WO2018176289A1 - 一种放大电路及激光测量装置、移动平台 - Google Patents

一种放大电路及激光测量装置、移动平台 Download PDF

Info

Publication number
WO2018176289A1
WO2018176289A1 PCT/CN2017/078662 CN2017078662W WO2018176289A1 WO 2018176289 A1 WO2018176289 A1 WO 2018176289A1 CN 2017078662 W CN2017078662 W CN 2017078662W WO 2018176289 A1 WO2018176289 A1 WO 2018176289A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
operational amplifier
module
amplifying circuit
amplifier module
Prior art date
Application number
PCT/CN2017/078662
Other languages
English (en)
French (fr)
Inventor
刘祥
占志鹏
蒲文进
洪小平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/078662 priority Critical patent/WO2018176289A1/zh
Priority to CN201780004466.0A priority patent/CN108700648B/zh
Priority to CN202110391987.4A priority patent/CN112965046A/zh
Publication of WO2018176289A1 publication Critical patent/WO2018176289A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/933Lidar systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/489Gain of receiver varied automatically during pulse-recurrence period
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/10Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only with diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G11/00Limiting amplitude; Limiting rate of change of amplitude ; Clipping in general
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers

Definitions

  • the present invention relates to the field of circuit technologies, and in particular, to an amplifying circuit, a laser measuring device, and a mobile platform.
  • the energy of the signal collected by the laser radar usually has a wide range, that is, when the obstacle is closer to the laser radar, The energy of the signal obtained by the laser radar through the receiving tube is relatively large; when the obstacle is far away from the laser radar, the energy of the signal obtained through the receiving tube is small.
  • the operational amplifier of the amplifying circuit may be saturated, and the saturation may cause distortion of the output signal, thereby affecting the measurement of the distance by the laser radar; and it takes a certain time for the laser radar to return to normal after saturation. This makes the laser radar unable to respond continuously and produces a measurement dead zone.
  • an embodiment of the present invention provides an amplifying circuit, including: an operational amplifier module and an adjusting module; the adjusting module is located in at least one of a front stage circuit, a rear stage circuit, or a feedback circuit of the operational amplifier module. And adjusting the amplification factor of the input signal of the amplifying circuit, so that the amplifying circuit amplifies the energy of the input signal after the adjusted amplification factor, and outputs the same.
  • the adjusting module adjusts the amplification factor such that when the energy of the input signal of the amplifying circuit is greater than a threshold, the energy of the input signal is greater, and the amplifying circuit is configured to the input signal The smaller the magnification.
  • the adjustment module includes a first clamping module, the first clamping module is located on a front stage circuit of the operational amplifier module, and the first clamping module is connected to the first of the operational amplifier module Input
  • the first clamping module is configured to adjust an input signal of the operational amplifier module.
  • the first clamping module includes a first diode; a first end of the first diode is connected to a first input end of the operational amplifier module; Two-terminal connection first reference a level; an input end of the amplifying circuit is coupled to a common end of the first end of the first diode and the first input end of the operational amplifier.
  • the first clamping module includes a first diode and a first resistor; a first end of the first diode is connected to a first input end of the operational amplifier module through the first resistor The second end of the first diode is connected to the first reference level; the input end of the amplifying circuit is connected to the common end of the first end of the first diode and the first resistor.
  • the adjustment module includes a second clamping module; the second clamping module is located on a rear stage circuit of the operational amplifier module, and the second clamping module is connected to an output end of the operational amplifier module. ;
  • the second clamping module is configured to adjust an output signal of the operational amplifier module.
  • the second clamping module includes: a second diode; a first end of the second diode is connected to an output end of the operational amplifier module; and a second end of the second diode The terminal is connected to the second reference level; the output of the amplifying circuit is connected to the common terminal of the output terminal of the second diode and the operational amplifier module.
  • the second clamping module includes: a second diode and a second resistor; a first end of the second diode is connected to an output end of the operational amplifier module through the second resistor; The second end of the second diode is connected to the second reference level; the output end of the amplifying circuit is connected to the common end of the second diode and the second resistor.
  • the adjustment module includes a third clamping module, where the third clamping module is located on a feedback circuit of the operational amplifier module; and the first input end of the operational amplifier module is connected to the third clamping a first port of the module; a second input of the operational amplifier module is coupled to a third reference level; an output of the amplifier module is coupled to a second port of the third clamp module;
  • the third clamping module is specifically configured to: when the energy information of the signal input to the operational amplifier module is greater than the first threshold, reduce the amplification factor of the input signal of the operational amplifier module to the operational amplifier module.
  • the third clamping module includes a third diode; a first end of the third diode is connected to a first input end of the operational amplifier module; The two ends are connected to the output of the operational amplifier module.
  • the third clamping module includes a third diode and a third resistor; the third diode a first end connected to the first input end of the operational amplifier module; a second end of the third diode connected to an output end of the operational amplifier module; the third resistor and the third diode in parallel.
  • the third clamping module includes a third diode, a third resistor, and a fourth resistor; a first end of the third diode is connected to the amplifier module through the third resistor At a first input, a second end of the third diode is coupled to an output of the operational amplifier module, and the fourth resistor is coupled in parallel with the third diode.
  • the amplifying circuit provided by the present invention can adjust the amplification factor of the input signal of the amplifying circuit through an adjusting module located at at least one of the front stage circuit, the rear stage circuit or the feedback circuit of the operational amplifier module.
  • the amplifier circuit amplifies the energy of the input signal with the adjusted amplification factor, and then outputs the amplification factor, so that the amplification factor of the amplification circuit is dynamically adjusted according to the energy of the input signal.
  • an embodiment of the present invention further provides a laser measuring device, comprising the any of the amplifying circuits of the first aspect.
  • the embodiment of the present invention further provides a mobile platform, where the mobile platform includes any of the laser measuring devices and the platform body according to the second aspect, and the laser measuring device is mounted on the platform body.
  • the mobile platform comprises at least one of an unmanned aerial vehicle, a car, and a remote control car.
  • FIG. 1 is a schematic frame diagram of a laser radar according to an embodiment of the present invention.
  • FIG. 2 is a schematic frame diagram of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 3 is a first wiring diagram of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 4 is a second wiring diagram of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 5 is a third wiring diagram of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 6 is a fourth wiring diagram of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the effect of the first clamp module before and after clamping according to an embodiment of the present invention.
  • FIG. 8 is a fifth wiring diagram of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 9 is a sixth wiring diagram of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 10 is a seventh wiring diagram of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the effect of the third clamp module before and after clamping according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an eighth wiring of an amplifying circuit according to an embodiment of the present invention.
  • the amplifying circuit provided by various embodiments of the present invention can be applied to a laser measuring device, which can be an electronic device such as a laser radar or a laser ranging device.
  • the laser measuring device is configured to sense external environmental information, such as distance information of the environmental target, angle information, reflection intensity information, speed information, and the like.
  • the laser measuring device can be a laser radar.
  • the laser measuring device of the embodiment of the present invention is applicable to a mobile platform, and the laser measuring device can be mounted on a platform body of the mobile platform.
  • a mobile platform with a laser measuring device can measure the external environment, for example, measuring the distance between the mobile platform and the obstacle for obstacle avoidance, and performing two-dimensional or three-dimensional mapping of the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, and a remote control car.
