WO2021068212A1 - 一种光发射装置及测距装置、移动平台 - Google Patents

一种光发射装置及测距装置、移动平台 Download PDF

Info

Publication number
WO2021068212A1
WO2021068212A1 PCT/CN2019/110676 CN2019110676W WO2021068212A1 WO 2021068212 A1 WO2021068212 A1 WO 2021068212A1 CN 2019110676 W CN2019110676 W CN 2019110676W WO 2021068212 A1 WO2021068212 A1 WO 2021068212A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
laser
control
energy storage
power supply
Prior art date
Application number
PCT/CN2019/110676
Other languages
English (en)
French (fr)
Inventor
马亮亮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980031875.9A priority Critical patent/CN112955782A/zh
Priority to PCT/CN2019/110676 priority patent/WO2021068212A1/zh
Publication of WO2021068212A1 publication Critical patent/WO2021068212A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude

Definitions

  • the present invention relates to the field of circuit technology, in particular to a light emitting device, a distance measuring device, and a mobile platform.
  • the lidar In order to increase the measurement distance, it is generally necessary to increase the output power of the laser, but as a laser device, the lidar must meet the safety requirements for human eye safety. Safety regulations require that the voltage be adjusted so that the luminous power of any laser must be less than the limit. If multi-line lasers use the same voltage to supply power, the measurement distance of the weaker laser will become shorter, which will cause the parameters of the whole machine to deteriorate. .
  • the present invention provides a light emitting device and a control method thereof, which can adjust the emission voltage or light energy of different laser tubes, so as to ensure the consistency of the light output power of each laser. At this time, all light output powers can be reduced. Adjust to the vicinity of safety regulations to increase the measurement distance of the whole machine.
  • the first aspect of the present invention provides a light emitting device and a control method thereof.
  • the light emitting device includes at least two laser emitting lines, and each of the laser emitting lines includes a power supply, a laser transmitter, an energy storage module, and a control module ,
  • the power supply stores energy for the energy storage module, and the energy storage module supplies power for the laser transmitter; wherein the at least two laser emission lines share the power supply;
  • the method includes: The laser emission line adjusts the output of the power supply to the energy storage module in this laser emission line.
  • the method includes: controlling the sequence of light pulses emitted by the laser transmitter; wherein, between the two adjacent light pulses emitted by the laser transmitter, controlling the power supply Store energy to the energy storage module in the first time period, and control the energy storage module to supply power to the laser transmitter in the second time period, so that the laser transmitter emits light pulses;
  • the adjusting the output of the power supply to the energy storage module in this laser emission line includes:
  • the adjusting the output energy of the power supply to the energy storage module in the first time period in the laser emission line includes: adjusting the power supply to the energy storage module in the first time period The output voltage.
  • the adjusting the output voltage of the power supply to the energy storage module in the first time period includes: adjusting the power supply to the energy storage module in the first time period according to the control voltage in the laser emission line. The output voltage of the energy storage module.
  • the output voltage of the power supply to the energy storage module in the first time period is adjusted by closed-loop control, so that the power supply is in the first time period
  • the output voltage to the energy storage module is close to a target voltage, and the target voltage and the output voltage of the control module are in a linear function relationship.
  • control voltage is less than the target voltage.
  • the target voltage is greater than 3 times the control voltage.
  • the closed-loop control method is specifically a negative feedback control method.
  • control voltages in at least part of the laser emission lines are different.
  • control circuit control module includes an operational amplifier, and one input of the operational amplifier is the control voltage.
  • the operational amplifier is used to adjust the output voltage of the power supply to the energy storage module in the first time period to a target voltage.
  • control module further includes a negative feedback loop, the negative feedback loop divides the output voltage of the control module by a voltage division method and uses it as another input of the op amp.
  • the negative feedback loop includes a resistor, a triode, or a MOS tube.
  • control circuit control module includes a linear regulator, and the control module implements closed-loop control through the linear regulator.
  • the linear regulator is used to adjust the output voltage of the power supply to the energy storage module in the first time period to the calibration voltage of the energy storage module.
  • the linear regulator includes a feedback terminal, and the voltage at the feedback terminal, the output voltage of the linear regulator to the energy storage module in the first time period, and the control voltage are in a functional relationship.
  • the feedback circuit adjusts the output voltage to the energy storage module to ensure that the feedback terminal voltage remains unchanged, so as to realize the control of the voltage of the energy storage module by the control voltage.
  • the linear regulator is realized by a hardware circuit or by a chip.
  • At least a voltage divider circuit is formed between the two terminals:
  • the feedback terminal and the linear regulator provide the output terminal of the energy storage module and the input terminal of the control voltage in the first time period.
  • the feedback terminal is connected to the first voltage divider circuit through a second voltage divider circuit, and the control voltage input terminal is connected to the first voltage divider circuit through a third voltage divider circuit;
  • the control voltage input terminal is connected to the output terminal of the linear regulator for the energy storage module in the first time period through a third voltage divider circuit and a part of the first voltage divider circuit; or
  • the feedback terminal is connected to the output terminal of the linear regulator for the energy storage module in the first time period through a second voltage divider circuit and a part of the first voltage divider circuit.
  • the first voltage divider circuit includes at least two resistors
  • the second voltage divider circuit includes at least one resistor
  • the third voltage divider circuit includes at least one resistor
  • control circuit control module adjusts the duration of the first period to adjust the output energy of the power supply to the energy storage module in the first period.
  • control module includes a switch circuit
  • adjusting the output voltage of the power supply to the energy storage module in the first time period includes:
  • the on and off of the switch circuit is controlled according to the control signal to control the on and off of the power supply and the energy storage module.
  • duty ratios of the control signals in at least part of the laser emission lines are different.
  • the switch circuit includes a MOS tube, and the MOS tube is connected to the energy storage circuit through a resistance or an inductance.
  • the remaining laser emission lines of the at least two laser emission lines respectively emit one light pulse in sequence.
  • a laser transmitter in each laser emitting circuit emits a light pulse sequence, and the at least two laser emitting circuits alternately emit a light pulse sequence.
  • At least part of the laser emission lines respectively emit light pulses in different directions
  • the at least two laser emission lines emit in the same direction respectively.
  • At least part of the emitting chips of the laser transmitters in the laser emitting circuit are packaged in the same module.
  • the power supply includes a first power supply and a boosting module, the first power supply outputs a voltage lower than the working voltage of the laser transmitter of each laser emission line, and the boosting module reduces the voltage of the first power supply The output voltage is boosted to a voltage higher than the operating voltage of the laser transmitter of each laser emitting line.
  • the energy storage circuit includes a capacitor, and the capacitor provides energy for the laser transmitter.
  • an embodiment of the present invention also provides a distance measuring device, including: the light emitting device described in the first aspect, which is configured to emit laser pulse signals sequentially; and a photoelectric conversion circuit, which is configured to receive the light emitting device emitted from the light emitting device. At least part of the optical signal reflected by the laser pulse signal from the object and convert the received optical signal into an electrical signal; a sampling circuit for sampling the electrical signal from the photoelectric conversion circuit to obtain a sampling result; arithmetic circuit , Used to calculate the distance between the object and the distance measuring device according to the sampling result.
  • the number of the light emitting devices and the number of the photoelectric conversion circuits are respectively at least two; each of the photoelectric conversion circuits is used to receive the laser pulse signal emitted from the corresponding light emitting device and reflected by the object. At least part of the optical signal, and convert the received optical signal into an electrical signal.
  • the laser distance measuring device further includes a scanning module; the scanning module is used to change the transmission direction of the laser pulse signal and then emit it.
  • the laser pulse signal reflected by the object passes through the scanning module and then enters the Photoelectric conversion circuit.
  • the scanning module includes a driver and a prism with uneven thickness, and the driver is used to drive the prism to rotate so as to change the laser pulse signal passing through the prism to different directions to emit.
  • the scanning module includes two drivers, and two parallel prisms with uneven thickness, and the two drivers are used to drive the two prisms to rotate in opposite directions; from the laser emission
  • the laser pulse signal of the device sequentially passes through the two prisms and then changes the transmission direction to exit.
  • an embodiment of the present invention also provides a mobile platform.
  • the mobile platform includes any of the light emitting devices described in the first aspect and a platform body, and the distance measuring device is installed on the platform body.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, and a remote control car.
  • the present invention provides a method that can adjust the emission voltage or light energy of different laser tubes, thereby ensuring the consistency of the light output power of each laser. Adjust all the light output power to near the safety limit to increase the measurement distance of the whole machine.
  • Fig. 1 is a schematic diagram of a connection mode of a light emitting device provided by the present invention
  • FIG. 2 is a schematic diagram of the internal structure of the amplifier in the light emitting device shown in FIG. 1;
  • FIG. 3 is a schematic diagram of another light emitting device connection mode provided by the present invention.
  • Figure 4 is a schematic diagram of the internal structure of the LDO in Figure 3;
  • FIG. 5 is a schematic diagram of yet another light emitting device connection mode provided by the present invention.
  • Figure 6 is a frame diagram of a distance measuring device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment in which a distance measuring device provided by the present invention adopts a coaxial optical path.
  • control circuit 210 ranging module 209 axis
  • a schematic diagram of a light emitting device connection mode which shows a light emitting device with a pulse drive design in a multi-line light emitting drive scheme, which includes two laser emitting lines, each
  • the lines include a power supply, a laser transmitter, an energy storage module, and a control module.
  • the power supply stores energy for the energy storage module, and the energy storage module supplies power for the laser transmitter; wherein, the at least two laser transmitters
  • the lines share the power supply; the method includes: for each laser emission line, adjusting the output of the power supply to the energy storage module in this laser emission line.
  • the first laser emission line includes a power supply, a laser transmitter D1, an energy storage module capacitor C1, and a control module.
  • the energy storage module capacitor C1 stores energy for the laser
  • the transmitter D1 supplies power.
  • the second laser transmission line includes a power supply, a laser transmitter D2, an energy storage module capacitor C2, and a control module. The energy stored on the energy storage module capacitor C2 is used to power the laser transmitter D2.
  • One laser emission line and the second laser emission line have a common power supply
  • the control module in the first laser emission line includes a control voltage, which can control the power supply in the first laser emission line to the energy storage module capacitor C1 Output
  • the control module in the second laser emission line includes a control voltage, which can control the output of the power supply in the first laser emission line to the capacitor C2 of the energy storage module.
