WO2019206021A1 - 光子晶体、显示面板、光转换器件以及眼镜 - Google Patents

光子晶体、显示面板、光转换器件以及眼镜 Download PDF

Info

Publication number
WO2019206021A1
WO2019206021A1 PCT/CN2019/083278 CN2019083278W WO2019206021A1 WO 2019206021 A1 WO2019206021 A1 WO 2019206021A1 CN 2019083278 W CN2019083278 W CN 2019083278W WO 2019206021 A1 WO2019206021 A1 WO 2019206021A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
dielectric layer
light
refractive index
wavelength
Prior art date
Application number
PCT/CN2019/083278
Other languages
English (en)
French (fr)
Inventor
胡伟频
黄应龙
吴俊�
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/605,974 priority Critical patent/US11520174B2/en
Publication of WO2019206021A1 publication Critical patent/WO2019206021A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0338Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect structurally associated with a photoconductive layer or having photo-refractive properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/283Interference filters designed for the ultraviolet
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Definitions

  • the present disclosure relates to a photonic crystal, a display panel, a light conversion device, and glasses.
  • Embodiments of the present disclosure provide a photonic crystal, a display panel, a light conversion device, and glasses.
  • At least one embodiment of the present disclosure provides a photonic crystal including a first dielectric layer and a second dielectric layer having different refractive indices, the first dielectric layer and the second dielectric layer being alternately stacked.
  • the thickness and refractive index of the first dielectric layer and the thickness and refractive index of the second dielectric layer are configured such that the photonic crystal blocks blue light having a wavelength of 420 nm to 470 nm incident thereto.
  • the first dielectric layer has a refractive index n 1 and a thickness h 1
  • the second dielectric layer has a refractive index n 2 and a thickness h 2
  • the ⁇ 0 is 440 nm to 455 nm.
  • the ratio of the refractive index of the first dielectric layer to the refractive index of the second dielectric layer is 1.2 to 1.4.
  • the ratio of the refractive index of the first dielectric layer to the refractive index of the second dielectric layer is 1.25 to 1.35.
  • both the first dielectric layer and the second dielectric layer are fabricated using optical film preparation techniques.
  • the first dielectric layer has a refractive index of 1.8 to 2.0
  • the second dielectric layer has a refractive index of 1.3 to 1.5.
  • the material of the first dielectric layer includes silicon nitride
  • the material of the second dielectric layer includes silicon oxide
  • the first dielectric layer has a thickness of 55 nm to 60 nm
  • the second dielectric layer has a thickness of 75 to 85 nm.
  • the number of the first dielectric layers is the same as the number of the second dielectric layers.
  • Another embodiment of the present disclosure provides a light conversion device including a light conversion layer and the above photonic crystal.
  • the light conversion layer is configured to transmit a portion of the first color incident light and pass another portion of the first color incident light through the light conversion layer to emit at least one other color light, the wavelength of the first color incident light
  • the photonic crystal is disposed on a light exiting side of the light conversion layer, which is smaller than a wavelength of the other color light.
  • the light conversion layer includes a quantum dot material or a fluorescent material.
  • Another embodiment of the present disclosure provides a display panel including the above photonic crystal, the photonic crystal being located on a light exiting side of the display panel.
  • Another embodiment of the present disclosure provides a pair of glasses, including a lens and the above photonic crystal.
  • the photonic crystal is stacked on the lens.
  • FIG. 1 is a schematic structural diagram of a photonic crystal according to an embodiment of the present disclosure
  • FIG. 2 is a schematic view showing a light path of light irradiated onto the photonic crystal shown in FIG. 1;
  • 3a is a schematic structural view of a first dielectric layer formed on a substrate
  • Figure 3b is a schematic view showing the structure after forming a second dielectric layer
  • Figure 3c is a schematic view showing the structure after forming a photonic crystal
  • FIG. 4 is a partial schematic structural view of a display panel according to another embodiment of the present disclosure.
  • FIG. 5 is a partial schematic structural diagram of a light conversion device according to another embodiment of the present disclosure.
  • the inventor of the present application found that although the general display panel can filter out short-wave blue light, it also filters out a part of non-short-wave blue light visible light while filtering out short-wave blue light, which seriously affects the display brightness of the display panel. .
  • the photonic crystal includes a first dielectric layer and a second dielectric layer having different refractive indices, and the first dielectric layer and the second dielectric layer are alternately stacked.
  • the photonic crystal is configured to block the passage of blue light having a wavelength of 420 nm to 470 nm incident into the photonic crystal by setting the thickness and refractive index of the first dielectric layer and the thickness and refractive index of the second dielectric layer.
  • the photonic crystal proposed by at least one embodiment of the present disclosure is capable of blocking the passage of blue light having a wavelength of 420 nm to 470 nm, that is, when short-wave blue light having a wavelength of 420 nm to 470 nm is irradiated onto the photonic crystal, the short-wave blue light cannot pass through the photonic crystal. .
  • the photonic crystal can block blue light having a wavelength of 420 nm to 470 nm, thereby avoiding the damage of the blue light having a wavelength of 420 nm to 470 nm to the human eye, thereby protecting the human eye and realizing The health display; the visible light of the wavelength of 420 nm to 470 nm of the display panel can be normally emitted, and the high transmittance of the photonic crystal also increases the transmittance of visible light of wavelengths other than 420 nm to 470 nm, thereby improving the display of the display panel. brightness.
