WO2020061970A1 - 一种测距装置及移动平台 - Google Patents

一种测距装置及移动平台 Download PDF

Info

Publication number
WO2020061970A1
WO2020061970A1 PCT/CN2018/108153 CN2018108153W WO2020061970A1 WO 2020061970 A1 WO2020061970 A1 WO 2020061970A1 CN 2018108153 W CN2018108153 W CN 2018108153W WO 2020061970 A1 WO2020061970 A1 WO 2020061970A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
operational amplifier
measuring device
distance measuring
diode
Prior art date
Application number
PCT/CN2018/108153
Other languages
English (en)
French (fr)
Inventor
刘祥
洪小平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2018/108153 priority Critical patent/WO2020061970A1/zh
Publication of WO2020061970A1 publication Critical patent/WO2020061970A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/489Gain of receiver varied automatically during pulse-recurrence period
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G11/00Limiting amplitude; Limiting rate of change of amplitude ; Clipping in general
    • H03G11/02Limiting amplitude; Limiting rate of change of amplitude ; Clipping in general by means of diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers

Definitions

  • the present invention relates to the technical field of circuits, and in particular, to a ranging device and a mobile platform.
  • lidar In some electronic devices, such as lidar, they often involve collecting signals and amplifying the collected signals.
  • the energy of the signals collected by lidar usually has a wide range, that is, when the obstacle is closer to the lidar, The energy of the signal obtained by the lidar through the receiving tube is large; when the obstacle is far away from the lidar, the energy of the signal obtained by the receiving tube is small.
  • the electric signal input to the amplifier circuit is too large, the op amp of the amplifier circuit may be saturated. The saturation will cause distortion of the output signal, which will affect the measurement of distance by the lidar.
  • it takes a certain time for the lidar to return to normal after saturation So that the lidar can not continuously respond and generate a measurement blind zone.
  • an embodiment of the present invention provides a ranging device, including: a transmitting circuit for emitting a light pulse sequence; a photoelectric conversion circuit for sequentially receiving a plurality of light pulse sequences emitted by the transmitting circuit. Light pulses are respectively reflected back by the object, and the received multiple light pulse signals are sequentially converted into electrical pulse signals; the amplification circuit includes an operational amplifier and a clamping circuit; and the clamping circuit and the The input end and the output end of the operational amplifier are connected to sequentially clamp the plurality of electrical pulse signals, and the plurality of electrical pulse signals are sequentially input to the operational amplifier circuit for amplification after being clamped, wherein, The clamping circuit is used to make the magnitudes of the plurality of electric pulse signals within a certain range to prevent the operational amplifier circuit from saturating the output.
  • the clamping circuit includes a diode.
  • the diode is a Zener tube or a TVS tube.
  • the clamping circuit further includes a voltage dividing resistor.
  • one end of the voltage dividing resistor is connected to a reference voltage, and the other end is connected to an output terminal of the operational amplifier circuit.
  • the voltage dividing resistor includes at least two resistors.
  • one end of a diode of the clamping circuit is connected to the input signal, and the other end is connected to an output terminal of the operational amplifier.
  • the operational amplifier circuit is an inverting amplifier circuit or a forward amplifier circuit.
  • the amplifier circuit further includes a feedback circuit, and the feedback circuit is configured to adjust an amplification factor of the operational amplifier circuit.
  • the feedback circuit includes at least one of a resistor, a diode, and a capacitor.
  • any diode or capacitor of the feedback circuit is connected in parallel with several resistors of the feedback circuit.
  • resistors in the feedback circuit are connected in series to reduce parasitic parameters on the resistors in the feedback circuit, thereby achieving high bandwidth.
  • the feedback circuit includes three resistors, the three resistors are connected in series, wherein a first resistor of the three resistors is connected in parallel with a capacitor, and a second of the three resistors is connected in parallel.
  • the resistor is connected in parallel with the diode, and a third of the three resistors is connected in parallel with the diode.
  • the amplifying circuit provided by the present invention can be used to clamp the input signal of the amplifying circuit through the clamping circuit, so that after the input signal of the amplifying circuit is clamped, its size is within Fluctuations within a certain range to prevent the operational amplifier circuit from saturating the output.
  • the distance measuring device further includes: a sampling circuit for sampling an electric pulse signal from the amplifier circuit to obtain a sampling result; an arithmetic circuit for calculating the object and the object according to the sampling result The distance between the ranging devices is described.
  • the number of each circuit is at least two; the at least two transmitting circuits and the at least two photoelectric conversion circuits correspond one-to-one, each Each photoelectric conversion circuit is used to sequentially receive the optical pulse signals of multiple light pulses in the light pulse sequence emitted by the corresponding transmitting circuit and reflected back by the object; the at least two photoelectric conversion circuits and the at least two amplifying circuits are each There is a one-to-one correspondence, and each amplifying circuit is used to sequentially receive electrical pulse signals from the corresponding photoelectric conversion circuit.
  • two resistors of the voltage dividing resistor are connected in series, a connected end of the two resistors is connected to one end of the diode, and the other end of one of the two resistors is connected to a reference voltage, The other end of the other of the two resistors is connected to an output terminal of the operational amplifier.
  • the laser ranging device further includes a scanning module; the scanning module is configured to change the transmission direction of the laser pulse signal and emit the laser pulse signal, and the laser pulse signal reflected by the object passes through the scanning module and enters the laser pulse signal; Mentioned photoelectric conversion circuit.
  • the scanning module includes a driver and a prism with uneven thickness, and the driver is used to drive the prism to rotate to change the laser pulse signal passing through the prism to emit in different directions.
  • the scanning module includes two drivers and two prisms of uneven thickness arranged side by side, and the two drivers are respectively used to drive the two prisms to rotate in opposite directions; from the laser After the laser pulse signal of the transmitting device passes through the two prisms in sequence, the laser pulse signal is emitted and changed.
  • an embodiment of the present invention further provides a mobile platform.
  • the mobile platform includes any of the ranging device and the platform body described in the second aspect, and the ranging device is installed on the platform body.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, and a robot.
  • the reference voltage of the clamping circuit of the amplifying circuit can be dynamically adjusted according to the energy of the input signal, so as to make a stronger clamping and avoid saturation of the operational amplifier.
  • the ranging device and mobile platform used in the application can also achieve stronger clamp production due to the use of the amplifying circuit, avoiding saturation of the operational amplifier.
  • FIG. 1 is a schematic frame diagram of an amplifier circuit according to an embodiment of the present invention
  • FIG. 2 is a first wiring diagram of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 3 is a second wiring diagram of an amplifier circuit provided by an embodiment of the present invention.
  • FIG. 4 is a third wiring diagram of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 5 is a fourth wiring diagram of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing the effects of the first clamping module before and after the clamping provided by the embodiment of the present invention.
  • FIG. 7 is a fifth wiring diagram of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 8 is a sixth wiring diagram of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 9 is a seventh wiring diagram of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 10 is a schematic view showing the effects of the third clamping module before and after the clamping provided by the embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an eighth connection of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 12 is a ninth wiring diagram of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 13 is a schematic frame diagram of a distance measuring device according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an embodiment in which a distance measuring device according to an embodiment of the present invention uses a coaxial optical path.
  • the amplifying circuit provided by the embodiments of the present invention can be applied to a laser measurement device, and the laser measurement device may be an electronic device such as a laser radar, a laser ranging device, or the like.
  • the laser measurement device is configured to sense external environmental information, such as distance information, angle information, reflection intensity information, velocity information, and the like of an environmental target.
  • the laser measurement device may be a laser radar.
  • FIG. 1 is a schematic frame diagram of an amplifier circuit according to an embodiment of the present invention.
  • the amplifier circuit may include: an operational amplifier module 21 and an adjustment module 22; the adjustment module 22 is located in at least one of a pre-stage circuit, a post-stage circuit, or a feedback circuit of the op-amp module 21, It is used to adjust the amplification factor of the input signal of the amplifier circuit, so that the amplifier circuit amplifies the energy of the input signal with the adjusted amplification factor and outputs the amplified signal.
  • the amplification factor of the amplifier circuit is equal to the ratio of the output signal of the amplifier circuit to the input signal of the amplifier circuit.
  • the adjustment of the amplification factor by the adjustment module 22 is such that when the energy of the input signal of the amplification circuit is greater than a threshold value, the greater the energy of the input signal, the greater the The smaller the magnification.
  • the adjusting module 22 includes a first clamping module, and the first clamping module is located on a front stage circuit of the operational amplifier module 21.
  • the first clamping module is connected to an The first input terminal of the operational amplifier module 21; the second input terminal of the operational amplifier module 21 can be connected to a third reference level REF3; the first clamp module is used for input signals to the operational amplifier module 21 The adjustment is performed, and a signal is output through an output terminal of the operational amplifier module 21.
  • the first clamping module may include a first diode.
  • FIG. 2 is a schematic diagram of a first connection of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 2 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit.
  • the voltage signal is a positive voltage signal
  • the positive electrode of the first diode D1 is connected to the operational amplifier module.
  • the first input terminal of 21 ie, the inverting input terminal of the operational amplifier IC
  • the negative electrode of the first diode D1 is connected to the first reference level REF1
  • the input signal Uin of the amplifier circuit passes the first two
  • the output terminal of the operational amplifier IC is the output terminal Uout of the amplifier circuit.
  • the second input terminal of the operational amplifier module 21 (that is, the non-inverting input terminal of the operational amplifier IC) is connected to the first reference level REF3.
  • the first diode D1 When the voltage signal of the input amplifier circuit exceeds the conduction voltage drop of the first diode D1, the first diode D1 is turned on, thereby limiting the voltage signal input to the operational amplifier module 21 to the voltage of the first diode D1. In the vicinity of the on-voltage, saturation of the input operational amplifier module 21 is avoided.
  • connection manner of the positive and negative electrodes of the first diode is opposite to that of the positive and negative electrodes of the first diode D1 in the amplification circuit shown in FIG. 2. .
  • the first clamping module may include a first diode and a first resistor.
  • FIG. 3 is a schematic diagram of a second wiring of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 3 illustrates the connection relationship of the amplifier circuit by taking the operational amplifier module 21 as an operational amplifier IC as an example.
  • the positive electrode of the first diode D1 is connected to the first input terminal of the operational amplifier module 21 (that is, the operational amplifier IC) through the first resistor R1.
  • the negative electrode of the first diode D1 is connected to the first reference level REF1; the input signal Uin of the amplifier circuit passes the positive electrode of the first diode D1 and the first resistor 2212
  • the common terminal input; the output terminal of the operational amplifier IC is the output terminal Uout of the amplifier circuit.
  • the second input terminal of the operational amplifier module 21 (that is, the non-inverting input terminal of the operational amplifier IC) is connected to the third reference level REF3.
  • the voltage drop generated on the first resistor R1 increases.
  • the voltage drop generated on the first resistor R1 exceeds the turn-on voltage drop of the first diode D1
  • the first The diode D1 is turned on, thereby reducing the current signal input to the operational amplifier module 21 and avoiding saturation of the input operational amplifier module 21.
  • connection method of the positive and negative electrodes of the first diode is opposite to the connection method of the positive and negative electrodes of the first diode D1 in the amplification circuit shown in FIG. 3 .
  • the adjusting module 22 includes a second clamping module; the second clamping module is located on a rear stage circuit of the operational amplifier module 21, and the second clamping module is connected to an The output terminal of the operational amplifier module 21 is described; the second clamp module is used to adjust the output signal of the operational amplifier module 21.
  • the input signal of the amplifier circuit can be input to the first input terminal of the operational amplifier module; it can also be input to the first input terminal of the operational amplifier module 21 through the first clamp module;
  • the second input terminal of the operational amplifier module is connected to a third reference level REF3.