  • the voltage is increased to the working voltage of the laser through the booster power supply, which is generally higher, and the output voltage of the extended op amp Q1 is used for feedback control.
  • the output impedance of the power supply is R1. After the laser emitter emits light, C1 is charged through R1 until C1 is charged to the output voltage. After the laser control signal is sent, the MOS tube Q2 is turned on, and the laser emitter emits energy through C1 to make D1 emit light. When the energy of C1 is consumed, D1 goes out. At this time, after Q2 is turned off, R1 charges C1 in the next cycle.
  • the scheme inside the op amp chip can be specifically as shown in Figure 2.
  • FIG 2 it is the internal structure of a typical operational amplifier, that is, the internal structure of the amplifier in Figure 1.
  • Q1, Q2, Q3, and Q4 form the input amplifier
  • Q7 is the second-stage amplifier
  • Q8 is the third-stage amplifier, and at the same time as the output stage.
  • the signal is injected from Q1 and Q4 as +input and -input, and Q8 itself can be directly configured as a high-voltage triode, instead of the discrete triode in Figure 1.
  • FIG. 3 there is a schematic diagram of another light emitting device connection mode, which shows a light emitting device designed with pulse drive in a multi-line laser emitting driving scheme, which includes two laser emitting lines, Each line includes a power supply, a laser transmitter, an energy storage module and a control module control circuit, an energy storage circuit, and a reset circuit.
  • the power supply stores energy for the energy storage module, and the energy storage module supplies the laser transmitter Power supply; wherein the at least two laser emission lines share the power supply; the method includes: for each laser emission line, adjusting the output of the power supply to the energy storage module in this laser emission line.
  • the first laser emission line includes a power supply, a laser transmitter D1, an energy storage module capacitor C1, and a control module.
  • the energy storage module capacitor C1 stores energy for the laser
  • the transmitter D1 supplies power.
  • the second laser transmission line includes a power supply, a laser transmitter D2, an energy storage module capacitor C2, and a control module. The energy stored on the energy storage module capacitor C2 is used to power the laser transmitter D2.
  • One laser emission line and the second laser emission line have a common power supply
  • the control module in the first laser emission line includes a control voltage, which can control the power supply in the first laser emission line to the energy storage module capacitor C1 Output
  • the control module in the second laser emission line includes a control voltage, which can control the output of the power supply in the first laser emission line to the capacitor C2 of the energy storage module.
  • the voltage is increased above the working voltage of the laser through the boost power supply, and then the voltage is reduced to the calibration voltage of the laser through the linear stabilized power supply LDO respectively.
  • the output voltage is controlled by controlling the feedback of the LDO.
  • the voltage of the FB feedback pin of the LDO is determined by the voltage division of the power supply and the reference voltage.
  • the feedback system will adjust the output of the power supply so that the voltage of FB does not change. Change, so as to achieve control of the output voltage.
  • C1 is the energy storage capacitor
  • R5 is the charging resistor. After the laser is extinguished, R5 will charge and store energy for C1 for the laser to emit light next time.
  • the key to this design is to use the control voltage to adjust the output voltage of the LDO.
  • the method is not limited to the use of a voltage divider circuit composed of R1, R2, R3, and R4, but can also be implemented using operational amplifier feedback.
  • C1 is the energy storage capacitor
  • R5 is the charging resistor. After the laser is extinguished, R5 will charge and store energy for C1 for the laser to emit light next time.
  • R1 is optional and can be omitted.
  • Figure 4 shows a typical LDO internal structure.
  • the voltage of the FB feedback pin of the LDO is determined by the voltage division of the power supply and the reference voltage.
  • the steady-state formula is as follows:
  • Vref is the internal reference voltage of the LDO
  • Vc is the control voltage
  • Vout (Vref/R4-(Vc-Vref)/R2)*R3+Vref
  • the feedback system will adjust the power output to make the voltage of FB unchanged, so as to realize the control of the output voltage.
  • the specific control process is: when Vout drops, the voltage of the FB pin will decrease and be lower than Vref. At this time, the internal error amplifier will amplify this error and output a low voltage, causing the PMOS inside the LDO to turn on, and Vin will be Charging Vout increases the Vout voltage until the FB pin voltage is equal to Vref.
  • FIG. 5 there is shown a schematic diagram of another light emitting device connection mode, which shows a light emitting device designed with pulse driving in a multi-line laser emitting driving scheme, which includes two laser emitting lines, Each line includes a power supply, a laser transmitter, an energy storage module and a control module control circuit, an energy storage circuit, and a reset circuit.
  • the power supply stores energy for the energy storage module, and the energy storage module supplies the laser transmitter Power supply; wherein the at least two laser emission lines share the power supply; the method includes: for each laser emission line, adjusting the output of the power supply to the energy storage module in this laser emission line.
  • the first laser emission line includes a power supply, a laser transmitter D1, an energy storage module capacitor C1, and a control module.
  • the energy storage module capacitor C1 stores energy for the laser
  • the transmitter D1 supplies power.
  • the second laser transmission line includes a power supply, a laser transmitter D2, an energy storage module capacitor C2, and a control module. The energy stored on the energy storage module capacitor C2 is used to power the laser transmitter D2.
  • One laser emission line and the second laser emission line have a common power supply
  • the control module in the first laser emission line includes a control voltage, which can control the power supply in the first laser emission line to the energy storage module capacitor C1 Output
  • the control module in the second laser emission line includes a control voltage, which can control the output of the power supply in the first laser emission line to the capacitor C2 of the energy storage module.
  • the voltage is increased above the working voltage of the laser by the boost power supply, and the main control realizes the adjustment of the charge of C1 through the duty cycle control (PMOS on and off), and the charge stored on C1 Depending on the charging time, adjusting the charging time enables precise adjustment of the energy of a single pulse.
  • the first two solutions are negative feedback loops to ensure the output voltage, and the latter is open-loop control.
  • the negative feedback loop performs closed-loop control to obtain higher control accuracy.
  • the laser transmitter is used to emit a light pulse sequence, and between two adjacent light pulses of the laser transmitter, the power supply is used for the first period of time.
  • the energy storage module is internally stored; the energy storage module is used to supply power to the laser transmitter in the second time period so that the laser transmitter emits light pulses; the control module is specifically used to adjust the The output energy of the power supply to the energy storage module in the first time period.
  • the target of the output energy of the power supply to the energy storage module in each circuit involved in the present invention can be fixed or adjusted online.
  • the voltage thereon may be fixed, or may be dynamically changed according to demand.
  • the voltage on it can be fixed or dynamically changed as needed.
  • the voltage on it can be fixed or can be dynamically changed as required.
  • the control voltage can be fixed or dynamically changed according to demand, then it can be controlled when the energy storage module completes energy storage, whether the energy on it is fixed or dynamically changes
  • the duty ratio is fixed or dynamically based on demand
  • the energy storage module changes it is determined whether the energy on the energy storage module is fixed or dynamically changes according to demand.
  • the control module is specifically configured to adjust the output voltage of the power supply to the energy storage module in the first time period.
  • both the first laser emission line and the second laser emission line can adjust the output voltage to the capacitor C1 of the energy storage module in the first time period through the control module.
  • both the first laser emission line and the second laser emission line can adjust the output voltage to the capacitor C1 of the energy storage module in the first time period through the control module.
  • there is a definite relationship between the control voltage and the output voltage on the capacitor of the energy storage module in the first time period Therefore, the output voltage can be adjusted by the control module.
  • control module is used to adjust the output voltage of the power supply to the energy storage module in the first time period according to the control voltage input in the laser emission line where it is located.
  • the control module adjusts the output voltage of the power supply to the energy storage module in the first time period by means of closed-loop control, so that the power supply is
  • the output voltage to the energy storage module in the first time period is close to a target voltage, and the target voltage and the control voltage are in a linear function relationship.
  • the linear relationship may be a linear relationship and has a constant term.
  • the output voltage control voltage*(R3+R4)/ R4+offset, offset is a constant term
  • the specific linear function relationship is determined by the structure of the feedback loop, which is not limited in the present invention.
  • the specific linear function relationship is determined by the structure of the feedback loop, which is not limited in the present invention.
  • the specific linear function relationship is determined by the structure of the feedback loop. Make a limit.
  • control voltage is less than the target voltage.
  • the target voltage is greater than 3 times the control voltage.
  • the closed-loop control method is specifically a negative feedback control method.
  • the method of negative feedback control is adopted.
  • the control voltages input to at least part of the laser emission lines are different.
  • the two laser emission lines can be controlled.
  • different control voltages are used for control.
  • two laser emission lines can also be controlled by using different control voltages. In this way, the two laser emission lines can be controlled separately, which is beneficial to achieve the uniformity of multi-line light emission.
  • control module includes an operational amplifier, and one input of the operational amplifier is the control voltage.
  • the operational amplifier is used to adjust the output voltage of the power supply to the energy storage module in the first time period to a target voltage.
  • control module further includes a negative feedback loop that divides the output voltage of the control module by a voltage division method and uses it as another input of the op amp.
  • the resistor R3 is the output voltage terminal of the op amp, and its output voltage is divided by the resistor R3 and the resistor R4 as the op amp.
  • this terminal is the negative terminal of the op amp. Therefore, negative feedback control is realized.
  • the control voltage is used as an input of the op amp.
  • the op amp above the resistor R3 The output voltage will change, and this change will enter the other output terminal of the op amp through the negative feedback loop, so as to realize the negative feedback to the op amp, and then give the energy storage module in the first time period. Adjust the output voltage to the target voltage.
  • the negative feedback loop includes a resistor, a triode, or a MOS tube.
  • the negative feedback loop includes resistors R3, R4, and a transistor Q1.
  • the present invention does not limit this.
  • the negative feedback loop can also be implemented in other ways, for example, using only resistors, or using only MOS transistors, or combining MOS transistors with resistor dividers, and so on.
  • control module includes a linear regulator, and the control module implements closed-loop control through the linear regulator.
  • the linear regulator is used to adjust the output voltage of the power supply to the energy storage module to the calibration voltage of the energy storage module in the first time period.
  • control module implements closed-loop control through the LDO power supply, and is used to adjust the output voltage of the power supply to the energy storage module in the first time period to that of the energy storage module. Calibration voltage.
