light in the liquid crystal layer. Applying a voltage to the control electrode to control the incident light to propagate through total reflection in the liquid crystal layer, or to form a liquid crystal grating so that the totally reflected light in the liquid crystal layer couples out light on one side of the first substrate.
  • the display panel includes a plurality of sub-pixels arranged in an array
  • the control electrode includes a first electrode located in each of the sub-pixels.
  • the liquid crystal grating includes a plurality of liquid crystal sub-gratings corresponding to the plurality of sub-pixels on a one-to-one basis.
  • the forming a liquid crystal grating causes total reflection light in the liquid crystal layer to couple out light on one side of the first substrate, and further includes: applying a voltage to each first electrode to control a liquid crystal sub-grating corresponding to each sub-pixel.
  • the light intensity of the diffracted light is 0.1% to 20% of the light intensity of the incident light.
  • the light source includes a plurality of monochrome sub-light sources of different colors
  • the display panel includes a plurality of sub-pixels.
  • the controlling the light source to provide the incident light to the liquid crystal layer further includes: within a frame, controlling the plurality of monochromatic sub-light sources of different colors to sequentially emit monochromatic light of different colors in a time-sharing manner.
  • the coupling the totally reflected light in the liquid crystal layer to a side of the first substrate further includes: sequentially controlling the monochromatic light of different colors incident on the liquid crystal layer in one frame. Light is coupled out at each sub-pixel location.
  • the light-emitting time of each of the monochromatic lights of the different colors is the same.
  • a computer non-transitory readable storage medium stores computer instructions configured to perform a control method of a display device as described above.
  • a computer product in another aspect, includes a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the processor runs the computer program
  • the computer product executes the control method of the display device as described above.
  • a computer program is provided. After the computer program is loaded into the processor, the processor causes the processor to execute the control method of the display device as described above.
  • FIG. 1 is a schematic diagram of a display panel according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram of light propagation in an optical waveguide in a display panel shown in FIG. 1;
  • FIG. 3 is a schematic diagram of another display panel according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of another display panel according to some embodiments of the present disclosure.
  • 5a is a schematic diagram of a control electrode according to some embodiments of the present disclosure.
  • 5b is a schematic diagram of a second electrode according to some embodiments of the present disclosure.
  • 5c is a schematic diagram of still another second electrode according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram of light propagation in an optical waveguide in another display panel according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of another control electrode according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of a display device implementing color display according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of a color display implemented by another display device according to some embodiments of the present disclosure.
  • FIG. 10 is a flowchart of a method for controlling a display device according to some embodiments of the present disclosure
  • FIG. 11 is a schematic diagram of implementing a color display by inputting a red sub-light source among three primary color light sources in a time-sharing manner according to some embodiments of the present disclosure
  • FIG. 12 is a schematic diagram of implementing color display by inputting green sub-light sources among three primary color light sources in a time-sharing manner according to some embodiments of the present disclosure
  • FIG. 13 is a schematic diagram of implementing color display by inputting blue sub-light sources among three primary color light sources in a time-sharing manner according to some embodiments of the present disclosure
  • FIG. 14 is a schematic diagram of still another display device according to some embodiments of the present disclosure.
  • first”, “second”, and “third” are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first”, “second”, and “third” may explicitly or implicitly include one or more of the features. In the description of some embodiments of the present disclosure, unless otherwise stated, the meaning of "a plurality" is two or more.
  • the display panel 01 has a display area AA.
  • the display panel 01 includes a liquid crystal layer 100, first and second substrates 11 and 12 disposed on opposite sides of the liquid crystal layer 100, and a control electrode 60 disposed on a side of the first substrate 11 near the liquid crystal layer 100.
  • the control electrode 60 is configured to receive electrical signals, control the light incident on the liquid crystal layer 100 to propagate through total reflection, or form a liquid crystal grating 30 so that the totally reflected light in the liquid crystal layer 100 couples out light on one side of the first substrate 11.
  • the liquid crystal grating 30 includes a plurality of grating bars arranged at intervals.
  • the above-mentioned light incident on the liquid crystal layer 100 propagates through total reflection, that is, at least a part of the display panel 01 including the liquid crystal layer 100 constitutes the optical waveguide 10.
  • the display panel 01 is used as an optical waveguide as a whole, and light incident on the liquid crystal layer 100 is totally reflected on the first substrate 11 and the second substrate 12 away from the liquid crystal layer 100 as corresponding total reflection interfaces.
  • the control electrode 60 can control the light incident on the liquid crystal layer 100 to propagate through total reflection according to the different electrical signals received by the control electrode 60, or control the liquid crystal molecules in the display area AA of the liquid crystal layer 100 to form the liquid crystal grating 30 to make use of
  • the liquid crystal grating 30 couples the totally reflected light in the liquid crystal layer 100 to one side of the first substrate 11.
  • the electrical signal received by the control electrode 60 is an invalid electrical signal (such as a null signal), that is, the control electrode 60 cannot generate an electric field after receiving the invalid electrical signal, and the light incident on the liquid crystal layer 100 can be transmitted through the liquid crystal. Total reflection occurs in the optical waveguide 10 where the layer 100 is located.
  • the liquid crystal layer 100 is a component of the optical waveguide 10, and the liquid crystal layer 100 is in a transparent state, that is, a light transmitting state, without an electric field.
  • the electrical signal received by the control electrode 60 is an effective electrical signal (for example, multiple electrical signals having a voltage difference), that is, the control electrode 60 generates multiple electric fields after receiving the effective electrical signal to form a liquid crystal in the liquid crystal layer 100. Raster 30.
  • the light incident on the liquid crystal layer 100 is usually provided by a light source 02, and the light provided by the light source 02 can be totally reflected in the optical waveguide 10 where the liquid crystal layer 100 is located.
  • the optical waveguide 10 has a hexagonal structure, which includes an upper surface, a lower surface, and four side surfaces disposed perpendicular to the upper surface and the lower surface.
  • the light source 02 is disposed on one side of the optical waveguide 10 so that the light incident from the light source 02 into the optical waveguide 10 enters from the side of the optical waveguide 10, and the side is the light incident surface of the optical waveguide 10.
  • n 1 and n 2 are respectively the refractive indices of two adjacent layers of the medium forming the total reflection interface in the optical waveguide 10, and n 1 > n 2 , that is, n 1 is the optical density corresponding to the total reflection interface.
  • the refractive index of the medium, n 2 is the refractive index of the sparse medium corresponding to the total reflection interface, then the total reflection critical angle ⁇ 0 of the total reflection interface in the optical waveguide 10 satisfies the following formula:
  • the light provided by the light source 02 is totally reflected in the optical waveguide 10, and the range of the refraction angle ⁇ after the light enters the liquid crystal layer 100 is ( ⁇ 0 -90 °, 90 ° - ⁇ 0 ), where ⁇ 0 is the total reflection critical angle of the total reflection interface in the optical waveguide 10 described above.
  • the angle ⁇ in FIG. 1 is the actual total reflection angle, and the angle ⁇ is greater than the above-mentioned critical angle ⁇ 0 of total reflection.
  • the liquid crystal molecules in the liquid crystal layer 100 are formed into a liquid crystal grating 30 under the control of the control electrode 60, that is, the liquid crystal grating 3 is usually formed in a part of the liquid crystal layer 100 near the control electrode 60 , So that the height h (the size in the thickness direction of the liquid crystal layer 100) of the liquid crystal grating 30 is much smaller than the thickness of the liquid crystal layer 100. Therefore, the liquid crystal grating 30 controls the total reflection light in the liquid crystal layer 100 to couple out light on one side of the first substrate 11. Only the light refracted or reflected on the surface of the liquid crystal grating 30 parallel to the first substrate 11 is considered, but not considered. Light refracted or reflected from the side of the liquid crystal grating (in the direction of height h).
  • the amount of voltage applied to the control electrode 60 can determine the magnitude of the electric field generated by the control electrode 60.
  • the larger the electric field generated by the control electrode 60 the larger the height h of the liquid crystal grating 30 formed in the liquid crystal layer 100 under the action of the electric field.
  • the liquid crystal grating 30 is not formed in the liquid crystal layer 100, and the light incident on the liquid crystal layer 100 cannot pass through the liquid crystal grating. 30 and coupled out.
  • the refraction angle ⁇ after the light enters the liquid crystal layer 100 satisfies the above-mentioned angle range ( ⁇ 0 -90 °, 90 ° - ⁇ 0 )
  • the light will be completely transmitted through the optical waveguide 10 where the liquid crystal layer 100 is located. reflection.
  • the display panel 01 does not emit light and is in a dark state.
  • the display panel 01 further includes an insulating flat layer 61 disposed on a side of the control electrode 60 near the liquid crystal layer 100.
  • the refractive index of the insulating flat layer 61 is equal to the refractive index of the material of the control electrode 60, and the shapes of the insulating flat layer 61 and the control electrode 60 are complementary, so that the surface of the insulating flat layer 61 near the liquid crystal layer 100 is flat.
  • the flat surface of the insulating flat layer 61 near the liquid crystal layer 100 means that the thickness H1 of the control electrode 60 plus the thickness H2 of the insulating flat layer 61 covering the corresponding surface is substantially equal to the insulating flat layer 61 not covering the control electrode.
  • the thickness H3 of the 60 part; that is, H1 + H2 ⁇ H3, and the deviation between the sum of H1 and H2 and H3 is within 95% to 105%.
  • the shapes of the insulating flat layer 61 and the control electrode 60 are complementary, that is, the recessed position of the control electrode 60 exactly corresponds to the protruding position of the insulating flat layer 61, and the protruding position of the control electrode 60 is exactly the recess of the insulating flat layer 61
  • Corresponding positions, and the material of the insulating flat layer 61 and the control electrode 60 have the same refractive index, so that the control electrode 60 can avoid the formation of another grating structure from each strip electrode when multiple strip electrodes are used, and It affects the coupled light emitted from the liquid crystal grating 30.
  • the refractive index of the material of the insulating flat layer 61 and the control electrode 60 is the same, which means that the refractive index of the material of the insulating flat layer 61 and the control electrode 60 are completely equal, or the human eye cannot distinguish between the insulating flat layer 61 and the control. Under the influence of the electrode 60 on the light transmission direction, the refractive indices of the materials of the insulating flat layer 61 and the control electrode 60 are approximately equal.
  • the display panel 01 further includes: a first alignment layer 51 disposed on the first substrate 11 and located on a side of the insulating flat layer 61 near the liquid crystal layer 100; and, disposed on The second alignment layer 52 on the second substrate 12.
  • the first alignment layer 51 and the second alignment layer 52 are generally located on opposite sides of the liquid crystal layer 100 and are configured to define an initial deflection angle of liquid crystal molecules in the liquid crystal layer 100.
  • the first alignment layer 51 directly covers the control electrode 60, and the surface of the first alignment layer 51 facing away from the control electrode 60 is flat.
  • the refractive index of the first alignment layer 51 is equal to the refractive index of the material of the control electrode 60.
  • the first alignment layer 51 may replace the insulating flat layer 61 in some embodiments described above.
  • optical waveguide 10 The structure of the optical waveguide 10 will be described below.
  • the total reflection interface corresponding to the total reflection light is between the liquid crystal layer 100 and the first substrate 11, and between the liquid crystal layer 100 and the second substrate 12. That is, the optical waveguide 10 includes a liquid crystal layer 100 and adjacent layers of the liquid crystal layer 100.
  • the optical waveguide 10 includes an insulating flat layer 61, a liquid crystal layer 100, and a second substrate 12.
  • the adjacent layers of the liquid crystal layer 100 are the insulating flat layer 61 and the second substrate 12, respectively.
  • the contact surface between the liquid crystal layer 100 and the insulating flat layer 61 and the contact surface between the liquid crystal layer 100 and the second substrate 12 are the total reflection interface of the optical waveguide 10, that is, the total reflection interface corresponding to the total reflection light in the liquid crystal layer 100.
  • n 1 is the refractive index of the liquid crystal layer 100
  • n 2 is the refractive index of the insulating flat layer 61 or the second substrate 12.
  • the refractive index n 1 of the liquid crystal layer 100 is greater than the refractive index n 2 of the insulating flat layer 61.
  • the liquid crystal layer 100 is an optically dense medium with respect to the insulating flat layer 61, so that the light incident from the light source 02 to the optical waveguide 10 can be at The interface between the liquid crystal layer 100 and the insulating flat layer 61 is totally reflected.
  • the refractive index n 1 of the liquid crystal layer 100 is greater than the refractive index n 2 of the second substrate 12.
  • the liquid crystal layer 100 is an optically dense medium with respect to the second substrate 12. In this way, the light incident from the light source 02 to the optical waveguide 10 can be Total reflection occurs at the interface between the liquid crystal layer 100 and the second substrate 12.