  • FIG. 1 is a schematic structural diagram of a photonic crystal according to an embodiment of the present disclosure.
  • the photonic crystal of the embodiment of the present disclosure includes a first dielectric layer 10 and a second dielectric layer 20 having different refractive indices, and the first dielectric layer 10 and the second dielectric layer 20 are alternately stacked, the first medium.
  • the thickness and refractive index of layer 10 and the thickness and refractive index of second dielectric layer 20 are configured such that the photonic crystal can block the passage of blue light having a wavelength of 420 nm to 470 nm incident into the photonic crystal.
  • Photonic crystals are artificially designed and fabricated crystals with a periodic dielectric structure on the optical scale. When light propagates in a photonic crystal, it interacts with the periodic structure of the photonic crystal, resulting in a band gap, ie, photonic crystals have photons. band.
  • the photonic band gap is a frequency region. When light in the photonic band gap is irradiated onto the photonic crystal, the light cannot pass through the photonic crystal, but produces total reflection on the surface of the photonic crystal.
  • the forbidden band of a photonic crystal can be calculated in a wavelength range in which the transmittance is less than 0.1%.
  • the photonic crystal proposed by the embodiment of the present disclosure is for blocking the passage of blue light having a wavelength of 420 nm to 470 nm. That is to say, when short-wave blue light having a wavelength of 420 nm to 470 nm is irradiated onto the photonic crystal, these short-wave blue light cannot pass through the photonic crystal.
  • the photonic crystal provided by the embodiment of the present disclosure is disposed on the light exiting side of the display panel, the short-wave blue light emitted by the display panel from 420 nm to 470 nm is blocked by the photonic crystal (the photonic crystal material has nearly 100 light for the band in the forbidden band).
  • the photonic crystal provided by the embodiment of the present disclosure not only does not block visible light of wavelengths other than 420 nm to 470 nm from passing through the photonic crystal, but also has high transmittance characteristics to improve transmittance of visible light at wavelengths other than 420 nm to 470 nm. .
  • the display panel including the photonic crystal provided by the embodiment of the present disclosure has higher display brightness than the display panel that generally filters out short-wave blue light.
  • the first dielectric layer 10 and the second dielectric layer 20 are alternately stacked in the first direction X, and the number of the first dielectric layers 10 is the same as the number of the second dielectric layers 20, first
  • the direction is the overlapping direction of the first dielectric layer 10 and the second dielectric layer 20.
  • the refractive index of the photonic crystal of the embodiment of the present disclosure in the first direction X has a periodic variation, and the periodic variation of the refractive index produces a band gap structure of light.
  • the photonic crystal of the embodiment of the present disclosure is a one-dimensional photonic crystal, and the band gap of the photonic crystal appears in the first direction X. Light with a frequency in the band gap cannot pass through the photonic crystal from the first direction and is uniform in the other two directions.
  • FIG. 2 includes a schematic diagram of a ray path of blue light having a wavelength ⁇ of 420 nm to 470 nm irradiated onto the photonic crystal shown in FIG.
  • the first partial incident light 101 is blue light having a wavelength ⁇ of 420 nm to 470 nm
  • the second partial incident light 103 is light having a wavelength other than 420 nm to 470 nm.
  • the first portion of the incident light 101 and the second portion of the incident light 103 are incident on the surface of the photonic crystal, the first portion of the incident light 101 does not exit from the photonic crystal, that is, the short-wave blue light does not pass through the photonic crystal but is totally reflected by the photonic crystal.
  • the second portion of the incident light 103 that is, light having a wavelength ⁇ of 420 nm to 470 nm, can normally pass through the photonic crystal and continue to propagate in the original direction.
  • the number of periods of the photonic crystal shown in FIGS. 1 and 2 is 3. It is easily understood that, in a specific implementation, the number of periods of the photonic crystal is not limited to three, and the number of periods of the photonic crystal can be set as needed.
  • the product of the distance traveled by light in the medium and the refractive index of the medium is the optical path of the medium.
  • the wavelength corresponding to the intermediate point of the forbidden band of the photonic crystal is the photonic band gap center wavelength, which can reflect the relative position of the forbidden band.
  • the refractive index of the medium on both sides of the film layer is larger or smaller than the refractive index of the film layer
  • the phase difference in the reflected beams of the film layer is equal to ⁇ (the optical path difference is equal to ⁇ 0 /2, only In the first two beams, the additional optical path difference ⁇ 0 /2 should be added, so that the total optical path difference is ⁇ 0 ), and the reflected light of this wavelength obtains the strongest reflection.
  • n 1 is the refractive index of the first dielectric layer 10
  • n 2 is the refractive index of the second dielectric layer 20
  • h 1 is the thickness of the first dielectric layer
  • h 2 is the thickness of the second dielectric layer 20
  • ⁇ 0 is the photon.