  • the linear regulator includes a feedback terminal, the voltage at the feedback terminal, the output voltage of the linear regulator to the energy storage module in the first time period, and the control voltage are composed of Functional relationship, and the voltage at the feedback port remains unchanged during the first time period.
  • the feedback end is schematically represented as the FB end.
  • the linear regulator is realized by a hardware circuit or by a chip.
  • the linear voltage regulator is realized by a hardware circuit.
  • the above hardware circuit may also be realized by a chip.
  • At least a voltage divider circuit is formed between the two terminals: the feedback terminal, the linear regulator, and the output terminal of the energy storage module during the first period of time.
  • the input terminal of the control voltage is formed between the two terminals: the feedback terminal, the linear regulator, and the output terminal of the energy storage module during the first period of time.
  • the feedback terminal, the control voltage input terminal, and the linear regulator are fed to the output terminal of the energy storage module in the first time period, and the feedback terminal passes through a second voltage divider circuit
  • the control voltage input terminal is connected to the first voltage divider circuit through a third voltage divider circuit; or the control voltage input terminal is connected to the first voltage divider circuit through a third voltage divider circuit and a part of the first voltage divider circuit.
  • the linear regulator is connected to the output terminal of the energy storage module in the first time period; or the feedback terminal is connected to the linear regulator through the second voltage divider circuit and part of the first voltage divider circuit in the Connect the output terminal of the energy storage module in the first time period.
  • the first voltage divider circuit includes at least two resistors
  • the second voltage divider circuit includes at least one resistor
  • the third voltage divider circuit includes at least one resistor.
  • the feedback terminal and the linear regulator provide voltage divider circuits R1 and R3 to the output terminal of the energy storage module in the first time period
  • the linear regulator has voltage divider circuits R2 and R3 for the output end of the energy storage module and the input end of the control voltage in the first period of time, and the feedback end and the input end of the control voltage have divider circuits.
  • a voltage divider circuit between the above-mentioned three terminals and between two of them, it is understandable that in other embodiments, other settings can be made, such as only any one of them.
  • a voltage divider circuit is set between the two ends or a voltage divider circuit is set between two arbitrary ends.
  • the feedback circuit adjusts the output of the power supply to ensure that the voltage at the feedback terminal remains unchanged, thereby realizing the control of the output voltage of the control module.
  • the control voltage since there is a definite relationship among the control voltage terminal, the feedback terminal, and the output voltage, since the feedback terminal remains unchanged during the first time period, therefore, When the control voltage changes, it will inevitably cause a change in the output voltage, and then realize the control of the output voltage by the control voltage.
  • control module is specifically configured to adjust the duration of the first period to adjust the output energy of the power supply to the energy storage module in the first period.
  • the control module is specifically configured to adjust the duration of the first period to adjust the output energy of the power supply to the energy storage module in the first period.
  • the duration of the first period by controlling the duration of the first period, the energy storage time of the energy storage circuit is controlled, thereby controlling the energy stored on the energy storage module.
  • control module includes a switch circuit, and the switch circuit is used to control the conduction and disconnection of the power supply and the energy storage module according to a control signal.
  • the switch circuit is turned on, the power supply and the energy storage module are turned on, and when the switch circuit is turned off, the power supply is disconnected from the energy storage module, thereby realizing the duration of conduction to the storage circuit control.
  • the duty ratios of the control signals in at least part of the laser emission lines are different.
  • the duty ratio of the control signal is controlled by controlling the on and off of the switch. Therefore, it is possible to achieve flexibility for different laser emission lines.
  • the control to realize the calibration of the laser light energy.
  • the switch circuit includes a MOS tube, and the MOS tube is connected to the energy storage circuit through a resistance or an inductance.
  • the switch circuit is a MOS tube, which is connected to the tank capacitor C1 or C2 through a resistor R1 or R2.
  • the resistance can be replaced with an inductance to achieve the above connection.
  • the remaining laser emission lines of the at least two laser emission lines respectively emit one light pulse in sequence.
  • a laser transmitter in each laser emitting circuit is used to emit a light pulse sequence, and the at least two laser emitting circuits alternately emit a light pulse sequence.
  • At least part of the laser emission lines respectively emit light pulses in different directions
  • the at least two laser emission lines emit in the same direction respectively.
  • the "different directions" of the emitted light pulses referred to in the present invention means that the emitting optical axes of the emitting chip of the transmitter are not parallel.
  • At least part of the emitting chips of the laser transmitters in the laser emitting circuit are packaged in the same module.
  • the power supply includes a first power supply and a boost module
  • the first power supply is used to output a voltage lower than the working voltage of the laser transmitter of each laser emission line
  • the boost module is used to The output voltage of the first power supply is boosted to a voltage higher than the operating voltage of the laser transmitter of each laser emitting line.
  • the energy storage circuit includes a capacitor, and the capacitor is used to provide energy for the laser transmitter.
  • the present invention can provide different voltages to different lasers, realize the calibration of the laser light energy, and enable all lasers to meet the safety constraints of the human eye.
  • the current of the laser is relatively large when it emits light, but the average current of the laser is relatively small when it is working at a low duty cycle.
  • the capacitive energy storage scheme is generally used to provide a single light-emitting energy for the laser, and the laser is extinguished after the capacitor energy is exhausted.
  • the working voltage of the laser is generally relatively high, so first use a boost circuit (including but not limited to Boost boost, charge pump boost, etc.) to increase the voltage to the working voltage of the laser, and then use the control voltage provided by the program (including but not (Limited to DAC control and PWM control) adjust the output voltage of the multi-channel power supply, so as to realize the adjustment of the multi-channel power supply.
  • Boost boost including but not limited to Boost boost, charge pump boost, etc.
  • the embodiment of the present invention also provides a distance measuring device, including any light emitting device described in the first aspect; a receiving circuit for receiving the light pulse signal emitted by the light emitting device reflected by an object Return at least part of the optical signal, and convert the received optical signal into an electrical signal; a sampling circuit for sampling the electrical signal from the receiving circuit to obtain a sampling result; an arithmetic circuit for obtaining a sampling result according to the sampling result Calculate the distance between the object and the distance measuring device.
  • the number of the light emitting devices is at least two.
  • the embodiment of the present invention also provides a mobile platform, the mobile platform includes any of the distance measuring device described in the second aspect and a platform body, the distance measuring device is installed on the platform body . Further, the mobile platform includes at least one of a manned aerial vehicle, an unmanned aerial vehicle, a car, a robot, and a remote control car.
  • the light emitting device provided by the various embodiments of the present invention may be applied to a distance measuring device, and the distance measuring device may be electronic equipment such as lidar and laser distance measuring equipment.
  • the distance measuring device is used to sense external environmental information, for example, distance information, orientation information, reflection intensity information, speed information, etc. of environmental targets.
  • the distance measuring device can detect the distance from the probe to the distance measuring device by measuring the time of light propagation between the distance measuring device and the probe, that is, the time-of-flight (TOF).
  • the ranging device can also detect the distance from the detected object to the ranging device through other technologies, such as a ranging method based on phase shift measurement, or a ranging method based on frequency shift measurement. This is not limited.
  • the distance measuring device 100 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130 and an arithmetic circuit 140.
  • the transmitting circuit 110 may emit a light pulse sequence (for example, a laser pulse sequence).
  • the receiving circuit 120 may receive the light pulse sequence reflected by the object to be detected, and perform photoelectric conversion on the light pulse sequence to obtain an electrical signal. After processing the electrical signal, the electrical signal may be output to the sampling circuit 130.
  • the sampling circuit 130 may sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 140 may determine the distance between the distance measuring device 100 and the detected object based on the sampling result of the sampling circuit 130.
  • the distance measuring device 100 may further include a control circuit 150 that can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 150 can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • the distance measuring device shown in FIG. 6 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit for emitting a beam for detection
  • the embodiment of the present application is not limited to this, and the transmitting circuit
  • the number of any one of the receiving circuit, the sampling circuit, and the arithmetic circuit can also be at least two, which are used to emit at least two light beams in the same direction or in different directions; wherein, the at least two light paths can be simultaneous Shooting can also be shooting at different times.
  • the light-emitting chips in the at least two transmitting circuits are packaged in the same module.
  • each emitting circuit includes a laser emitting chip, and the dies in the laser emitting chips in the at least two emitting circuits are packaged together and housed in the same packaging space.
  • the distance measuring device 100 may further include a scanning module 160 for changing the propagation direction of at least one laser pulse sequence emitted by the transmitting circuit.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as the measuring circuit.
  • the distance measurement module can be independent of other modules, for example, the scanning module 160.
  • a coaxial optical path can be used in the distance measuring device, that is, the light beam emitted by the distance measuring device and the reflected light beam share at least part of the optical path in the distance measuring device.
  • the distance measuring device can also adopt an off-axis optical path, that is, the light beam emitted by the distance measuring device and the reflected light beam are transmitted along different optical paths in the distance measuring device.
  • Fig. 7 shows a schematic diagram of an embodiment in which the distance measuring device of the present invention adopts a coaxial optical path.
  • the ranging device 200 includes a ranging module 210, which includes a transmitter 203 (which may include the above-mentioned transmitting circuit), a collimating element 204, a detector 205 (which may include the above-mentioned receiving circuit, sampling circuit, and arithmetic circuit), and Light path changing element 206.
  • the ranging module 210 is used to emit a light beam, receive the return light, and convert the return light into an electrical signal.
  • the transmitter 203 can be used to emit a light pulse sequence.
  • the transmitter 203 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 203 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 204 is arranged on the exit light path of the emitter, and is used to collimate the light beam emitted from the emitter 203, and collimate the light beam emitted from the emitter 203 into parallel light and output to the scanning module.
  • the collimating element is also used to condense at least a part of the return light reflected by the probe.
  • the collimating element 204 may be a collimating lens or other elements capable of collimating a light beam.
  • the light path changing element 206 is used to combine the transmitting light path and the receiving light path in the distance measuring device before the collimating element 104, so that the transmitting light path and the receiving light path can share the same collimating element, so that the light path More compact.
  • the transmitter 103 and the detector 105 may respectively use their own collimating elements, and the optical path changing element 206 is arranged on the optical path behind the collimating element.