  • the second clamping module may include a second diode.
  • FIG. 4 is a schematic diagram of a third connection of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 4 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit.
  • the voltage signal is a positive voltage signal
  • the positive electrode of the second diode D2 is connected to the operation.
  • the output terminal of the amplifier module 21 (that is, the output terminal of the operational amplifier IC); the negative electrode of the second diode D2 is connected to the second reference level REF2; the output signal Uout of the amplifier circuit is from the second diode D2 is output from a common terminal of an output terminal of the operational amplifier IC.
  • the second diode D2 When the voltage signal of the output amplifier module 21 exceeds the conduction voltage drop of the second diode D2, the second diode D2 is turned on, thereby limiting the voltage signal of the input post-amplifier to the second diode D2 Near the on-state voltage to avoid saturation of the post-amp.
  • connection method of the positive and negative electrodes of the second diode is opposite to that of the second diode D2 in the amplification circuit shown in FIG. 4 .
  • the second clamping module may include a second diode and a second resistor.
  • FIG. 5 is a schematic diagram of a fourth connection of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 5 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit. As shown in FIG.
  • the anode of the second diode D2 passes through the first Two resistors R2 are connected to the output terminal of the operational amplifier module 21 (ie, the output terminal of the operational amplifier IC); the negative electrode of the second diode D2 is connected to the second reference level REF2; the output signal Uout of the amplifier circuit is from A common terminal of the second diode D2 and the second resistor R2 is output.
  • connection method of the positive and negative electrodes of the second diode is opposite to that of the positive and negative electrodes of the second diode D2 in the amplification circuit shown in FIG. 5. .
  • the input signal Uin of the amplifier circuit can be directly input to the first input terminal of the operational amplifier module 21 (that is, the inverting input terminal of the operational amplifier IC).
  • the non-inverting input terminal of the operational amplifier IC is connected to the third reference level REF3.
  • FIG. 6 is a schematic diagram of the effect of the first clamping module before and after the clamping provided by the embodiment of the present invention.
  • the solid line in FIG. 6 is the actual signal
  • the dashed straight line represents the on-voltage of the first diode D1
  • the dashed curve represents the signal after clamping.
  • the effect before and after the clamping of the second clamping module is also shown in FIG. 6.
  • the adjustment module 22 includes a third clamp module; the third clamp module is located on a feedback circuit of the operational amplifier module 21; and a first input of the operational amplifier module 21 Terminal is connected to the first port of the third clamping module; the output terminal of the operational amplifier module 21 is connected to the second port of the third clamping module; the third clamping module is specifically configured to: When the energy information of the signal of the operational amplifier module 21 is greater than the first threshold, the amplification factor of the input signal of the operational amplifier module 21 by the operational amplifier module 21 is reduced.
  • the input signal of the amplifier circuit can be input to the first input terminal of the operational amplifier module 21; the first input terminal of the operational amplifier module 21 can also be connected through the first clamp module; The second input terminal of the operational amplifier module 21 may be connected to a third reference level REF3.
  • the third clamping module may include a third diode and a fifth resistor.
  • FIG. 7 is a schematic diagram of a fifth connection of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 7 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit.
  • the anode of the third diode D3 is connected to the first input terminal of the operational amplifier module 21 ( That is, the inverting input terminal of the operational amplifier IC); the negative electrode of the third diode D3 is connected to the output terminal of the operational amplifier module 21 (that is, the output terminal of the operational amplifier IC).
  • the second input terminal of the operational amplifier module 21 (that is, the non-inverting input terminal of the operational amplifier IC) is connected to the third reference level REF3.
  • the input signal Uin of the amplifier circuit can be input to the inverting input terminal of the operational amplifier IC through the fifth resistor R5; the inverting input terminal of the operational amplifier IC is the output terminal Uout of the amplifier circuit.
  • the amplification factor of the operational amplifier module 21 is R D3 / R5.
  • the operational amplifier module 21 amplifies a signal input to the operational amplifier module 21.
  • the voltage is greater than the turn-on voltage of the third diode D3, the third diode D3 is turned on, and the resistance R D3 of the third diode is small.
  • the amplification factor R D3 / R5 of the operational amplifier module 21 decreases. , Reducing the energy of the signal outputting the operational amplifier module 21, thereby reducing the amplification factor of the amplifier circuit.
  • the third clamping module may include a third diode, a third resistor, and a fifth resistor.
  • FIG. 8 is a sixth wiring diagram of an amplifier circuit according to an embodiment of the present invention.
  • FIG. 8 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit.
  • the anode of the third diode D3 is connected to the first input terminal of the operational amplifier module 21 ( (Ie, the inverting input terminal of the operational amplifier IC); the negative electrode of the third diode D3 is connected to the output terminal of the operational amplifier module 21 (that is, the output terminal of the operational amplifier IC); the third resistor R3 and the The third diode D3 is connected in parallel.
  • the second input terminal of the operational amplifier module 21 (that is, the non-inverting input terminal of the operational amplifier IC) is connected to the third reference level REF3.
  • the input signal Uin of the amplifier circuit can be input to the inverting input terminal of the operational amplifier IC through the fifth resistor R5; the inverting input terminal of the operational amplifier IC is the output terminal Uout of the amplifier circuit.
  • the operational amplifier module 21 is a magnification other R / R5, operational amplifier module 21 on the signal input of the operational amplifier amplifying module 21;
  • the energy of the signal input to the operational amplifier module 21 is large, the voltage across the third diode D3 is greater than the on-voltage of the third diode D3, the third diode D3 is turned on, and the voltage of the third diode D3 is turned on.
  • the resistance R D3 is smaller, and R and the like are reduced. At this time, the amplification factor R and / R5 of the operational amplifier module 21 is reduced, the energy of the signal outputting the operational amplifier module 21 is reduced, and the amplification factor of the amplifier circuit is further reduced.
  • the third clamping module includes a third diode, a third resistor, a fourth resistor, and a fifth resistor; please refer to FIG. 9, which is a seventh wiring of an amplification circuit provided by an embodiment of the present invention schematic diagram.
  • FIG. 9 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit.
  • the anode of the third diode D3 is connected to the operational amplifier through the third resistor R3.
  • a first input terminal of the module 21, a negative electrode of the third diode D3 is connected to an output terminal of the operational amplifier module 21, and the fourth resistor R4 is connected in parallel with the third diode D3.
  • the second input terminal of the operational amplifier module 21 (that is, the non-inverting input terminal of the operational amplifier IC) is connected to the third reference level REF3.
  • the input signal Uin of the amplifier circuit can be input to the inverting input terminal of the operational amplifier IC through the fifth resistor R5; the inverting input terminal of the operational amplifier IC is the output terminal Uout of the amplifier circuit.
  • the amplification factor of the operational amplifier module 21 is equal to R / R5.
  • the signal is amplified; when the energy of the signal input to the operational amplifier module 21 is large, the voltage across the third diode D3 is greater than the on-voltage of the third diode D3, the third diode D3 is turned on, and the third The resistance R D3 of the diode is small, and R and the like are reduced. At this time, the amplification factor R and / R5 of the operational amplifier module 21 is reduced, and the energy of the signal output from the operational amplifier module 21 is reduced, thereby reducing the gain.
  • the fifth resistor R5 is not a necessary component of the third clamping module.
  • the input signal Uin of the amplification circuit It can also be directly input to the inverting input of the operational amplifier IC.
  • the input signal of the amplifier circuit is a positive current signal or a positive voltage signal.
  • the input signal of the amplifier circuit is a negative voltage signal or a negative current signal
  • the first The connection of the positive and negative electrodes of the three diodes is opposite to the connection of the positive and negative electrodes of the third diode D3 in the amplifier circuits shown in FIG. 7, FIG. 8, and FIG. 9.
  • FIG. 10 is a schematic diagram of the effect of the third clamping module before and after the clamping provided by the embodiment of the present invention.
  • the solid line in Figure 10 is the actual signal, and the dashed line represents the signal after clamping.
  • the third clamp module amplifies the input signal; when the energy of the signal is large, as shown in the right curve of FIG. 11, the amplification of the operational amplifier module 21 The multiple is reduced so that its output signal does not exceed the on-voltage of the third diode D3.
  • the amplification circuit may include a first clamping module, a second clamping module, and a third clamping module.
  • FIG. 11 is a schematic diagram of an eighth connection of an amplifier circuit according to an embodiment of the present invention.
  • first clamping module the second clamping module
  • third clamping module which are not described herein again.
  • FIG. 12 is a schematic diagram of a clamp circuit connection of an amplifier circuit according to an embodiment of the present invention.
  • These include: an operational amplifier circuit and a clamping circuit; the clamping circuit is used to clamp the input signal of the amplifier circuit, so that after the input signal of the amplifier circuit is clamped, its size fluctuates within a certain range To prevent the operational amplifier circuit from saturating the output.
  • the anode of the first diode D1 is connected to the signal input terminal Signal, and the anode of the first diode D1 is connected to the output terminal of the operational amplifier through a resistor R5.
  • the resistor R6 is connected to the reference voltage CLAP_REF, that is, R5 and R6 constitute a voltage dividing resistor, which can adjust the trigger position of a specific threshold.
  • the negative electrode of the first diode may be directly connected to the op amp.
  • the output terminals are connected; R2, R3, and R4 form a feedback circuit in series.
  • a capacitor C1 is connected in parallel at both ends of R2.
  • Diodes D3 and D4 are connected in parallel at both ends of R2.
  • the number of resistors in the feedback circuit may be 2, 4, 5, or more, and a parallel capacitor or a diode may be selected on each resistor. Such a setting may reduce parasitic parameters on the resistor in the feedback circuit. Makes the parasitic capacitance on the feedback resistor smaller, thus achieving high bandwidth.
  • a capacitor is connected in series with the feedback resistor. The capacitor can compensate the feedback resistor and ensure the stability of the feedback system.
  • the feedback circuit described above may not be included.
  • the anode of the fifth diode D5 is connected to the output terminal of the operational amplifier module through the seventh resistor R7, and the anode of the fifth diode D5 is connected to the reference voltage CLAP_REF_01.
  • the fifth diode D5 and the seventh resistor R7 may not be included.
  • the operational amplifier module When the energy of the signal input to the operational amplifier module is small, the voltage across the first diode D1 is low, and the operational amplifier module amplifies the signal input to the operational amplifier module. Since the input signal enters the inverting input terminal, the output signal is lower. Large, at this time the voltage divided to the negative electrode of the first diode is also higher, the voltage across the first diode becomes higher, and the input signal can obtain a higher range without the first diode conducting; When the energy of the signal of the operational amplifier module is large, the voltage across the first diode D1 is high, so that the first diode is turned on, and the current will flow through the first diode to CLAP_REF without flowing. It is amplified on the operational amplifier.
  • the operational amplifier module amplifies the signal input to the operational amplifier module. Since the input signal enters the inverting input terminal, the output signal is small. At this time, the voltage divided to the negative electrode of the first diode is also lower. The turn-on voltage difference becomes smaller and the input signal rises slightly, which will cause the first diode to be turned on. Therefore, the high value of the input voltage can be limited to a smaller range.
  • the reference voltage of the first diode D1 fluctuates with the signal. When the signal is strong, it outputs a low level. At this time, the reference voltage of the first diode D1 will follow. The downward swing makes the first diode D1 be conductive when the signal is slightly larger, and plays a stronger role in making the clamp.
  • the inverting amplifier in FIG. 12 can also be a forward amplifier, and the corresponding strong clamp can also be obtained by adjusting the circuit.
  • first diode D1, the second diode D2, the third diode D3, the fourth diode D4, and the fifth diode D5 may also be Zener diodes or TVS diodes.
  • the on-voltage of the diode is the breakdown voltage of the Zener diode or TVS diode.
  • first reference level, the second reference level, and the third reference level are used to distinguish the reference levels, where the first reference level, the second reference level, or The third reference level may be the same or different.
  • the amplifier circuit provided by the present invention includes an operational amplifier circuit and a clamp circuit; the clamp circuit is configured to clamp an input signal of the amplifier circuit so that the input signal of the amplifier circuit passes through After clamping, its size fluctuates within a certain range to prevent the operational amplifier circuit from saturating the output.