  • the photonic band gap of the photonic crystal in order to make the photonic band gap of the photonic crystal be in the range of 420 nm to 470 nm, and the center wavelength ⁇ 0 may be 440 nm to 455 nm, in the embodiment of the present disclosure, the photonic band gap of the photonic crystal is It is a wavelength range centered on ⁇ 0 . Since the most energetic band in the short-wave blue light is located in the range of 440 nm to 455 nm, the photonic band gap of the photonic crystal of the embodiment of the present disclosure ranges from 420 nm to 470 nm to include the most energetic blue wavelength. Therefore, the photonic crystal in the embodiment of the present disclosure can block the blue light having high energy in the 420 nm to 470 nm to pass through, and the blue light having high energy in the short-wave blue light is prevented from injuring the human eye.
  • the ratio n 1 /n 2 of the refractive index of the first dielectric layer 10 to the refractive index of the second dielectric layer 20 may be 1.2 to 1.4, whereby the wavelength range included in the photonic band gap is approximately 420 nm to 470 nm.
  • the ratio n 1 /n 2 of the refractive index of the first dielectric layer 10 to the refractive index of the second dielectric layer 20 may be 1.25 to 1.35, so that the wavelength range included in the photonic band gap is closer to 420 nm to 470 nm, thereby The probability of blocking the light of the photonic crystal from 420 nm to 470 nm is lowered, and the brightness of the display panel including the above photonic crystal can be improved.
  • the refractive index of the first dielectric layer 10 is greater than the refractive index of the second dielectric layer 20, the refractive index n 1 of the first dielectric layer 10 is 1.8 to 2.0, and the refractive index n 2 of the second dielectric layer 20 is 1.3 to 1.5.
  • Embodiments of the present disclosure are not limited to the refractive index of the first dielectric layer being greater than the refractive index of the second dielectric layer, and the refractive index ranges of the two may be interchanged.
  • the material of the first dielectric layer 10 may include silicon nitride, and the material of the second dielectric layer 20 may include silicon oxide.
  • the embodiment is not limited thereto, and may be other materials that satisfy the above refractive index.
  • the refractive index n 1 of the first dielectric layer 10 may be 1.931
  • the thickness h 1 of the first dielectric layer 10 may be 55 nm to 60 nm, and the thickness h 2 of the second dielectric layer 20 may be 75 to 85 nm.
  • the thickness h 1 of the first dielectric layer 10 may be 58 nm, and the thickness h 2 of the second dielectric layer 20 may be 79 nm.
  • ⁇ 0 447 nm, that is, the photonic crystal provided by the embodiment of the present disclosure
  • the center wavelength of the band in which the photonic band gap is located is 447 nm.
  • Figures 3a to 3c are schematic views of processes for preparing the photonic crystal of Figure 1.
  • a photonic crystal can be fabricated on a substrate using an optical film preparation technique.
  • the optical film preparation technique can strictly control the film thickness of the first dielectric layer and the second dielectric layer, and the thickness of the film can be up to the nanometer level.
  • Optical film preparation technology can be used to prepare photonic crystals with wavelengths in the visible light range to ensure the photonic band gap accuracy of photonic crystals.
  • Optical film preparation techniques include physical vapor deposition and chemical liquid deposition.
  • embodiments of the present disclosure may employ photo vapor deposition to prepare photonic crystals.
  • FIG. 3a is a schematic view of a structure after a first dielectric layer is formed on a substrate.
  • the surface of the substrate 30 may be an optical film preparation technique using a first dielectric layer 10 is formed, the thickness of the first dielectric layer 10 is h 1.
  • FIG. 3b is a schematic structural view after forming a second dielectric layer
  • FIG. 3c is a schematic structural view after forming a photonic crystal.
  • the first dielectric layer 10 and the second dielectric layer 20 are alternately formed periodically in order to prepare a photonic crystal as shown in Fig. 3c.
  • the substrate 30 may be peeled off or the substrate 30 may not be peeled off, and the barrier properties of the photonic crystal to blue light having a wavelength of 420 nm to 470 nm are not affected.
  • the refractive index of the substrate 30 is smaller than the refractive index of the first dielectric layer.
  • the material of the substrate 30 is a glass substrate, and a transparent material such as polydimethylsiloxane (PDMS) or polymethyl methacrylate (PMMA) may be used to prevent the substrate 30 from affecting the light transmittance.
  • a transparent material such as polydimethylsiloxane (PDMS) or polymethyl methacrylate (PMMA) may be used to prevent the substrate 30 from affecting the light transmittance.
  • the substrate of the substrate is not limited thereto, and may be selected according to actual needs.
  • both the first dielectric layer 10 and the second dielectric layer 20 are formed using a surface deposition process in optical film fabrication techniques.
  • the first dielectric layer is not limited to be formed on the substrate, or the second dielectric layer may be formed on the substrate, and then the first medium is formed on the second dielectric layer.
  • FIG. 4 is a partial schematic structural diagram of a display panel according to another embodiment of the present disclosure.
  • the display panel includes a display substrate 40 and the photonic crystals provided in the above embodiments.
  • the display substrate 40 may be an array substrate of the OLED display panel or a color filter substrate of the liquid crystal display panel, which is not limited in the embodiment of the present disclosure.
  • the photonic crystal is located on the light exiting side of the display panel such that light emitted from the display panel passes through the photonic crystal and enters the human eye.
  • the display panel Since the photonic crystal can selectively block the passage of blue light having a wavelength of 420 nm to 470 nm, the display panel displays the blue light of the above-mentioned wavelength band in the image light, and can effectively filter the short-wave blue light harmful to the human eye, thereby achieving the purpose of protecting the human eye.