  • the light path changing element can use a small area mirror to The transmitting light path and the receiving light path are combined.
  • the light path changing element may also use a reflector with a through hole, where the through hole is used to transmit the emitted light of the emitter 203 and the reflector is used to reflect the return light to the detector 205. In this way, the shielding of the back light from the support of the small reflector in the case of using the small reflector can be reduced.
  • the optical path changing element deviates from the optical axis of the collimating element 204.
  • the optical path changing element may also be located on the optical axis of the collimating element 204.
  • the distance measuring device 200 further includes a scanning module 202.
  • the scanning module 202 is placed on the exit light path of the distance measuring module 210.
  • the scanning module 102 is used to change the transmission direction of the collimated beam 219 emitted by the collimating element 204 and project it to the external environment, and project the return light to the collimating element 204 .
  • the returned light is collected on the detector 105 via the collimating element 104.
  • the scanning module 202 may include at least one optical element for changing the propagation path of the light beam, wherein the optical element may change the propagation path of the light beam by reflecting, refracting, or diffracting the light beam.
  • the scanning module 202 includes a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the foregoing optical elements.
  • at least part of the optical element is moving, for example, the at least part of the optical element is driven to move by a driving module, and the moving optical element can reflect, refract, or diffract the light beam to different directions at different times.
  • the multiple optical elements of the scanning module 202 can rotate or vibrate around a common axis 209, and each rotating or vibrating optical element is used to continuously change the propagation direction of the incident light beam.
  • the multiple optical elements of the scanning module 202 may rotate at different speeds or vibrate at different speeds.
  • at least part of the optical elements of the scanning module 202 may rotate at substantially the same rotation speed.
  • the multiple optical elements of the scanning module may also rotate around different axes.
  • the multiple optical elements of the scanning module may also rotate in the same direction or in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 202 includes a first optical element 214 and a driver 216 connected to the first optical element 214.
  • the driver 216 is used to drive the first optical element 214 to rotate around the rotation axis 209 to change the first optical element 214.
  • the direction of the beam 219 is collimated.
  • the first optical element 214 projects the collimated beam 219 to different directions.
  • the angle between the direction of the collimated beam 219 changed by the first optical element and the rotation axis 109 changes with the rotation of the first optical element 214.
  • the first optical element 214 includes a pair of opposing non-parallel surfaces through which the collimated light beam 219 passes.
  • the first optical element 214 includes a prism whose thickness varies along at least one radial direction.
  • the first optical element 114 includes a wedge-angle prism to collimate the beam 119 for refracting.
  • the scanning module 202 further includes a second optical element 215, the second optical element 215 rotates around the rotation axis 209, and the rotation speed of the second optical element 215 is different from the rotation speed of the first optical element 214.
  • the second optical element 215 is used to change the direction of the light beam projected by the first optical element 214.
  • the second optical element 115 is connected to another driver 217, and the driver 117 drives the second optical element 215 to rotate.
  • the first optical element 214 and the second optical element 215 can be driven by the same or different drivers, so that the rotation speed and/or rotation of the first optical element 214 and the second optical element 215 are different, so that the collimated light beam 219 is projected to the outside space.
  • the controller 218 controls the drivers 216 and 217 to drive the first optical element 214 and the second optical element 215, respectively.
  • the rotational speeds of the first optical element 214 and the second optical element 215 can be determined according to the expected scanning area and pattern in actual applications.
  • the drivers 216 and 217 may include motors or other drivers.
  • the second optical element 115 includes a pair of opposite non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 115 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the second optical element 115 includes a wedge prism.
  • the scanning module 102 further includes a third optical element (not shown) and a driver for driving the third optical element to move.
  • the third optical element includes a pair of opposite non-parallel surfaces, and the light beam passes through the pair of surfaces.
  • the third optical element includes a prism whose thickness varies in at least one radial direction.
  • the third optical element includes a wedge prism. At least two of the first, second, and third optical elements rotate at different rotation speeds and/or rotation directions.
  • each optical element in the scanning module 202 can project light to different directions, such as the directions of the lights 211 and 213, so that the space around the distance measuring device 200 is scanned.
  • the light 211 projected by the scanning module 202 hits the detected object 201, a part of the light is reflected by the detected object 201 to the distance measuring device 200 in a direction opposite to the projected light 211.