  • the refractive index of the liquid crystal layer 100 is 2.0
  • the refractive index of the insulating flat layer 61 is 1.8
  • the refractive index of the second substrate 12 is 1.7
  • the total reflection critical angle ⁇ 01 of the total reflection interface between the liquid crystal layer 100 and the insulating flat layer 61 is approximately 64.158 °
  • the total reflection critical angle ⁇ 02 of the total reflection interface between the liquid crystal layer 100 and the second substrate 12 is approximately 58.212 °. Therefore, in the optical waveguide 10 composed of the insulating flat layer 61, the liquid crystal layer 100, and the second substrate 12, the total reflection angle ⁇ thereof can be set to 64.16 °.
  • the total reflection critical angle of the optical waveguide 10 that is, liquid crystal
  • the total reflection critical angle of the total reflection interface corresponding to the total reflection light in the layer 100 is taken from the larger one of the total reflection critical angles of the two total reflection interfaces.
  • the liquid crystal grating 30 is configured to control the total reflection light in the liquid crystal layer 100 to couple out light on one side of the first substrate 11.
  • the refractive index of the insulating flat layer 61 should be greater than or approximately equal to the refractive index of the second substrate 12.
  • the display panel 01 further includes a reflective layer disposed on a side of the second substrate 12 away from the liquid crystal layer 100.
  • the total reflection interface corresponding to the total reflection light is between the liquid crystal layer 100 and the insulating flat layer 61, and between the liquid crystal layer 100 and the second substrate 12. That is, the optical waveguide 10 includes a liquid crystal layer 100 and adjacent layers of the liquid crystal layer 100.
  • the display panel 01 when the display panel 01 further includes a first alignment layer 51 and a second alignment layer 52, adjacent layers of the liquid crystal layer 100 are the first alignment layer 51 and the second alignment.
  • Layer 52 the optical waveguide 10 includes a first alignment layer 51, a liquid crystal layer 100, and a second alignment layer 52.
  • the contact surface between the liquid crystal layer 100 and the first alignment layer 51 and the contact surface between the liquid crystal layer 100 and the second alignment layer 52 are total reflection interfaces of the optical waveguide 10, respectively.
  • the total reflection interface corresponding to the total reflection light is on the side of the first substrate 11 away from the liquid crystal layer 100 and on the side of the second substrate 12 away from the liquid crystal layer 100. That is, the optical waveguide 10 includes the display panel 01 and adjacent layers of the display panel 01.
  • the optical waveguide 10 includes a first substrate 11, a control electrode 60, an insulating flat layer 61, a liquid crystal layer 100, a second substrate 12, and at least one of the first substrate 11 or the second substrate 12.
  • the air barrier layer 63 is arranged such that the light incident into the optical waveguide 10 is totally reflected at the interface where the first substrate 11 or the second substrate 12 contacts it.
  • the optical waveguide 10 further includes the first and second alignment layers 51 and 52.
  • a light-emitting side of the display panel 01 is provided with a transparent cover 62.
  • the transparent cover 62 has a certain distance between the support structure located in the non-display area and the first substrate 11.
  • the space is filled with air.
  • the air barrier layer 63 located on the surface of the first substrate 11 away from the liquid crystal layer 100 will be composed of air located in the gap.
  • the surfaces of the first substrate 11 and the second substrate 12 that are far from the liquid crystal layer 100 are in direct contact with the outside air, so that they are located on the first substrate 11 and the second substrate
  • the air barrier layer 63 of both the surfaces remote from the liquid crystal layer 100 will be composed of air that is in contact with the outer surfaces of both the first substrate 11 and the second substrate 12.
  • the refractive index of the liquid crystal layer 10 is less than or equal to the refractive indexes of the alignment layer 50, the insulating flat layer 61, the control electrode 60, the first substrate 11 and the second substrate 12. 61.
  • the control electrode 60, the first substrate 11 or the second substrate 12 is an optically sparse medium.
  • the liquid crystal layer 100, the alignment layer 50, the insulating flat layer 61, the control electrode 60, the first substrate 11, and the second substrate 12 are optically dense media with respect to the air barrier layer 63.
  • the material of the first alignment layer 51 and the second alignment layer 52 is polyimide, and its refractive index is 1.55.
  • the material of the control electrode 60 is Indium Tin Oxide (ITO), and its refractive index is 1.8.
  • the material of the insulating flat layer 61 is SiNx, and its refractive index is 1.8.
  • the refractive indices of the first substrate 11 and the second substrate 12 are 1.5.
  • the refractive index of the air barrier layer 63 is 1.
  • the total reflection angle ⁇ of the optical waveguide 10 may be set to 42.07 °.
  • the refractive indexes of the first substrate 11 and the second substrate 12 may be the same or different, and some embodiments of the present disclosure do not limit this. For convenience. The following embodiments of the present disclosure are described by taking the same refractive index of the first substrate 11 and the second substrate 12 as an example.
  • the light received in the optical waveguide 11 (ie, the liquid crystal layer 100) in the display panel 01 is incident from the light source 02 from the side of the optical waveguide 10, and when the liquid crystal grating 30 is formed in the liquid crystal layer 100
  • the liquid crystal grating 30 can couple the light incident into the optical waveguide 10 (that is, the liquid crystal layer 100) from one side of the first substrate 11. Therefore, the display panel 01 does not need to provide polarizers on its light-in and light-out sides, so that the polarizer can selectively transmit light to realize display. Therefore, the problems of reduced light transmittance and poor reliability caused by providing polarizers on the light-in and light-out sides of the display panel 01 can be solved.
  • a liquid crystal grating 30 is formed in the liquid crystal layer 100 by applying a voltage to the control electrode 60, and the display panel 01 can be displayed by adjusting the diffraction capability of the liquid crystal grating 30.
  • Different gray levels Therefore, there is no need to make additional multiple grating bars in the liquid crystal layer 100, so that the multiple grating bars can be prevented from affecting the initial alignment of the liquid crystal molecules in the liquid crystal layer 100.
  • the display panel 01 when the display panel 01 is in a dark display, the light incident into the optical waveguide 10 (that is, the liquid crystal layer 100) is totally reflected, and no light is exposed from the display panel 01, which can solve the problem.
  • the light leakage problem of the display panel 01 in the dark state is beneficial to improving the contrast of the display screen of the display panel 01. Therefore, to ensure that the refraction angle of the light incident from the light source 02 into the optical waveguide 10 (that is, the liquid crystal layer 100) after entering the liquid crystal layer 100 satisfies the condition that the light is totally reflected in the optical waveguide 10, thereby ensuring that the display panel 01 Light leakage does not occur in the dark display, which makes it easy to improve the mass productivity of the product.
  • control electrode 60 includes a plurality of first electrodes 21 and a plurality of second electrodes 22, and the plurality of first electrodes 21 and the plurality of second electrodes 22 are insulated from each other, that is, any An electrode 21 is insulated from any second electrode 22.
  • each second electrode 22 is configured to be connected to a reference voltage.
  • the display panel 01 further includes a plurality of sub-pixels 101 disposed in the display area AA and arranged in an array.
  • a set of first electrodes 21 and second electrodes 22 is provided in each sub-pixel 101, that is, a first electrode 21 and a second electrode 22.
  • Each of the first electrodes 21 includes a plurality of first sub-electrodes 210 spaced apart and electrically connected. The first electrodes 21 between different sub-pixels are insulated from each other.
  • a liquid crystal sub-grating 31 (also (Ie, the portion where the liquid crystal grating 30 is located within each sub-pixel 101).
  • the voltages applied to the first electrode 21 and the second electrode 22 corresponding to each sub-pixel 101 can be individually adjusted, so that the diffraction ability of the liquid crystal sub-grating 31 in each sub-pixel 101 can be controlled individually.
  • each sub-pixel 101 can display a preset grayscale value as required.
  • the second electrode 22 corresponding to each sub-pixel 101 is block-shaped.
  • the plurality of second electrodes 22 are insulated from each other or have an integrated structure.
  • every two adjacent second electrodes 22 are spaced apart.
  • each adjacent two second electrodes 22 are electrically connected through a connection portion 221, and the connection portion 221 adopts a linear structure and has a small area.
  • a hollow region CC is provided between the adjacent second electrodes 22.
  • each adjacent two second electrodes 22 are electrically connected through a connection portion 221, and the connection portion 221 adopts a planar structure and has a relatively large area.
  • the plurality of second electrodes 22 having an integrated structure in the display area AA constitute a whole layer of electrodes, which at least cover the display Display area AA of panel 01.
  • connection portion 221 and the second electrode 22 are disposed in the same material and the same layer, that is, each connection portion 221 and each second electrode 22 can be formed in a single patterning process. Some embodiments of the present disclosure do not limit the manner in which the plurality of second electrodes 22 are integrated.
  • the plurality of first electrodes 21 and the plurality of second electrodes 22 are disposed on the same substrate.
  • the plurality of first electrodes 21 and the plurality of second electrodes 22 are formed on the first substrate.
  • a parallel electric field is generated at the edge of each first sub-electrode 210 in each first electrode 21, and each first electrode 21 and a corresponding second electrode located on the first substrate 11
  • a vertical electric field is generated between 22.
  • the multi-dimensional electric field composed of the parallel electric field and the vertical electric field can drive the corresponding liquid crystal molecules in the liquid crystal layer 100 to be inverted, thereby forming the liquid crystal grating 30.
  • the arrangement manner of the plurality of first electrodes 21 and the plurality of second electrodes 22 may also be as shown in FIG. 7.
  • the plurality of first electrodes 21 and the plurality of second electrodes. 22 Same layer and insulated.
  • the plurality of first electrodes 21 and the plurality of second electrodes 22 are fabricated on the first substrate 11.
  • the first electrode 21 in each sub-pixel 101 includes a plurality of spaced apart and electrically connected first sub-electrodes 210
  • the second electrode 22 in each sub-pixel 101 includes a plurality of spaced apart and electrically connected second sub-electrodes 220.
  • the second sub-electrode 220 and the first sub-electrode 210 are disposed at intervals in a direction parallel to the first substrate 11.
  • FIG. 8 FIG. 9 and FIG. 14, some embodiments of the present disclosure provide a display device 1000 including any one of the display panels 01 described above.
  • the display device 1000 further includes a light source 02 disposed on a light incident surface of the display panel 01 along a thickness direction thereof.
  • the light source 02 is configured to provide incident light that is incident into the optical waveguide 10 of the display panel 01, that is, the liquid crystal layer 100.
  • the range of the refraction angle ⁇ after the incident light enters the liquid crystal layer 100 is ( ⁇ 0 -90 °, 90 ° - ⁇ 0 ), where ⁇ 0 is the total reflection critical angle of the total reflection interface corresponding to the total reflection light in the liquid crystal layer 100.
  • the display device may be any product or component having a display function, such as a display, a television, a digital photo frame, a mobile phone, or a tablet computer.
  • the display device has the same technical effects as the display panel 01 provided in some embodiments described above, and is not repeated here.
  • the light emitting surface of the light source 02 covers at least the light incident surface of the liquid crystal layer 100 in the optical waveguide 10 of the display panel 01.
  • the area of the light exit surface of the light source 02 and the light entrance surface of the optical waveguide 10 are the same.
  • the optical waveguide 10 includes an insulating flat layer 61, a liquid crystal layer 100, and a second substrate 12.
  • the light emitting surface of the light source 02 covers the insulating flat layer 61, the liquid crystal layer 100, and the second substrate 12.
  • Corresponding side surface in the thickness direction that is, light incident surface).
  • the optical waveguide 10 includes a first substrate 11, a control electrode 60, an insulating flat layer 61, a first alignment layer 51, a liquid crystal layer 100, a second alignment layer 52, and a second substrate 12.
  • the light emitting surface of the light source 02 covers exactly the corresponding side surfaces of the first substrate 11, the control electrode 60, the insulating flat layer 61, the first alignment layer 51, the liquid crystal layer 100, the second alignment layer 52, and the second substrate 12 in the thickness direction (also (That is, the light surface). In this way, it is beneficial to increase the incident rate of the light that the light source 02 enters into the optical waveguide 10.
  • the display device 1000 further includes a transparent cover 62 disposed on the light exit side of the display panel 01.
  • An air barrier layer 63 is provided between the transparent cover plate 62 and the first substrate 11 in the display panel 01.
  • the optical waveguide 10 includes a first substrate 11, a control electrode 60, an insulating flat layer 61, a liquid crystal layer 100, a second substrate 12, and an air barrier located on at least one of the first substrate 11 or the second substrate 12 away from the surface of the liquid crystal layer 100.