  • the platform body is the body of the unmanned aerial vehicle.
  • the platform body is the body of the car.
  • the laser measuring device is applied to a remote control car
  • the platform body is the body of the remote control car.
  • the amplifying circuit provided by the embodiment of the present invention is described below by taking a laser radar as an example.
  • FIG. 1 is a schematic frame diagram of a laser radar according to an embodiment of the present invention.
  • the laser radar may include a controller 11, a transmission driving circuit 12, a transmitting tube 13, a receiving tube 14, an amplifying circuit 15, a comparison circuit 16, a time-to-digital converter (TDC) 17, and the like.
  • the controller 11 can be connected to the emission driving circuit 12, the receiving tube 14, the amplifying circuit 15, the comparison circuit 16, the TDC circuit 17, and the like.
  • the controller 11 can send a drive letter to the transmit drive circuit 12. number.
  • the emission driving circuit 12 controls at least one of the transmission power of the transmitting tube 13, the wavelength of the emitted laser light, the emission direction, and the like in accordance with the received driving signal.
  • the launch tube 13 is controlled by the emission driving circuit and can emit an optical pulse signal in a specific direction.
  • the optical pulse signal emitted by the launch tube 13 encounters an obstacle, the obstacle reflects the optical pulse signal, and the receiving tube 14 includes a photosensitive sensor for receiving the reflected optical pulse signal, and the received reflected light pulse
  • the signal is converted into an electrical signal.
  • the electrical signal can be a voltage signal or a current signal.
  • the receiving tube 14 inputs the converted electrical signal as an input signal to the amplifying circuit 15, and the amplifying circuit adjusts the input signal, and then inputs the adjusted signal to the comparing circuit 16.
  • the comparison circuit 16 is for converting the amplified signal into a digital pulse signal and inputting the digital pulse signal to the TDC circuit 17.
  • the TDC circuit 17 extracts time information contained in the digital pulse signal, and transmits the time information to the controller 11, and the controller 11 calculates the distance from the obstacle based on the time information.
  • FIG. 2 is a schematic block diagram of an amplifying circuit according to an embodiment of the present invention.
  • the amplifying circuit may include: an operational amplifier module 21 and an adjusting module 22; the adjusting module 22 is located at at least one of a front stage circuit, a rear stage circuit or a feedback circuit of the operational amplifier module 21, And amplifying the amplification factor of the input signal of the amplifying circuit, so that the amplifying circuit amplifies the energy of the input signal with an adjusted amplification factor and outputs the energy.
  • the amplification factor of the amplification circuit is equal to the ratio of the output signal of the amplification circuit to the input signal of the amplification circuit.
  • the adjusting module 22 adjusts the amplification factor such that when the energy of the input signal of the amplifying circuit is greater than a threshold, the energy of the input signal is greater, and the amplifying circuit is configured to the input signal. The smaller the magnification.
  • the adjustment module 22 includes a first clamping module, the first clamping module is located on a front stage circuit of the operational amplifier module 21, and the first clamping module is connected to the first clamping module.
  • the first clamping module may include a first diode.
  • FIG. 3 is a schematic diagram of a first connection of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 3 illustrates the operation of the amplifier circuit by taking the operational amplifier module 21 as an operational amplifier IC as an example. As shown in FIG.
  • the anode of the first diode D1 is connected to the first input end of the operational amplifier module 21 (ie, the inverting input terminal of the operational amplifier IC);
  • the negative terminal of the first diode D1 is connected to the first reference level REF1;
  • the input signal Uin of the amplifying circuit is input through the common terminal of the first diode D1 and the common input terminal of the operational amplifier IC;
  • the inverting input of the operational amplifier IC is the output Uout of the amplifying circuit.
  • the second input of the operational amplifier module 21 i.e., the non-inverting input of the operational amplifier IC
  • the first diode D1 When the voltage signal input to the amplifying circuit exceeds the turn-on voltage drop of the first diode D1, the first diode D1 is turned on, thereby limiting the voltage signal input to the operational amplifier module 21 to the first diode D1. In the vicinity of the turn-on voltage, saturation of the input operational amplifier module 21 is avoided.
  • connection manner of the positive and negative electrodes of the first diode is opposite to the connection mode of the positive and negative electrodes of the first diode D1 in the amplifying circuit shown in FIG. .
  • FIG. 4 is a schematic diagram of a second connection of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 4 illustrates the connection relationship of the amplifying circuit by taking the operational amplifier module 21 as an operational amplifier IC as an example. As shown in FIG.
  • the anode of the first diode D1 is connected to the first input end of the operational amplifier module 21 through the first resistor R1 (ie, the operational amplifier IC)
  • An inverting input terminal; a cathode of the first diode D1 is connected to a first reference level REF1; an input signal Uin of the amplifying circuit passes through a cathode of the first diode D1 and the first resistor 2212
  • the common input; the inverting input of the operational amplifier IC is the output Uout of the amplifying circuit.
  • the second input of the operational amplifier module 21 i.e., the non-inverting input of the operational amplifier IC
  • connection mode of the positive and negative electrodes of the first diode is opposite to the connection mode of the positive and negative electrodes of the first diode D1 in the amplifying circuit shown in FIG. .
  • the adjustment module 22 includes a second clamping module; the second a clamping module is disposed on a subsequent stage circuit of the operational amplifier module 21, the second clamping module is coupled to an output end of the operational amplifier module 21; and the second clamping module is configured to the operational amplifier module 21 The output signal is adjusted.
  • the input signal of the amplifying circuit can be input to the first input end of the operational amplifier module; or can be input to the first input end of the operational amplifier module 21 through the first clamping module; A second input of the operational amplifier module is coupled to the third reference level REF3.
  • the second clamping module may include a second diode.
  • FIG. 5 is a third wiring diagram of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 5 illustrates the connection relationship of the amplifying circuit by taking the operational amplifier module 21 as an operational amplifier IC.
  • the voltage signal is a positive voltage signal
  • the positive terminal of the second diode D2 is connected to the operation.
  • An output of the amplifier module 21 ie, an output of the operational amplifier IC
  • a cathode of the second diode D2 is coupled to a second reference level REF2
  • an output signal Uout of the amplifying circuit is from the second diode D2 is output with the common terminal of the output of the operational amplifier IC.
  • the second diode D2 When the voltage signal of the output amplifier module 21 exceeds the turn-on voltage drop of the second diode D2, the second diode D2 is turned on, thereby limiting the voltage signal input to the subsequent stage op amp to the second diode D2. Near the turn-on voltage, avoid the saturation of the post-recorded op amp.
  • connection mode of the positive and negative electrodes of the second diode is opposite to the connection mode of the positive and negative electrodes of the second diode D2 in the amplifying circuit shown in FIG. .
  • the second clamping module may include: a second diode and a second resistor.
  • FIG. 6 is a fourth wiring diagram of an amplifying circuit according to an embodiment of the present invention. 6 shows an operational amplifier IC as an example of the operational amplifier IC. As shown in FIG.
  • the positive pole of the second diode D2 passes through the
  • the second resistor R2 is connected to the output end of the operational amplifier module 21 (ie, the output terminal of the operational amplifier IC); the negative terminal of the second diode D2 is connected to the second reference level REF2; the output signal Uout of the amplifying circuit is from The second diode D2 and the common terminal of the second resistor R2 are output.
  • connection mode of the positive and negative electrodes of the second diode is opposite to the connection mode of the positive and negative electrodes of the second diode D2 in the amplifying circuit shown in FIG. .
  • the input signal Uin of the amplifying circuit can be directly input to the first input end of the operational amplifier module 21 (ie, the inverting input terminal of the operational amplifier IC).
  • the non-inverting input of the operational amplifier IC is connected to the third reference level REF3.
  • FIG. 7 is a schematic diagram of the effect of the first clamping module before and after clamping according to an embodiment of the present invention.
  • the solid line is the actual signal
  • the dashed line indicates the on-voltage of the first diode D1
  • the dashed curve indicates the clamped signal.
  • the effect of the clamp before and after the clamping of the second clamp module is also shown in FIG. 7.