  • the return light 212 reflected by the detected object 201 is incident on the collimating element 204 after passing through the scanning module 202.
  • the detector 205 and the transmitter 203 are placed on the same side of the collimating element 204, and the detector 205 is used to convert at least part of the return light passing through the collimating element 204 into electrical signals.
  • an anti-reflection film is plated on each optical element.
  • the thickness of the antireflection coating is equal to or close to the wavelength of the light beam emitted by the emitter 103, which can increase the intensity of the transmitted light beam.
  • a filter layer is plated on the surface of an element located on the beam propagation path in the distance measuring device, or a filter is provided on the beam propagation path for transmitting at least the wavelength band of the beam emitted by the transmitter, Reflect other bands to reduce the noise caused by ambient light to the receiver.
  • the transmitter 203 may include a laser diode through which nanosecond laser pulses are emitted.
  • the laser pulse receiving time can be determined, for example, the laser pulse receiving time can be determined by detecting the rising edge time and/or the falling edge time of the electrical signal pulse. In this way, the distance measuring device 200 can calculate the TOF using the pulse receiving time information and the pulse sending time information, so as to determine the distance from the detected object 201 to the distance measuring device 200.
  • the distance and azimuth detected by the distance measuring device 200 can be used for remote sensing, obstacle avoidance, surveying and mapping, modeling, navigation, and the like.
  • the distance measuring device of the embodiment of the present invention can be applied to a mobile platform, and the distance measuring device can be installed on the platform body of the mobile platform.
  • a mobile platform with a distance measuring device can measure the external environment, for example, measuring the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and for two-dimensional or three-dimensional surveying and mapping of the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the platform body When the ranging device is applied to an unmanned aerial vehicle, the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body When the distance measuring device is applied to a car, the platform body is the body of the car.
  • the car can be a self-driving car or a semi-automatic driving car, and there is no restriction here.
  • the platform body When the distance measuring device is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body When the distance measuring device is applied to a robot, the platform body is a robot.
  • the distance measuring device When the distance measuring device is applied to a camera, the platform body is the camera itself.
  • the present invention provides a laser emission solution that meets human eye safety regulations by providing the above-mentioned light emitting device, distance measuring device, and mobile platform.
  • the circuit in the above device can ensure that the laser radiation value does not exceed the safety level. Regulation value, so as to ensure the safety of the laser device.

Abstract

一种光发射装置的控制装置及其方法,所述光发射装置包括至少两条激光发射线路,每条所述激光发射线路包括电源、激光发射器、储能模块和控制模块,所述电源给所述储能模块储能,所述储能模块给所述激光发射器供电;其中,所述至少两条激光发射线路共用所述电源;所述方法包括:对每条所述激光发射线路,调整本条激光发射线路内所述电源给所述储能模块的输出。以提供一种能调整不同的激光管的发射电压或出光能量,从而保证各个激光器出光功率的一致性,此时可以将所有的出光功率调整到安规限制附近,提高整机的测量距离。

Description

一种光发射装置及测距装置、移动平台 技术领域
本发明涉及电路技术领域,尤其涉及一种光发射装置及测距装置、移动平台。
背景技术
在多线雷达的设计中需要多个激光器发光,但是因为激光器制造工艺的问题在相同电压下不同的激光器出光功率并不一致,这会导致不同的通道测量距离并不一致。
为了提高测量距离一般需要提高激光的出光功率,但作为激光设备,激光雷达还要符合人眼安全的安规要求。安规限制要求将电压调整到任何一个激光器的发光功率都必须小于限值,如果多线激光器使用同一电压供电,则会造成发光较弱的激光器测量距离变近,从而导致整机的参数变差。
为了解决上述的问题,本发明提供一种光发射装置及其控制方法,能调整不同的激光管的发射电压或出光能量,从而保证各个激光器出光功率的一致性,此时可以将所有的出光功率调整到安规限制附近,提高整机的测量距离。
发明内容
本发明第一方面提供了一种光发射装置及其控制方法,所述光发射装置包括至少两条激光发射线路,每条所述激光发射线路包括电源、激光发射器、储能模块和控制模块,所述电源给所述储能模块储能,所述储能模块给所述激光发射器供电;其中,所述至少两条激光发射线路共用所述电源;所述方法包括:对每条所述激光发射线路,调整本条激光发射线路内所述电源给所述储能模块的输出。
进一步地,对每条所述激光发射线路,所述方法包括:控制所述激光发射 器出射光脉冲序列;其中,在所述激光发射器相邻两次出射光脉冲之间,控制所述电源在第一时段内给所述储能模块储能,控制所述储能模块在第二时段内给所述激光发射器供电,以使所述激光发射器出射光脉冲;
所述调整本条激光发射线路内所述电源给所述储能模块的输出,包括:
调整本条激光发射线路内所述电源在所述第一时段内给所述储能模块的输出能量。
进一步地,所述调整本条激光发射线路内所述电源在所述第一时段内给所述储能模块的输出能量,包括:调整所述电源在所述第一时段内给所述储能模块的输出电压。
进一步地,所述调整所述电源在所述第一时段内给所述储能模块的输出电压,包括:根据所在激光发射线路中的控制电压调整所述电源在所述第一时段内给所述储能模块的输出电压。
进一步地,在至少部分所述激光发射线路中:通过闭环控制的方式调整所述电源在所述第一时段内给所述储能模块的输出电压,使得所述电源在所述第一时段内给所述储能模块的输出电压接近目标电压,所述目标电压与所述控制模块的输出电压是线性函数关系。
进一步地,所述控制电压小于所述目标电压。
进一步地,所述目标电压大于控制电压的3倍。
进一步地,所述闭环控制的方式具体为负反馈控制的方式。
进一步地,至少部分所述激光发射线路中的控制电压不同。
进一步地,所述控制电路控制模块包括运放器,所述运放器的一个输入为所述控制电压。
进一步地,所述运放器用于将所述电源在所述第一时段内给所述储能模块的输出电压调整到目标电压。
进一步地,所述控制模块还包括负反馈回路,所述负反馈回路通过分压方式将所述控制模块的输出电压分压后作为所述运放器的另一个输入。
进一步地,所述负反馈回路包括电阻、三极管或MOS管。
进一步地,所述控制电路控制模块包括线性稳压器,所述控制模块通过所 述线性稳压器实现闭环控制。
进一步地,所述线性稳压器用于将所述电源在所述第一时段内给所述储能模块的输出电压调整到所述储能模块的校准电压。
进一步地,所述线性稳压器包括反馈端,所述反馈端的电压、所述线性稳压器在所述第一时段内给所述储能模块的输出电压以及所述控制电压成函数关系。
进一步地,所述控制电压改变时,反馈电路调整给所述储能模块的输出电压以保证所述反馈端电压不变,从而实现所述控制电压对所述储能模块的电压的控制。
进一步地,所述线性稳压器通过硬件电路或者通过芯片实现。
进一步地,以下三端中,至少其中两端之间形成有分压电路:
所述反馈端、所述线性稳压器在所述第一时段内给所述储能模块的输出端、所述控制电压的输入端。
进一步地,所述反馈端通过第二分压电路连接于第一分压电路所述控制电压输入端通过第三分压电路连接于第一分压电路;或
所述控制电压输入端通过第三分压电路和部分第一分压电路,与所述线性稳压器在所述第一时段内给所述储能模块的输出端连接;或
所述反馈端通过第二分压电路和部分第一分压电路,与所述线性稳压器在所述第一时段内给所述储能模块的输出端连接。
进一步地,所述第一分压电路包括至少两个电阻,第二分压电路包括至少一个电阻,第三分压电路包括至少一个电阻。
进一步地,所述控制电路控制模块调整所述第一时段的时长,来调整所述电源在所述第一时段内给所述储能模块的输出能量。
进一步地,所述控制模块包括开关电路,所述调整所述电源在所述第一时段内给所述储能模块的输出电压,包括:
根据控制信号控制所述开关电路的导通与断开,来控制所述电源与所述储能模块的导通与断开。
进一步地,至少部分所述激光发射线路中的控制信号的占宽比不同。
进一步地,所述开关电路包括MOS管,所述MOS管通过电阻或电感与所述储能电路连接。
进一步地,在所述至少两条激光发射线路中的一条激光发射线路相邻两次发射光脉冲之间,所述至少两条激光发射线路中的其余激光发射线路分别依次出射一个光脉冲。
进一步地,所述至少两条激光发射电路中,每条激光发射线路中的激光发射器出射光脉冲序列,且所述至少两条激光发射电路交替发射光脉冲序列。
进一步地,,至少部分激光发射线路分别沿不同方向出射光脉冲;
或者,所述至少两条激光发射线路分别沿相同方向出射。
进一步地,至少部分激光发射线路中的激光发射器的发射芯片封装在同一模块内。
进一步地,所述电源包括第一电源和升压模块,所述第一电源输出低于每条激光发射线路的激光发射器的工作电压的电压,所述升压模块将所述第一电源的输出电压升压至高于每条激光发射线路的激光发射器的工作电压的电压。