  • the display panel proposed by the embodiment of the present disclosure may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the photonic crystal is disposed on the light-emitting side of the display panel, that is, the photonic crystal may be disposed on the light-emitting side of the backlight of the display panel, and the photonic crystal may also be disposed on the light-emitting side of the display surface of the display panel, as long as The position where the photonic crystal is disposed can be used to block the short-wave blue light of the display panel from entering the human eye, and all fall within the protection range of the embodiments of the present disclosure.
  • the display panel of the embodiment of the present disclosure can block the blue light having a wavelength of 420 nm to 470 nm by disposing the photonic crystal on the light exiting side, thereby avoiding the damage of the blue light having a wavelength of 420 nm to 470 nm to the human eye, and protecting the human eye.
  • the health display At the same time, visible light of a wavelength other than 420 nm to 470 nm of the display panel can be normally emitted, and the high transmittance of the photonic crystal also increases the transmittance of visible light having a wavelength other than 420 nm to 470 nm, thereby improving the display brightness of the display panel.
  • FIG. 5 is a partial schematic structural diagram of a light conversion device according to another embodiment of the present disclosure.
  • the light conversion device may include a light conversion layer 100 and a photonic crystal 1 located on the light exit side of the light conversion layer 100.
  • the light conversion layer 100 is configured to transmit a portion of the first color incident light and pass another portion of the first color incident light through the light conversion layer 100 to emit at least one other color light, the first color incident light having a wavelength smaller than the other color lights. The wavelength.
  • blue light of 420 nm to 470 nm is reflected back to the light conversion layer for reuse.
  • the light conversion layer 100 includes a quantum dot material or a fluorescent material.
  • the first color light is blue light
  • the other color lights include red light and green light.
  • the quantum dot material may be a mixed quantum dot material
  • the mixed quantum dot material includes a mixed green quantum dot material and a red quantum dot material to cause incident light (blue light) incident on the light conversion layer 100 to pass through the light conversion layer 100 and emit red. Light and green light.
  • the first color light is blue light
  • the other color lights include yellow light.
  • the first color incident light excites the quantum dot material to emit yellow light, and the blue light and the yellow light mix to form white light.
  • the light conversion device may be a part of the backlight module, a color film substrate, a part of the illumination source, or a part of the display device, which is not limited in the embodiment of the present disclosure.
  • the light conversion device provided by the embodiment of the present disclosure may include the display panel shown in FIG. 4, the side of the display panel including the photonic crystal includes a light conversion layer, and FIG. 5 only schematically shows the light conversion layer and the photonic crystal. .
  • the photonic crystal 1 blocks the passage of blue light having a wavelength ⁇ of 420 nm to 470 nm
  • the light ⁇ of the light conversion layer 100 (for example, a photoluminescence quantum dot structure) has a wavelength ⁇ of 420 nm to 470 nm.
  • Almost all of the reflected light crystals 1 are reflected, and the reflected blue light can be reused to excite the light conversion layer 100 to emit light, improving the luminous efficiency of, for example, a photoluminescent quantum dot structure.
  • the photoluminescence quantum dot structure may be a quantum dot film or a quantum dot color film.
  • a photoluminescent quantum dot structure can be excited by blue light to emit light of other colors.
  • the quantum dot material is a photoluminescence quantum dot material such as CdSe, CdTe, or graphene.
  • the luminescence peak of the blue quantum dot ranges from 440 to 460 nm; the luminescence peak of the green quantum dot ranges from 510 to 540 nm, and the luminescence peak of the red quantum dot ranges from 630 to 670 nm.
  • blue quantum dots are excited to emit blue light, green quantum dots are excited to emit green light, and red quantum dots are excited to emit red light.
  • the light conversion device may further include a light source 200 disposed on a side opposite to the light exiting side of the light conversion layer 100 (ie, the light incident side), and the light emitted from the light source 200 is used to excite the light conversion layer 100 to emit light, and the light conversion layer 100 emits
  • the blue light having a wavelength ⁇ of 420 nm to 470 nm in the light is almost completely reflected into the light conversion layer 100 when the photonic crystal 1 is encountered, and the light conversion layer 100 is again excited to emit light, thereby improving luminous efficiency.
  • the light conversion device is a photoluminescence quantum dot structure device QLED.
  • Another embodiment of the present disclosure proposes a pair of glasses on which the photonic crystal of the above embodiment is disposed, so that the glasses can prevent blue light having a wavelength of 420 nm to 470 nm from being incident on the human eye to cause damage to the human eye.
  • installation In the description of the embodiments of the present disclosure, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be, for example, a fixed connection or a Removable connection, or integral connection; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meanings of the above terms in the present disclosure can be understood in the specific circumstances by those skilled in the art.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Filters (AREA)
  • Optical Integrated Circuits (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种光子晶体、光转换器件、显示面板、眼镜。光子晶体包括具有不同折射率的第一介质层(10)和第二介质层(20),第一介质层(10)和第二介质层(20)交替层叠设置,第一介质层(10)的厚度和折射率以及第二介质层(20)的厚度和折射率被配置为使光子晶体阻挡入射到其中的波长为420nm~470nm的蓝光通过。还提供一种显示面板,包括该光子晶体,该光子晶体设置在显示面板的出光侧。通过将该光子晶体设置在显示面板的出光侧,可以阻挡波长为420nm~470nm的蓝光射出,避免了波长为420nm~470nm的蓝光对人眼的伤害,保护了人眼,实现了健康显示,而且光子晶体的高透过率特性还有助于提高420nm~470nm之外波长的可见光的透过率,提高了显示面板的显示亮度。还提供一种光转换器件和一种眼镜,均包括该光子晶体,同样可以阻挡波长为420nm~470nm的蓝光进入人眼,避免对人眼造成伤害。