  • the reference voltage of the clamping circuit of the amplifying circuit can be dynamically adjusted according to the energy of the input signal, so as to make a stronger clamping and avoid saturation of the operational amplifier.
  • An embodiment of the present invention further provides a distance measuring device.
  • the distance measuring device includes a transmitting circuit for emitting a light pulse sequence; a photoelectric conversion circuit for sequentially receiving a plurality of light pulse sequences emitted by the transmitting circuit. The light pulses are respectively reflected back by the light pulse signal of the object, and the received plurality of light pulse signals are sequentially converted into electrical pulse signals; any one of the amplifying circuits described in the first aspect is configured to sequentially receive the photoelectric conversion signals from the photoelectric conversion.
  • the clamping circuit is used to sequentially clamp the multiple electrical pulse signals, and the multiple electrical pulse signals are sequentially input to the operational amplifier circuit after being clamped Amplifying, wherein the clamping circuit is used to make the magnitudes of the plurality of electric pulse signals within a certain range to prevent the operational amplifier circuit from saturating the output.
  • the amplifying circuit may be directly connected to the photoelectric conversion circuit, or may be connected to the photoelectric conversion circuit through other circuits.
  • the distance measuring device further includes: a sampling circuit for sampling an electric pulse signal from the amplifier circuit to obtain a sampling result; an arithmetic circuit for calculating the object and the object according to the sampling result The distance between the ranging devices is described.
  • the number of each circuit is at least two; the at least two transmitting circuits and the at least two photoelectric conversion circuits correspond one-to-one, each Each photoelectric conversion circuit is used to sequentially receive the optical pulse signals of multiple light pulses in the light pulse sequence emitted by the corresponding transmitting circuit and reflected back by the object; the at least two photoelectric conversion circuits and the at least two amplifying circuits are each There is a one-to-one correspondence, and each amplifying circuit is used to sequentially receive electrical pulse signals from the corresponding photoelectric conversion circuit.
  • An embodiment of the present invention further provides a mobile platform.
  • the mobile platform includes any one of the ranging device and the platform body described in the second aspect, and the ranging device is installed on the platform body.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, and a robot.
  • the light emitting device provided by each embodiment of the present invention can be applied to a ranging device, and the ranging device can be an electronic device such as a laser radar, a laser ranging device, or the like.
  • the ranging device is configured to sense external environmental information, such as distance information, azimuth information, reflection intensity information, velocity information, and the like of environmental targets.
  • the distance measuring device can detect the distance between the detection object and the distance measuring device by measuring a time of light propagation between the distance measuring device and the detection object, that is, a time-of-flight (TOF).
  • TOF time-of-flight
  • the ranging device can also detect the distance from the probe to the ranging device by other techniques, such as a ranging method based on phase shift measurement, or a ranging method based on frequency shift measurement. There are no restrictions.
  • the ranging device 100 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130, and an operation circuit 140.
  • the transmitting circuit 110 may transmit a light pulse sequence (for example, a laser pulse sequence).
  • the receiving circuit 120 may receive a light pulse sequence reflected by the detected object, and perform photoelectric conversion on the light pulse sequence to obtain an electric signal.
  • the electric signal may be processed and then output to the sampling circuit 130.
  • the sampling circuit 130 may sample the electrical signal to obtain a sampling result.
  • the arithmetic circuit 140 may determine the distance between the distance measuring device 100 and the detected object based on the sampling result of the sampling circuit 130.
  • the ranging device 100 may further include a control circuit 150, which may control other circuits, for example, may control the working time of each circuit and / or set parameters of each circuit.
  • a control circuit 150 may control other circuits, for example, may control the working time of each circuit and / or set parameters of each circuit.
  • the ranging device shown in FIG. 13 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit
  • the embodiments of the present application are not limited thereto.
  • the transmitting circuit, the receiving circuit, the sampling circuit, and the arithmetic The number of any one of the circuits may be at least two.
  • the distance-measuring device 100 may further include a scanning module 160 configured to change a laser pulse sequence emitted by the transmitting circuit and emit the laser pulse sequence.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as a measurement.
  • the distance measuring module 150 may be independent of other modules, such as the scanning module 160.
  • the distance measuring device may use a coaxial optical path, that is, the light beam emitted by the distance measuring device and the reflected light beam share at least part of the optical path in the distance measuring device.
  • the distance measuring device may also use an off-axis optical path, that is, the light beam emitted by the distance measuring device and the reflected light beam are transmitted along different optical paths in the distance measuring device, respectively.
  • FIG. 14 shows a schematic diagram of an embodiment of the distance measuring device of the present invention using a coaxial optical path.
  • the ranging device 100 includes a light transmitting and receiving device 110, and the light transmitting and receiving device 110 includes a light source 103 (including the above-mentioned transmitting circuit), a collimating element 104, a detector 105 (may include the above-mentioned receiving circuit, sampling circuit, and arithmetic circuit) and an optical path change Element 106.
  • the optical transceiver device 110 is configured to transmit a light beam, receive the returned light, and convert the returned light into an electrical signal.
  • the light source 103 is used to emit a light beam. In one embodiment, the light source 103 may emit a laser beam.
  • the laser beam emitted by the light source 103 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 104 is disposed on the exit light path of the light source, and is used to collimate the light beam emitted from the light source 103 and collimate the light beam emitted from the light source 103 into parallel light.
  • the collimating element is also used to focus at least a portion of the reflected light reflected by the probe.
  • the collimating element 104 may be a collimating lens or other elements capable of collimating a light beam.
  • the transmitting light path and the receiving light path in the ranging device are combined before the collimating element 104 by the optical path changing element 106, so that the transmitting light path and the receiving light path can share the same collimating element, so that the optical path More compact.
  • the light source 103 and the detector 105 may also use respective collimating elements, and the optical path changing element 106 may be disposed behind the collimating elements.
  • the light path changing element may use a small area mirror to Combine the transmitting and receiving optical paths.
  • the light path changing element may also be a reflector with a through hole, wherein the through hole is used to transmit the light emitted from the light source 103, and the reflector is used to reflect the returned light to the detector 105. This can reduce the situation that the bracket of the small mirror can block the return light in the case of using a small mirror.
  • the optical path changing element is offset from the optical axis of the collimating element 104.
  • the light path changing element may also be located on the optical axis of the collimating element 104.
  • the ranging device 100 further includes a scanning module 102.
  • the scanning module 102 is placed on the outgoing light path of the optical transceiver 110.
  • the scanning module 102 is used to change the transmission direction of the collimated light beam 119 emitted by the collimating element 104 and project it to the external environment, and project the return light onto the collimating element 104 .
  • the returned light is focused on the detector 105 via the collimating element 104.
  • the scanning module 102 may include one or more optical elements, such as a lens, a mirror, a prism, a grating, an optical phased array, or any combination of the foregoing optical elements.
  • multiple optical elements of the scanning module 102 can rotate around a common axis 109, and each rotating optical element is used to continuously change the propagation direction of the incident light beam.
  • multiple optical elements of the scanning module 102 can be rotated at different rotation speeds.
  • multiple optical elements of the scan module 102 may be rotated at substantially the same rotation speed.
  • multiple optical elements of the scanning module may also rotate around different axes. In some embodiments, multiple optical elements of the scanning module may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 102 includes a first optical element 114 and a driver 116 connected to the first optical element 114.
  • the driver 116 is configured to drive the first optical element 114 to rotate about the rotation axis 109, so that the first optical element 114 is changed.
  • the first optical element 114 projects the collimated light beam 119 to different directions.
  • the angle between the direction of the collimated light beam 119 after being changed by the first optical element and the rotation axis 109 changes with the rotation of the first optical element 114.
  • the first optical element 114 includes a pair of opposing non-parallel surfaces through which a collimated light beam 119 passes.
  • the first optical element 114 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the first optical element 114 includes a wedge-shaped prism, which is directed toward the straight beam 119 for refraction. In one embodiment, the first optical element 114 is coated with an antireflection coating, and the thickness of the antireflection coating is equal to the wavelength of the light beam emitted by the light source 103, which can increase the intensity of the transmitted light beam.
  • the scanning module 102 further includes a second optical element 115 that rotates around the rotation axis 109.
  • the rotation speed of the second optical element 115 is different from the rotation speed of the first optical element 114.
  • the second optical element 115 is used to change the direction of the light beam projected by the first optical element 114.
  • the second optical element 115 is connected to another driver 117, and the driver 117 drives the second optical element 115 to rotate.
  • the first optical element 114 and the second optical element 115 can be driven by different drivers, so that the rotation speeds of the first optical element 114 and the second optical element 115 are different, so that the collimated light beam 119 is projected into different directions of the external space and can be scanned Large spatial range.
  • the controller 118 controls the drivers 116 and 117 to drive the first optical element 114 and the second optical element 115, respectively.
  • the rotation speeds of the first optical element 114 and the second optical element 115 can be determined according to the area and pattern expected to be scanned in practical applications.
  • the drivers 116 and 117 may include motors or other driving devices.
  • the second optical element 115 includes a pair of opposing non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 115 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the second optical element 115 includes a wedge-shaped prism. In one embodiment, the second optical element 115 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
  • the rotation of the scanning module 102 can project light into different directions, such as directions 111 and 113, so as to scan the space around the ranging device 100.
  • directions 111 and 113 are directions that are projected by the scanning module 102.
  • the scanning module 102 receives the return light 112 reflected by the detection object 101 and projects the return light 112 onto the collimating element 104.
  • the collimating element 104 condenses at least a part of the return light 112 reflected by the probe 101.
  • the collimating element 104 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
  • the detector 105 and the light source 103 are placed on the same side of the collimating element 104. The detector 105 is used to convert at least a part of the returned light passing through the collimating element 104 into an electrical signal.
  • the light source 103 may include a laser diode through which laser light in the nanosecond range is emitted.
  • the laser pulse emitted by the light source 103 lasts for 10 ns.
  • the laser pulse receiving time may be determined, for example, the laser pulse receiving time is determined by detecting a rising edge time and / or a falling edge time of an electrical signal pulse. In this way, the ranging device 100 can calculate the TOF by using the pulse reception time information and the pulse transmission time information, thereby determining the distance between the detection object 101 and the distance measurement device 100.
  • the distance and orientation detected by the ranging device 100 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the ranging device according to the embodiment of the present invention can be applied to a mobile platform, and the ranging device can be installed on the platform body of the mobile platform.
  • a mobile platform with a ranging device can measure the external environment, for example, measuring the distance between the mobile platform and an obstacle for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping on the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remotely controlled vehicle, a robot, and a camera.
  • the platform body is the fuselage of the unmanned aerial vehicle.
  • the ranging device is applied to a car
  • the platform body is the body of the car.
  • the car may be a self-driving car or a semi-autonomous car, and there is no limitation here.
  • the platform body is the body of the remote control car.
  • the platform body is a robot.
  • the ranging device is applied to a camera, the platform body is the camera itself.
  • the present invention provides the above-mentioned light emitting device, ranging device, and mobile platform to provide a laser emission solution that meets human eye safety requirements.
  • the circuit in the device can ensure that the laser radiation value does not exceed Specifications to ensure the safety of the laser device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Amplifiers (AREA)