进一步地,所述储能电路包括电容,所述电容为所述激光发射器提供能量。
第二方面,本发明实施例还提供了一种测距装置,包括:第一方面所述的光发射装置,用于依次出射激光脉冲信号;光电转换电路,用于接收所述光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号;采样电路,用于对来自所述光电转换电路的电信号进行采样,获得采样结果;运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
进一步地,所述光发射装置的数量和所述光电转换电路的数量分别为至少2个;每个所述光电转换电路用于接收来自对应的光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号。
进一步地,所述激光测距装置还包括扫描模块;所述扫描模块用于改变所述激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述光电转换电路。
进一步地,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用 于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
进一步地,所述扫描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
第三方面,本发明实施例还提供了一种移动平台,所述移动平台包括第一方面所述的任一光发射装置以及平台本体,所述测距装置安装在所述平台本体。
进一步地,所述移动平台包括无人飞行器、汽车和遥控车中的至少一种。
本发明通过提供上述光发射装置及其控制方法、测距装置以及移动平台,以提供一种能调整不同的激光管的发射电压或出光能量,从而保证各个激光器出光功率的一致性,此时可以将所有的出光功率调整到安规限制附近,提高整机的测量距离。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的一种光发射装置连接方式的示意图;
图2是图1所示的光发射装置中的放大器内部结构的示意图;
图3是本发明提供的另一种光发射装置连接方式的示意图;
图4是图3中LDO内部结构的示意图;
图5是本发明提供的再一种光发射装置连接方式的示意图;
图6是本发明实施例提供的一种测距装置框架图;
图7是本发明提供的一种测距装置采用同轴光路的一种实施例的示意图。
附图标记说明
1脉冲激光二极管 2脉冲信号 3驱动
4升压电路 5限流电路
100,200测距装置 201被探测物 202扫描模块
110发射电路 103,203发射器
120接收电路 104,204准直元件
130采样电路 105,205探测器
140运算电路 206光路改变元件 207光飞行时间
150控制电路 210测距模块 209轴
160,202扫描模块 214第一光学元件 215第二光学元件
117,216驱动器 119,219准直光束
211,213光 212回光 218控制器
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,示出了一种光发射装置连接方式的示意图,其中示出了多线光发射驱动方案中,采用脉冲驱动的设计的光发射装置,其中包括两条激光发射线路,每条线路包括电源、激光发射器、储能模块和控制模块,所述电源给所述储能模块储能,所述储能模块给所述激光发射器供电;其中,所述至少两条激光发射线路共用所述电源;所述方法包括:对每条所述激光发射线路,调整本条激光发射线路内所述电源给所述储能模块的输出。
具体地,其包括两条激光发射线路,第一条激光发射线路中,包括电源、激光发射器D1、储能模块电容C1和控制模块,储能模块电容C1上存储能量用于给所述激光发射器D1供电,第二条激光发射线路中,包括电源、激光发射器D2、储能模块电容C2和控制模块,储能模块电容C2上存储能量用于给所述激光发射器D2供电,第一条激光发射线路和第二条激光发射线路共同电源,且在第一条激光发射线路中的控制模块中包括控制电压,其能够控制第一条激光发射线路内电源对于储能模块电容C1的输出,在第二条激光发射线路 中的控制模块中包括控制电压,其能够控制第一条激光发射线路内电源对于储能模块电容C2的输出。
在具体的电路工作过程中:通过升压电源将电压提高到激光器的工作电压,该电压一般较高,在进行反馈控制时使用扩展运放Q1的输出电压,R3和R4构成反馈回路,输出电压=控制电压*(R3+R4)/R4。该电源的输出阻抗为R1,在激光发射器发光之后通过R1给C1进行充电,直到C1被充电到输出电压。在激光控制信号发出后MOS管Q2接通,激光发射器发光的瞬间通过C1提供能量使D1发光,当C1能量被消耗后D1熄灭,此时关断Q2后,R1在下个周期为C1充电。
示例性地,运放芯片内部的方案具体可为附图2所示,
在附图2中,其为一个典型运放的内部结构,即为图1中的放大器内部结构。其中Q1、Q2、Q3、Q4组成输入放大器,Q7为第二级放大器,Q8作为第三级放大器,同时作为输出级。信号从Q1和Q4注入作为+input和-input,Q8本身可以直接配置为高压三极管,替代图1中的分立三极管。
如图3所示,示出了另一种光发射装置连接方式的示意图,其中示出了多线激光发射驱动方案中,采用脉冲驱动的设计的光发射装置,其中包括两条激光发射线路,每条线路包括电源、激光发射器、储能模块和控制模块控制电路、储能电路和重置电路,所述电源给所述储能模块储能,所述储能模块给所述激光发射器供电;其中,所述至少两条激光发射线路共用所述电源;所述方法包括:对每条所述激光发射线路,调整本条激光发射线路内所述电源给所述储能模块的输出。
具体地,其包括两条激光发射线路,第一条激光发射线路中,包括电源、激光发射器D1、储能模块电容C1和控制模块,储能模块电容C1上存储能量用于给所述激光发射器D1供电,第二条激光发射线路中,包括电源、激光发射器D2、储能模块电容C2和控制模块,储能模块电容C2上存储能量用于给所述激光发射器D2供电,第一条激光发射线路和第二条激光发射线路共同电源,且在第一条激光发射线路中的控制模块中包括控制电压,其能够控制第一 条激光发射线路内电源对于储能模块电容C1的输出,在第二条激光发射线路中的控制模块中包括控制电压,其能够控制第一条激光发射线路内电源对于储能模块电容C2的输出。
在具体的电路工作过程中:通过升压电源将电压提高到激光器的工作电压以上,然后通过线性稳压电源LDO分别将电压降低到激光器的校准电压。其中通过控制LDO的反馈来实现对输出电压的控制,LDO的FB反馈引脚的电压由电源的分压和参考电压共同决定,当控制电压改变时反馈系统将会调整电源输出使FB的电压不变,从而实现对输出电压的控制。其中C1为储能电容,R5为充电电阻,在激光器熄灭后由R5为C1充电储能,供激光器下次发光。
此设计的关键在于使用控制电压调整LDO的输出电压,方式不限于使用R1、R2、R3、R4组成的分压电路,也可以使用运放反馈实现。
其中C1为储能电容,R5为充电电阻,在激光器熄灭后由R5为C1充电储能,供激光器下次发光。R1为选配,可以不用。
如图4所示是典型的LDO内部结构,正常工作时系统是闭环的则Vout*R2/(R1+R2)=Vref;当非稳定状态下将会通过自动调整使其稳定:如当Vout降低时R1与R2的分压点电压将会降低,此时运放会放大这个压差并输出低电压使PMOS Q1开通,Vin将会对Vout进行充电直到Vout*R2/(R1+R2)=Vref,维持信号稳定。
在我们电路中,LDO的FB反馈引脚的电压由电源的分压和参考电压共同决定,稳态时的公式如下所示:
(Vout-Vref)/R3+(Vc-Vref)/R2=Vref/R4
其中Vref为LDO内部参考电压,Vc为控制电压,则:
Vout=(Vref/R4-(Vc-Vref)/R2)*R3+Vref
当控制电压改变时反馈系统将会调整电源输出使FB的电压不变,从而实现对输出电压的控制。
具体的控制过程为:当Vout下降时,FB引脚的电压将会降低并低于Vref,此时内部的误差放大器将会放大此误差并输出低电压,导致LDO内部的 PMOS开通,Vin将会为Vout充电使Vout电压升高,直到FB引脚电压等于Vref。
如图5所示,示出了再一种光发射装置连接方式的示意图,其中示出了多线激光发射驱动方案中,采用脉冲驱动的设计的光发射装置,其中包括两条激光发射线路,每条线路包括电源、激光发射器、储能模块和控制模块控制电路、储能电路和重置电路,所述电源给所述储能模块储能,所述储能模块给所述激光发射器供电;其中,所述至少两条激光发射线路共用所述电源;所述方法包括:对每条所述激光发射线路,调整本条激光发射线路内所述电源给所述储能模块的输出。
具体地,其包括两条激光发射线路,第一条激光发射线路中,包括电源、激光发射器D1、储能模块电容C1和控制模块,储能模块电容C1上存储能量用于给所述激光发射器D1供电,第二条激光发射线路中,包括电源、激光发射器D2、储能模块电容C2和控制模块,储能模块电容C2上存储能量用于给所述激光发射器D2供电,第一条激光发射线路和第二条激光发射线路共同电源,且在第一条激光发射线路中的控制模块中包括控制电压,其能够控制第一条激光发射线路内电源对于储能模块电容C1的输出,在第二条激光发射线路中的控制模块中包括控制电压,其能够控制第一条激光发射线路内电源对于储能模块电容C2的输出。
2.在具体的电路工作过程中:通过升压电源将电压提高到激光器的工作电压以上,主控通过占空比控制(PMOS的通断)实现对C1充电电荷进行调整,C1上储存的电荷决定于充电的时间,调整充电时间实现对单个脉冲能量进行精确调整。
可以理解的是,在上述三个示例性的技术方案中,前两个方案为负反馈环路来保证输出电压,后一个为开环控制,其中,
负反馈环路进行闭环控制,可以获得更高的控制精度。
示例性地,在每条所述激光发射线路中:所述激光发射器用于出射光脉冲序列,在所述激光发射器相邻两次出射光脉冲之间,所述电源用于在第一时段内给所述储能模块储能;所述储能模块用于在第二时段内给所述激光发射器供 电,以使所述激光发射器出射光脉冲;所述控制模块具体用于调整所述电源在所述第一时段内给所述储能模块的输出能量。
通过上述调整,其产生的结果是,改变电源给不同线路中的储能模块的输出能量,使得不同激光发射线路中所述电源在所述第一时段内给所述储能模块的输出能量不同;因此,本发明中所涉及的每条线路中电源给储能模块的输出能量的目标可以是固定的,也可以是在线调整的。具体地,如图1所示的技术方案中,储能模块电容C1完成储能后,其上的电压可以是固定的,也可以是根据需求动态变化的。同样的,如图3所示的技术方案中,储能模块电容C1完成储能后,其上的电压可以是固定的,也可以是根据需要动态变化,如图5所示的技术方案中,储能模块电容C1完成储能后,其上的电压可以是固定的,也可以是根据需要动态变化。
在附图1和附图3所示的技术方案,控制电压可以是固定的或者是根据需求动态变化的,那么就可以控制储能模块完成储能时,其上的能量是固定的还是动态变化的,而对于附图5所示的技术方案,通过控制信号的占宽比,就可控制储能电路完成储能时,其上的能量,因此,占宽比是固定的或者是根据需求动态变化的,就决定储能模块完成储能时,其上的能量是固定的还是根据需求动态变化的。
示例性地,所述控制模块具体用于调整所述电源在所述第一时段内给所述储能模块的输出电压。在附图1所示出的技术方案中,第一条激光发射线路和第二条激光发射线路均能够通过控制模块调整在第一时段内给储能模块电容C1上的输出电压。根据前文叙述的关系,控制电压与第一时段内给储能模块电容上的输出电压,存在着确定的关系,因此,其上的输出电压能够被控制模块所调整。在附图3所示出的技术方案中,第一条激光发射线路和第二条激光发射线路均能够通过控制模块调整在第一时段内给储能模块电容C1上的输出电压。根据前文叙述的关系,控制电压与第一时段内给储能模块电容上的输出电压,存在着确定的关系,因此,其上的输出电压能够被控制模块所调整。
示例性地,所述控制模块用于根据所在激光发射线路中输入的控制电压调整所述电源在所述第一时段内给所述储能模块的输出电压。
示例性地,在至少部分所述激光发射线路中:所述控制模块通过闭环控制的方式调整所述电源在所述第一时段内给所述储能模块的输出电压,使得所述电源在所述第一时段内给所述储能模块的输出电压接近目标电压,所述目标电压与所述控制电压是线性函数关系。具体地,如图1所示的技术方案中,控制电压与目标电压之间存在线性函数关系,该线性关系可能是直线关系,并具有常数项,输出电压=控制电压*(R3+R4)/R4+offset,offset即为常数项,具体的线性函数关系式由反馈回路的结构确定,本发明对此并不作出限定。如图3所示的技术方案中,根据前文所述,控制电压与目标电压之间也存在着线性函数关系,其具体的线性函数关系式也由反馈回路的结构确定,本发明对此亦不作出限定。
示例性地,所述控制电压小于所述目标电压。
示例性地,所述目标电压大于控制电压的3倍。具体地,如图1和如图3所示的技术方案中,往往希望以相对小的电压对目标电压进行控制,从而以相对小的代价对目标电压实现有效而精细的控制。
示例性地,所述闭环控制的方式具体为负反馈控制的方式。具体地,如图1和图3所示的技术方案中,其均采用了负反馈控制的方式。
示例性地,至少部分所述激光发射线路中输入的控制电压不同。具体地,如图1所示的技术方案中,两条激光发射线路中的输入的控制电压不同时,能够得到不同的目标电压,进而实现对储能模块储能的控制,因此,可以实现两条激光发射线路中,使用不同控制电压进行控制。同样的,如图3所示的技术方案中,也可以实现两条激光发射线路中,使用不同控制电压进行控制。如此,两条激光发射线路可以单独控制,有利于实现多线发光的一致性。
示例性地,至少部分所述激光发射线路中,所述控制模块包括运放器,所述运放器的一个输入为所述控制电压。
示例性地,所述运放器用于将所述电源在所述第一时段内给所述储能模块的输出电压调整到目标电压。
示例性地,所述控制模块还包括负反馈回路,所述负反馈回路通过分压方式将所述控制模块的输出电压分压后作为所述运放器的另一个输入。