Description

光子晶体、显示面板、光转换器件以及眼镜
本申请要求于2018年4月26日递交的中国专利申请第201810389359.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种光子晶体、显示面板、光转换器件以及眼镜。
背景技术
随着电子技术的进步,诸如计算机、液晶电视、智能手机便携游戏机等具有液晶显示面板的数码设备进入人们的日常生活。观看包括液晶显示面板的光转换器件的时间较长时,液晶显示面板发出的光中的蓝色光(蓝光)会对人眼造成不良影响,尤其是波长为420nm~470nm的短波蓝光会使人眼内的黄斑区毒素量增高,造成眼睛黄斑部病变,从而严重威胁眼睛健康。
发明内容
本公开实施例提供一种光子晶体、显示面板、光转换器件以及眼镜。
本公开至少一实施例提供一种光子晶体,包括具有不同折射率的第一介质层和第二介质层,所述第一介质层和所述第二介质层交替层叠设置。所述第一介质层的厚度和折射率以及所述第二介质层的厚度和折射率被配置为使所述光子晶体阻挡入射到其中的波长为420nm~470nm的蓝光通过。
例如,所述第一介质层的折射率为n 1,厚度为h 1,所述第二介质层的折射率为n 2,厚度为h 2,n 1*h 1=n 2*h 2=λ 0/4,所述λ 0为440nm~455nm。
例如,所述第一介质层的折射率与所述第二介质层的折射率的比值为1.2~1.4。
例如,所述第一介质层的折射率与所述第二介质层的折射率的比值为1.25~1.35。
例如,所述第一介质层和所述第二介质层均采用光学薄膜制备技术制作。
例如,所述第一介质层的折射率为1.8~2.0,所述第二介质层的折射率为1.3~1.5。
例如,所述第一介质层的材质包括氮化硅,所述第二介质层的材质包括氧化硅。
例如,所述第一介质层的厚度为55nm~60nm,所述第二介质层的厚度为75~85nm。
例如,所述第一介质层的数量与所述第二介质层的数量相同。
本公开另一实施例提供一种光转换器件,包括光转换层以及上述光子晶体。所述光转换层被配置为透过一部分第一颜色入射光,且使另一部分第一颜色入射光通过所述光转换层后出射至少一种其他颜色光,所述第一颜色入射光的波长小于所述其他颜色光的波长,所述光子晶体设置在所述光转换层的出光侧。
例如,所述光转换层包括量子点材料或者荧光材料。
本公开另一实施例提供一种显示面板,包括上述光子晶体,所述光子晶体位于所述显示面板的出光侧。
本公开另一实施例提供一种眼镜,包括镜片以及上述光子晶体。所述光子晶体叠设在所述镜片上。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的光子晶体的结构示意图;
图2为光照射到图1所示光子晶体上的光线路径示意图;
图3a为在基底上形成一层第一介质层后的结构示意图;
图3b为形成一层第二介质层后的结构示意图;
图3c为形成光子晶体后的结构示意图;
图4为本公开另一实施例提供的显示面板的局部结构示意图;以及
图5为本公开另一实施例提供的光转换器件的局部结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所 描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
在研究中,本申请的发明人发现:一般的显示面板虽然可以滤除短波蓝光,但其在滤除短波蓝光的同时,也滤除了一部分非短波蓝光的可见光,严重影响了显示面板的显示亮度。
本公开实施例提供的光子晶体、显示面板、光转换器件以及眼镜。光子晶体包括具有不同折射率的第一介质层和第二介质层,第一介质层和第二介质层交替层叠设置。光子晶体被配置为通过设定第一介质层的厚度和折射率以及第二介质层的厚度和折射率以阻挡入射到光子晶体中的波长为420nm~470nm的蓝光通过。本公开至少一实施例提出的光子晶体能够阻挡波长为420nm~470nm的蓝光通过,也就是说,当波长为420nm~470nm的短波蓝光照射到光子晶体上时,这些短波蓝光不能穿过该光子晶体。例如,通过将该光子晶体设置在显示面板的出光侧,光子晶体可以阻挡波长为420nm~470nm的蓝光射出,从而避免了波长为420nm~470nm的蓝光对人眼的伤害,保护了人眼,实现了健康显示;同时显示面板的420nm~470nm之外波长的可见光可以正常射出,而且光子晶体的高透过率还提高了420nm~470nm之外波长的可见光的透过率,提高了显示面板的显示亮度。
下面结合附图对本公开实施例提供的光子晶体、显示面板、光转换器件以及眼镜进行具体描述。
图1为本公开一实施例提供的光子晶体的结构示意图。如图1所示,本公开的实施例的光子晶体包括具有不同折射率的第一介质层10和第二介质层20,第一介质层10和第二介质层20交替层叠设置,第一介质层10的厚度和折射率以及第二介质层20的厚度和折射率本配置为可以使光子晶体能够阻挡入射到光子晶体中的波长为420nm~470nm的蓝光通过。
光子晶体是在光学尺度上具有周期性介电结构的人工设计和制造的晶体,光在光子晶体中传播时会与光子晶体的周期结构发生相互作用,从而产生带隙,即光子晶体具有光子禁带。光子禁带是一个频率区域,当位于光子禁带范围内的光照射到光子晶体上时,这些光不能穿过光子晶体,而是在光子晶体表面产生全反射。例如,可以透过率低于0.1%的波长范围计算光子晶体的禁带。
本公开的实施例提出的光子晶体用于阻挡波长为420nm~470nm的蓝光通过。也就是说,当波长为420nm~470nm的短波蓝光照射到光子晶体上时,这些短波蓝光不能穿过该光子晶体。例如,当将本公开的实施例提供的光子晶体设置在显示面板的出光侧时,显示面板发出的420nm~470nm的短波蓝光被光子晶体阻挡(光子晶体材料对于位于禁带波段的光具有近乎100%的反射率),从而这些短波蓝光就不会射出进入人眼,避免了短波蓝光对人眼造成伤害。同时,本公开的实施例提供的光子晶体不仅不会阻挡420nm~470nm之外波长的可见光通过该光子晶体,而且其高透过率特性还有利于提高420nm~470nm之外波长可见光的透过率。相比于一般滤除短波蓝光的显示面板,包括本公开实施例提供的光子晶体的显示面板具有较高的显示亮度。
例如,如图1所示,第一介质层10和第二介质层20在第一方向X上呈交替层叠排列,且第一介质层10的数量和第二介质层20的数量相同,第一方向为第一介质层10和第二介质层20的叠设方向。本公开的实施例的光子晶体在第一方向X上的折射率具有周期性变化,折射率的周期性变化产生光的带隙结构。本公开的实施例的光子晶体为一维光子晶体,该光子晶体的带隙出现在第一方向X上。频率位于带隙内的光不能从第一方向穿过光子晶体,而在另外两个方向上是均匀的。