Abstract

一种测距装置(100),包括:发射电路(110),用于出射光脉冲序列;光电转换电路(120),用于依次接收该发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号,以及将接收的多个光脉冲信号依次转换成电脉冲信号;放大电路,包括运算放大器(21)和钳位电路;该钳位电路分别与运算放大器(21)的输入端和输出端连接,用于依次对该多个电脉冲信号进行钳位,该多个电脉冲信号经过钳位后依次输入至运算放大器(21)电路进行放大,其中,该钳位电路用于使得该多个电脉冲信号的大小位于一定范围内,从而可以实现放大电路的钳位电路的参考电压根据输入信号的能量进行动态调整,起到更强的钳制作用,以防止该运算放大器(21)电路饱和输出。

Description

一种测距装置及移动平台 技术领域
本发明涉及电路技术领域,尤其涉及一种测距装置及移动平台。
背景技术
在一些电子设备,如激光雷达往往会涉及对信号采集以及对采集的信号进行放大处理,然而激光雷达采集的信号的能量通常具有较宽的范围,即:当障碍物距离激光雷达较近时,激光雷达通过接收管获取到的信号的能量较大;当障碍物距离激光雷达较远时,通过接收管获取到的信号的能量较小。当放大电路输入的电信号过大时,可能造成放大电路的运放饱和,饱和会造成输出信号的失真,进而影响激光雷达对距离的测量;而且,饱和后激光雷达恢复到正常需要一定的时间,使得激光雷达不能连续响应而产生测量盲区。
发明内容
第一方面,本发明实施例提供了一种一种测距装置,包括:发射电路,用于出射光脉冲序列;光电转换电路,用于依次接收所述发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号,以及将所述接收的多个光脉冲信号依次转换成电脉冲信号;放大电路,包括运算放大器和钳位电路;所述钳位电路分别与所述运算放大器的输入端和输出端连接,用于依次对所述多个电脉冲信号进行钳位,所述多个电脉冲信号经过钳位后依次输入至所述运算放大器电路进行放大,其中,所述钳位电路用于使得所述多个电脉冲信号的大小位于一定范围内,以防止所述运算放大器电路饱和输出。
可选地,所述钳位电路包括二极管。
可选地,所述二极管是齐纳管或TVS管。
可选地,所述钳位电路还包括分压电阻。
可选地,所述分压电阻的一端连接于参考电压,另一端连接于所述运算放大器电路的输出端。
可选地,所述分压电阻包括至少两个电阻。
可选地,所述钳位电路的二极管的一端连接于所述输入信号,另一端连接 于所述运算放大器的输出端。
可选地,所述运算放大器电路为反相放大器电路或正向放大器电路。
可选地,所述放大电路还包括反馈电路,所述反馈电路用于对所述运算放大器电路的放大倍数进行调整。
可选地,所述反馈电路包括电阻、二极管、电容中的至少一项。
可选地,所述反馈电路的任一个二极管或任一个电容与所述反馈电路的若干个电阻并联连接。
可选地,所述反馈电路中的若干个电阻之间串联连接,以减小所述反馈电路中电阻上的寄生参数,从而实现高带宽。
可选地,所述反馈电路中包括三个电阻,所述三个电阻串联连接,其中,所述三个电阻中的第一个电阻与电容并联连接,所述三个电阻中的第二个电阻与二极管并联连接,所述三个电阻中的第三个电阻与二极管并联连接。
相较于现有技术,本发明提供的放大电路可以通过所述钳位电路用于对所述放大电路的输入信号进行钳位,使得所述放大电路的输入信号经过钳位后,其大小在一定范围内波动以防止所述运算放大器电路饱和输出。
可选地,所述测距装置还包括:采样电路,用于对来自所述放大电路的电脉冲信号进行采样,获得采样结果;运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
可选地,所述发射电路、光电转换电路和所述放大电路中,每个电路的数量为至少2个;所述至少2个发射电路和所述至少2个光电转换电路一一对应,每个光电转换电路用于依次接收对应的发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号;所述至少2个光电转换电路和所述至少2个放大电路一一对应,每个放大电路用于依次接收来自对应的光电转换电路的电脉冲信号。
可选地,所述分压电阻中的两个电阻串联,所述两个电阻的相连端与所述二极管的一端相连,所述两个电阻中的其中一个电阻的另一端连接于参考电压,所述两个电阻中的另一个电阻的另一端连接至所述运算放大器的输出端。
可选地,所述激光测距装置还包括扫描模块;所述扫描模块用于改变所述 激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述光电转换电路。
可选地,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
可选地,所述扫描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
第二方面,本发明实施例还提供了一种移动平台,所述移动平台包括第二方面所述的任一测距装置以及平台本体,所述测距装置安装在所述平台本体。
可选地,所述移动平台包括无人飞行器、汽车和机器人中的至少一种。
通过该放大电路可以实现放大电路的钳位电路的参考电压根据输入信号的能量进行动态调整,起到更强的钳制作用,避免运放饱和。其应用的测距装置以及移动平台由于采用了该放大电路也可以实现更强的钳制作用,避免运放饱和。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种放大电路的示意性框架图;
图2是本发明实施例提供的一种放大电路的第一接线示意图;
图3是本发明实施例提供的一种放大电路的第二接线示意图;
图4是本发明实施例提供的一种放大电路的第三接线示意图;
图5是本发明实施例提供的一种放大电路的第四接线示意图;
图6是本发明实施例提供的第一钳位模块的钳位前后的效果示意图;
图7是本发明实施例提供的一种放大电路的第五接线示意图;
图8是本发明实施例提供的一种放大电路的第六接线示意图;
图9是本发明实施例提供的一种放大电路的第七接线示意图;
图10是本发明实施例提供的第三钳位模块的钳位前后的效果示意图;
图11是本发明实施例提供的一种放大电路的第八接线示意图;
图12是本发明实施例提供的一种放大电路的第九接线示意图;
图13是本发明实施例提供的种测距装置的示意性框架图;
图14是本发明实施例提供的测距装置采用同轴光路的一种实施例的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
可以理解,本发明各个实施例提供的放大电路可以应用于激光测量装置,该激光测量装置可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,激光测量装置用于感测外部环境信息,例如,环境目标的距离信息、角度信息、反射强度信息、速度信息等。所述激光测量装置可以为激光雷达。
请参阅图1,图1是本发明实施例提供的一种放大电路的示意性框架图。如图1所示,该放大电路可以包括:运算放大器模块21和调整模块22;所述调整模块22位于所述运算放大器模块21的前级电路、后级电路或反馈电路中的至少一处,用于对所述放大电路的输入信号的放大倍数进行调整,使得所述放大电路以调整后的放大倍数对所述输入信号的能量进行放大后输出。
可以理解,放大电路的放大倍数等于放大电路的输出信号与放大电路的输入信号的比值。
可以理解,所述调整模块22对所述放大倍数的调整,使得当所述放大电路的输入信号的能量大于阈值时,所述输入信号的能量越大,所述放大电路对所述输入信号的放大倍数越小。
本发明的第一实施例中,所述调整模块22包括第一钳位模块,所述第一 钳位模块位于所述运算放大器模块21的前级电路上,所述第一钳位模块连接所述运算放大器模块21的第一输入端;所述运算放大器模块21的第二输入端可以连接第三参考电平REF3;所述第一钳位模块用于对所述运算放大器模块21的输入信号进行调整,并通过所述运算放大器模块21的输出端输出信号。
可选地,当放大电路的输入信号为电压信号时,第一钳位模块可以包括第一二极管。请参阅图2,图2是本发明实施例提供的一种放大电路的第一接线示意图。图2以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图2所示,在电压信号为正电压信号时,所述第一二极管D1的正极连接运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第一二极管D1的负极连接第一参考电平REF1;所述放大电路的输入信号Uin通过所述第一二极管D1的正极与运算放大器IC的反向输入端的公共端输入;运算放大器IC的输出端即为放大电路的输出端Uout。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第一参考电平REF3。
当输入放大电路的电压信号超过了第一二极管D1的导通压降时,第一二极管D1导通,进而将输入运算放大器模块21的电压信号限制在第一二极管D1的导通电压附近,避免输入运算放大器模块21的饱和。
可以理解,当放大电路的输入信号为负电压信号时,第一二极管的正负极的连接方式与图2所示的放大电路中第一二极管D1的正负极的连接方式相反。
可选地,当放大电路的输入信号为电流信号时,第一钳位模块可以包括第一二极管以及第一电阻。请参阅图3,图3是本发明实施例提供的一种放大电路的第二接线示意图。图3以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系。如图3所示,在电流信号为正电流信号时,所述第一二极管D1的正极通过所述第一电阻R1连接所述运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第一二极管D1的负极连接第一参考电平REF1;所述放大电路的输入信号Uin通过所述第一二极管D1的正极与所述第一电阻2212的公共端输入;运算放大器IC的输出端即为放大电路的输出端Uout。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。
当输入放大电路的电流信号增大时,第一电阻R1上产生的压降增大,当第一电阻R1上产生的压降超过了第一二极管D1的导通压降时,第一二极管D1导通,进而降低将输入到运算放大器模块21的电流信号,避免输入运算放大器模块21的饱和。
可以理解,当放大电路的输入信号为负电流信号时,第一二极管的正负极的连接方式与图3所示的放大电路中第一二极管D1的正负极的连接方式相反。
本发明的第二实施例中,所述调整模块22包括第二钳位模块;所述第二钳位模块位于所述运算放大器模块21的后级电路上,所述第二钳位模块连接所述运算放大器模块21的输出端;所述第二钳位模块用于对所述运算放大器模块21的输出信号进行调整。可以理解,所述放大电路的输入信号可以输入到所述运算放大器模块的第一输入端;也可以通过所述第一钳位模块输入到所述运算放大器模块21的第一输入端;所述运算放大器模块的第二输入端连接第三参考电平REF3。
可选地,当放大电路的输入信号为电压信号时,第二钳位模块可以包括第二二极管。请参阅图4,图4是本发明实施例提供的一种放大电路的第三接线示意图。图4以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图4所示,在电压信号为正电压信号时,所述第二二极管D2的正极连接所述运算放大器模块21的输出端(即运算放大器IC的输出端);所述第二二极管D2的负极连接第二参考电平REF2;所述放大电路的输出信号Uout从所述第二二极管D2与所述运算放大器IC的输出端的公共端输出。