具体地,如图1所示的技术方案中,在附图1中,电阻R3上方为运放器的输出电压端,其输出电压通过电阻R3和电阻R4之间的分压,作为运放器的另一个输入,一般来讲,该端为运放器的负端,因此,实现了负反馈控制,控制电压作为运放器的一个输入,当输入发生变化时,电阻R3上方的运放器的输出电压会发生变化,而该变化会通过负反馈回路进入到运放器的另一个输出端,从而实现对运放器的负反馈,进而在所述第一时段内给所述储能模块的输出电压调整到目标电压。
示例性地,所述负反馈回路包括电阻、三极管或MOS管。具体地,如图1所示的技术方案中,其负反馈回路包括电阻R3、R4,三极管Q1,然而,本发明对此并不作出限定。其负反馈回路也可以以其他方式实现,比如,仅使用电阻,或者仅使用MOS管,或者将MOS管与电阻分压结合等等。
示例性地,所述控制模块包括线性稳压器,所述控制模块通过所述线性稳压器实现闭环控制。
示例性地,所述线性稳压器用于将所述电源在所述第一时段内给所述储能模块的输出电压调整到所述储能模块的校准电压。
具体地,如图3所示的技术方案中,控制模块通过LDO电源实现闭环控制,并用于将电源在所述第一时段内给所述储能模块的输出电压调整到所述储能模块的校准电压。
示例性地,所述线性稳压器包括反馈端,所述反馈端处的电压、所述线性稳压器在所述第一时段内给所述储能模块的输出电压以及所述控制电压成函数关系,且所述反馈端口处的电压在所述第一时段内保持不变。具体地,如图3所示的技术方案中,反馈端示意性的表示为FB端。
示例性地,所述线性稳压器通过硬件电路或者通过芯片实现。具体地,如图4所示的技术方案中,线性稳压器通过硬件电路实现,然而,可以理解的是,上述硬件电路还可以通过芯片实现。
示例性地,以下三端中,至少其中两端之间形成有分压电路:所述反馈端、所述线性稳压器在所述第一时段内给所述储能模块的输出端、所述控制电压的输入端。
示例性地,所述反馈端、所述控制电压输入端、所述线性稳压器在所述第一时段内给所述储能模块的输出端中,所述反馈端通过第二分压电路连接于第一分压电路所述控制电压输入端通过第三分压电路连接于第一分压电路;或所述控制电压输入端通过第三分压电路和部分第一分压电路与所述线性稳压器在所述第一时段内给所述储能模块的输出端连接;或所述反馈端通过第二分压电路和部分第一分压电路与所述线性稳压器在所述第一时段内给所述储能模块的输出端连接。
示例性地,所述第一分压电路包括至少两个电阻,第二分压电路包括至少一个电阻,第三分压电路包括至少一个电阻。具体地,如图3所示的技术方案中,所述反馈端和所述线性稳压器在所述第一时段内给所述储能模块的输出端具有分压电路R1、R3,所述线性稳压器在所述第一时段内给所述储能模块的输出端、所述控制电压的输入端具有分压电路R2、R3,所述反馈端、所述控制电压的输入端具有分压电路R1、R2。虽然在图3所示的电路中,上述三端之间,两两之间均具有分压电路,然而,可以理解的是,在其他实施方式中,可以进行其他设定,如只在其中任意两端之间设置分压电路或者两个任意两端之间设置分压电路。
示例性地,所述控制电压改变时,反馈电路调整电源输出以保证反馈端电压不变,从而实现对所述控制模块的输出电压的控制。具体地,如图3和图4所示的技术方案中,由于控制电压端、反馈端和输出电压三者之间存在着确定的关系,由于反馈端在第一时段内维持不变,因此,当控制电压改变时,必然引起输出电压的变化,进而实现控制电压对输出电压的控制。
示例性地,所述控制模块具体用于调整所述第一时段的时长,来调整所述电源在所述第一时段内给所述储能模块的输出能量。具体地,如图5所示的技术方案中,通过控制第一时段的时长,储能电路的储能时间得到控制,进而控制了储能模块上所存储的能量。
示例性地,所述控制模块包括开关电路,所述开关电路用于根据控制信号控制所述电源与所述储能模块的导通与断开。具体地,如图5所示的技术方案中,当开关电路打开时,电源与储能模块导通,当开关电路关闭时,电源与储 能模块断开,进而实现对储能电路导通时长的控制。
示例性地,至少部分所述激光发射线路中的控制信号的占宽比不同。具体地,如图5所示的技术方案中,对于不同的激光发射线路,通过控制开关的导通与关闭,控制信号的占宽比得到控制,因此,对不同的激光发射线路,可以实现灵活的控制,实现对激光器出光能量的校准。
示例性地,所述开关电路包括MOS管,所述MOS管通过电阻或电感与所述储能电路连接。具体地,如图5所示的技术方案中,开关电路为MOS管,通过电阻R1或R2与储能电路电容C1或C2连接。当然,电阻可以替换为电感,实现上述连接。
示例性地,在所述至少两条激光发射线路中的一条激光发射线路相邻两次发射光脉冲之间,所述至少两条激光发射线路中的其余激光发射线路分别依次出射一个光脉冲。
示例性地,所述至少两条激光发射电路中,每条激光发射线路中的激光发射器用于出射光脉冲序列,且所述至少两条激光发射电路交替发射光脉冲序列。
示例性地,至少部分激光发射线路分别沿不同方向出射光脉冲;
或者,所述至少两条激光发射线路分别沿相同方向出射。
本发明所称的“不同方向”出射光脉冲是指发射器的发射芯片的出射光轴不平行。
示例性地,至少部分激光发射线路中的激光发射器的发射芯片封装在同一模块内。
示例性地,所述电源包括第一电源和升压模块,所述第一电源用于输出低于每条激光发射线路的激光发射器的工作电压的电压,所述升压模块用于将所述第一电源的输出电压升压至高于每条激光发射线路的激光发射器的工作电压的电压。
示例性地,所述储能电路包括电容,所述电容用于为所述激光发射器提供能量。
通过对前述三个实施方式的描述,本发明可以实现对不同的激光器提供不同的电压,实现对激光器出光能量的校准,并且能够使所有激光器均能符 合人眼安全的限制。
激光器在发光的瞬间电流比较大,但是工作在低占空比时激光器的平均电流比较小。在进行人眼安全的安规符合性设计时一般使用电容储能的方案为激光器提供单次发光能量,电容能量被耗尽后激光器熄灭。激光器的工作电压一般比较高,所以首先使用升压电路(包括但不限于Boost升压、电荷泵升压等)将电压升高到激光器的工作电压,然后通过程序提供的控制电压(包括但不限于DAC控制、PWM控制)调整多路电源的输出电压,从而实现对多路电源的调整。
在另一个实施例中,本发明实施例还提供了一种测距装置,包括第一方面所述的任一光发射装置;接收电路,用于接收所述光发射装置出射的光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号;采样电路,用于对来自所述接收电路的电信号进行采样,获得采样结果;运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。进一步地,所述光发射装置的数量为至少2个。
在另一个实施例中,本发明实施例还提供了一种移动平台,所述移动平台包括第二方面所述的任一测距装置以及平台本体,所述测距装置安装在所述平台本体。进一步地,所述移动平台包括载人飞行器、无人飞行器、汽车、机器人和遥控车中的至少一种。
本发明各个实施例提供的光发射装置可以应用于测距装置,该测距装置可以是激光雷达、激光测距设备等电子设备。在一种实施例中,测距装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,测距装置可以通过测量测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距装置的距离。或者,测距装置也可以通过其他技术来探测探测物到测距装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图6所示的测距装置100对测距的工作流程进行举例描述。
如图6所示,测距装置100可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定测距装置100与被探测物之间的距离。
可选地,该测距装置100还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图6示出的测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中的发光芯片封装在同一个模块中。例如,每个发射电路包括一个激光发射芯片,该至少两个发射电路中的激光发射芯片中的die封装到一起,容置在同一个封装空间中。
一些实现方式中,除了图6所示的电路,测距装置100还可以包括扫描模块160,用于将发射电路出射的至少一路激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为测距模块,该测距模块可以独立于其他模块,例如,扫描模块160。
测距装置中可以采用同轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内共用至少部分光路。例如,发射电路出射的至少一路激光脉冲序列经扫描模块改变传播方向出射后,经探测物反射回来的激光脉冲序列经过扫描模块后入射至接收电路。或者,测距装置也可以采用异轴光路,也即测 距装置出射的光束和经反射回来的光束在测距装置内分别沿不同的光路传输。图7示出了本发明的测距装置采用同轴光路的一种实施例的示意图。
测距装置200包括测距模块210,测距模块210包括发射器203(可以包括上述的发射电路)、准直元件204、探测器205(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件206。测距模块210用于发射光束,且接收回光,将回光转换为电信号。其中,发射器203可以用于发射光脉冲序列。在一个实施例中,发射器203可以发射激光脉冲序列。可选的,发射器203发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件204设置于发射器的出射光路上,用于准直从发射器203发出的光束,将发射器203发出的光束准直为平行光出射至扫描模块。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件204可以是准直透镜或者是其他能够准直光束的元件。
在图7所示实施例中,通过光路改变元件206来将测距装置内的发射光路和接收光路在准直元件104之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器103和探测器105分别使用各自的准直元件,将光路改变元件206设置在准直元件之后的光路上。
在图7所示实施例中,由于发射器103出射的光束的光束孔径较小,测距装置所接收到的回光的光束孔径较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射发射器203的出射光,反射镜用于将回光反射至探测器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图7所示实施例中,光路改变元件偏离了准直元件204的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件204的光轴上。
测距装置200还包括扫描模块202。扫描模块202放置于测距模块210的出射光路上,扫描模块102用于改变经准直元件204出射的准直光束219的传输方向并投射至外界环境,并将回光投射至准直元件204。回光经准直元件104 汇聚到探测器105上。
在一个实施例中,扫描模块202可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径。例如,扫描模块202包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模块202的多个光学元件可以绕共同的轴209旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块202的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块202的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块202包括第一光学元件214和与第一光学元件214连接的驱动器216,驱动器216用于驱动第一光学元件214绕转动轴209转动,使第一光学元件214改变准直光束219的方向。第一光学元件214将准直光束219投射至不同的方向。在一个实施例中,准直光束219经第一光学元件改变后的方向与转动轴109的夹角随着第一光学元件214的转动而变化。在一个实施例中,第一光学元件214包括相对的非平行的一对表面,准直光束219穿过该对表面。在一个实施例中,第一光学元件214包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件114包括楔角棱镜,对准直光束119进行折射。
在一个实施例中,扫描模块202还包括第二光学元件215,第二光学元件215绕转动轴209转动,第二光学元件215的转动速度与第一光学元件214的转动速度不同。第二光学元件215用于改变第一光学元件214投射的光束的方向。在一个实施例中,第二光学元件115与另一驱动器217连接,驱动器117 驱动第二光学元件215转动。第一光学元件214和第二光学元件215可以由相同或不同的驱动器驱动,使第一光学元件214和第二光学元件215的转速和/或转向不同,从而将准直光束219投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器218控制驱动器216和217,分别驱动第一光学元件214和第二光学元件215。第一光学元件214和第二光学元件215的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器216和217可以包括电机或其他驱动器。
在一个实施例中,第二光学元件115包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件115包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件115包括楔角棱镜。