例如,图2包括波长λ为420nm~470nm的蓝光照射到图1所示光子晶体上的光线路径示意图。如图2所示,第一部分入射光101为波长λ为420nm~470nm的蓝光,第二部分入射光103为波长为420nm~470nm之外的光。当第一部分入射光101和第二部分入射光103照射到光子晶体表面上时,第一部分入射光101没有从光子晶体出射,即这些短波蓝光不会穿过光子晶体,而是被光子晶体全部反射。而第二部分入射光103,即波长λ为420nm~470nm之外的光可以正常穿过光子晶体,继续沿原方向传播。
例如,在本公开的实施例中,第一介质层10的折射率为n 1,厚度为h 1,第二介质层20的n 2,厚度为h 2,那么,该光子晶体的周期p=h 1+h 2。图1和图 2中示出的光子晶体的周期数为3,容易理解的是,在具体实施中,光子晶体的周期数并不限定为3,光子晶体的周期数可以根据需要设定。
例如,光在媒质中通过的路程和该媒质折射率的乘积为该媒质的光程。光子晶体禁带中间点所对应的波长为光子禁带中心波长,能够反映禁带的相对位置。光子晶体中各膜层的厚度设计需要根据中心波长来计算,计算公式为d=n*h=λ 0/4。
根据多光束干涉原理,当膜层两侧介质的折射率大于或小于膜层的折射率时,若膜层的诸反射光束中的位相差等于π(光程差等于λ 0/2,只计头两束光时,应加上附加光程差λ 0/2,因而总光程差为λ 0),则该波长的反射光获得最强烈的反射。
本公开实施例中的一维光子晶体的光子禁带中心波长与两种介质的折射率和厚度相关,满足n 1*h 1=n 2*h 2=λ 0/4的关系。n 1为第一介质层10的折射率,n 2为第二介质层20的折射率,h 1为第一介质层10的厚度,h 2为第二介质层20的厚度,λ 0为光子禁带中心波长。在本公开的实施例中,为了使得光子晶体的光子禁带所处的波段范围为420nm~470nm,中心波长λ 0可以为440nm~455nm,本公开的实施例中,光子晶体的光子禁带即是以λ 0为中心的波长范围。由于短波蓝光中能量最强的波段位于440nm~455nm内,从而本公开的实施例光子晶体的光子禁带所处的波段范围420nm~470nm中包含能量最强的蓝光波长。因此,本公开实施例中的光子晶体可以阻挡420nm~470nm中的具有高能量的蓝光穿过,避免了短波蓝光中的具有高能量的蓝光对人眼造成伤害。
例如,第一介质层10的折射率与第二介质层20的折射率的比值n 1/n 2可以为1.2~1.4,由此,光子禁带内包括的波段范围大致为420nm~470nm。
例如,第一介质层10的折射率与第二介质层20的折射率的比值n 1/n 2可以为1.25~1.35,从而光子禁带内包括的波段范围更加接近于420nm~470nm,从而,降低了光子晶体对420nm~470nm之外的光的阻挡的几率,可以提高包括上述光子晶体的显示面板的亮度。
例如,第一介质层10的折射率大于第二介质层20的折射率,第一介质层10的折射率n 1为1.8~2.0,第二介质层20的折射率n 2为1.3~1.5。本公开实施例不限于第一介质层的折射率大于第二介质层的折射率,两者的折射率范围可以互换。
例如,第一介质层10的材质可以包括氮化硅,第二介质层20的材质可以 包括氧化硅。本实施例不限于此,还可以是其他满足上述折射率的其他材料。
例如,第一介质层10的折射率n 1可以为1.931,第二介质层20的折射率n 2可以为1.471,那么n 1/n 2=1.31。
例如,第一介质层10的厚度h 1可以为55nm~60nm,第二介质层20的厚度h 2可以为75~85nm。
例如,第一介质层10的厚度h 1可以为58nm,第二介质层20的厚度h 2可以为79nm。
根据上述介质层的折射率和厚度,以及公式n 1*h 1=n 2*h 2=λ 0/4,得出λ 0为447nm,也就是说,本公开的实施例提供的光子晶体的光子禁带所处的波段范围的中心波长为447nm。
例如,图3a~图3c为制备图1所示光子晶体的过程示意图。在制作本公开的实施例的光子晶体时,可以在基底上采用光学薄膜制备技术制作光子晶体。采用光学薄膜制备技术可以严格控制第一介质层和第二介质层的薄膜厚度,可以使薄膜厚度达到纳米级。光学薄膜制备技术可以用于制备波长位于可见光波段的光子晶体,保证光子晶体的光子禁带的精度。光学薄膜制备技术包括物理气相沉积和化学液相沉积。例如,本公开实施例可以采用物理气相沉积制备光子晶体。
例如,图3a为在基底上形成一层第一介质层后的结构示意图。如图3a所示,在基底30的表面可以采用光学薄膜制备技术形成第一介质层10,第一介质层10的厚度为h 1
例如,图3b为形成一层第二介质层后的结构示意图,图3c为形成光子晶体后的结构示意图。如图3b所示,在第一介质层10远离基底30的一侧形成第二介质层20,第二介质层20的厚度为h 2。如图3c所示,依次周期地交替形成第一介质层10和第二介质层20,以制备出如图3c所示的光子晶体。
例如,形成光子晶体以后,可以剥离基底30,也可以不剥离基底30,均不影响光子晶体对波长为420nm~470nm的蓝光的阻挡性能。当不剥离基底30时,基底30的折射率小于第一介质层的折射率。
例如,基底30的材质为玻璃基板,也可以采用聚二甲基硅氧烷(PDMS)或者聚甲基丙烯酸甲酯(PMMA)等透明材料,以避免基底30影响光线的透光率。基底的基材也不限于此,可以根据实际需求选用。
在本公开的实施例中,第一介质层10和第二介质层20均采用光学薄膜制 备技术中的表面沉积工艺形成。
例如,在图3a~图3c制备光子晶体的过程中,不限于先在基底上形成第一介质层,也可以先在基底上形成第二介质层,然后在第二介质层上形成第一介质层,此后交替形成第二介质层和第一介质层直至最后形成光子晶体。
例如,图4为本公开另一实施例提供的显示面板的局部结构示意图。如图4所示,显示面板包括显示基板40以及上述实施例提供的光子晶体。显示基板40可以是有机发光二极管显示面板的阵列基板,也可以是液晶显示面板的彩膜基板,本公开实施例对此不作限制。光子晶体位于显示面板的出光侧以使从显示面板出射的光经过光子晶体后进入人眼。由于光子晶体能够选择性阻挡波长为420nm~470nm的蓝光通过,所以该显示面板显示图像光中不包括上述波段的蓝光,可以有效过滤对人眼有害的短波蓝光,达到保护人眼的目的。
本公开实施例提出的显示面板可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
例如,本公开实施例中,光子晶体设置在显示面板的出光侧,也就是说,光子晶体可以设置在显示面板背光源的出光侧,光子晶体也可以设置在显示面板显示面的出光侧,只要光子晶体设置的位置可以用来阻挡显示面板的短波蓝光进入人眼,均属于本公开实施例的保护范围。