  • the adjustment module 22 includes a second clamping module; the third clamping module is located on a feedback circuit of the operational amplifier module 21; and the first input of the operational amplifier module 21 Connecting the first port of the third clamping module; the output of the operational amplifier module 21 is connected to the second port of the third clamping module; the third clamping module is specifically configured to: at the input When the energy information of the signal of the operational amplifier module 21 is greater than the first threshold, the amplification factor of the input signal of the operational amplifier module 21 to the operational amplifier module 21 is reduced.
  • the input signal of the amplifying circuit can be input to the first input end of the operational amplifier module 21; the first input end of the operational amplifier module 21 can also be connected through the first clamping module; The second input of the operational amplifier module 21 can be coupled to a third reference level REF3.
  • the third clamping module may include a third diode and a fifth resistor.
  • FIG. 8 is a fifth wiring diagram of an amplifying circuit according to an embodiment of the present invention. 8 is a diagram showing an operation of the amplifier circuit by using the operational amplifier module 21 as an operational amplifier IC. As shown in FIG. 8, the anode of the third diode D3 is connected to the first input terminal of the operational amplifier module 21 ( That is, the inverting input terminal of the operational amplifier IC); the negative terminal of the third diode D3 is connected to the output terminal of the operational amplifier module 21 (ie, the output terminal of the operational amplifier IC).
  • the second input of the operational amplifier module 21 (i.e., the non-inverting input of the operational amplifier IC) is coupled to the third reference level REF3.
  • the input signal Uin of the amplifying circuit can be input to the inverting input terminal of the operational amplifier IC through the fifth resistor R5; the inverting input terminal of the operational amplifier IC is the output terminal Uout of the amplifying circuit.
  • the amplification factor of the operational amplifier module 21 is R D3 /R5, and the operational amplifier module 21 amplifies the signal input to the operational amplifier module 21; when the energy of the signal input to the operational amplifier module 21 is large, the third diode D3 is at both ends The voltage is greater than the turn-on voltage of the third diode D3, the third diode D3 is turned on, and the resistance R D3 of the third diode is small. At this time, the amplification factor R D3 /R5 of the operational amplifier module 21 is decreased. The energy of the signal output to the operational amplifier module 21 is reduced, thereby reducing the amplification factor of the amplification circuit.
  • the third clamping module may include a third diode, a third resistor, and a fifth resistor.
  • FIG. 9 is a sixth wiring diagram of an amplifying circuit according to an embodiment of the present invention.
  • FIG. 9 illustrates the connection relationship of the amplifying circuit by taking the operational amplifier module 21 as an operational amplifier IC.
  • the anode of the third diode D3 is connected to the first input end of the operational amplifier module 21 ( That is, the inverting input terminal of the operational amplifier IC; the negative terminal of the third diode D3 is connected to the output end of the operational amplifier module 21 (ie, the output terminal of the operational amplifier IC); the third resistor R3 is The third diode D3 is connected in parallel.
  • the second input of the operational amplifier module 21 (i.e., the non-inverting input of the operational amplifier IC) is coupled to the third reference level REF3.
  • the input signal Uin of the amplifying circuit can be input to the inverting input terminal of the operational amplifier IC through the fifth resistor R5; the inverting input terminal of the operational amplifier IC is the output terminal Uout of the amplifying circuit.
  • the amplification factor of the operational amplifier module 21 is R or R5, and the operational amplifier module 21 amplifies the signal input to the operational amplifier module 21;
  • the energy of the signal input to the operational amplifier module 21 is large, the voltage across the third diode D3 is greater than the conduction voltage of the third diode D3, and the third diode D3 is turned on, and the third diode is The resistor R D3 is small, and R or the like is reduced.
  • the amplification factor R or the like of the operational amplifier module 21 is decreased, and the energy of the signal output from the operational amplifier module 21 is reduced, thereby reducing the amplification factor of the amplification circuit.
  • the third clamping module includes a third diode, a third resistor, a fourth resistor, and a fifth resistor.
  • FIG. 10 is a seventh wiring of an amplifying circuit according to an embodiment of the present invention. schematic diagram. FIG. 10 illustrates the connection relationship of the amplifying circuit by taking the operational amplifier module 21 as an operational amplifier IC. As shown in FIG. 10, the anode of the third diode D3 is connected to the third resistor R3. a first input end of the operational amplifier module 21, a cathode of the third diode D3 is connected to an output end of the operational amplifier module 21, and the fourth resistor R4 is connected in parallel with the third diode D3 .
  • the second input of the operational amplifier module 21 (i.e., the non-inverting input of the operational amplifier IC) is coupled to the third reference level REF3.
  • the input signal Uin of the amplifying circuit can be input to the inverting input terminal of the operational amplifier IC through the fifth resistor R5; the inverting input terminal of the operational amplifier IC is the output terminal Uout of the amplifying circuit.
  • the energy of the signal input to the operational amplifier module 21 is small, the voltage across the third diode D3 is small, the third diode D3 is not turned on, and the resistance R D3 of the third diode D3 is large, and the third The diode D3 is connected in parallel with the third resistor R4 in an equivalent resistance R and the like in series with R3.
  • the amplification factor of the operational amplifier module 21 is R or R5, and the operational amplifier module 21 is input to the operational amplifier module 21.
  • the signal is amplified; when the energy of the signal input to the operational amplifier module 21 is large, the voltage across the third diode D3 is greater than the conduction voltage of the third diode D3, and the third diode D3 is turned on, and the third The resistance R D3 of the diode is small, R and the like are reduced. At this time, the amplification factor R or the like R5 of the operational amplifier module 21 is decreased, and the energy of the signal output from the operational amplifier module 21 is reduced, thereby reducing the amplification circuit. gain.
  • the fifth resistor R5 is not a component necessary for the third clamp module, and the input signal Uin of the amplifier circuit is used for the operational amplifier IC with stable operation of the operational amplifier. It can also be input directly to the inverting input of the op amp IC.
  • the input signal of the amplifying circuit is a positive current signal or a positive voltage signal
  • the input signal of the amplifying circuit is a negative voltage signal or a negative current signal
  • the connection mode of the positive and negative electrodes of the three diodes is opposite to the connection of the positive and negative electrodes of the third diode D3 in the amplification circuit shown in FIGS. 8, 9, and 10.
  • FIG. 11 is a schematic diagram of the effect of the third clamp module before and after clamping according to an embodiment of the present invention.
  • the solid line in Fig. 11 is the actual signal, and the broken line indicates the signal after clamping.
  • the third clamp module amplifies the input signal; when the energy of the signal is large, as shown by the curve on the right side of FIG. 12, the amplification of the operational amplifier module 21 The multiple is reduced so that its output signal does not exceed the turn-on voltage of the third diode D3.
  • the amplifying circuit may simultaneously include the first clamping module second clamping module and the third clamping module.
  • FIG. 12 is an enlarged power supply according to an embodiment of the present invention.
  • the eighth wiring diagram of the road For a detailed description, refer to the related description in the second clamping module and the third clamping module of the first clamping module, and details are not described herein again.
  • first diode D1 in the first clamp module and the second diode D2 in the second clamp module may also adopt a Zener diode or a TVS diode.
  • the turn-on voltage of the diode is Breakdown voltage of a Zener diode or TVS diode.
  • first reference level, the second reference level, and the third reference level are used to distinguish the reference level, where the first reference level, the second reference level, or The third reference level may be the same or different.
  • the amplifying circuit provided by the present invention can adjust the amplification factor of the input signal of the amplifying circuit through an adjusting module located at at least one of the front stage circuit, the rear stage circuit or the feedback circuit of the operational amplifier module.
  • the amplifier circuit amplifies the energy of the input signal with the adjusted amplification factor, and then outputs the amplification factor, so that the amplification factor of the amplification circuit is dynamically adjusted according to the energy of the input signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种放大电路(5)以及包括该放大电路(5)的激光测量装置和移动平台。该放大电路(5)包括运算放大器模块(21)和调整模块(22);调整模块(22)位于运算放大器模块(21)的前级电路、后级电路或反馈电路中的至少一处,用于对放大电路(5)的输入信号的放大倍数进行调整,使得放大电路(5)以调整后的放大倍数对输入信号的能量进行放大后输出。通过该放大电路(5)可以实现放大电路(5)的放大倍数根据输入信号的能量进行动态调整,避免运放饱和。