当输出放大器模块21的电压信号超过了第二二极管D2的导通压降时,第二二极管D2导通,进而将输入后级运放的电压信号限制在第二二极管D2的导通电压附近,避免后记运放的饱和。
可以理解,当放大电路的输入信号为负电压信号时,第二二极管的正负极的连接方式与图4所示的放大电路中第二二极管D2的正负极的连接方式相反。
可选地,当放大电路的输入信号为电流信号时,所述第二钳位模块可以包括:第二二极管以及第二电阻。请参阅图5,图5是本发明实施例提供的一种放大电路的第四接线示意图。图5以运算放大器模块21为运算放大器IC为例 来说明放大电路的连接关系,如图5所示,在电流信号为正电流信号时,所述第二二极管D2的正极通过所述第二电阻R2连接所述运算放大器模块21的输出端(即运算放大器IC的输出端);所述第二二极管D2的负极连接第二参考电平REF2;所述放大电路的输出信号Uout从所述第二二极管D2与所述第二电阻R2的公共端输出。
当输出运算放大器模块21的电流信号增大时,第二电阻R2上产生的压降增大,当第二电阻R2上产生的压降超过了第二二极管D2的导通压降时,第二二极管D2导通,进而降低将输出的电流信号,避免后记运放的饱和。
可以理解,当放大电路的输入信号为负电流信号时,第二二极管的正负极的连接方式与图5所示的放大电路中第二二极管D2的正负极的连接方式相反。
可以理解,在图4或图5所示的放大电路接线示意图中,所述放大电路的输入信号Uin可以直接输入到运算放大器模块21的第一输入端(即运算放大器IC的反向输入端),运算放大器IC的同向输入端连接第三参考电平REF3。
请参阅图6,图6是本发明实施例提供的第一钳位模块的钳位前后的效果示意图。图6中实线为实际信号,虚直线表示第一二极管D1的导通电压,虚曲线表示钳位后的信号。同理,第二钳位模块的钳位前后的效果也如图6所示。
本发明的第三实施例中,所述调整模块22包括第三钳位模块;所述第三钳位模块位于所述运算放大器模块21的反馈电路上;所述运算放大器模块21的第一输入端连接所述第三钳位模块的第一端口;所述运算放大器模块21的输出端连接所述第三钳位模块的第二端口;所述第三钳位模块具体用于:在输入所述运算放大器模块21的信号的能量信息大于第一阈值时,减小所述运算放大器模块21对所述运算放大器模块21的输入信号的放大倍数。
可以理解,所述放大电路的输入信号可以输入到所述运算放大器模块21的第一输入端;也可以通过所述第一钳位模块连接所述运算放大器模块21的第一输入端;所述运算放大器模块21的第二输入端可以连接第三参考电平REF3。
可选地,第三钳位模块可以包括第三二极管以及第五电阻。请参阅图7,图7是本发明实施例提供的一种放大电路的第五接线示意图。图7以运算放大 器模块21为运算放大器IC为例来说明放大电路的连接关系,如图7所示,所述第三二极管D3的正极连接所述运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第三二极管D3的负极连接所述运算放大器模块21的输出端(即运算放大器IC的输出端)。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。所述放大电路的输入信号Uin可以通过第五电阻R5输入到运算放大器IC的反向输入端;运算放大器IC的反向输入端即为放大电路的输出端Uout。
当输入运算放大器模块21的信号的能量较小时,第三二极管D3两端的电压较小,第三二极管D3不导通,第三二极管的电阻R D3较大,此时,运算放大器模块21的放大倍数为R D3/R5,运算放大器模块21对输入运算放大器模块21的信号进行放大;当输入运算放大器模块21的信号的能量较大时,第三二极管D3两端的电压大于第三二极管D3的导通电压,第三二极管D3导通,第三二极管的电阻R D3较小,此时,运算放大器模块21的放大倍数R D3/R5减小,减小输出运算放大器模块21的信号的能量,进而减小放大电路的放大倍数。
可选地,第三钳位模块可以包括第三二极管、第三电阻以及第五电阻。请参阅图8,图8是本发明实施例提供的一种放大电路的第六接线示意图。图8以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图8所示,所述第三二极管D3的正极连接所述运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第三二极管D3的负极连接所述运算放大器模块21的输出端(即运算放大器IC的输出端);所述第三电阻R3与所述第三二极管D3并联。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。所述放大电路的输入信号Uin可以通过第五电阻R5输入到运算放大器IC的反向输入端;运算放大器IC的反向输入端即为放大电路的输出端Uout。
当输入运算放大器模块21的信号的能量较小时,第三二极管D3两端的电压较小,第三二极管D3不导通,第三二极管D3的电阻R D3较大,第三二极管D3与第三电阻R3并联的等效电阻R 较大,此时,运算放大器模块21 的放大倍数为R /R5,运算放大器模块21对输入运算放大器模块21的信号进行放大;当输入运算放大器模块21的信号的能量较大时,第三二极管D3两端的电压大于第三二极管D3的导通电压,第三二极管D3导通,第三二极管的电阻R D3较小,R 减小,此时,运算放大器模块21的放大倍数R /R5减小,减小输出运算放大器模块21的信号的能量,进而减小放大电路的放大倍数。
可选地,第三钳位模块包括第三二极管、第三电阻、第四电阻以及第五电阻;请参阅图9,图9是本发明实施例提供的一种放大电路的第七接线示意图。图9以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图9所示,所述第三二极管D3的正极通过所述第三电阻R3连接至所述运算放大器模块21的第一输入端,所述第三二极管D3的负极连接至所述运算放大器模块21的输出端,所述第四电阻R4与所述第三二极管D3并联。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。所述放大电路的输入信号Uin可以通过第五电阻R5输入到运算放大器IC的反向输入端;运算放大器IC的反向输入端即为放大电路的输出端Uout。
当输入运算放大器模块21的信号的能量较小时,第三二极管D3两端的电压较小,第三二极管D3不导通,第三二极管D3的电阻R D3较大,第三二极管D3与第三电阻R4并联在与R3串联的等效电阻R 较大,此时,运算放大器模块21的放大倍数为R /R5,运算放大器模块21对输入运算放大器模块21的信号进行放大;当输入运算放大器模块21的信号的能量较大时,第三二极管D3两端的电压大于第三二极管D3的导通电压,第三二极管D3导通,第三二极管的电阻R D3较小,R 减小,此时,运算放大器模块21的放大倍数R /R5减小,减小输出运算放大器模块21的信号的能量,进而减小放大电路的放大倍数。
需要说明的是,在图7、图8以及图9所示的实施例中,第五电阻R5不是第三钳位模块必须的元件,对于运放稳定的运算放大器IC,放大电路的输入信号Uin也可以直接输入到运算放大器IC的反向输入端。
可以理解,在图7、图8以及图9所示的实施例中,放大电路的输入信号为正电流信号或正电压信号,当放大电路的输入信号为负电压信号或负电流信号时,第三二极管的正负极的连接方式分别与图7、图8以及图9所示的放大电路中第三二极管D3的正负极的连接方式相反。
请参阅图10,图10是本发明实施例提供的第三钳位模块的钳位前后的效果示意图。图10中实线为实际信号,虚线表示钳位后的信号。当信号的能量较小时,如图10右边曲线所示,第三钳位模块对输入的信号进行放大处理;当信号的能量较大时,如图11右边曲线所示,运算放大器模块21的放大倍数减小,以使其输出信号不超过第三二极管D3的导通电压。
本发明的第四实施例中,放大电路可以同时包括第一钳位模块第二钳位模块以及第三钳位模块。请参阅图11,图11是本发明实施例提供的一种放大电路的第八接线示意图。详细的描述可以参见上述第一钳位模块第二钳位模块以及第三钳位模块中的相关描述,此处不再赘述。
请参阅图12,图12是本发明实施例提供的一种放大电路的钳位电路连接示意图。其中包括:运算放大器电路和钳位电路;所述钳位电路用于对所述放大电路的输入信号进行钳位,使得所述放大电路的输入信号经过钳位后,其大小在一定范围内波动以防止所述运算放大器电路饱和输出。
如图12所示,第一二极管D1的正极与信号输入端Signal in连接,第一二极管D1的负极通过电阻R5与运算放大器的输出端连接,第一二极管的负极还通过电阻R6与参考电压CLAP_REF连接,即R5,R6构成分压电阻,该分压电阻可以调整具体阈值的触发位置,当然,在其他实施例中,第一二极管的负极可以直接与运算放大器的输出端连接;其中R2,R3,R4串联构成了反馈电路,R2的两端并联一个电容C1,R3、R4的两端分别并联二极管D3,D4,上述反馈电路采用分级导通电路,当然,在其他实施例中,反馈电路中的电阻个数可以是2、4、5或者更多,每个电阻上可以选择并联电容或二极管,如此设置可以减小所述反馈电路中电阻上的寄生参数,使得反馈电阻上的寄生电容更小,从而实现高带宽。在反馈电阻上串联电容,电容可以补偿反馈电阻,保证反馈系统稳定。当然,在其他实施例中,可以不包含上述反馈电路。第五二 极管D5的正极通过所述第七电阻R7连接至所述运算放大器模块的输出端,所述第五二极管D5的负极连接至参考电压CLAP_REF_01,当然,在其他实施例中,可以不包含第五二极管D5和第七电阻R7。
当输入运算放大器模块的信号的能量较小时,第一二极管D1两端的电压较低,运算放大器模块对输入运算放大器模块的信号进行放大,由于输入信号进入反相输入端,则输出信号较大,此时分压到第一二极管负极的电压也较高,第一二极管的两端的电压变高输入信号可以获得更高的范围而不致第一二极管导通;当输入运算放大器模块的信号的能量较大时,第一二极管D1两端的电压较高,使得该第一二极管导通,电流会通过第一二极管流到CLAP_REF上,而不会流到运算放大器上被放大。运算放大器模块对输入运算放大器模块的信号进行放大,由于输入信号进入反相输入端,则输出信号较小,此时分压到第一二极管负极的电压也较低,第一二极管的导通压差变小,输入信号稍微升高,将导致第一二极管导通,因此,可以将输入电压的高值限定在一个较小的范围内。
根据图12所示的电路结构,第一二极管D1的参考电压是随信号波动的,当信号较强时,其输出低电平,此时第一二极管D1的参考电压会随之向下摆动,使第一二极管D1在信号稍大时即可导通,起到更强的钳制作用。
当然,图12中的反相放大器也可以选择正向放大器,通过对电路的调整也可以获得相应的强钳制作用。
需要说明的是,第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4以及第五二极管D5也可以采用齐纳二极管或者TVS二极管,此时,二极管的导通电压为齐纳二极管或者TVS二极管的击穿电压。