本公开的实施例的显示面板,通过在出光侧设置光子晶体,从而可以阻挡波长为420nm~470nm的蓝光射出,避免了波长为420nm~470nm的蓝光对人眼的伤害,保护了人眼,实现了健康显示。同时显示面板的420nm~470nm之外波长的可见光可以正常射出,而且光子晶体的高透过率还提高了420nm~470nm之外波长的可见光的透过率,提高了显示面板的显示亮度。
例如,图5为本公开另一实施例提供的光转换器件的局部结构示意图。如图5所示,光转换器件可以包括光转换层100以及位于光转换层100出光侧的光子晶体1。光转换层100被配置为透过一部分第一颜色入射光,且使另一部分第一颜色入射光通过光转换层100后出射至少一种其他颜色光,第一颜色入射光的波长小于其他颜色光的波长。在经光转换层出射的光入射到光子晶体后,420nm~470nm的蓝光被反射回光转换层以进行再次利用。
例如,光转换层100包括量子点材料或者荧光材料。
例如,第一颜色光为蓝光,其他颜色光包括红光和绿光。
例如,量子点材料可以为混合量子点材料,混合量子点材料包括混合的绿 色量子点材料和红色量子点材料以使入射到光转换层100的入射光(蓝光)通过光转换层100后出射红光和绿光。
例如,第一颜色光为蓝光,其他颜色光包括黄光。第一颜色入射光激发量子点材料发射黄光,蓝光与黄光混合形成白光。
例如,光转换器件可以是背光模组的一部分、彩膜基板、照明光源的一部分或者显示装置的一部分,本公开实施例对此不作限制。
例如,本公开实施例提供的光转换器件可以包括图4所示的显示面板,该显示面板靠近光子晶体的一侧包括光转换层,图5仅示意性的示出了光转换层以及光子晶体。
例如,如图5所示,由于光子晶体1阻挡波长λ为420nm~470nm的蓝光通过,光转换层100(例如光致发光量子点结构)发出的光中的波长λ为420nm~470nm的蓝光照射到光子晶体1后几乎全部被反射,反射回的蓝光可被重复利用以激发光转换层100发光,提高了例如光致发光量子点结构的发光效率。上述光致发光量子点结构可以为量子点膜片或量子点彩膜。
例如,光致发光量子点结构受到蓝光激发后可以发射其他颜色的光。
例如,量子点材料为CdSe、CdTe、石墨烯等光致发光量子点材料。例如,蓝光量子点的发光峰范围在440-460nm;绿色量子点的发光峰范围在510-540nm,红色量子点的发光峰范围在630-670nm。例如,蓝光量子点受激发发出蓝光,绿色量子点受激发发出绿光,红色量子点受激发发出红光。
例如,光转换器件还可以包括设置在与光转换层100出光侧相对一侧(即入光侧)的光源200,光源200发出的光用来激发光转换层100发光,光转换层100发出的光中的波长λ为420nm~470nm的蓝光在遇到光子晶体1时几乎全部被反射进入光转换层100中再次激发光转换层100发光,提高了发光效率。
例如,光转换器件为光致发光量子点结构器件QLED。
本公开另一实施例提出了一种眼镜,该眼镜的镜片上设置有上述实施例中的光子晶体,从而该眼镜可以防止波长为420nm~470nm的蓝光射入人眼对人眼造成损害。
在本公开实施例的描述中,需要理解的是,术语“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操 作,因此不能理解为对本公开的限制。
在本公开实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
有以下几点需要说明:
(1)除非另作定义,本公开实施例以及附图中,同一标号代表同一含义。
(2)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(3)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种光子晶体,包括具有不同折射率的第一介质层和第二介质层,所述第一介质层和所述第二介质层交替层叠设置,
    其中,所述第一介质层的厚度和折射率以及所述第二介质层的厚度和折射率被配置为使所述光子晶体阻挡入射到其中的波长为420nm~470nm的蓝光通过。
  2. 根据权利要求1所述的光子晶体,其中,所述第一介质层的折射率为n 1,厚度为h 1,所述第二介质层的折射率为n 2,厚度为h 2,n 1*h 1=n 2*h 2=λ 0/4,所述λ 0为440nm~455nm。
  3. 根据权利要求1或2所述的光子晶体,其中,所述第一介质层的折射率与所述第二介质层的折射率的比值为1.2~1.4。
  4. 根据权利要求3所述的光子晶体,其中,所述第一介质层的折射率与所述第二介质层的折射率的比值为1.25~1.35。
  5. 根据权利要求1-4任一项所述的光子晶体,其中,所述第一介质层和所述第二介质层均采用光学薄膜制备技术制作。
  6. 根据权利要求1-5任一项所述的光子晶体,其中,所述第一介质层的折射率为1.8~2.0,所述第二介质层的折射率为1.3~1.5。
  7. 根据权利要求6所述的光子晶体,其中,所述第一介质层的材质包括氮化硅,所述第二介质层的材质包括氧化硅。
  8. 根据权利要求6或7所述的光子晶体,其中,所述第一介质层的厚度为55nm~60nm,所述第二介质层的厚度为75~85nm。
  9. 根据权利要求1-8任一项所述的光子晶体,其中,所述第一介质层的数量与所述第二介质层的数量相同。
  10. 一种光转换器件,包括光转换层以及权利要求1-9中任一项所述的光子晶体,所述光转换层被配置为透过一部分第一颜色入射光,且使另一部分第一颜色入射光通过所述光转换层后出射至少一种其他颜色光,所述第一颜色入射光的波长小于所述其他颜色光的波长,所述光子晶体设置在所述光转换层的出光侧。
  11. 根据权利要求10所述的光转换器件,其中,所述光转换层包括量子点材料或者荧光材料。
  12. 一种显示面板,包括权利要求1-9任一项所述的光子晶体,所述光子晶体位于所述显示面板的出光侧。
  13. 一种眼镜,包括镜片以及权利要求1-9任一项所述的光子晶体,其中,所述光子晶体叠设在所述镜片上。
PCT/CN2019/083278 2018-04-26 2019-04-18 光子晶体、显示面板、光转换器件以及眼镜 WO2019206021A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/605,974 US11520174B2 (en) 2018-04-26 2019-04-18 Photonic crystal, display panel, light conversion device and glasses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810389359.0 2018-04-26
CN201810389359.0A CN108594345B (zh) 2018-04-26 2018-04-26 一种光子晶体、qled装置、显示面板、眼镜