  • Layer 63 is provided between the transparent cover plate 62 and the first substrate 11 in the display panel 01.
  • the optical waveguide 10 includes a first substrate 11, a control electrode 60, an insulating flat layer 61, a liquid crystal layer 100, a second substrate 12, and an air barrier located on at least one of the first substrate 11 or the second substrate 12 away from the surface of the liquid crystal layer 100.
  • the light emitting surface of the light source 02 covers the first substrate 11, the control electrode 60, the insulating flat layer 61, the first alignment layer 51, the liquid crystal layer 100, the second alignment layer 52, and the second substrate 12 in the optical waveguide 10.
  • the corresponding side of the thickness direction (that is, the light incident surface) is sufficient.
  • the light incident surface of the display panel 01 along its thickness direction is the two opposite sides, and the light source 02 is disposed on the two sides, so that the light can be reduced in the optical waveguide 10. (That is, the liquid crystal layer 100) the light attenuation caused by the coupled light during the propagation process, thereby avoiding reducing the display picture quality of the display panel 01.
  • the light source 02 is a white light source configured to emit white light.
  • a plurality of sub-pixels 101 are provided in a display area AA of the display panel 01.
  • the display panel 01 further includes a color filter layer 40 disposed on the first substrate 11 and located on a side of the control electrode 60 away from the liquid crystal layer 100.
  • the color filter layer 40 includes a plurality of filter units 401. Each sub-pixel 101 has a filter unit 401 therein.
  • the color filter layer 40 is disposed on a surface of the first substrate 11 near the control electrode 60.
  • the optical waveguide 10 includes the first substrate 11, the optical waveguide 10 further includes the color filter layer 40.
  • At least three adjacent sub-pixels 101 constitute one pixel.
  • the filter units 401 in different sub-pixels 101 in the same pixel are different or the same, which are not limited in some embodiments of the present disclosure. Take three sub-pixels 101 in the same pixel and the filter units 401 in the three sub-pixels 101 are different as an example. Three sub-pixels 101 in the pixel are respectively provided with corresponding red (R) filters.
  • the unit 401, the green (G) filter unit 401, and the blue (B) filter unit 401 are respectively provided with corresponding red (R) filters.
  • the first electrode 21 and the second electrode 22 corresponding to each sub-pixel 101 receive an invalid electrical signal or no voltage is applied, so that the light source 02 is incident into the optical waveguide 10
  • the refraction angle of the incident light that is, the liquid crystal layer 100
  • the refraction angle of the incident light satisfies the condition that the incident light undergoes total reflection in the optical waveguide 10, so that the incident light occurs at the total reflection interface in the optical waveguide 10.
  • Total reflection ensures that incident light entering the optical waveguide 10 (that is, the liquid crystal layer 100) cannot be emitted from the optical waveguide 10, thereby preventing light leakage of the display device 1000 during dark display.
  • a voltage is applied to the first electrode 21 and the second electrode 22 corresponding to different subpixels 101, respectively.
  • a group of liquid crystal sub-gratings 31 can be formed in each sub-pixel 101 that does not display 0 gray scales, and the light in the optical waveguide 10 is controlled to follow the Diffraction power couples out light.
  • the light diffracted by a group of liquid crystal sub-gratings 31 in each sub-pixel 101 appears as one of red, green, or blue light under the filtering effect of the corresponding color filter unit 401, so that color can be realized display.
  • the light source 02 is a white light source and is configured to emit white light.
  • a plurality of sub-pixels 101 are provided in a display area AA of the display panel 01. Adjacent at least three sub-pixels 101 constitute one pixel.
  • the number of the first sub-electrodes 210 in different sub-pixels 101 in the same pixel is different.
  • the number of the first sub-electrode 210 in the first electrode 21 in each sub-pixel 101 that is, the width of each first sub-electrode 210 in the first electrode 21 and two adjacent first sub-electrodes 210 The distance between them allows different sub-pixels 101 to diffract light with different wavelengths in a fixed emission direction, thereby achieving color display.
  • the wavelength ⁇ of light that can be emitted by each sub-pixel 101 satisfies the following formula:
  • n 1 sin ⁇ 1 --n 2 sin ⁇ 2 m ⁇ ⁇ / ⁇ (2)
  • ⁇ 1 is an incident angle of the aforementioned total reflection light (ie, light in the optical waveguide 10) to a corresponding total reflection interface
  • n 1 is an optical dense medium corresponding to the total reflection interface (that is, in the optical waveguide 10) The refractive index of the first medium on which the light incident on the total reflection interface is located
  • n 2 is an optical sparse medium corresponding to the total reflection interface (that is, a total reflection interface is formed adjacent to the first medium in the optical waveguide 10) Refractive index of the second medium)
  • m is the diffraction order of the liquid crystal sub-grating 31 corresponding to each sub-pixel 101
  • is the period of the liquid crystal sub-grating 31 corresponding to each sub-pixel 101
  • ⁇ 2 is a light emitting angle corresponding to each sub-pixel 101.
  • the optical waveguide 10 includes a first substrate 11, a control electrode 60, an insulating flat layer 61, a first alignment layer 51, a liquid crystal layer 100, a second alignment layer 52, a second substrate 12, and a first substrate 11 and a second substrate 12.
  • the total reflection interface corresponding to the totally reflected light in the optical waveguide 10 includes a first total reflection interface where the first substrate 11 is in contact with the corresponding air barrier layer 63, and A second total reflection interface where the second substrate 12 is in contact with its corresponding air barrier 63.
  • the refractive index n 1 of the first medium (optical dense medium) where the light incident on the first total reflection interface in the optical waveguide 10 is the refractive index of the first substrate 11 is formed adjacent to the first substrate 11 in the optical waveguide 10
  • the refractive index n 2 of the second medium (optical sparse medium) at the first total reflection interface is the refractive index of the air interlayer 63 in contact with the first substrate 11.
  • the refractive index n 1 of the first medium (optical dense medium) where the light incident on the second total reflection interface in the optical waveguide 10 is the refractive index of the second substrate 12 is formed inside the optical waveguide 10 adjacent to the second substrate 12.
  • the refractive index n 2 of the second medium (optical sparse medium) at the total reflection interface is the refractive index of the air spacer 63 in contact with the second substrate 12.
  • the display panel of the display device since the display panel of the display device is closer to the user's eyes, the user's eyes usually only receive light emitted from a certain angle.
  • the light output direction of any sub-pixel on the display panel 01 of the display device is fixed. Therefore, in the process of designing and manufacturing the display panel, the direction of light emitted by each sub-pixel 101 in the display panel can be designed by using optical simulation software, so as to know the light-out angle ⁇ corresponding to each sub-pixel 101 in formula (2). 2 (that is, the angle between the direction in which the diffracted light corresponding to the liquid crystal sub-grating 31 in each sub-pixel 101 is located and the normal to the plane in which the light-emitting surface of the display panel 01 is located).
  • the purpose of adjusting the period ⁇ of the liquid crystal sub-grating 31 in the sub-pixel 101 can be achieved, and then the liquid crystal sub-grating can be adjusted.
  • 31 corresponds to the purpose of the wavelength ⁇ of the diffracted light.
  • each sub-pixel 101 in the display panel 01 is in a given direction (that is, the light output angle ⁇ corresponding to each sub-pixel 101 2 or the corresponding diffracted light emission direction of the liquid crystal sub-grating 31), can emit light with a preset wavelength, thereby achieving the purpose of color display.
  • a filter unit 401 corresponding to the color of the monochromatic light emitted by each sub-pixel 101 may be provided. This is not limited in some embodiments of the present disclosure.
  • the wavelength ⁇ of the monochromatic light emitted by each sub-pixel 101 is proportional to the period ⁇ of the liquid crystal sub-grating 31 in the sub-pixel 101.
  • the period ⁇ of each liquid crystal sub-grating 31 is inversely proportional to the number of the first sub-electrodes 210 corresponding to the first electrodes 21 in the sub-pixel 101. Therefore, in a case where the plurality of sub-pixels 101 in the display area AA includes sub-pixels 101 configured to emit monochromatic light of different wavelengths, the wavelength ⁇ of the monochromatic light emitted by each sub-pixel 101 and the first sub-pixel corresponding thereto The number of electrodes 210 is inversely proportional.
  • the above-mentioned sub-pixels 101 emitting monochromatic light with different wavelengths include: a sub-pixel that emits red light (R), a sub-pixel that emits green light (G), and a sub-pixel that emits blue light (B). Since the wavelength ⁇ R of red light (R) is in the range of 622 nm to 760 nm, the wavelength ⁇ G of green light (G) is in the range of 492 nm to 577 nm, and the wavelength ⁇ B of blue light (B) is in the range of 435 nm to 450 nm. . That is, ⁇ R > ⁇ G > ⁇ B.
  • the period ⁇ R of the liquid crystal sub-grating 31 in each sub-pixel 101 that emits red light (R) and the liquid crystal sub-grating in each sub-pixel 101 that emits green light (G) satisfy the following relationship: ⁇ R > ⁇ G > ⁇ B.
  • each liquid crystal sub-grating 30 is inversely proportional to the number of the first sub-electrodes 210 in the corresponding sub-pixel 101. Therefore, as shown in FIG. 9, the number of first sub-electrodes 210 in each sub-pixel 101 configured to emit red light (R) is smaller than the number of first sub-electrodes 210 in each sub-pixel 101 configured to emit green light (G). The number of one sub-electrode 210; the number of the first sub-electrode 210 in each sub-pixel 101 configured to emit green light (G) is less than the first in each sub-pixel 101 configured to emit blue light (B) The number of the sub-electrodes 210.
  • the display panel 01 including three types of sub-pixels 101 configured to emit red light (R), green light (G), and blue light (B) as an example.
  • the display panel 01 further includes at least one type of sub-pixels 101 configured to emit light of other colors
  • the number of first sub-electrodes 210 of each sub-pixel 101 in the at least one type of sub-pixels 101 can refer to the above-mentioned setting process. It will not be repeated here.
  • the color display solutions in some embodiments of the present disclosure require the determination of the light exit angle corresponding to each sub-pixel 101 in the display panel 01 to achieve normal color display. Therefore, this method is suitable for near-eye display, VR or AR, etc. Display of application scenarios.
  • Some embodiments of the present disclosure provide a method for controlling a display device as described above. As shown in FIG. 10, the control method of the display device includes S101 to S102.
  • the control electrode 60 if the voltage applied to the control electrode 60 is an invalid electrical signal (such as a null signal), that is, the control electrode 60 cannot generate an electric field after receiving the invalid electrical signal, and the light incident on the liquid crystal layer 100 can be transmitted through the liquid crystal. Total reflection occurs in the optical waveguide 10 where the layer 100 is located.
  • the liquid crystal layer 100 is a component of the optical waveguide 10.
  • the liquid crystal layer 100 is in a transparent state, that is, a light transmitting state, without an electric field.
  • the control electrode 60 If the voltage applied to the control electrode 60 is an effective electrical signal (for example, multiple electrical signals having a voltage difference), that is, the control electrode 60 generates multiple electric fields after receiving the effective electrical signal, so as to be formed in the liquid crystal layer 100. Liquid crystal grating 30.
  • an effective electrical signal for example, multiple electrical signals having a voltage difference
  • the control electrode 60 includes a first electrode 21 located in each of the sub-pixels 101.
  • the liquid crystal grating 30 includes a plurality of liquid crystal sub-gratings 31 corresponding to the sub-pixels 101 one-to-one.
  • the liquid crystal sub-gratings 31 formed in some sub-pixels 101 that are closer to the light source 02 can receive more light, and the liquid crystal sub-gratings 31 formed in some sub-pixels 101 that are far away from the light source 02 can receive slightly more light. less.
  • the light intensity of the diffracted light of the sub-grating 31 is 0.1% to 20% of the light intensity of the incident light.
  • a part of the incident light received by the liquid crystal sub-grating 31 can be diffracted out of the optical waveguide 10 by using the liquid crystal sub-grating 31 corresponding to each sub-pixel 101.
  • another part of the incident light that can be received by each liquid crystal sub-grating 31 can continue to propagate in the optical waveguide 10, so that the light loss during the propagation of the light in the optical waveguide 10 can be compensated so that The amount of light that can be received by each liquid crystal sub-grating 31 in some of the sub-pixels 101 farther from the light source 02 is increased.
  • the corresponding first electrode in the control electrode 60 may be opposed.
  • the voltages applied to the 21 and the second electrode 22 are debugged multiple times to obtain an electric field capable of making the luminous intensity of the diffracted light of each liquid crystal sub-grating 31 meet the above-mentioned conditions.