还需要说明的是,本发明各个实施例中,第一参考电平、第二参考电平以及第三参考电平用于区分参考电平,其中第一参考电平、第二参考电平或第三参考电平可以相同,也可以不同。
相较于现有技术,本发明提供的放大电路包括运算放大器电路和钳位电路;所述钳位电路用于对所述放大电路的输入信号进行钳位,使得所述放大电路的输入信号经过钳位后,其大小在一定范围内波动以防止所述运算放大器电路饱 和输出。通过该放大电路可以实现放大电路的钳位电路的参考电压根据输入信号的能量进行动态调整,起到更强的钳制作用,避免运放饱和。
本发明实施例还提供了一种测距装置,所述测距装置包括发射电路,用于出射光脉冲序列;光电转换电路,用于依次接收所述发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号,以及将所述接收的多个光脉冲信号依次转换成电脉冲信号;第一方面所述的任一放大电路,用于依次接收来自所述光电转换电路的多个电脉冲信号;其中,所述钳位电路用于对所述多个电脉冲信号进行依次钳位,所述多个电脉冲信号经过钳位后依次输入至所述运算放大器电路进行放大,其中,所述钳位电路用于使得所述多个电脉冲信号的大小位于一定范围内,以防止所述运算放大器电路饱和输出。在上述测距装置中,放大电路可以直接和光电转换电路相连,也可以通过其他电路与光电转换电路相连。
可选地,所述测距装置还包括:采样电路,用于对来自所述放大电路的电脉冲信号进行采样,获得采样结果;运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
可选地,所述发射电路、光电转换电路和所述放大电路中,每个电路的数量为至少2个;所述至少2个发射电路和所述至少2个光电转换电路一一对应,每个光电转换电路用于依次接收对应的发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号;所述至少2个光电转换电路和所述至少2个放大电路一一对应,每个放大电路用于依次接收来自对应的光电转换电路的电脉冲信号。
本发明实施例还提供了一种移动平台,所述移动平台包括第二方面所述的任一测距装置以及平台本体,所述测距装置安装在所述平台本体。
可选地,所述移动平台包括无人飞行器、汽车和机器人中的至少一种。
本发明各个实施例提供的光发射装置可以应用于测距装置,该测距装置可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,测距装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,测距装置可以通过测量测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距 装置的距离。或者,测距装置也可以通过其他技术来探测探测物到测距装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图13所示的测距装置100对测距的工作流程进行举例描述。
如图13所示,测距装置100可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定测距装置100与被探测物之间的距离。
可选地,该测距装置100还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图13示出的测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个。
一些实现方式中,除了图13所示的电路,测距装置100还可以包括扫描模块160,用于将发射电路出射的激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为测距模块,该测距模块150可以独立于其他模块,例如,扫描模块160。
测距装置中可以采用同轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内共用至少部分光路。或者,测距装置也可以采用异轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内分别沿不同的光路传输。图14示出了本发明的测距装置采用同轴光路的一种实施例的示意图。
测距装置100包括光收发装置110,光收发装置110包括光源103(包括上述的发射电路)、准直元件104、探测器105(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件106。光收发装置110用于发射光束,且接收回光,将回光转换为电信号。光源103用于发射光束。在一个实施例中,光源103可发射激光束。可选的,光源103发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件104设置于光源的出射光路上,用于准直从光源103发出的光束,将光源103发出的光束准直为平行光。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件104可以是准直透镜或者是其他能够准直光束的元件。
在图14所示实施例中,通过光路改变元件106来将测距装置内的发射光路和接收光路在准直元件104之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以光源103和探测器105分别使用各自的准直元件,将光路改变元件106设置在准直元件之后。
在图14所示实施例中,由于光源103出射的光束的光束发散角较小,测距装置所接收到的回光的光束发散角较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射光源103的出射光,反射镜用于将回光反射至探测器105。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡的情况。
在图14所示实施例中,光路改变元件偏离了准直元件104的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件104的光轴上。
测距装置100还包括扫描模块102。扫描模块102放置于光收发装置110的出射光路上,扫描模块102用于改变经准直元件104出射的准直光束119的传输方向并投射至外界环境,并将回光投射至准直元件104。回光经准直元件104汇聚到探测器105上。
在一个实施例中,扫描模块102可以包括一个或多个光学元件,例如,透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元 件的任意组合。在一些实施例中,扫描模块102的多个光学元件可以绕共同的轴109旋转,每个旋转的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块102的多个光学元件可以以不同的转速旋转。在另一个实施例中,扫描模块102的多个光学元件可以以基本相同的转速旋转。
在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块102包括第一光学元件114和与第一光学元件114连接的驱动器116,驱动器116用于驱动第一光学元件114绕转动轴109转动,使第一光学元件114改变准直光束119的方向。第一光学元件114将准直光束119投射至不同的方向。在一个实施例中,准直光束119经第一光学元件改变后的方向与转动轴109的夹角随着第一光学元件114的转动而变化。在一个实施例中,第一光学元件114包括相对的非平行的一对表面,准直光束119穿过该对表面。在一个实施例中,第一光学元件114包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件114包括楔角棱镜,对准直光束119进行折射。在一个实施例中,第一光学元件114上镀有增透膜,增透膜的厚度与光源103发射出的光束的波长相等,能够增加透射光束的强度。
在一个实施例中,扫描模块102还包括第二光学元件115,第二光学元件115绕转动轴109转动,第二光学元件115的转动速度与第一光学元件114的转动速度不同。第二光学元件115用于改变第一光学元件114投射的光束的方向。在一个实施例中,第二光学元件115与另一驱动器117连接,驱动器117驱动第二光学元件115转动。第一光学元件114和第二光学元件115可以由不同的驱动器驱动,使第一光学元件114和第二光学元件115的转速不同,从而将准直光束119投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器118控制驱动器116和117,分别驱动第一光学元件114和第二光学元件115。第一光学元件114和第二光学元件115的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器116和117可以包括电机或其 他驱动装置。
在一个实施例中,第二光学元件115包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件115包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件115包括楔角棱镜。在一个实施例中,第二光学元件115上镀有增透膜,能够增加透射光束的强度。
扫描模块102旋转可以将光投射至不同的方向,例如方向111和113,如此对测距装置100周围的空间进行扫描。当扫描模块102投射出的光111打到探测物101时,一部分光被探测物101沿与投射的光111相反的方向反射至测距装置100。扫描模块102接收探测物101反射的回光112,将回光112投射至准直元件104。
准直元件104会聚探测物101反射的回光112的至少一部分。在一个实施例中,准直元件104上镀有增透膜,能够增加透射光束的强度。探测器105与光源103放置于准直元件104的同一侧,探测器105用于将穿过准直元件104的至少部分回光转换为电信号。
在一些实施例中,光源103可以包括激光二极管,通过激光二极管发射纳秒级别的激光。例如,光源103发射的激光脉冲持续10ns。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置100可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物101到测距装置100的距离。
测距装置100探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
在一种实施方式中,本发明实施方式的测距装置可应用于移动平台,测距装置可安装在移动平台的平台本体。具有测距装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时,平台本体为汽车的车身。 该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应用于相机时,平台本体为相机本身。
本发明通过提供上述光发射装置、测距装置以及移动平台,以提供一种符合人眼安全规定的激光发射方案,当系统发生单一故障时,上述装置中的电路可以保证激光辐射值不超过安规值,从而保证激光装置的使用安全。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (22)