Description

一种放大电路及激光测量装置、移动平台 技术领域
本发明涉及电路技术领域,尤其涉及一种放大电路及激光测量装置、移动平台。
背景技术
在一些电子设备,如激光雷达往往会涉及对信号采集以及对采集的信号进行放大处理,然而激光雷达采集的信号的能量通常具有较宽的范围,即:当障碍物距离激光雷达较近时,激光雷达通过接收管获取到的信号的能量较大;当障碍物距离激光雷达较远时,通过接收管获取到的信号的能量较小。当放大电路输入的电信号过大时,可能造成放大电路的运放饱和,饱和会造成输出信号的失真,进而影响激光雷达对距离的测量;而且,饱和后激光雷达恢复到正常需要一定的时间,使得激光雷达不能连续响应而产生测量盲区。
发明内容
第一方面,本发明实施例提供了一种放大电路,包括:运算放大器模块和调整模块;所述调整模块位于所述运算放大器模块的前级电路、后级电路或反馈电路中的至少一处,用于对所述放大电路的输入信号的放大倍数进行调整,使得所述放大电路以调整后的放大倍数对所述输入信号的能量进行放大后输出。
可选地,所述调整模块对所述放大倍数的调整,使得当所述放大电路的输入信号的能量大于阈值时,所述输入信号的能量越大,所述放大电路对所述输入信号的放大倍数越小。
可选地,所述调整模块包括第一钳位模块,所述第一钳位模块位于所述运算放大器模块的前级电路上,所述第一钳位模块连接所述运算放大器模块的第一输入端;
所述第一钳位模块用于对所述运算放大器模块的输入信号进行调整。
可选地,所述第一钳位模块包括第一二极管;所述第一二极管的第一端连接所述运算放大器模块的第一输入端;所述第一二极管的第二端连接第一参考 电平;所述放大电路的输入端连接所述第一二极管的第一端与所述运算放大器的第一输入端的公共端。
可选地,所述第一钳位模块包括第一二极管以及第一电阻;所述第一二极管的第一端通过所述第一电阻连接所述运算放大器模块的第一输入端;所述第一二极管的第二端连接第一参考电平;所述放大电路的输入端连接所述第一二极管的第一端与所述第一电阻的公共端。
可选地,所述调整模块包括第二钳位模块;所述第二钳位模块位于所述运算放大器模块的后级电路上,所述第二钳位模块连接所述运算放大器模块的输出端;
所述第二钳位模块用于对所述运算放大器模块的输出信号进行调整。
可选地,所述第二钳位模块包括:第二二极管;所述第二二极管的第一端连接所述运算放大器模块的输出端;所述第二二极管的第二端连接第二参考电平;所述放大电路的输出端的连接所述第二二极管与所述运算放大器模块的输出端的公共端。
可选地,所述第二钳位模块包括:第二二极管以及第二电阻;所述第二二极管的第一端通过所述第二电阻连接所述运算放大器模块的输出端;所述第二二极管的第二端连接第二参考电平;所述放大电路的输出端的连接所述第二二极管与所述第二电阻的公共端。
可选地,所述调整模块包括第三钳位模块,所述第三钳位模块位于所述运算放大器模块的反馈电路上;所述运算放大器模块的第一输入端连接所述第三钳位模块的第一端口;;所述运算放大器模块的第二输入端连接第三参考电平;所述放大器模块的输出端连接所述第三钳位模块的第二端口;
所述第三钳位模块具体用于:在输入所述运算放大器模块的信号的能量信息大于第一阈值时,减小所述运算放大器模块对所述运算放大器模块的输入信号的放大倍数。
可选地,所述第三钳位模块包括第三二极管;所述第三二极管的第一端连接所述运算放大器模块的第一输入端;所述第三二极管的第二端连接所述运算放大器模块的输出端。
可选地,所述第三钳位模块包括第三二极管及第三电阻;所述第三二极管 的第一端连接所述运算放大器模块的第一输入端;所述第三二极管的第二端连接所述运算放大器模块的输出端;所述第三电阻与所述第三二极管并联。
可选地,所述第三钳位模块包括第三二极管、第三电阻、第四电阻;所述第三二极管的第一端通过所述第三电阻连接至所述放大器模块的第一输入端,所述第三二极管的第二端连接至所述运算放大器模块的输出端,所述第四电阻与所述第三二极管并联。
相较于现有技术,本发明提供的放大电路可以通过位于运算放大器模块的前级电路、后级电路或反馈电路中的至少一处的调整模块,对放大电路的输入信号的放大倍数进行调整,使得放大电路以调整后的放大倍数对输入信号的能量进行放大后输出,进而实现放大电路的放大倍数根据输入信号的能量进行动态调整。
第二方面,本发明实施例还提供了一种激光测量装置,所述激光测量装置包括第一方面所述的任一放大电路。
第三方面,本发明实施例还提供了一种移动平台,所述移动平台包括第二方面所述的任一激光测量装置以及平台本体,所述激光测量装置安装在所述平台本体。
可选地,所述移动平台包括无人飞行器、汽车和遥控车中的至少一种。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种激光雷达的示意性框架图;
图2是本发明实施例提供的一种放大电路的示意性框架图;
图3是本发明实施例提供的一种放大电路的第一接线示意图;
图4是本发明实施例提供的一种放大电路的第二接线示意图;
图5是本发明实施例提供的一种放大电路的第三接线示意图;
图6是本发明实施例提供的一种放大电路的第四接线示意图;
图7是本发明实施例提供的第一钳位模块的钳位前后的效果示意图;
图8是本发明实施例提供的一种放大电路的第五接线示意图;
图9是本发明实施例提供的一种放大电路的第六接线示意图;
图10是本发明实施例提供的一种放大电路的第七接线示意图;
图11是本发明实施例提供的第三钳位模块的钳位前后的效果示意图;
图12是本发明实施例提供的一种放大电路的第八接线示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
可以理解,本发明各个实施例提供的放大电路可以应用于激光测量装置,该激光测量装置可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,激光测量装置用于感测外部环境信息,例如,环境目标的距离信息、角度信息、反射强度信息、速度信息等。所述激光测量装置可以为激光雷达。
在一种实施方式中,本发明实施方式的激光测量装置可应用于移动平台,激光测量装置可安装在移动平台的平台本体。具有激光测量装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车和遥控车中的至少一种。当激光测量装置应用于无人飞行器时,平台本体为无人飞行器的机身。当激光测量装置应用于汽车时,平台本体为汽车的车身。当激光测量装置应用于遥控车时,平台本体为遥控车的车身。
下面以激光雷达为例来叙述本发明实施例提供的放大电路。
请参阅图1,图1是本发明实施例提供的一种激光雷达的示意性框架图。该激光雷达可包括:控制器11、发射驱动电路12、发射管13、接收管14、放大电路15、比较电路16、时间数字转换器(TDC(Time-to-Digital Converter)电路)17等。控制器11可以连接发射驱动电路12、接收管14、放大电路15、比较电路16、TDC电路17等。控制器11可以向发射驱动电路12发送驱动信 号。发射驱动电路12根据接收到的驱动信号对发射管13的发射功率、发射激光的波长、发射方向等中的至少一种进行控制。可以理解,发射管13受发射驱动电路的控制,可以向特定方向发射光脉冲信号。发射管13发射的光脉冲信号遇到障碍物后,障碍物对该光脉冲信号进行反射,接收管14包括光敏传感器,用于接收反射的光脉冲信号,并将该接收到的反射的光脉冲信号转化为电信号。该电信号可以是电压信号或电流信号。接收管14将转化的电信号作为输入信号输入放大电路15,放大电路对该输入信号进行调整,再将调整后的信号输入比较电路16。比较电路16用于将经过放大后的信号转化为数字脉冲信号,并将该数字脉冲信号输入到TDC电路17。TDC电路17提取该数字脉冲信号包含的时间信息,并将时间信息发送至控制器11,控制器11根据该时间信息计算与障碍物的距离。