  • the light intensity of the diffracted light of the liquid crystal sub-grating 31 in each sub-pixel 101 is controlled to be 0.1% to 20% of the light intensity of the incident light, which not only avoids the sub-pixel corresponding to each liquid-crystal sub-grating 31
  • the amount of light output is too small, causing the display brightness of display panel 01 to be too low. It is also possible to reduce the light caused by the propagation process in the optical waveguide 10 on the premise of ensuring that the sub-pixels corresponding to each liquid crystal sub-grating 31 have a required light output brightness. Light loss in order to improve the uniformity of light output brightness of the entire display panel.
  • the control electrode 30 includes a plurality of first electrodes 21 and a plurality of second electrodes 22, wherein each of the sub-pixels 101 includes a first electrode 21 and a second electrode 22.
  • applying the voltage to the control electrode 60 further includes: applying the same voltage to the first electrode 21 in each sub-pixel 101 displaying the same gray scale, and applying the same voltage to each of the sub-pixels 101 displaying the same gray scale.
  • the second electrode 22 applies the same voltage so that the light emission intensity of the diffracted light of the liquid crystal sub-grating 31 in each sub-pixel 101 displaying the same gray level is the same, thereby ensuring that the display panel 01 displays a plurality of sub-pixels of the same gray level
  • the display brightness of 101 is the same.
  • the light source 02 includes a plurality of monochromatic sub-light sources of different colors, and is configured to emit a plurality of monochromatic lights of different colors in a time sharing manner.
  • the display panel 01 includes a plurality of sub-pixels 101.
  • controlling the light source 02 to provide the incident light to the liquid crystal layer 100 further includes: within a frame, controlling the plurality of monochromatic sub-light sources of different colors to sequentially emit monochromatic light of different colors in a time-sharing manner.
  • the light source 02 emits three primary color lights in sequence, and different monochromatic lights emitted by the light source 02 within a frame can be mixed into white light.
  • the above-mentioned light source 02 includes a plurality of dot matrix sub-light sources, for example, red, green (G), and blue (B) dot matrix sub-light sources, wherein the dot matrix light sources of each color are time-sharing drive.
  • the red (R) dot matrix light source emits light
  • the array light source emits light
  • the blue (B) point array light source emits light.
  • the total reflection light in the liquid crystal layer 100 is coupled out of the side of the first substrate 11 in S102, and further includes: within one frame , Sequentially controlling the monochromatic light of different colors incident on the liquid crystal layer 100 to couple out light at each sub-pixel 101 position.
  • each sub-pixel 101 is a sub-pixel with a color (that is, a color filter unit 401 is provided in the sub-pixel 101), or a sub-pixel without a color (that is, no sub-pixel 101 is provided in the sub-pixel 101).
  • each sub-pixel 101 is a colorless sub-pixel, and each of the sub-pixels 101 is provided with a black matrix 402 and a light-transmissive layer disposed in the same layer and the same thickness as the black matrix 402. ⁇ ⁇ ⁇ 403 The flat portion 403.
  • a plurality of different colors of monochromatic light emitted from the light source 02 in a time-sharing manner and a liquid crystal sub-grating 31 formed in each sub-pixel 101 can be used to sequentially control all incident light in the liquid crystal layer 100 within one frame.
  • the monochromatic light of different colors is coupled to emit light at the position of each sub-pixel 101, that is, each sub-pixel 101 is time-multiplexed into sub-pixels of different colors in each frame.
  • each sub-pixel 101 can emit multiple colors of light in one frame, thereby ensuring the display panel 01 to achieve color display while effectively improving the resolution of the display panel 01.
  • the monochromatic light of the monochromatic light of different colors emitted by the light source 02 has the same light emitting time, so that each sub-pixel 101 can convert the light source in the single frame.
  • the different colors of light emitted by 02 are evenly mixed.
  • each sub-pixel 101 can also be selectively selected within a frame. Outputs one or more monochromatic lights.
  • each sub-pixel 101 is a sub-pixel having a color
  • a color filter unit 401 is disposed in each sub-pixel 101.
  • a plurality of different colors of monochromatic light emitted from the light source 02 in a time-sharing manner and a liquid crystal sub-grating 31 formed in each sub-pixel 101 can be used to sequentially control all incident light in the liquid crystal layer 100 within one frame.
  • the monochromatic light of different colors is coupled to the light at the position of the sub-pixel 101 with the corresponding color, that is, the mono-color light of different colors is emitted by the multiple sub-pixels 101 in each pixel at a time, so that the user's eyes can Monochromatic light with different colors emitted by each pixel in the above-mentioned frame is mixed and mixed, that is, a color picture is viewed.
  • the control method of the display device described in some embodiments of the present disclosure may be implemented by executing instructions. Instructions can be executed by one or more processors. These instructions can be stored in random access memory (RAM), flash memory, read-only memory (ROM), erasable programmable read-only memory (erasable, programmable ROM, EPROM), electrically erasable and programmable read-only memory (EPROM, EEPROM), registers, hard disk, mobile hard disk, read-only optical disk (CD-ROM), or any other form of storage medium known in the art .
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • EPROM electrically erasable and programmable read-only memory
  • registers hard disk, mobile hard disk, read-only optical disk (CD-ROM), or any other form of storage medium known in the art .
  • some embodiments of the present disclosure provide a computer product including one or more processors configured to execute computer instructions to execute the display device described in some embodiments above. Controls one or more steps in a method.
  • Some embodiments of the present disclosure provide a non-transitory computer-readable storage medium.