  1. 一种测距装置,其特征在于,包括:
    发射电路,用于出射光脉冲序列;
    光电转换电路,用于依次接收所述发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号,以及将所述接收的多个光脉冲信号依次转换成电脉冲信号;
    放大电路,包括运算放大器和钳位电路;所述钳位电路分别与所述运算放大器的输入端和输出端连接,用于依次对所述多个电脉冲信号进行钳位,所述多个电脉冲信号经过钳位后依次输入至所述运算放大器电路进行放大,其中,所述钳位电路用于使得所述多个电脉冲信号的大小位于一定范围内,以防止所述运算放大器电路饱和输出。
  2. 如权利要求1所述的测距装置,其特征在于,所述钳位电路包括二极管。
  3. 如权利要求2所述的测距装置,其特征在于,所述二极管是齐纳管或TVS管。
  4. 如权利要求2所述的测距装置,其特征在于,所述钳位电路还包括分压电阻。
  5. 如权利要求2所述的测距装置,其特征在于,所述钳位电路的二极管的一端连接于所述输入信号,另一端连接于所述运算放大器的输出端。
  6. 如权利要求4或5所述的测距装置,其特征在于,所述分压电阻的一端连接于参考电压,另一端连接于所述运算放大器电路的输出端。
  7. 如权利要求6所述的测距装置,其特征在于,所述钳位电路的二极管的一端连接于所述输入信号,另一端通过所述分压电阻中的至少一个电阻连接于所述运算放大器的输出端。
  8. 如权利要求4所述的测距装置,其特征在于,所述分压电阻包括至少两个电阻。
  9. 如权利要求8所述的测距装置,其特征在于,所述分压电阻中的两个 电阻串联,所述两个电阻的相连端与所述二极管的一端相连,所述两个电阻中的其中一个电阻的另一端连接于参考电压,所述两个电阻中的另一个电阻的另一端连接至所述运算放大器的输出端。
  10. 如权利要求1至8任一项所述的测距装置,其特征在于,所述运算放大器电路为反相放大器电路或正向放大器电路。
  11. 如权利要求1所述的测距装置,其特征在于,所述放大电路还包括反馈电路,所述反馈电路用于对所述运算放大器电路的放大倍数进行调整。
  12. 如权利要求11所述的测距装置,其特征在于,所述反馈电路包括电阻、二极管、电容中的至少一项。
  13. 如权利要求12所述的测距装置,其特征在于,所述反馈电路的任一个二极管或任一个电容与所述反馈电路的若干个电阻并联连接。
  14. 如权利要求12或13所述的测距装置,其特征在于,所述反馈电路中的若干个电阻之间串联连接,以减小所述反馈电路中电阻上的寄生参数,从而实现高带宽。
  15. 如权利要求14所述的测距装置,其特征在于,所述反馈电路中包括三个电阻,所述三个电阻串联连接,其中,所述三个电阻中的第一个电阻与电容并联连接,所述三个电阻中的第二个电阻与二极管并联连接,所述三个电阻中的第三个电阻与二极管并联连接。
  16. 根据权利要求1至15任一项所述的测距装置,其特征在于,所述测距装置还包括:
    采样电路,用于对来自所述放大电路的电脉冲信号进行采样,获得采样结果;
    运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
  17. 根据权利要求1所述的测距装置,其特征在于,所述发射电路、光电转换电路和所述放大电路中,每个电路的数量为至少2个;
    所述至少2个发射电路和所述至少2个光电转换电路一一对应,每个光电转换电路用于依次接收对应的发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号;
    所述至少2个光电转换电路和所述至少2个放大电路一一对应,每个放大电路用于依次接收来自对应的光电转换电路的电脉冲信号。
  18. 根据权利要求16所述的测距装置,其特征在于,所述测距装置还包括扫描模块;
    所述扫描模块用于改变所述激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述光电转换电路。
  19. 根据权利要求18所述的测距装置,其特征在于,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
  20. 根据权利要求18所述的测距装置,其特征在于,所述扫描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;
    来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
  21. 一种移动平台,其特征在于,包括:
    权利要求1-20任一项所述的测距装置;和
    平台本体,所述测距装置安装在所述平台本体。
  22. 根据权利要求21所述的移动平台,其特征在于,所述移动平台包括无人飞行器、汽车和机器人中的至少一种。
PCT/CN2018/108153 2018-09-27 2018-09-27 一种测距装置及移动平台 WO2020061970A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108153 WO2020061970A1 (zh) 2018-09-27 2018-09-27 一种测距装置及移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108153 WO2020061970A1 (zh) 2018-09-27 2018-09-27 一种测距装置及移动平台