请参阅图2,图2是本发明实施例提供的一种放大电路的示意性框架图。如图2所示,该放大电路可以包括:运算放大器模块21和调整模块22;所述调整模块22位于所述运算放大器模块21的前级电路、后级电路或反馈电路中的至少一处,用于对所述放大电路的输入信号的放大倍数进行调整,使得所述放大电路以调整后的放大倍数对所述输入信号的能量进行放大后输出。
可以理解,放大电路的放大倍数等于放大电路的输出信号与放大电路的输入信号的比值。
可以理解,所述调整模块22对所述放大倍数的调整,使得当所述放大电路的输入信号的能量大于阈值时,所述输入信号的能量越大,所述放大电路对所述输入信号的放大倍数越小。
本发明的第一实施例中,所述调整模块22包括第一钳位模块,所述第一钳位模块位于所述运算放大器模块21的前级电路上,所述第一钳位模块连接所述运算放大器模块21的第一输入端;所述运算放大器模块21的第二输入端可以连接第三参考电平REF3;所述第一钳位模块用于对所述运算放大器模块21的输入信号进行调整,并通过所述运算放大器模块21的输出端输出信号。
可选地,当放大电路的输入信号为电压信号时,第一钳位模块可以包括第一二极管。请参阅图3,图3是本发明实施例提供的一种放大电路的第一接线示意图。图3以运算放大器模块21为运算放大器IC为例来说明放大电路的连 接关系,如图3所示,在电压信号为正电压信号时,所述第一二极管D1的正极连接运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第一二极管D1的负极连接第一参考电平REF1;所述放大电路的输入信号Uin通过所述第一二极管D1的正极与运算放大器IC的反向输入端的公共端输入;运算放大器IC的反向输入端即为放大电路的输出端Uout。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第一参考电平REF1。
当输入放大电路的电压信号超过了第一二极管D1的导通压降时,第一二极管D1导通,进而将输入运算放大器模块21的电压信号限制在第一二极管D1的导通电压附近,避免输入运算放大器模块21的饱和。
可以理解,当放大电路的输入信号为负电压信号时,第一二极管的正负极的连接方式与图3所示的放大电路中第一二极管D1的正负极的连接方式相反。
可选地,当放大电路的输入信号为电流信号时,第一钳位模块可以包括第一二极管以及第一电阻。请参阅图4,图4是本发明实施例提供的一种放大电路的第二接线示意图。图4以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系。如图4所示,在电流信号为正电流信号时,所述第一二极管D1的正极通过所述第一电阻R1连接所述运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第一二极管D1的负极连接第一参考电平REF1;所述放大电路的输入信号Uin通过所述第一二极管D1的正极与所述第一电阻2212的公共端输入;运算放大器IC的反向输入端即为放大电路的输出端Uout。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。
当输入放大电路的电流信号增大时,第一电阻R1上产生的压降增大,当第一电阻R1上产生的压降超过了第一二极管D1的导通压降时,第一二极管D1导通,进而降低将输入到运算放大器模块21的电流信号,避免输入运算放大器模块21的饱和。
可以理解,当放大电路的输入信号为负电流信号时,第一二极管的正负极的连接方式与图4所示的放大电路中第一二极管D1的正负极的连接方式相反。
本发明的第二实施例中,所述调整模块22包括第二钳位模块;所述第二 钳位模块位于所述运算放大器模块21的后级电路上,所述第二钳位模块连接所述运算放大器模块21的输出端;所述第二钳位模块用于对所述运算放大器模块21的输出信号进行调整。可以理解,所述放大电路的输入信号可以输入到所述运算放大器模块的第一输入端;也可以通过所述第一钳位模块输入到所述运算放大器模块21的第一输入端;所述运算放大器模块的第二输入端连接第三参考电平REF3。
可选地,当放大电路的输入信号为电压信号时,第二钳位模块可以包括第二二极管。请参阅图5,图5是本发明实施例提供的一种放大电路的第三接线示意图。图5以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图5所示,在电压信号为正电压信号时,所述第二二极管D2的正极连接所述运算放大器模块21的输出端(即运算放大器IC的输出端);所述第二二极管D2的负极连接第二参考电平REF2;所述放大电路的输出信号Uout从所述第二二极管D2与所述运算放大器IC的输出端的公共端输出。
当输出放大器模块21的电压信号超过了第二二极管D2的导通压降时,第二二极管D2导通,进而将输入后级运放的电压信号限制在第二二极管D2的导通电压附近,避免后记运放的饱和。
可以理解,当放大电路的输入信号为负电压信号时,第二二极管的正负极的连接方式与图5所示的放大电路中第二二极管D2的正负极的连接方式相反。
可选地,当放大电路的输入信号为电流信号时,所述第二钳位模块可以包括:第二二极管以及第二电阻。请参阅图6,图6是本发明实施例提供的一种放大电路的第四接线示意图。图6以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图6所示,在电流信号为正电流信号时,所述第二二极管D2的正极通过所述第二电阻R2连接所述运算放大器模块21的输出端(即运算放大器IC的输出端);所述第二二极管D2的负极连接第二参考电平REF2;所述放大电路的输出信号Uout从所述第二二极管D2与所述第二电阻R2的公共端输出。
当输出运算放大器模块21的电流信号增大时,第二电阻R2上产生的压降增大,当第二电阻R2上产生的压降超过了第二二极管D2的导通压降时,第二二极管D2导通,进而降低将输出的电流信号,避免后记运放的饱和。
可以理解,当放大电路的输入信号为负电流信号时,第二二极管的正负极的连接方式与图6所示的放大电路中第二二极管D2的正负极的连接方式相反。
可以理解,在图5或图6所示的放大电路接线示意图中,所述放大电路的输入信号Uin可以直接输入到运算放大器模块21的第一输入端(即运算放大器IC的反向输入端),运算放大器IC的同向输入端连接第三参考电平REF3。
请参阅图7,图7是本发明实施例提供的第一钳位模块的钳位前后的效果示意图。图7中实线为实际信号,虚直线表示第一二极管D1的导通电压,虚曲线表示钳位后的信号。同理,第二钳位模块的钳位前后的效果也如图7所示。