  • the non-transitory computer-readable storage medium stores computer instructions, and the computer instructions, when executed by a display device, cause the display device to execute some of the above embodiments.
  • the control method of the display device is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to execute some of the above embodiments.
  • Some embodiments of the present disclosure provide a computer program. After the computer program is loaded into the processor, the processor executes the method for controlling a display device as described in the above embodiments.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored on a computer-readable medium or transmitted as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(01),包括:液晶层(100)、设置于液晶层(100)的相对两侧的第一基板(11)和第二基板(12)、以及设置于第一基板(11)上的控制电极(60)。控制电极(60)配置为接收电信号,控制入射至液晶层(100)中的光通过全反射传播,或形成液晶光栅(30)使液晶层(100)中的全反射光在第一基板(11)的一侧耦合出光。

Description

显示面板、显示装置及其控制方法
本申请要求于2018年07月20日提交中国专利局、申请号为201810805798.7、申请名称为“一种显示面板、显示装置及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板、显示装置及其控制方法。
背景技术
随着显示技术的不断发展,显示装置例如TFT-LCD(Thin Film Transistor Liquid Crystal Display,薄膜晶体管-液晶显示器)被越来越多的应用于电子设备中。
发明内容
一方面,提供一种显示面板。所述显示面板包括:液晶层、设置于所述液晶层的相对两侧的第一基板和第二基板、以及设置于所述第一基板上的控制电极。所述控制电极配置为接收电信号,控制入射至所述液晶层中的光通过全反射传播,或形成液晶光栅使所述液晶层中的全反射光在所述第一基板的一侧耦合出光。
在一些实施例中,所述控制电极包括多个第一电极和多个第二电极,所述多个第一电极和所述多个第二电极相互绝缘。所述显示面板还包括呈阵列状排布的多个亚像素。每个亚像素内对应设有一个第一电极。每个所述第一电极包括多个间隔设置且电连接的第一子电极。
在一些实施例中,所述每个亚像素内还对应设有一个第二电极。每个所述第二电极包括多个间隔设置且电连接的第二子电极。在同一个亚像素中,所述第二子电极与所述第一子电极沿平行于所述第一基板的方向间隔设置。
在一些实施例中,所述多个亚像素包括配置为发出不同波长单色光的亚像素。每个亚像素发出的单色光的波长与其内对应的第一子电极的个数成反比。
在一些实施例中,所述发出不同波长单色光的亚像素包括发红光的亚像素、发绿光的亚像素以及发蓝光的亚像素。配置为发红光的每个亚像素中的第一子电极的个数小于配置为发绿光的每个亚像素中的第一子电极的个数。配置为发绿光的每个亚像素中的第一子电极的个数小于配置为发蓝光的每个亚像素中的第一子电极的个数。
在一些实施例中,所述显示面板还包括设置于所述控制电极的靠近所述液晶层 的一侧的绝缘平坦层。所述绝缘平坦层的材料的折射率与所述控制电极的材料的折射率相等,且所述绝缘平坦层和所述控制电极的形状互补,以使得所述绝缘平坦层的靠近所述液晶层的表面平坦。
在一些实施例中,所述显示面板,还包括:设置于所述第一基板上且位于所述绝缘平坦层的靠近所述液晶层的一侧的第一取向层;和,设置于所述第二基板上的第二取向层。
在一些实施例中,所述全反射光对应的全反射界面在所述液晶层与所述第一基板之间,以及在所述液晶层与所述第二基板之间。
在一些实施例中,所述全反射光对应的全反射界面在所述液晶层与所述绝缘平坦层之间,以及在所述液晶层与所述第二基板之间。
在一些实施例中,所述全反射光对应的全反射界面在所述第一基板的远离所述液晶层的一侧,以及在所述第二基板的远离所述液晶层的一侧。
在一些实施例中,所述显示面板还包括设置于所述第一基板上且位于所述控制电极的远离所述液晶层的一侧的彩色滤光层。
另一方面,提供一种显示装置。所述显示装置包括光源以及如上所述的显示面板。所述光源设置于所述显示面板沿厚度方向的入光面。所述光源配置为提供入射至所述液晶层的入射光,所述入射光入射至所述液晶层后的折射角所在的范围为(θ 0-90°,90°-θ 0);其中,θ 0为所述液晶层中全反射光对应的全反射界面的全反射临界角。
在一些实施例中,所述的显示装置还包括设置于所述显示面板的出光侧的透明盖板。所述透明盖板与所述显示面板中的第一基板之间存在空气隔层。
在一些实施例中,所述光源包括至少三种不同颜色的单色子光源。
在一些实施例中,所述光源为白色光源。所述显示面板包括多个不同颜色的亚像素。所述显示面板中的液晶光栅包括多个液晶子光栅。所述多个液晶子光栅和多个所述亚像素一一对应。每个所述亚像素能够发出的光的波长λ,满足以下公式:
n 1sinθ 1–n 2sinθ 2=m×λ/Λ;
其中,θ 1为所述全反射光入射至对应的全反射界面的入射角;n 1为所述全反射界面对应的光密介质的折射率,n 2为所述全反射界面对应的光疏介质的折射率,n 1>n 2;m为每个所述亚像素对应的液晶子光栅的衍射级次;Λ为每个所述亚像素对应的液晶子光栅的周期;θ 2为每个所述亚像素对应的出光角度。
又一方面,提供一种显示装置的控制方法。所述显示装置的控制方法,包括:控制光源向所述液晶层提供入射光,所述入射光入射至所述液晶层后的折射角所在 的范围为(θ 0-90°,90°-θ 0);其中,θ 0为所述液晶层中全反射光对应的全反射界面的全反射临界角。向所述控制电极施加电压,控制所述入射光在所述液晶层中通过全反射传播,或形成液晶光栅使所述液晶层中的全反射光在所述第一基板的一侧耦合出光。
在一些实施例中,所述显示面板包括呈阵列状排布的多个亚像素,所述控制电极包括位于每个亚像素内的一个第一电极。所述液晶光栅包括与所述多个亚像素一一对应的多个液晶子光栅。所述形成液晶光栅使所述液晶层中的全反射光在所述第一基板的一侧耦合出光,还包括:向每个第一电极施加电压,控制每个亚像素对应的液晶子光栅的衍射光的光强度为其入射光的光强度的0.1%~20%。
在一些实施例中,所述光源包括多个不同颜色的单色子光源,所述显示面板包括多个亚像素。所述控制光源向所述液晶层提供入射光,还包括:在一帧内,控制所述多个不同颜色的单色子光源分时依次发出不同颜色的单色光。所述使所述液晶层中的全反射光在所述第一基板的一侧耦合出光,还包括:在一帧内,依次控制入射至所述液晶层中的所述不同颜色的单色光在每个亚像素位置耦合出光。
在一些实施例中,在一帧内,所述不同颜色的单色光中的各单色光的发光时长相同。
又一方面,提供一种计算机非瞬时可读存储介质。所述计算机非瞬时可读存储介质存储有计算机指令,所述计算机指令被配置为执行如上所述的显示装置的控制方法。
又一方面,提供一种计算机产品。所述计算机产品,包括处理器、存储器、以及存储在存储器上并可在处理器上运行的计算机程序。当所述处理器运行所述计算机程序时,所述计算机产品执行如上所述的显示装置的控制方法。
又一方面,提供一种计算机程序。所述计算机程序被加载到处理器后使处理器执行如上所述的显示装置的控制方法。
附图说明
为了更清楚地说明本公开一些实施例中的技术方案,下面将对一些实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开一些实施例中的一种显示面板的示意图;
图2为图1所示的一种显示面板中光线在光波导内传播的示意图;
图3为根据本公开一些实施例中的另一种显示面板的示意图;
图4为根据本公开一些实施例中的又一种显示面板的示意图;
图5a为根据本公开一些实施例中的一种控制电极的示意图;
图5b为根据本公开一些实施例中的一种第二电极的示意图;
图5c为根据本公开一些实施例中的又一种第二电极的示意图;
图6为根据本公开一些实施例的另一种显示面板中光线在光波导内传播的示意图;
图7为根据本公开一些实施例中的另一种控制电极的示意图;
图8为根据本公开一些实施例中的一种显示装置实现彩色显示的示意图;
图9为根据本公开一些实施例中的另一种显示装置实现彩色显示的示意图;
图10为根据本公开一些实施例中的一种显示装置的控制方法的流程图;
图11为根据本公开一些实施例中的通过分时输入三原色光源中的红色子光源实现彩色显示的示意图;
图12为根据本公开一些实施例中的通过分时输入三原色光源中的绿色子光源实现彩色显示的示意图;
图13为根据本公开一些实施例中的通过分时输入三原色光源中的蓝色子光源实现彩色显示的示意图;
图14为根据本公开一些实施例中的又一种显示装置的示意图。
具体实施方式
下面将结合本公开一些实施例中的附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的一些实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开一些实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本公开一些实施例提供一种显示面板01,如图1所示,该显示面板01具有显示区AA。该显示面板01包括:液晶层100、设置于液晶层100的相对两侧的第一基板11和第二基板12、以及设置于第一基板11的靠近液晶层100的一侧的控制电极60。该控制电极60配置为在接收电信号,控制入射至液晶层100中的光通过全反射传播,或形成液晶光栅30使液晶层100中的全反射光在第一基板11的一侧耦合出光。示例的,请参阅图2,液晶光栅30包括多个间隔设置的光栅条。
上述入射至液晶层100中的光通过全反射传播,也就是指:显示面板01中包括液 晶层100在内的至少部分层构成了光波导10。,例如,显示面板01整体作为光波导,入射至液晶层100中的光分别以第一基板11和第二基板12二者中远离液晶层100的表面作为对应的全反射界面发生全反射。
上述控制电极60根据其接收的电信号的不同,可以相应控制入射至液晶层100中的光通过全反射传播,或控制液晶层100中位于显示区AA内的液晶分子形成液晶光栅30,以利用该液晶光栅30使液晶层100中的全反射光在第一基板11的一侧耦合出光。
示例性的,控制电极60接收的电信号为无效电信号(例如空信号),也即控制电极60在接收到该无效电信号后无法生成电场,入射至液晶层100中的光便可在液晶层100所在的光波导10内发生全反射。此处,液晶层100作为光波导10的一组成部分,液晶层100在无电场作用的情况下处于透明状态,也即可透光状态。
控制电极60接收的电信号为有效电信号(例如存在电压差的多个电信号),也即控制电极60在接收到该有效电信号后会生成多个电场,以在液晶层100中形成液晶光栅30。
上述入射至液晶层100中的光线通常由一光源02提供,且该光源02提供的所述光线可以在液晶层100所在的光波导10内发生全反射。示例性的,光波导10呈六方体结构,其包括上表面、下表面、以及与该上表面和下表面相互垂直设置的四个侧面。将光源02设置于光波导10的一个侧面,这样该光源02入射至光波导10内的光线从光波导10的所述侧面处进入,所述侧面即为光波导10的入光面。
此处,若n 1和n 2分别为光波导10中形成全反射界面的相邻两层介质的折射率,且n 1>n 2,也即n 1为所述全反射界面对应的光密介质的折射率,n 2为所述全反射界面对应的光疏介质的折射率,那么光波导10中全反射界面的全反射临界角θ 0满足以下公式:
n 1sinθ 0=n 2sin90°;
也即
Figure PCTCN2019096880-appb-000001
由此,上述光源02提供的光线在光波导10内发生全反射,该光线入射至液晶层100后的折射角α的范围为(θ 0-90°,90°-θ 0),其中,θ 0为上述光波导10中全反射界面的全反射临界角。图1中的角度θ为实际全反射角,该角度θ大于上述全反射临界角θ 0
需要说明的是,请继续参阅图2,液晶层100中的液晶分子在控制电极60的控制下形成液晶光栅30,也即液晶光栅3通常形成于液晶层100中靠近控制电极60的部分区域内,使得液晶光栅30的高度h(沿液晶层100厚度方向的尺寸)远小于液晶层100的厚度。因此,液晶光栅30控制液晶层100中的全反射光线在第一基板11的一侧耦合出光,仅考虑在液晶光栅30与第一基板11平行的表面进行折射或反射出的光线,而不考虑从液晶光栅的侧面(沿高度h方向)进行折射或反射的光线。
此外,控制电极60被施加电压的多少,能够决定该控制电极60产生的电场的大小。控制电极60产生的电场越大,在该电场作用下形成于液晶层100中的液晶光栅30的高度h越大。而液晶光栅30的高度h越大,其所能衍射出的光线也就越多。由此,通过对控制电极60施加不同的电压,可以实现显示面板的多灰阶显示。
当然,在未向控制电极60施加电压,也即控制电极60接收无效电信号的情况下,液晶层100中并不会形成液晶光栅30,入射至液晶层100中的光线也就无法通过液晶光栅30而耦合出光。在此情况下,若光线入射至液晶层100后的折射角α满足上述角度范围(θ 0-90°,90°-θ 0),所述光线会在液晶层100所在的光波导10进行全反射。此时,显示面板01不发光,处于暗态。
在一些实施例中,请继续参阅图1,显示面板01还包括设置于控制电极60的靠近液晶层100的一侧的绝缘平坦层61。该绝缘平坦层61的折射率与控制电极60的材料的折射率相等,且该绝缘平坦层61和控制电极60的形状互补,以使得绝缘平坦层61的靠近液晶层100的表面平坦。
此处,绝缘平坦层61的靠近液晶层100的表面平坦,是指:控制电极60的厚度H1加上绝缘平坦层61覆盖在其对应表面的厚度H2,大致等于绝缘平坦层61未覆盖控制电极60部分的厚度H3;也即,H1+H2≈H3,且H1与H2之和与H3之间的偏差在95%~105%之内。
由于绝缘平坦层61和控制电极60的形状互补,也即控制电极60的凹陷位置正好与绝缘平坦层61的凸出位置相对应,而控制电极60的凸出位置正好与绝缘平坦层61的凹陷位置相对应,而且,绝缘平坦层61和控制电极60的材料具有相同的折射率,从而可以避免控制电极60在采用多个条状电极的情况下由各条状电极形成另一个光栅结构,并对上述液晶光栅30的耦合出光造成影响。
此处,绝缘平坦层61与控制电极60的材料的折射率相等,是指:绝缘平坦层61与控制电极60的材料的折射率完全相等,或者,在人眼无法分辨绝缘平坦层61与控制电极60对光线传输方向的影响下,绝缘平坦层61与控制电极60的材料的折射率近似相等。
在一些实施例中,如图3所示,显示面板01还包括:设置于第一基板11上且位于绝缘平坦层61的靠近液晶层100的一侧的第一取向层51;和,设置于第二基板12上的第二取向层52。第一取向层51和第二取向层52通常位于液晶层100的相对的两侧,配置为限定液晶层100中的液晶分子的初始偏转角度。