Publications (1)

Publication Number Publication Date
WO2019206021A1 true WO2019206021A1 (zh) 2019-10-31

Family

ID=63610457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083278 WO2019206021A1 (zh) 2018-04-26 2019-04-18 光子晶体、显示面板、光转换器件以及眼镜

Country Status (3)

Country Link
US (1) US11520174B2 (zh)
CN (1) CN108594345B (zh)
WO (1) WO2019206021A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594345B (zh) 2018-04-26 2021-09-24 京东方科技集团股份有限公司 一种光子晶体、qled装置、显示面板、眼镜
CN109491145B (zh) * 2019-01-02 2023-09-22 合肥京东方显示光源有限公司 显示装置、显示系统和显示方法
CN109634047A (zh) * 2019-01-28 2019-04-16 前海申升科技(深圳)有限公司 一种护眼高清光子晶体影像膜
CN109752777B (zh) * 2019-03-07 2021-05-04 京东方科技集团股份有限公司 光子晶体膜、液晶显示模组和显示装置
CN109785748B (zh) * 2019-03-21 2021-05-14 京东方科技集团股份有限公司 一种显示面板及显示装置
TWI680316B (zh) * 2019-07-05 2019-12-21 凌巨科技股份有限公司 照明系統及其顯示裝置
CN110738940B (zh) * 2019-11-28 2022-02-01 京东方科技集团股份有限公司 量子点膜、彩膜层和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030186139A1 (en) * 2002-03-26 2003-10-02 Fuji Photo Film Co., Ltd. Optical functional element and method of producing the same
CN101479649A (zh) * 2006-03-17 2009-07-08 St协作有限公司 具有增强的可见光法拉第旋转的磁光光子晶体多层结构
US20090272964A1 (en) * 2008-05-02 2009-11-05 Epistar Corporation Light-emitting device and method for manufacturing the same
US20100091224A1 (en) * 2008-10-10 2010-04-15 Samsung Electronics Co., Ltd. Photonic crystal optical filter, reflective color filter, display apparatus using the reflective color filter, and method of manufacturing the reflective color filter
CN104865732A (zh) * 2015-05-28 2015-08-26 京东方科技集团股份有限公司 彩膜基板及其制造方法、显示装置
US20160062178A1 (en) * 2014-09-03 2016-03-03 Samsung Display Co., Ltd. Display device having a color conversion layer
CN108594345A (zh) * 2018-04-26 2018-09-28 京东方科技集团股份有限公司 一种光子晶体、qled装置、显示面板、眼镜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854505B2 (en) * 2006-03-15 2010-12-21 The Board Of Trustees Of The University Of Illinois Passive and active photonic crystal structures and devices
FR3039659B1 (fr) * 2015-07-28 2018-08-17 Essilor International Lentille ophtalmique et procede de fabrication associe
CN106206967A (zh) * 2016-08-10 2016-12-07 京东方科技集团股份有限公司 量子点发光器件及其制备方法、显示装置
US11217617B2 (en) * 2017-06-21 2022-01-04 Sony Semiconductor Solutions Corporation Imaging element and solid-state imaging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030186139A1 (en) * 2002-03-26 2003-10-02 Fuji Photo Film Co., Ltd. Optical functional element and method of producing the same
CN101479649A (zh) * 2006-03-17 2009-07-08 St协作有限公司 具有增强的可见光法拉第旋转的磁光光子晶体多层结构
US20090272964A1 (en) * 2008-05-02 2009-11-05 Epistar Corporation Light-emitting device and method for manufacturing the same
US20100091224A1 (en) * 2008-10-10 2010-04-15 Samsung Electronics Co., Ltd. Photonic crystal optical filter, reflective color filter, display apparatus using the reflective color filter, and method of manufacturing the reflective color filter
US20160062178A1 (en) * 2014-09-03 2016-03-03 Samsung Display Co., Ltd. Display device having a color conversion layer
CN104865732A (zh) * 2015-05-28 2015-08-26 京东方科技集团股份有限公司 彩膜基板及其制造方法、显示装置
CN108594345A (zh) * 2018-04-26 2018-09-28 京东方科技集团股份有限公司 一种光子晶体、qled装置、显示面板、眼镜

Also Published As

Publication number Publication date
CN108594345A (zh) 2018-09-28
CN108594345B (zh) 2021-09-24
US11520174B2 (en) 2022-12-06
US20210405400A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2019206021A1 (zh) 光子晶体、显示面板、光转换器件以及眼镜
TWI536080B (zh) 液晶透鏡顯示裝置及其製作方法
WO2020253731A1 (zh) 彩膜基板及其制备方法、液晶显示面板及液晶显示装置
US9146419B1 (en) Quantum rod based color pixel backlight for LCD
Kim et al. Realization of 95% of the Rec. 2020 color gamut in a highly efficient LCD using a patterned quantum dot film
WO2019076175A1 (zh) 光转换结构、背光模组、彩膜基板以及显示装置
US10330844B1 (en) Backlight unit and display device
EP2487532A1 (en) Display panel comprising metal grid color selective polarizer
WO2011145247A1 (ja) 表示装置
TWI591405B (zh) 光致發光顯示裝置及其製造方法
JP5692909B2 (ja) 反射型カラーフィルタ及びこれを備えるディスプレイ装置
WO2019148935A1 (zh) 液晶显示面板及其制备方法、液晶显示装置
KR102430426B1 (ko) 컬러 액정 디스플레이 및 디스플레이 백라이트
CN105988243A (zh) 光学构件、背光单元以及显示装置
JP2006309166A (ja) 表示パネル及びそれを有する表示装置
US20200264355A1 (en) Color filter
WO2017133335A1 (en) Display substrate, display panel, and display apparatus having the same
US20200133053A1 (en) Color filter substrate and liquid crystal display device
CN107450218B (zh) 光致发光显示装置及其制造方法
CN110264881B (zh) 显示装置及制作方法
US20090015758A1 (en) Polarized light-emitting device
US20080297705A1 (en) Liquid crystal display panel and liquid crystal display device using the same
WO2019000973A1 (zh) 彩膜基板、显示装置
CN101539694A (zh) 反射式液晶面板及折射率匹配透光电极层
CN210323676U (zh) 液晶显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19794003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19794003

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19794003

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19794003

Country of ref document: EP

Kind code of ref document: A1