本发明的第三实施例中,所述调整模块22包括第二钳位模块;所述第三钳位模块位于所述运算放大器模块21的反馈电路上;所述运算放大器模块21的第一输入端连接所述第三钳位模块的第一端口;所述运算放大器模块21的输出端连接所述第三钳位模块的第二端口;所述第三钳位模块具体用于:在输入所述运算放大器模块21的信号的能量信息大于第一阈值时,减小所述运算放大器模块21对所述运算放大器模块21的输入信号的放大倍数。
可以理解,所述放大电路的输入信号可以输入到所述运算放大器模块21的第一输入端;也可以通过所述第一钳位模块连接所述运算放大器模块21的第一输入端;所述运算放大器模块21的第二输入端可以连接第三参考电平REF3。
可选地,第三钳位模块可以包括第三二极管以及第五电阻。请参阅图8,图8是本发明实施例提供的一种放大电路的第五接线示意图。图8以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图8所示,所述第三二极管D3的正极连接所述运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第三二极管D3的负极连接所述运算放大器模块21的输出端(即运算放大器IC的输出端)。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。所述放大电路的输入信号Uin可以通过第五电阻R5输入到运算放大器IC的反向输入端;运算放大器IC的反向输入端即为放大电路的输出端Uout。
当输入运算放大器模块21的信号的能量较小时,第三二极管D3两端的电压较小,第三二极管D3不导通,第三二极管的电阻RD3较大,此时,运算 放大器模块21的放大倍数为RD3/R5,运算放大器模块21对输入运算放大器模块21的信号进行放大;当输入运算放大器模块21的信号的能量较大时,第三二极管D3两端的电压大于第三二极管D3的导通电压,第三二极管D3导通,第三二极管的电阻RD3较小,此时,运算放大器模块21的放大倍数RD3/R5减小,减小输出运算放大器模块21的信号的能量,进而减小放大电路的放大倍数。
可选地,第三钳位模块可以包括第三二极管、第三电阻以及第五电阻。请参阅图9,图9是本发明实施例提供的一种放大电路的第六接线示意图。图9以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图9所示,所述第三二极管D3的正极连接所述运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第三二极管D3的负极连接所述运算放大器模块21的输出端(即运算放大器IC的输出端);所述第三电阻R3与所述第三二极管D3并联。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。所述放大电路的输入信号Uin可以通过第五电阻R5输入到运算放大器IC的反向输入端;运算放大器IC的反向输入端即为放大电路的输出端Uout。
当输入运算放大器模块21的信号的能量较小时,第三二极管D3两端的电压较小,第三二极管D3不导通,第三二极管D3的电阻RD3较大,第三二极管D3与第三电阻R3并联的等效电阻R较大,此时,运算放大器模块21的放大倍数为R/R5,运算放大器模块21对输入运算放大器模块21的信号进行放大;当输入运算放大器模块21的信号的能量较大时,第三二极管D3两端的电压大于第三二极管D3的导通电压,第三二极管D3导通,第三二极管的电阻RD3较小,R减小,此时,运算放大器模块21的放大倍数R/R5减小,减小输出运算放大器模块21的信号的能量,进而减小放大电路的放大倍数。
可选地,第三钳位模块包括第三二极管、第三电阻、第四电阻以及第五电阻;请参阅图10,图10是本发明实施例提供的一种放大电路的第七接线示意图。图10以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图10所示,所述第三二极管D3的正极通过所述第三电阻R3连接至 所述运算放大器模块21的第一输入端,所述第三二极管D3的负极连接至所述运算放大器模块21的输出端,所述第四电阻R4与所述第三二极管D3并联。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。所述放大电路的输入信号Uin可以通过第五电阻R5输入到运算放大器IC的反向输入端;运算放大器IC的反向输入端即为放大电路的输出端Uout。
当输入运算放大器模块21的信号的能量较小时,第三二极管D3两端的电压较小,第三二极管D3不导通,第三二极管D3的电阻RD3较大,第三二极管D3与第三电阻R4并联在与R3串联的等效电阻R较大,此时,运算放大器模块21的放大倍数为R/R5,运算放大器模块21对输入运算放大器模块21的信号进行放大;当输入运算放大器模块21的信号的能量较大时,第三二极管D3两端的电压大于第三二极管D3的导通电压,第三二极管D3导通,第三二极管的电阻RD3较小,R减小,此时,运算放大器模块21的放大倍数R/R5减小,减小输出运算放大器模块21的信号的能量,进而减小放大电路的放大倍数。
需要说明的是,在图8、图9以及图10所示的实施例中,第五电阻R5不是第三钳位模块必须的元件,对于运放稳定的运算放大器IC,放大电路的输入信号Uin也可以直接输入到运算放大器IC的反向输入端。
可以理解,在图8、图9以及图10所示的实施例中,放大电路的输入信号为正电流信号或正电压信号,当放大电路的输入信号为负电压信号或负电流信号时,第三二极管的正负极的连接方式分别与图8、图9以及图10所示的放大电路中第三二极管D3的正负极的连接方式相反。
请参阅图11,图11是本发明实施例提供的第三钳位模块的钳位前后的效果示意图。图11中实线为实际信号,虚线表示钳位后的信号。当信号的能量较小时,如图11右边曲线所示,第三钳位模块对输入的信号进行放大处理;当信号的能量较大时,如图12右边曲线所示,运算放大器模块21的放大倍数减小,以使其输出信号不超过第三二极管D3的导通电压。
本发明的第四实施例中,放大电路可以同时包括第一钳位模块第二钳位模块以及第三钳位模块。请参阅图12,图12是本发明实施例提供的一种放大电 路的第八接线示意图。详细的描述可以参见上述第一钳位模块第二钳位模块以及第三钳位模块中的相关描述,此处不再赘述。
需要说明的是,第一钳位模块中第一二极管D1以及第二钳位模块中的第二二极管D2也可以采用齐纳二极管或者TVS二极管,此时,二极管的导通电压为齐纳二极管或者TVS二极管的击穿电压。
还需要说明的是,本发明各个实施例中,第一参考电平、第二参考电平以及第三参考电平用于区分参考电平,其中第一参考电平、第二参考电平或第三参考电平可以相同,也可以不同。
相较于现有技术,本发明提供的放大电路可以通过位于运算放大器模块的前级电路、后级电路或反馈电路中的至少一处的调整模块,对放大电路的输入信号的放大倍数进行调整,使得放大电路以调整后的放大倍数对输入信号的能量进行放大后输出,进而实现放大电路的放大倍数根据输入信号的能量进行动态调整。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术 人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (15)