此外,在上述第一取向层51直接覆盖控制电极60,且该第一取向层51的背离控制电极60的表面平坦,该第一取向层51的折射率与控制电极60的材料的折射率相等或近似相等的情况下,该第一取向层51可以代替上述一些实施例中的绝缘平坦层61。
以下对上述光波导10的结构进行说明。
在一些实施例中,上述全反射光对应的全反射界面在液晶层100与第一基板11之间,以及在液晶层100与第二基板12之间。也即,光波导10包括液晶层100以及液晶层100的相邻层。
示例性的,如图1所示,光波导10包括绝缘平坦层61、液晶层100和第二基板12。在此情况下,上述液晶层100的相邻层分别为绝缘平坦层61和第二基板12。液晶层100与绝缘平坦层61的接触面,以及液晶层100与第二基板12的接触面分别为光波导10的全反射界面,也即液晶层100中全反射光对应的全反射界面。
对应至前述的公式(1)中,n 1为液晶层100的折射率,n 2为绝缘平坦层61或第二基板12的折射率。
在一些示例中,液晶层100的折射率n 1大于绝缘平坦层61的折射率n 2,液晶层100相对于绝缘平坦层61为光密介质,这样光源02入射至光波导10的光线可以在液晶层100与绝缘平坦层61接触的界面发生全反射。
在另一些示例中,液晶层100的折射率n 1大于第二基板12的折射率n 2,液晶层100相对于第二基板12为光密介质,这样光源02入射至光波导10的光线可以在液晶层100与第二基板12接触的界面发生全反射。
在又一些示例中,液晶层100的折射率为2.0,绝缘平坦层61的折射率为1.8,第二基板12的折射率为1.7。液晶层100与绝缘平坦层61之间全反射界面的全反射临界角θ 01近似为64.158°,液晶层100与第二基板12之间全反射界面的全反射临界角θ 02近似为58.212°。由此,在由绝缘平坦层61、液晶层100和第二基板12构成所述光波导10中,其全反射角θ可设定为为64.16°。
由此,光波导10中全反射光对应的全反射界面为两个,在所述两个全反射界面的全反射临界角不同的情况下,该光波导10的全反射临界角,也即液晶层100中全反射光对应的全反射界面的全反射临界角,取自所述两个全反射界面的全反射临界角中较 大的一者。
此外,液晶光栅30配置为控制液晶层100中的全反射光线在第一基板11的一侧耦合出光,绝缘平坦层61的折射率应大于或近似等于第二基板12的折射率。当然,在另一些示例中,显示面板01还包括设置于第二基板12的远离液晶层100的一侧的反光层。
在另一些实施例中,上述全反射光对应的全反射界面在液晶层100与绝缘平坦层61之间,以及在液晶层100与第二基板12之间。也即,光波导10包括液晶层100以及液晶层100的相邻层。
示例性的,如图3所示,在显示面板01还包括第一取向层51和第二取向层52的情况下,上述液晶层100的相邻层为该第一取向层51和第二取向层52。也即,光波导10包括第一取向层51、液晶层100和第二取向层52。液晶层100与第一取向层51的接触面,以及液晶层100与第二取向层52的接触面分别为光波导10的全反射界面。
在又一些实施例中,上述全反射光对应的全反射界面在第一基板11的远离液晶层100的一侧,以及在第二基板12的远离液晶层100的一侧。也即,光波导10包括显示面板01以及显示面板01的相邻层。
示例性的,如图4所示,光波导10包括第一基板11、控制电极60、绝缘平坦层61、液晶层100、第二基板12以及位于第一基板11或第二基板12中至少一个的远离液晶层100的表面的空气隔层63。此处,该空气隔层63配置为使入射至光波导10内的光线,在第一基板11或第二基板12接触其的界面发生全反射。
在一些示例中,在显示面板01还包括上述第一取向层51和第二取向层52的情况下,该光波导10还包括第一取向层51和第二取向层52。
在另一些示例中,请参阅图4,显示面板01的出光侧设置有透明盖板62,该透明盖板62通过其位于非显示区的支撑结构与第一基板11之间具有一定间隔,该间隔中填充有空气。这样位于第一基板11的远离液晶层100的表面的空气隔层63将由位于所述间隔内的空气构成。
当然,在又一些示例中,第一基板11和第二基板12二者的远离液晶层100的一侧表面(简称外表面)与外界的空气直接接触,这样位于第一基板11和第二基板12二者的远离液晶层100的表面的空气隔层63将由与第一基板11和第二基板12二者的外表面相接触的空气构成。
基于此,液晶层10的折射率小于或等于取向层50、绝缘平坦层61、控制电极60、 第一基板11和第二基板12的折射率,液晶层10相对于取向层50、绝缘平坦层61、控制电极60、第一基板11或第二基板12为光疏介质。此外,液晶层100、取向层50、绝缘平坦层61、控制电极60、第一基板11以及第二基板12相对于上述空气隔层63而言为光密介质。
例如,液晶层100具有晶体双折射现象,因此液晶层100在“寻常光”状态下的折射率n 0=1.52,液晶层100在“非寻常光”状态下的折射率n e=1.8。第一取向层51和第二取向层52的材料为聚酰亚胺,其折射率为1.55。控制电极60的材料为氧化铟锡(Indium Tin Oxide,简称ITO),其折射率为1.8。绝缘平坦层61的材料为SiNx,其折射率1.8。第一基板11和第二基板12的折射率为1.5。空气隔层63的折射率为1。此处,该光波导10的全反射角θ可设定为42.07°。
需要说明的是,对于上述的一些光波导10而言,第一基板11和第二基板12的折射率相同或不相同,均可,本公开一些实施例对此不作限定。为了方便说明。本公开的以下一些实施例均是以第一基板11和第二基板12的折射率相同为例进行的说明。
综上,一方面,显示面板01中的光波导11内(也即液晶层100)接收的光线是光源02从光波导10的侧面入射的,并且,当液晶层100中形成有液晶光栅30时,该液晶光栅30可以将入射至光波导10内(也即液晶层100)的光线从第一基板11的一侧耦合出光。因此,该显示面板01无需在其入光侧和出光侧设置偏光片,以利用偏光片进行光线的选择性透过,即可实现显示。从而能够解决因在显示面板01的入光侧和出光侧设置偏光片而导致的光线透过率降低以及信赖性不佳的问题。
另一方面,在显示面板01进行灰阶显示的过程中,通过向控制电极60施加电压,在液晶层100中形成液晶光栅30,并通过调整液晶光栅30的衍射能力,可以使显示面板01显示不同的灰阶。因此,无需在液晶层100中制作额外的多个光栅条,这样也就能够避免该多个光栅条对液晶层100中液晶分子的初始取向造成影响。
又一方面,在该显示面板01为暗态显示的情况下,入射至光波导10内(也即液晶层100)的光线发生全反射,并不会有光线从显示面板01露出,从而能够解决暗态下显示面板01漏光的问题,有利于提升显示面板01显示画面的对比度。所以确保光源02入射至光波导10内(也即液晶层100)的光线在入射至液晶层100后的折射角满足该光线在光波导10内发生全反射的条件,即可保证显示面板01在暗态显示下不发生漏光,从而容易提高产品的量产性。
在一些实施例中,控制电极60包括多个第一电极21和多个第二电极22,且所述多个第一电极21和所述多个第二电极22相互绝缘,也即任一第一电极21与任一第二 电极22绝缘。示例性的,每个第二电极22配置为接入基准电压。
在一些示例中,如图5a所示,显示面板01还包括设置于显示区AA内且呈阵列状排布的多个亚像素101。每个亚像素101内对应设有一组第一电极21和第二电极22,也即一个第一电极21和一个第二电极22。每个第一电极21包括多个间隔设置且电连接的第一子电极210。不同亚像素之间的第一电极21相互绝缘。
此外,如图6所示,在向控制电极60(也即每个第一电极21和每个第二电极22)施加电压的状态下,每个亚像素101内形成有一液晶子光栅31(也即液晶光栅30位于每个亚像素101内的部分)。这样一来,每个亚像素101所对应的第一电极21和第二电极22被施加的电压可以单独进行调整,从而可以单独对各个亚像素101内的液晶子光栅31的衍射能力进行单独控制,进而使得各个亚像素101可以根据需要显示预设的灰阶值。
基于此,以下对上述控制电极60中第一电极21和第二电极22的设置方式进行详细的举例说明。
在一些示例中,每个亚像素101对应的第二电极22为块状。在此情况下,多个第二电极22相互绝缘,或为一体结构。
例如,如图5a所示,每相邻的两个第二电极22之间间隔开。
还例如,如图5b所示,每相邻的两个第二电极22之间通过连接部221电连接,且该连接部221采用线状结构,面积较小。在此情况下,相邻的多个第二电极22之间具有镂空区域CC。
又例如,如图5c所示,每相邻的两个第二电极22之间通过连接部221电连接,且该连接部221采用面状结构,面积较大。在此情况下,相邻的多个第二电极22之间没有镂空区域,此时,显示区AA中为一体结构的多个第二电极22构成一整层电极,该整层电极至少覆盖显示面板01的显示区AA。
此外,上述连接部221与第二电极22采用同材料同层设置,也即各连接部221和各第二电极22能够在一次构图工艺中制作形成。本公开一些实施例对所述多个第二电极22为一体结构的设置方式不做限定。
在一些示例中,多个第一电极21和多个第二电极22设置于相同的基板中,例如图6所示,上述多个第一电极21和多个第二电极22均形成在第一基板11上,且所述多个第二电极22与所述多个第一电极21之间具有至少一层的绝缘层23。在此情况下,同一平面内,每个第一电极21中的各第一子电极210的边缘产生平行电场,而均位于第一基板11上的每个第一电极21与对应的第二电极22之间产生纵向电场。上述平行 电场和纵向电场构成的多维电场能够驱动液晶层100中对应的液晶分子进行翻转,从而形成上述液晶光栅30。
此外,在另一些示例中,上述多个第一电极21和多个第二电极22的设置方式,还可以如图7所示,所述多个第一电极21和所述多个第二电极22同层且绝缘设置。
如图7所示,上述多个第一电极21和多个第二电极22均制作于第一基板11上。每个亚像素101内的第一电极21包括多个间隔设置且电连接的第一子电极210,每个亚像素101内的第二电极22包括多个间隔设置且电连接的第二子电极220。在同一个亚像素101中,第二子电极220与第一子电极210沿平行于第一基板11的方向间隔设置。在此情况下,每个第一电极21中相邻的两个第一子电极210之间,每个第二电极22中相邻的两个第二子电极220之间,以及每相邻的第一子电极210与第二子电极220之间各自产生的平行电场,可以驱动液晶层100中的液晶分子进行翻转,从而形成上述液晶光栅30。
请参阅图8、图9和图14,本公开一些实施例提供一种显示装置1000,包括如上所述的任意一种显示面板01。
该显示装置1000还包括光源02,该光源02设置于显示面板01沿其厚度方向的入光面。该光源02配置为提供入射至显示面板01的光波导10内,也即液晶层100,的入射光,所述入射光入射至液晶层100后的折射角α所在的范围为(θ 0-90°,90°-θ 0),其中,θ 0为液晶层100中全反射光对应的全反射界面的全反射临界角。
上述显示装置可以为显示器、电视、数码相框、手机或平板电脑等任何具有显示功能的产品或者部件。该显示装置具有与前述一些实施例提供的显示面板01相同的技术效果,此处不再赘述。
在一些实施例中,上述光源02的出光面至少覆盖显示面板01的光波导10内液晶层100的入光面。
示例性的,该光源02的出光面与该光波导10的入光面的面积相同。
例如,如图1所示,光波导10包括绝缘平坦层61、液晶层100和第二基板12,光源02的出光面正好覆盖该绝缘平坦层61、液晶层100和第二基板12三者沿厚度方向的对应侧面(也即入光面)。
或者,还例如,如图4所示,光波导10包括第一基板11、控制电极60、绝缘平坦层61、第一取向层51、液晶层100、第二取向层52以及第二基板12,光源02的出光面正好覆盖第一基板11、控制电极60、绝缘平坦层61、第一取向层51、液晶层100、第二取向层52以及第二基板12沿其厚度方向的对应侧面(也即入光面)。这样一来, 有利于提高光源02入射至光波导10的光线的入射率。
或者,又例如,请继续参阅图4,显示装置1000还包括设置于显示面板01的出光侧的透明盖板62。透明盖板62与显示面板01中的第一基板11之间存在空气隔层63。光波导10包括第一基板11、控制电极60、绝缘平坦层61、液晶层100、第二基板12以及位于第一基板11或第二基板12中至少一个的远离液晶层100的表面的空气隔层63。这样,光源02的出光面正好覆盖光波导10内的第一基板11、控制电极60、绝缘平坦层61、第一取向层51、液晶层100、第二取向层52以及第二基板12沿其厚度方向的对应侧面(也即入光面),便可。
当然,在一些示例中,显示面板01沿其厚度方向的入光面为其相对的两个侧面,光源02设置于所述两个侧面上,这样一来,可以减小光线在光波导10内(也即液晶层100)传播的过程中因耦合出光带来的光线衰减,从而避免降低显示面板01的显示画面质量。
以下对该显示装置1000在进行彩色显示过程中,所采用的一些实施方式进行举例说明。
在一些实施例中,光源02为白色光源,配置为发出白光。显示面板01的显示区AA中设置有多个亚像素101。
如图8所示,显示面板01还包括设置于第一基板11上且位于控制电极60的远离液晶层100的一侧的彩色滤光层40。该彩色滤光层40包括多个滤光单元401。每个亚像素101内具有一个滤光单元401。
示例性的,彩色滤光层40设置于第一基板11的靠近控制电极60的表面上。在光波导10包括第一基板11的情况下,所述光波导10还包括所述彩色滤光层40。
示例性的,相邻的至少三个亚像素101构成一个像素。同一像素中不同的亚像素101内的滤光单元401不同或相同,均可,本公开一些实施例对此不做限定。以同一像素中具有三个亚像素101,且该三个亚像素101内的滤光单元401不同为例,该像素中的三个亚像素101内分别设有对应的红色(R)的滤光单元401、绿色(G)的滤光单元401以及蓝色(B)的滤光单元401。
这样一来,在该显示装置1000处于暗态的情况下,各个亚像素101对应的第一电极21和第二电极22接收无效电信号或未被施加电压,确保光源02入射至光波导10内(也即液晶层100)的入射光在入射至液晶层100后的折射角满足该入射光在光波导10内发生全反射的条件,以使得该入射光在光波导10内的全反射界面发生全反射,从而确保入射至光波导10内(也即液晶层100)内的入射光无法从该光波导10出射, 进而能够避免显示装置1000在暗态显示时漏光。
此外,在显示装置显示画面的过程中,根据各个亚像素101需要显示的灰阶值(除了0灰阶),向不同的亚像素101对应的第一电极21和第二电极22分别施加电压,使得不显示0灰阶的每个亚像素101中能够形成一组液晶子光栅31,且在该一组液晶子光栅31的衍射作用下,控制光波导10内的光线按照该液晶子光栅31的衍射能力耦合出光。
当然,每个亚像素101中由一组液晶子光栅31衍射出的光线,在对应滤色单元401的滤色作用下,呈现为红光、绿光或者蓝光中的一种,从而能够实现彩色显示。
在另一些实施例中,光源02为白色光源,配置为发出白光。显示面板01的显示区AA中设置有多个亚像素101。相邻的至少三个亚像素101构成一个像素。
如图9所示,同一像素中不同的亚像素101中的第一子电极210的个数不相同。这样通过调整每个亚像素101内第一电极21中的第一子电极210的个数,即该第一电极21中每个第一子电极210的宽度及相邻两个第一子电极210之间的间距,使得不同的亚像素101能够在一固定的出射方向上衍射出波长不相同的光线,从而实现彩色显示。
示例性的,每个亚像素101能够发出的光的波长λ,满足以下公式:
n 1sinθ 1–n 2sinθ 2=m×λ/Λ       (2)