Publications (1)

Publication Number Publication Date
WO2020061970A1 true WO2020061970A1 (zh) 2020-04-02

Family

ID=69950937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108153 WO2020061970A1 (zh) 2018-09-27 2018-09-27 一种测距装置及移动平台

Country Status (1)

Country Link
WO (1) WO2020061970A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0711045A1 (en) * 1994-11-04 1996-05-08 International Business Machines Corporation Circuit to shunt excess photocurrent in optical receivers
US20080068584A1 (en) * 2006-09-14 2008-03-20 Hokuyo Automatic Co., Ltd. Distance measuring apparatus
CN104919700A (zh) * 2013-01-16 2015-09-16 三菱电机株式会社 前置放大器、光接收器、光终端装置及光通信系统
US9151604B1 (en) * 2011-10-06 2015-10-06 Laser Technology, Inc. Non-saturating receiver design and clamping structure for high power laser based rangefinding instruments
CN206411263U (zh) * 2016-11-14 2017-08-15 深圳市镭神智能系统有限公司 一种基于tof原理激光雷达的脉冲激光接收电路
CN108700648A (zh) * 2017-03-29 2018-10-23 深圳市大疆创新科技有限公司 一种放大电路及激光测量装置、移动平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0711045A1 (en) * 1994-11-04 1996-05-08 International Business Machines Corporation Circuit to shunt excess photocurrent in optical receivers
US20080068584A1 (en) * 2006-09-14 2008-03-20 Hokuyo Automatic Co., Ltd. Distance measuring apparatus
US9151604B1 (en) * 2011-10-06 2015-10-06 Laser Technology, Inc. Non-saturating receiver design and clamping structure for high power laser based rangefinding instruments
CN104919700A (zh) * 2013-01-16 2015-09-16 三菱电机株式会社 前置放大器、光接收器、光终端装置及光通信系统
CN206411263U (zh) * 2016-11-14 2017-08-15 深圳市镭神智能系统有限公司 一种基于tof原理激光雷达的脉冲激光接收电路
CN108700648A (zh) * 2017-03-29 2018-10-23 深圳市大疆创新科技有限公司 一种放大电路及激光测量装置、移动平台

Similar Documents

Publication Publication Date Title
CN108781116B (zh) 一种功率调整方法及激光测量装置
WO2020061967A1 (zh) 一种测距装置以及基于测距装置的时间测量方法
CN210142193U (zh) 一种测距装置、移动平台
WO2021190260A1 (zh) 激光雷达的探测单元、激光雷达及其探测方法
US20210333362A1 (en) Light emitting device, distance measuring device and mobile platform
US10132926B2 (en) Range finder, mobile object and range-finding method
WO2020061969A1 (zh) 一种激光发射装置和测距装置
US20180164412A1 (en) LiDAR Apparatus
WO2020168489A1 (zh) 一种测距装置、测距方法以及移动平台
EP3540468B1 (en) Object detector, mobile object, and object detection method
US20210333370A1 (en) Light emission method, device, and scanning system
JP2014062767A (ja) 受光回路、レーザレーダ
US20220120899A1 (en) Ranging device and mobile platform
WO2020061968A1 (zh) 一种光发射装置及测距装置、移动平台
WO2020107250A1 (zh) 一种激光接收电路及测距装置、移动平台
WO2020113564A1 (zh) 一种激光接收电路及测距装置、移动平台
WO2020061970A1 (zh) 一种测距装置及移动平台
US20200292667A1 (en) Object detector
WO2021068212A1 (zh) 一种光发射装置及测距装置、移动平台
CN207488500U (zh) 车用激光雷达测距测速装置
WO2018176289A1 (zh) 一种放大电路及激光测量装置、移动平台
CN111684300B (zh) 一种信号放大方法及装置、测距装置
WO2020142921A1 (zh) 一种光探测模组及测距装置
CN213210475U (zh) 一种激光接收系统、激光雷达系统以及机器人设备
JP6942452B2 (ja) 測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934643

Country of ref document: EP

Kind code of ref document: A1