  1. 一种放大电路,特征在于,包括:运算放大器模块和调整模块;
    所述调整模块位于所述运算放大器模块的前级电路、后级电路或反馈电路中的至少一处,用于对所述放大电路的输入信号的放大倍数进行调整,使得所述放大电路以调整后的放大倍数对所述输入信号的能量进行放大后输出。
  2. 如权利要求1所述的放大电路,特征在于,所述调整模块对所述放大倍数的调整,使得当所述放大电路的输入信号的能量大于阈值时,所述输入信号的能量越大,所述放大电路对所述输入信号的放大倍数越小。
  3. 如权利要求1或2所述的放大电路,特征在于,所述调整模块包括第一钳位模块,所述第一钳位模块位于所述运算放大器模块的前级电路上,所述第一钳位模块连接所述运算放大器模块的第一输入端;
    所述第一钳位模块用于对所述运算放大器模块的输入信号进行调整。
  4. 如权利要求3所述的放大电路,特征在于,所述第一钳位模块包括第一二极管;所述第一二极管的第一端连接所述运算放大器模块的第一输入端;所述第一二极管的第二端连接第一参考电平;所述放大电路的输入端连接所述第一二极管的正极与所述运算放大器的第一输入端的公共端。
  5. 如权利要求3所述的放大电路,特征在于,所述第一钳位模块包括第一二极管以及第一电阻;所述第一二极管的第一端通过所述第一电阻连接所述运算放大器模块的第一输入端;所述第一二极管的第二端连接第一参考电平;所述放大电路的输入端连接所述第一二极管的第一端与所述第一电阻的公共端。
  6. 如权利要求1或2所述的放大电路,特征在于,所述调整模块包括第二钳位模块;所述第二钳位模块位于所述运算放大器模块的后级电路上,所述第二钳位模块连接所述运算放大器模块的输出端;
    所述第二钳位模块用于对所述运算放大器模块的输出信号进行调整。
  7. 如权利要求6所述的放大电路,特征在于,所述第二钳位模块包括:第二二极管;所述第二二极管的第一端连接所述运算放大器模块的输出端;所述第二二极管的第二端连接第二参考电平;所述放大电路的输出端连接所述第 二二极管与所述运算放大器模块的输出端的公共端。
  8. 如权利要求6所述的放大电路,特征在于,所述第二钳位模块包括:第二二极管以及第二电阻;所述第二二极管的第一端通过所述第二电阻连接所述运算放大器模块的输出端;所述第二二极管的第二端连接第二参考电平;所述放大电路的输出端的连接所述第二二极管与所述第二电阻的公共端。
  9. 如权利要求1或2所述的放大电路,特征在于,所述调整模块包括第三钳位模块,所述第三钳位模块位于所述运算放大器模块的反馈电路上;所述运算放大器模块的第一输入端连接所述第三钳位模块的第一端口;所述运算放大器模块的第二输入端连接第三参考电平;所述放大器模块的输出端连接所述第三钳位模块的第二端口;
    所述第三钳位模块具体用于:在输入所述运算放大器模块的信号的能量信息大于第一阈值时,减小所述运算放大器模块对所述运算放大器模块的输入信号的放大倍数。
  10. 如权利要求9所述的放大电路,特征在于,所述第三钳位模块包括第三二极管;所述第三二极管的第一端连接所述运算放大器模块的第一输入端;所述第三二极管的第二端连接所述运算放大器模块的输出端。
  11. 如权利要求9所述的放大电路,特征在于,所述第三钳位模块包括第三二极管及第三电阻;所述第三二极管的第一端连接所述运算放大器模块的第一输入端;所述第三二极管的第二端连接所述运算放大器模块的输出端;所述第三电阻与所述第三二极管并联。
  12. 如权利要求9所述的放大电路,特征在于,所述第三钳位模块包括第三二极管、第三电阻、第四电阻;所述第三二极管的第一端通过所述第三电阻连接至所述放大器模块的第一输入端,所述第三二极管的第二端连接至所述运算放大器模块的输出端,所述第四电阻与所述第三二极管并联。
  13. 一种激光测量装置,其特征在于,包括如权利要求1至12任一项所述的放大电路。
  14. 一种移动平台,其特征在于,包括:
    权利要求13所述的激光测量装置;和
    平台本体,所述激光测量装置安装在所述平台本体。
  15. 根据权利要求14所述的移动平台,其特征在于,所述移动平台包括无人飞行器、汽车和遥控车中的至少一种。
PCT/CN2017/078662 2017-03-29 2017-03-29 一种放大电路及激光测量装置、移动平台 WO2018176289A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/078662 WO2018176289A1 (zh) 2017-03-29 2017-03-29 一种放大电路及激光测量装置、移动平台
CN201780004466.0A CN108700648B (zh) 2017-03-29 2017-03-29 一种放大电路及激光测量装置、移动平台
CN202110391987.4A CN112965046A (zh) 2017-03-29 2017-03-29 一种激光雷达及移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078662 WO2018176289A1 (zh) 2017-03-29 2017-03-29 一种放大电路及激光测量装置、移动平台