其中,θ 1为前述全反射光(也即光波导10内的光线)入射至对应的全反射界面的入射角;n 1为所述全反射界面对应的光密介质(也即光波导10内入射至全反射界面的光线所在的第一介质的)的折射率,n 2为所述全反射界面对应的光疏介质(也即光波导10内与所述第一介质相邻形成全反射界面的第二介质)的折射率,n 1>n 2;m为每个亚像素101对应的液晶子光栅31的衍射级次;Λ为每个亚像素101对应的液晶子光栅31的周期;θ 2为每个亚像素101对应的出光角度。
以光波导10包括第一基板11、控制电极60、绝缘平坦层61、第一取向层51、液晶层100、第二取向层52、第二基板12以及位于第一基板11和第二基板12二者的远离液晶层100的表面的空气隔层63为例,光波导10内全反射光线对应的全反射界面包括第一基板11与其对应的空气隔层63接触的第一全反射界面,以及第二基板12与其对应的空气隔层63接触的第二全反射界面。如此,光波导10内入射至第一全反射界面的光线所在第一介质(光密介质)的折射率n 1为第一基板11的折射率,光波导10内与第一基板11相邻形成第一全反射界面的第二介质(光疏介质)的折射率n 2为与第一基板11相接触的空气隔层63的折射率。光波导10内入射至第二全反射界面 的光线所在第一介质(光密介质)的折射率n 1为第二基板12的折射率,光波导10内与第二基板12相邻形成第二全反射界面的第二介质(光疏介质)的折射率n 2为与第二基板12相接触的空气隔层63的折射率。在第一基板11和第二基板12具有相同折射率的情况下,上述第一全反射界面和第二全反射界面具有相同的全反射临界角。
在此情况下,对于近眼显示装置而言,由于显示装置的显示面板距离用户眼睛较近,因此用户的眼睛通常只接受某一角度出射的光线。此外,对于虚拟现实(Virtual Reality,VR)或者增强现实(Augmented Reality,AR)显示装置而言,该显示装置的显示面板01上任一亚像素的出光方向是固定的。因此,在设计和制作显示面板的过程中,可以通过光学仿真软件对上述显示面板中各亚像素101出射光线的方向进行设计,以便于获知公式(2)中各亚像素101对应的出光角度θ 2(也即每个亚像素101中对应液晶子光栅31的衍射光所在的方向与显示面板01出光面所在平面的法线之间的夹角)。
可见,公式(2)中光波导10内的光线入射至其全反射界面的入射角θ 1、光波导10内入射至全反射界面的光线所在第一介质的折射率n 1、光波导10内与所述第一介质相邻形成全反射界面的第二介质的折射率n 2、每个亚像素101对应的出光角度θ 2以及每个亚像素101对应的液晶子光栅31的衍射级次m均已知。
并且,通过调节每个亚像素101中第一电极21的第一子电极210的个数,可以达到调节该亚像素101内对应液晶子光栅31的周期Λ的目的,进而达到调节该液晶子光栅31对应衍射光的波长λ的目的。
因此,在确定各亚像素101中第一电极21的第一子电极210的个数之后,显示面板01中各亚像素101在给定的方向(也即每个亚像素101对应的出光角度θ 2或其对应的液晶子光栅31的衍射光出射方向)上,能够发出预设波长的光线,从而达到彩色显示的目的。此处,每个亚像素101内是否设置与其发出的单色光颜色对应的滤光单元401,均可。本公开一些实施例对此不作限定。
此外,由上述公式(2)可知,每个亚像素101发出的单色光的波长λ与该亚像素101中的液晶子光栅31的周期Λ成正比。而每个液晶子光栅31的周期Λ又与对应亚像素101中第一电极21的第一子电极210的个数成反比。因此,在显示区AA内的多个亚像素101包括配置为发出不同波长单色光的亚像素101的情况下,每个亚像素101发出的单色光的波长λ与其内对应的第一子电极210的个数成反比。
在一些示例中,上述发出不同波长单色光的亚像素101包括:发红光(R)的亚像素、发绿光(G)的亚像素以及发蓝光(B)的亚像素。由于红光(R)的波长λ R 位于622nm~760nm的范围内,绿光(G)的波长λ G位于492nm~577nm的范围内,蓝光(B)的波长λ B位于435nm~450nm的范围内。也即,λ R>λ G>λ B。因此,结合上述公式(2)可知,发红光(R)的每个亚像素101内的液晶子光栅31的周期Λ R、发绿光(G)的每个亚像素101内的液晶子光栅31的周期Λ G、以及发蓝光(B)的每个亚像素101内的液晶子光栅31的周期Λ B,满足以下关系:Λ R>Λ G>Λ B
由上述可知,每个液晶子光栅30的周期Λ与其对应亚像素101中第一子电极210的个数成反比。因此,如图9所示,配置为发红光(R)的每个亚像素101中的第一子电极210的个数小于配置为发绿光(G)的每个亚像素101中的第一子电极210的个数;配置为发绿光(G)的每个亚像素101中的第一子电极210的个数小于配置为发蓝光(B)的每个亚像素101中的第一子电极210的个数。
上述仅仅是以显示面板01包括配置为发出红光(R)、绿光(G)以及蓝光(B)的三类亚像素101为例进行的说明。在显示面板01还包括配置为发出其他颜色光线的至少一类亚像素101的情况下,所述至少一类亚像素101中每个亚像素101第一子电极210的个数可以参照上述设置过程进行,此处不再赘述。
综上,本公开一些实施例中的彩色显示方案,需要显示面板01中各亚像素101对应的出光角度确定,才能够实现正常的彩色显示,因此该方式适用于近眼显示,以及VR或AR等应用场景的显示。
本公开一些实施例提供一种如上所述的显示装置的控制方法。如图10所示,该显示装置的控制方法包括S101~S102。
S101、控制光源02向显示面板01的液晶层100提供入射光,该入射光入射至液晶层100后的折射角α所在的范围为(θ 0-90°,90°-θ 0);其中,θ 0为液晶层100中全反射光对应的全反射界面的全反射临界角。
S102、向控制电极60施加电压,控制所述入射光在液晶层100中通过全反射传播,或形成液晶光栅30使液晶层100中的全反射光在第一基板11的一侧耦合出光。
此处,向控制电极60施加的电压若为无效电信号(例如空信号),也即控制电极60在接收到该无效电信号后无法生成电场,入射至液晶层100中的光便可在液晶层100所在的光波导10内发生全反射。液晶层100作为光波导10的一组成部分,液晶层100在无电场作用的情况下处于透明状态,也即可透光状态。
向控制电极60施加的电压若为有效电信号(例如存在电压差的多个电信号),也即控制电极60在接收到该有效电信号后会生成多个电场,以在液晶层100中形成液晶光栅30。
在此基础上,在显示面板01包括呈阵列状排布的多个亚像素101的情况下,控制电极60包括位于每个亚像素101内的一个第一电极21。液晶光栅30包括与所述多个亚像素101一一对应的多个液晶子光栅31。距离光源02较近的一些亚像素101中形成的各液晶子光栅31能够接收到的光线较多,距离光源02较远的一些亚像素101中形成的各液晶子光栅31能够接收到的光线略少。
上述S102中,形成液晶光栅30使液晶层100中的全反射光在第一基板11的一侧耦合出光,还包括:向每个第一电极21施加电压,控制每个亚像素101对应的液晶子光栅31的衍射光的光强度为其入射光的光强度的0.1%~20%。
这样利用每个亚像素101对应的液晶子光栅31,可以将液晶子光栅31接收到的入射光的一部分衍射出光波导10外。在此情况下,每个液晶子光栅31所能接收到的入射光的另一部分能够继续在光波导10内传播,从而能够对光线在光波导10内传播过程中的光损失进行补偿,以使得距离光源02较远的一些亚像素101中的各液晶子光栅31能够接收到的光线的量有所增加。进而确保距离光源02较近的一些亚像素101通过其内液晶子光栅31耦合出光的亮度与距离光源02较远的一些亚像素101通过其内液晶子光栅31耦合出光的亮度趋于一致,以便于提高整个显示面板01的显示亮度的均匀性。
需要说明的是,为了使得每个液晶子光栅31的衍射光的发光强度为该液晶子光栅31的入射光的发光强度的0.1%~20%,可以对向控制电极60中对应的第一电极21和第二电极22施加的电压进行多次调试,以得到能够使得各液晶子光栅31的衍射光的发光强度满足上述条件的电场。
本公开一些实施例控制每个亚像素101中的液晶子光栅31的衍射光的光强度为其入射光的光强度的0.1%~20%,不仅可以避免每个液晶子光栅31对应的亚像素的出光量太小,导致显示面板01的显示亮度过低,还可以在确保每个液晶子光栅31对应的亚像素具有满足要求的出光亮度的前提下,减弱光线在光波导10内因传播过程造成的光损失,以利于提高整个显示面板的出光亮度均匀性。
在一些实施例中,控制电极30包括多个第一电极21和多个第二电极22,其中,每个亚像素101内设置有一个第一电极21和一个第二电极22。上述S102中,向控制电极60施加电压,还包括:向显示相同灰阶的每个亚像素101内的第一电极21施加相同的电压,并向显示相同灰阶的每个亚像素101内的第二电极22施加相同的电压,以使得显示相同灰阶的每个亚像素101内的液晶子光栅31的衍射光的发光强度相同,从而确保显示面板01中显示相同灰阶的多个亚像素101的显示亮度相同。
基于上述显示装置的控制方法,在又一些实施例中,如图11所示,光源02包括多个不同颜色的单色子光源,配置为分时发出多种不同颜色的单色光。显示面板01包括多个亚像素101。上述S101中控制光源02向液晶层100提供入射光,还包括:在一帧内,控制所述多个不同颜色的单色子光源分时依次发出不同颜色的单色光。例如,光源02依次发出R、G、B三原色光,且该光源02在一帧内发出的不同单色光能够混合为白光。
示例性的,上述光源02包括多种点阵子光源,例如,包括红色(R)、绿色(G)以及蓝色(B)三色的点阵子光源,其中,每种颜色的点阵子光源分时驱动。例如,在一帧内的第一时刻,如图11所示,红色(R)的点阵子光源发光,然后,在一帧内的第二时刻,如图12所示,绿色(G)的点阵子光源发光,最后,在一帧内的第三时刻,如图13所示,蓝色(B)的点阵子光源发光。
对应的,在每个亚像素101中形成对应的液晶子光栅31之后,上述S102中使液晶层100中的全反射光在第一基板11的一侧耦合出光,还包括:在一,帧内,依次控制入射至液晶层100中的所述不同颜色的单色光在每个亚像素101位置耦合出光。
此处,每个亚像素101为具有颜色的亚像素(也即该亚像素101内设置有对应颜色的滤光单元401),或无颜色的亚像素(也即该亚像素101内并未设置具有颜色的滤光单元401)。
在一些示例中,如图11所示,每个亚像素101为无颜色的亚像素,该每个亚像素101内设置有黑矩阵402以及与黑矩阵402同层并等厚设置的可透光的平坦部403。本公开一些实施例利用光源02分时出射的多种不同颜色的单色光,以及每个亚像素101中形成的液晶子光栅31,可以在一帧内依次控制入射至液晶层100中的所述不同颜色的单色光在每个亚像素101位置耦合出光,也即将每个亚像素101在每帧内分时复用为不同颜色的亚像素。从而使得用户的眼睛可以将每个亚像素101在上述一帧内出射的具有不同颜色的单色光进行叠加混光,也即观看到彩色画面。这样一来,每个亚像素101可以在一帧内发出多种颜色的光线,从而在确保显示面板01实现彩色显示的同时,有效提高显示面板01的分辨率。在此基础上,可选的,在一帧内,该光源02所发出的不同颜色的单色光中各单色光的发光时长相同,以使得各亚像素101能够在该一帧内将光源02发出的不同颜色的光线均匀混光。
当然,基于此,在另一示例中,通过控制向每个亚像素101内对应的第一电极21和第二电极22施加的电压,还可以使得每个亚像素101在一帧内选择性的输出一种或多种单色光。
在又一些示例中,如图12所示,每个亚像素101为具有颜色的亚像素,该每个亚像素101内设置有对应颜色的滤光单元401。本公开一些实施例利用光源02分时出射的多种不同颜色的单色光,以及每个亚像素101中形成的液晶子光栅31,可以在一帧内依次控制入射至液晶层100中的所述不同颜色的单色光在具有对应颜色的亚像素101位置耦合出光,也即由每个像素中的多个亚像素101分时出射不同颜色的单色光,从而使得用户的眼睛可以将每个像素在上述一帧内出射的具有不同颜色的单色光进行叠加混光,也即观看到彩色画面。
本公开一些实施例所描述的显示装置的控制方法可以通过执行指令的方式来实现。指令可以由一个或多个处理器执行,这些指令可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。
基于此,本公开一些实施例提供了一种计算机产品,包括一个或多个处理器,所述一个或多个处理器被配置为运行计算机指令,以执行如上一些实施例所述的显示装置的控制方法中的一个或多个步骤。
本公开一些实施例提供了一种非瞬时计算机可读存储介质,该非瞬时计算机可读存储介质存储有计算机指令,所述计算机指令在被显示装置执行时,使得该显示装置执行如上一些实施例所述的显示装置的控制方法。
本公开一些实施例提供了一种计算机程序,该计算机程序被加载到处理器后使处理器执行如上一些实施例所述的显示装置的控制方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保 护范围为准。

Claims (20)

  1. 一种显示面板,包括:
    液晶层;
    设置于所述液晶层的相对两侧的第一基板和第二基板;
    以及,设置于所述第一基板上的控制电极,所述控制电极配置为接收电信号,控制入射至所述液晶层中的光通过全反射传播,或形成液晶光栅使所述液晶层中的全反射光在所述第一基板的一侧耦合出光。
  2. 根据权利要求1所述的显示面板,其中,所述控制电极包括多个第一电极和多个第二电极,所述多个第一电极和所述多个第二电极相互绝缘;
    所述显示面板还包括呈阵列状排布的多个亚像素;其中,每个亚像素内对应设有一个第一电极;每个所述第一电极包括多个间隔设置且电连接的第一子电极。
  3. 根据权利要求2所述的显示面板,其中,所述每个亚像素内还对应设有一个第二电极;每个所述第二电极包括多个间隔设置且电连接的第二子电极;
    在同一个亚像素中,所述第二子电极与所述第一子电极沿平行于所述第一基板的方向间隔设置。
  4. 根据权利要求2所述的显示面板,其中,所述多个亚像素包括配置为发出不同波长单色光的亚像素;
    每个亚像素发出的单色光的波长与其内对应的第一子电极的个数成反比。
  5. 根据权利要求4所述的显示面板,其中,所述发出不同波长单色光的亚像素包括发红光的亚像素、发绿光的亚像素以及发蓝光的亚像素;
    其中,配置为发红光的每个亚像素中的第一子电极的个数小于配置为发绿光的每个亚像素中的第一子电极的个数;配置为发绿光的每个亚像素中的第一子电极的个数小于配置为发蓝光的每个亚像素中的第一子电极的个数。
  6. 根据权利要求1所述的显示面板,还包括设置于所述控制电极的靠近所述液晶层的一侧的绝缘平坦层;所述绝缘平坦层的材料的折射率与所述控制电极的材料的折射率相等,且所述绝缘平坦层和所述控制电极的形状互补,以使得所述绝缘平坦层的靠近所述液晶层的表面平坦。
  7. 根据权利要求6所述的显示面板,还包括:
    设置于所述第一基板上且位于所述绝缘平坦层的靠近所述液晶层的一侧的第一取向层;和,
    设置于所述第二基板上的第二取向层。
  8. 根据权利要求6或7所述的显示面板,其中,
    所述全反射光对应的全反射界面在所述液晶层与所述第一基板之间,以及在所述液晶层与所述第二基板之间。
  9. 根据权利要求6或7所述的显示面板,其中,所述全反射光对应的全反射界面在所述液晶层与所述绝缘平坦层之间,以及在所述液晶层与所述第二基板之间。
  10. 根据权利要求6或7所述的显示面板,其中,
    所述全反射光对应的全反射界面在所述第一基板的远离所述液晶层的一侧,以及在所述第二基板的远离所述液晶层的一侧。
  11. 根据权利要求7~10任一项所述的显示面板,还包括设置于所述第一基板上且位于所述控制电极的远离所述液晶层的一侧的彩色滤光层。
  12. 一种显示装置,包括光源以及如权利要求1-11任一项所述的显示面板;
    其中,所述光源设置于所述显示面板沿厚度方向的入光面;
    所述光源配置为提供入射至所述液晶层的入射光,所述入射光入射至所述液晶层后的折射角所在的范围为(θ 0-90°,90°-θ 0);其中,θ 0为所述液晶层中全反射光对应的全反射界面的全反射临界角。
  13. 根据权利要求12所述的显示装置,还包括设置于所述显示面板的出光侧的透明盖板;所述透明盖板与所述显示面板中的第一基板之间存在空气隔层。
  14. 根据权利要求12所述的显示装置,其中,所述光源包括至少三种不同颜色的单色子光源。
  15. 根据权利要求12所述的显示装置,其中,所述光源为白色光源;
    所述显示面板包括多个不同颜色的亚像素;所述显示面板中的液晶光栅包括多个液晶子光栅;所述多个液晶子光栅和多个所述亚像素一一对应;
    每个所述亚像素能够发出的光的波长λ,满足以下公式:
    n 1sinθ 1–n 2sinθ 2=m×λ/Λ;
    其中,θ 1为所述全反射光入射至对应的全反射界面的入射角;n 1为所述全反射界面对应的光密介质的折射率,n 2为所述全反射界面对应的光疏介质的折射率,n 1>n 2;m为每个所述亚像素对应的液晶子光栅的衍射级次;Λ为每个所述亚像素对应的液晶子光栅的周期;θ 2为每个所述亚像素对应的出光角度。
  16. 一种如权利要求12-15任一项所述的显示装置的控制方法,包括:
    控制光源向所述液晶层提供入射光,所述入射光入射至所述液晶层后的折射角所在的范围为(θ 0-90°,90°-θ 0);其中,θ 0为所述液晶层中全反射光对应的全反射界面的全反射临界角;
    向所述控制电极施加电压,控制所述入射光在所述液晶层中通过全反射传播,或形成液晶光栅使所述液晶层中的全反射光在所述第一基板的一侧耦合出光。
  17. 根据权利要求16所述的显示装置的控制方法,其中,所述显示面板包括呈阵列状排布的多个亚像素,所述控制电极包括位于每个亚像素内的一个第一电极;所述液晶光栅包括与所述多个亚像素一一对应的多个液晶子光栅;
    所述形成液晶光栅使所述液晶层中的全反射光在所述第一基板的一侧耦合出光,还包括:
    向每个第一电极施加电压,控制每个亚像素对应的液晶子光栅的衍射光的光强度为其入射光的光强度的0.1%~20%。
  18. 根据权利要求16所述的显示装置的控制方法,其中,所述光源包括多个不同颜色的单色子光源;所述显示面板包括多个亚像素;
    所述控制光源向所述液晶层提供入射光,还包括:
    在一帧内,控制所述多个不同颜色的单色子光源分时依次发出不同颜色的单色光;
    所述使所述液晶层中的全反射光在所述第一基板的一侧耦合出光,还包括:
    在一帧内,依次控制入射至所述液晶层中的所述不同颜色的单色光在每个亚像素位置耦合出光。
  19. 根据权利要求18所述的显示装置的控制方法,其中,在一帧内,所述不同颜色的单色光中的各单色光的发光时长相同。
  20. 一种计算机非瞬时可读存储介质,所述计算机非瞬时可读存储介质存储有计算机指令,所述计算机指令被配置为执行如权利要求16~19任一项所述的显示装置的控制方法。
PCT/CN2019/096880 2018-07-20 2019-07-19 显示面板、显示装置及其控制方法 WO2020015753A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19837276.5A EP3825759B1 (en) 2018-07-20 2019-07-19 Display panel, display device and control method therefor
US16/635,020 US10831059B2 (en) 2018-07-20 2019-07-19 Display panel, display apparatus and method of controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810805498.7 2018-07-20
CN201810805498.7A CN110737138B (zh) 2018-07-20 2018-07-20 一种显示面板、显示装置及其控制方法

Publications (2)

Publication Number Publication Date
WO2020015753A1 true WO2020015753A1 (zh) 2020-01-23
WO2020015753A9 WO2020015753A9 (zh) 2020-04-23

Family

ID=69163617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096880 WO2020015753A1 (zh) 2018-07-20 2019-07-19 显示面板、显示装置及其控制方法

Country Status (4)

Country Link
US (1) US10831059B2 (zh)
EP (1) EP3825759B1 (zh)
CN (1) CN110737138B (zh)
WO (1) WO2020015753A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175998B (zh) * 2020-01-06 2022-11-01 福州京东方光电科技有限公司 一种像素结构、显示面板、显示方法和制作方法
CN113763806A (zh) * 2020-06-01 2021-12-07 四川龙华光电薄膜股份有限公司 反射式显示装置及其前置光源模块
CN114114738B (zh) * 2020-08-28 2023-06-09 宁波舜宇光电信息有限公司 周期可调的液晶光栅、光波导组件及显示设备
CN113406804B (zh) * 2021-07-15 2022-10-18 业成科技(成都)有限公司 头戴式显示器
WO2023021847A1 (ja) * 2021-08-17 2023-02-23 株式会社ジャパンディスプレイ 液晶光学素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016842A1 (en) * 2013-07-30 2015-02-05 Hewlett-Packard Development Company, L.P. Liquid crystal coupled light modulation
CN105549253A (zh) * 2014-10-22 2016-05-04 株式会社日本显示器 显示装置
CN105954933A (zh) * 2016-07-21 2016-09-21 京东方科技集团股份有限公司 显示装置及其制作方法
CN106200085A (zh) * 2016-08-11 2016-12-07 京东方科技集团股份有限公司 光波导显示基板及其制备方法和显示装置
CN106444177A (zh) * 2016-10-28 2017-02-22 京东方科技集团股份有限公司 显示面板及显示装置
CN107229157A (zh) * 2016-03-25 2017-10-03 京东方科技集团股份有限公司 透明显示装置及其制备方法
CN107632727A (zh) * 2016-07-18 2018-01-26 京东方科技集团股份有限公司 触摸显示屏及其制备方法、显示装置和驱动方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125926A1 (en) * 2007-04-17 2008-10-23 Koninklijke Philips Electronics N.V. Controllable light-guide and display device
TWI490568B (zh) * 2013-03-22 2015-07-01 E Ink Holdings Inc 顯示裝置及其前光模組
CN103293744B (zh) * 2013-05-16 2015-12-02 京东方科技集团股份有限公司 一种显示装置
US20160091775A1 (en) * 2013-06-20 2016-03-31 Hewlett-Packard Development Company, L.P. Grating-based light modulation employing a liquid crystal
WO2015108477A1 (en) * 2014-01-16 2015-07-23 Flatfrog Laboratories Ab Touch-sensing quantum dot lcd panel
CN107238961B (zh) * 2017-07-21 2021-02-05 京东方科技集团股份有限公司 一种触摸显示面板及显示装置
CN107219685B (zh) * 2017-07-28 2020-07-31 京东方科技集团股份有限公司 显示装置及显示装置的显示方法
US10534209B1 (en) * 2017-08-21 2020-01-14 Facebook Technologies, Llc Liquid crystal structure for controlling brightness uniformity in a waveguide display
CN108051936B (zh) * 2018-01-03 2021-02-12 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置及其驱动方法
CN108051962B (zh) * 2018-01-04 2020-06-30 京东方科技集团股份有限公司 显示面板和显示装置
CN108227285B (zh) * 2018-01-25 2022-01-11 京东方科技集团股份有限公司 一种显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016842A1 (en) * 2013-07-30 2015-02-05 Hewlett-Packard Development Company, L.P. Liquid crystal coupled light modulation
CN105549253A (zh) * 2014-10-22 2016-05-04 株式会社日本显示器 显示装置
CN107229157A (zh) * 2016-03-25 2017-10-03 京东方科技集团股份有限公司 透明显示装置及其制备方法
CN107632727A (zh) * 2016-07-18 2018-01-26 京东方科技集团股份有限公司 触摸显示屏及其制备方法、显示装置和驱动方法
CN105954933A (zh) * 2016-07-21 2016-09-21 京东方科技集团股份有限公司 显示装置及其制作方法
CN106200085A (zh) * 2016-08-11 2016-12-07 京东方科技集团股份有限公司 光波导显示基板及其制备方法和显示装置
CN106444177A (zh) * 2016-10-28 2017-02-22 京东方科技集团股份有限公司 显示面板及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3825759A4

Also Published As

Publication number Publication date
EP3825759A1 (en) 2021-05-26
EP3825759B1 (en) 2023-04-05
US10831059B2 (en) 2020-11-10
CN110737138B (zh) 2021-04-30
WO2020015753A9 (zh) 2020-04-23
US20200241344A1 (en) 2020-07-30
EP3825759A4 (en) 2022-03-30
CN110737138A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2020015753A1 (zh) 显示面板、显示装置及其控制方法
US11126054B2 (en) Display panel and display device
JP5378342B2 (ja) 表示装置
WO2021018024A1 (zh) 显示基板、显示面板和显示装置
JP2005504359A (ja) フラットディスプレイを有する機器
WO2020151434A1 (zh) 显示面板及其驱动方法和显示系统
JP5493007B2 (ja) 表示装置
CN102934015A (zh) 具有减小的莫尔效应的液晶显示器
EP3505982A1 (en) Display screen and polarizing sheet thereof
CN108710226B (zh) 一种透明显示装置及显示方法
US10935852B2 (en) Display panel and display device
US10788700B1 (en) Reflective liquid crystal display panel, display device, and control method thereof
US11099422B2 (en) Reflective filter comprising a periodic array structure having an equivalent refractive index and display panel having the same, display device and control method thereof
CN106959544B (zh) 一种背光模组、液晶显示器及其制备工艺
US20140253857A1 (en) Active matrix and display panel
KR101715852B1 (ko) 액정표시장치
KR100671160B1 (ko) 반투과형 액정 표시 장치 및 그 제조 방법
US20230138214A1 (en) Display panel, driving method thereof and display device
KR101719815B1 (ko) 액정표시장치의 컬러필터 어레이기판
JP2015138217A (ja) 電気光学装置および電子機器
CN110678806B (zh) 显示装置
EP4246220A1 (en) Liquid crystal display device
JP2008233137A (ja) 液晶表示装置
KR20090036467A (ko) 액정표시장치 및 그 설계 방법
KR20040071520A (ko) 반사-투과형 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019837276

Country of ref document: EP

Effective date: 20210222