Publications (1)

Publication Number Publication Date
WO2018176289A1 true WO2018176289A1 (zh) 2018-10-04

Family

ID=63674021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078662 WO2018176289A1 (zh) 2017-03-29 2017-03-29 一种放大电路及激光测量装置、移动平台

Country Status (2)

Country Link
CN (2) CN108700648B (zh)
WO (1) WO2018176289A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061970A1 (zh) * 2018-09-27 2020-04-02 深圳市大疆创新科技有限公司 一种测距装置及移动平台
CN111684300B (zh) * 2019-01-09 2023-08-08 深圳市大疆创新科技有限公司 一种信号放大方法及装置、测距装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939480A (en) * 1987-11-16 1990-07-03 Santa Barbara Research Center Method and apparatus for amplifying signals
CN1518210A (zh) * 2003-01-28 2004-08-04 ������������ʽ���� 光接收放大器电路和配有它的光拾取单元
US7193478B2 (en) * 2003-04-03 2007-03-20 Maxim Integrated Products, Inc. Signal transmission in opto-electronic devices by moving the quiescent component of a differential signal
CN101102160A (zh) * 2007-06-13 2008-01-09 华为技术有限公司 阈值电压调整单元、调整方法、限幅放大器及光接收机
CN201207034Y (zh) * 2008-02-01 2009-03-11 凯迈(洛阳)测控有限公司 一种光电转换前置放大电路
CN202019342U (zh) * 2011-05-13 2011-10-26 河南华南医电科技有限公司 基于max4465和lm386的心音放大电路
CN103545802A (zh) * 2013-11-01 2014-01-29 山东大学(威海) 一种新型igbt有源钳位保护电路
CN205989670U (zh) * 2016-08-31 2017-03-01 深圳市科华恒盛科技有限公司 一种高可靠的充电机车辆连接检测电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589682A (en) * 1995-06-07 1996-12-31 General Electric Company Photocurrent detector circuit with high sensitivity, fast response time, and large dynamic range
JPH10126167A (ja) * 1996-10-24 1998-05-15 Matsushita Electric Ind Co Ltd 光受信用前置増幅器
JP3504176B2 (ja) * 1998-12-02 2004-03-08 富士通株式会社 信号増幅回路
JP4927664B2 (ja) * 2007-08-14 2012-05-09 日本電信電話株式会社 前置増幅回路
CN103840777A (zh) * 2012-11-26 2014-06-04 西安威正电子科技有限公司 一种运放输入端口保护电路
US9450542B2 (en) * 2013-01-16 2016-09-20 Mitsubishi Electric Corporation Preamplifier, optical receiver, optical termination device, and optical communication system
CN103383545B (zh) * 2013-06-28 2016-07-06 中国航天科技集团公司第五研究院第五一三研究所 一种高速微小脉冲信号采集电路
CN104192054B (zh) * 2014-09-24 2016-08-17 奇瑞汽车股份有限公司 一种基于afs的激光雷达探测系统
CN104297760A (zh) * 2014-10-09 2015-01-21 中国科学院合肥物质科学研究院 车载脉冲式激光雷达系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4939480A (en) * 1987-11-16 1990-07-03 Santa Barbara Research Center Method and apparatus for amplifying signals
CN1518210A (zh) * 2003-01-28 2004-08-04 ������������ʽ���� 光接收放大器电路和配有它的光拾取单元
US7193478B2 (en) * 2003-04-03 2007-03-20 Maxim Integrated Products, Inc. Signal transmission in opto-electronic devices by moving the quiescent component of a differential signal
CN101102160A (zh) * 2007-06-13 2008-01-09 华为技术有限公司 阈值电压调整单元、调整方法、限幅放大器及光接收机
CN201207034Y (zh) * 2008-02-01 2009-03-11 凯迈(洛阳)测控有限公司 一种光电转换前置放大电路
CN202019342U (zh) * 2011-05-13 2011-10-26 河南华南医电科技有限公司 基于max4465和lm386的心音放大电路
CN103545802A (zh) * 2013-11-01 2014-01-29 山东大学(威海) 一种新型igbt有源钳位保护电路
CN205989670U (zh) * 2016-08-31 2017-03-01 深圳市科华恒盛科技有限公司 一种高可靠的充电机车辆连接检测电路

Also Published As

Publication number Publication date
CN108700648B (zh) 2021-05-04
CN108700648A (zh) 2018-10-23
CN112965046A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2018176288A1 (zh) 一种激光雷达以及基于激光雷达的时间测量方法
WO2020061967A1 (zh) 一种测距装置以及基于测距装置的时间测量方法
US11703590B2 (en) Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same
CN103457673B (zh) 提高apd光接收机饱和光功率的方法和装置
TWI434167B (zh) Automatic power control system, device, compensation voltage operation module and detection module
TWI505588B (zh) Laser diode automatic stabilized optical power pulse driving device
WO2018176289A1 (zh) 一种放大电路及激光测量装置、移动平台
JP2014062767A (ja) 受光回路、レーザレーダ
US11018637B2 (en) High dynamic range transimpedance amplifier
US9562808B2 (en) Light receiving circuit and light coupling device
CN110220541B (zh) 红外检测装置及红外光电传感器
CN102316644B (zh) 一种高精度led恒流驱动装置
US10715257B1 (en) Laser power calibration method, device and system
WO2021042326A1 (zh) 激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达
WO2022140979A1 (zh) 激光接收电路和激光雷达
JP2018040656A (ja) 距離測定装置
CN110676688B (zh) 驱动电路、激光雷达系统和驱动方法
WO2018176286A1 (zh) 激光脉冲发射装置、激光测量装置和移动平台
CN106451060B (zh) 一种激光器驱动电路
CN116400380A (zh) 激光雷达系统及激光信号强度确定方法
TWI710887B (zh) 電源供應裝置
JP6942452B2 (ja) 測距装置
WO2020061970A1 (zh) 一种测距装置及移动平台
CN112421366A (zh) 一种激光光源驱动电路及激光雷达
CN108966403B (zh) 转换式定电流led驱动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903089

Country of ref document: EP

Kind code of ref document: A1