一个实施例中,扫描模块102还包括第三光学元件(图未示)和用于驱动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
扫描模块202中的各光学元件旋转可以将光投射至不同的方向,例如光211和213的方向,如此对测距装置200周围的空间进行扫描。当扫描模块202投射出的光211打到被探测物201时,一部分光被探测物201沿与投射的光211相反的方向反射至测距装置200。被探测物201反射的回光212经过扫描模块202后入射至准直元件204。
探测器205与发射器203放置于准直元件204的同一侧,探测器205用于将穿过准直元件204的至少部分回光转换为电信号。
一个实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器103发射出的光束的波长相等或接近,能够增加透射光束的强度。
一个实施例中,测距装置中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪音。
在一些实施例中,发射器203可以包括激光二极管,通过激光二极管发射 纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置200可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定被探测物201到测距装置200的距离。
测距装置200探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。在一种实施例中,本发明实施例的测距装置可应用于移动平台,测距装置可安装在移动平台的平台本体。具有测距装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施例中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应用于相机时,平台本体为相机本身。
本发明通过提供上述光发射装置、测距装置以及移动平台,以提供一种符合人眼安全规定的激光发射方案,当系统发生单一故障时,上述装置中的电路可以保证激光辐射值不超过安规值,从而保证激光装置的使用安全。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显 而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。

Claims (69)

  1. 一种光发射装置的控制方法,其特征在于,所述光发射装置包括至少两条激光发射线路,每条所述激光发射线路包括电源、激光发射器、储能模块和控制模块,所述电源给所述储能模块储能,所述储能模块给所述激光发射器供电;其中,所述至少两条激光发射线路共用所述电源;所述方法包括:
    对每条所述激光发射线路,调整本条激光发射线路内所述电源给所述储能模块的输出。
  2. 根据权利要求1所述的控制方法,其特征在于,对每条所述激光发射线路,所述方法包括:
    控制所述激光发射器出射光脉冲序列;
    其中,在所述激光发射器相邻两次出射光脉冲之间,控制所述电源在第一时段内给所述储能模块储能,控制所述储能模块在第二时段内给所述激光发射器供电,以使所述激光发射器出射光脉冲;
    所述调整本条激光发射线路内所述电源给所述储能模块的输出,包括:
    调整本条激光发射线路内所述电源在所述第一时段内给所述储能模块的输出能量。
  3. 根据权利要求2所述的控制方法,其特征在于,所述调整本条激光发射线路内所述电源在所述第一时段内给所述储能模块的输出能量,包括:
    调整所述电源在所述第一时段内给所述储能模块的输出电压。
  4. 根据权利要求3所述的控制方法,其特征在于,所述调整所述电源在所述第一时段内给所述储能模块的输出电压,包括:
    根据所在激光发射线路中的控制电压调整所述电源在所述第一时段内给所述储能模块的输出电压。
  5. 根据权利要求3或4所述的控制方法,其特征在于,在至少部分所述激光发射线路中:
    通过闭环控制的方式调整所述电源在所述第一时段内给所述储能模块的输出电压,使得所述电源在所述第一时段内给所述储能模块的输出电压接近目 标电压,所述目标电压与所述控制模块的输出电压是线性函数关系。
  6. 根据权利要求5所述的控制方法,其特征在于,
    所述控制电压小于所述目标电压。
  7. 根据权利要求6所述的控制方法,其特征在于,
    所述目标电压大于控制电压的3倍。
  8. 根据权利要求5所述的控制方法,其特征在于,
    所述闭环控制的方式具体为负反馈控制的方式。
  9. 根据权利要求4或5所述的控制方法,其特征在于,
    至少部分所述激光发射线路中的控制电压不同。
  10. 根据权利要求1-7任一项所述的控制方法,其特征在于,
    所述控制电路控制模块包括运放器,所述运放器的一个输入为所述控制电压。
  11. 根据权利要求10所述的控制方法,其特征在于,所述运放器用于将所述电源在所述第一时段内给所述储能模块的输出电压调整到目标电压。
  12. 根据权利要求11所述的控制方法,其特征在于,所述控制模块还包括负反馈回路,所述负反馈回路通过分压方式将所述控制模块的输出电压分压后作为所述运放器的另一个输入。
  13. 根据权利要求12所述的控制方法,其特征在于,所述负反馈回路包括电阻、三极管或MOS管。
  14. 根据权利要求1-7任一项所述的控制方法,其特征在于,所述控制电路控制模块包括线性稳压器,所述控制模块通过所述线性稳压器实现闭环控制。
  15. 根据权利要求14所述的控制方法,其特征在于,所述线性稳压器用于将所述电源在所述第一时段内给所述储能模块的输出电压调整到所述储能模块的校准电压。
  16. 根据权利要求15所述的控制方法,其特征在于,所述线性稳压器包括反馈端,所述反馈端的电压、所述线性稳压器在所述第一时段内给所述储能模块的输出电压以及所述控制电压成函数关系。
  17. 根据权利要求16所述的控制方法,其特征在于,所述控制电压改变 时,反馈电路调整给所述储能模块的输出电压以保证所述反馈端电压不变,从而实现所述控制电压对所述储能模块的电压的控制。
  18. 根据权利要求15所述的控制方法,其特征在于,所述线性稳压器通过硬件电路或者通过芯片实现。
  19. 根据权利要求15所述的控制方法,其特征在于,以下三端中,至少其中两端之间形成有分压电路:
    所述反馈端、所述线性稳压器在所述第一时段内给所述储能模块的输出端、所述控制电压的输入端。
  20. 根据权利要求13所述的控制方法,其特征在于,
    所述反馈端通过第二分压电路连接于第一分压电路所述控制电压输入端通过第三分压电路连接于第一分压电路;或
    所述控制电压输入端通过第三分压电路和部分第一分压电路,与所述线性稳压器在所述第一时段内给所述储能模块的输出端连接;或
    所述反馈端通过第二分压电路和部分第一分压电路,与所述线性稳压器在所述第一时段内给所述储能模块的输出端连接。
  21. 根据权利要求20所述的控制方法,其特征在于,所述第一分压电路包括至少两个电阻,第二分压电路包括至少一个电阻,第三分压电路包括至少一个电阻。
  22. 根据权利要求2所述的控制方法,其特征在于,所述控制电路控制模块调整所述第一时段的时长,来调整所述电源在所述第一时段内给所述储能模块的输出能量。
  23. 根据权利要求22所述的控制方法,其特征在于,所述控制模块包括开关电路,所述调整所述电源在所述第一时段内给所述储能模块的输出电压,包括:
    根据控制信号控制所述开关电路的导通与断开,来控制所述电源与所述储能模块的导通与断开。
  24. 根据权利要求23所述的控制方法,其特征在于,至少部分所述激光发射线路中的控制信号的占宽比不同。
  25. 根据权利要求23所述的控制方法,其特征在于,所述开关电路包括MOS管,所述MOS管通过电阻或电感与所述储能电路连接。
  26. 根据权利要求1-25任一项所述的控制方法,其特征在于,在所述至少两条激光发射线路中的一条激光发射线路相邻两次发射光脉冲之间,所述至少两条激光发射线路中的其余激光发射线路分别依次出射一个光脉冲。
  27. 根据权利要求1-25任一项所述的控制方法,其特征在于,所述至少两条激光发射电路中,每条激光发射线路中的激光发射器出射光脉冲序列,且所述至少两条激光发射电路交替发射光脉冲序列。
  28. 根据权利要求1-25任一项所述的控制方法,其特征在于,至少部分激光发射线路分别沿不同方向出射光脉冲;
    或者,所述至少两条激光发射线路分别沿相同方向出射。
  29. 根据权利要求1-25任一项所述的控制方法,其特征在于,至少部分激光发射线路中的激光发射器的发射芯片封装在同一模块内。
  30. 根据权利要求1-25任一项所述的控制方法,其特征在于,所述电源包括第一电源和升压模块,所述第一电源输出低于每条激光发射线路的激光发射器的工作电压的电压,所述升压模块将所述第一电源的输出电压升压至高于每条激光发射线路的激光发射器的工作电压的电压。
  31. 根据权利要求1-25任一项所述的控制方法,其特征在于,所述储能电路包括电容,所述电容为所述激光发射器提供能量。
  32. 一种光发射装置,其特征在于,所述光发射装置包括至少两条激光发射线路,
    每条所述激光发射线路包括电源、激光发射器、储能模块和控制模块,所述电源用于给所述储能模块储能,所述储能模块用于给所述激光发射器供电;其中,所述至少两条激光发射线路共用所述电源;
    在每条所述激光发射线路中,所述控制模块用于调整本条激光发射线路内所述电源给所述储能模块的输出。
  33. 根据权利要求32所述的光发射装置,其特征在于,在每条所述激光发射线路中:
    所述激光发射器用于出射光脉冲序列,在所述激光发射器相邻两次出射光脉冲之间,所述电源用于在第一时段内给所述储能模块储能;所述储能模块用于在第二时段内给所述激光发射器供电,以使所述激光发射器出射光脉冲;
    所述控制模块具体用于调整所述电源在所述第一时段内给所述储能模块的输出能量。
  34. 根据权利要求33所述的光发射装置,其特征在于,所述控制模块具体用于调整所述电源在所述第一时段内给所述储能模块的输出电压。
  35. 根据权利要求34所述的光发射装置,其特征在于,所述控制模块用于根据所在激光发射线路中输入的控制电压调整所述电源在所述第一时段内给所述储能模块的输出电压。
  36. 根据权利要求34或35所述的光发射装置,其特征在于,在至少部分所述激光发射线路中:
    所述控制模块通过闭环控制的方式调整所述电源在所述第一时段内给所述储能模块的输出电压,使得所述电源在所述第一时段内给所述储能模块的输出电压接近目标电压,所述目标电压与所述控制电压是线性函数关系。
  37. 根据权利要求36所述的光发射装置,其特征在于,所述控制电压小于所述目标电压。
  38. 根据权利要求37所述的光发射装置,其特征在于,所述目标电压大于控制电压的3倍。
  39. 根据权利要求35或36所述的光发射装置,其特征在于,所述闭环控制的方式具体为负反馈控制的方式。
  40. 根据权利要求35或36所述的光发射装置,其特征在于,至少部分所述激光发射线路中输入的控制电压不同。
  41. 根据权利要求33-40所述的光发射装置,其特征在于,至少部分所述激光发射线路中,所述控制模块包括运放器,所述运放器的一个输入为所述控制电压。
  42. 根据权利要求41所述的光发射装置,其特征在于,所述运放器用于将所述电源在所述第一时段内给所述储能模块的输出电压调整到目标电压。
  43. 根据权利要求42所述的光发射装置,其特征在于,所述控制模块还包括负反馈回路,所述负反馈回路通过分压方式将所述控制模块的输出电压分压后作为所述运放器的另一个输入。
  44. 根据权利要求43所述的光发射装置,其特征在于,所述负反馈回路包括电阻、三极管或MOS管。
  45. 根据权利要求33-40所述的光发射装置,其特征在于,所述控制模块包括线性稳压器,所述控制模块通过所述线性稳压器实现闭环控制。
  46. 根据权利要求45所述的光发射装置,其特征在于,所述线性稳压器用于将所述电源在所述第一时段内给所述储能模块的输出电压调整到所述储能模块的校准电压。
  47. 根据权利要求45所述的光发射装置,其特征在于,所述线性稳压器包括反馈端,所述反馈端处的电压、所述线性稳压器在所述第一时段内给所述储能模块的输出电压以及所述控制电压成函数关系,且所述反馈端口处的电压在所述第一时段内保持不变。
  48. 根据权利要求46所述的光发射装置,其特征在于,所述线性稳压器通过硬件电路或者通过芯片实现。
  49. 根据权利要求46所述的光发射装置,其特征在于,以下三端中,至少其中两端之间形成有分压电路:
    所述反馈端、所述线性稳压器在所述第一时段内给所述储能模块的输出端、所述控制电压的输入端。
  50. 根据权利要求49所述的光发射装置,其特征在于,所述反馈端、所述控制电压输入端、所述线性稳压器在所述第一时段内给所述储能模块的输出端中,
    所述反馈端通过第二分压电路连接于第一分压电路所述控制电压输入端通过第三分压电路连接于第一分压电路;或
    所述控制电压输入端通过第三分压电路和部分第一分压电路与所述线性稳压器在所述第一时段内给所述储能模块的输出端连接;或
    所述反馈端通过第二分压电路和部分第一分压电路与所述线性稳压器在 所述第一时段内给所述储能模块的输出端连接。
  51. 根据权利要求50所述的光发射装置,其特征在于,所述第一分压电路包括至少两个电阻,第二分压电路包括至少一个电阻,第三分压电路包括至少一个电阻。
  52. 根据权利要求45-51任一项所述的光发射装置,其特征在于,所述控制电压改变时,反馈电路调整电源输出以保证反馈端电压不变,从而实现对所述控制模块的输出电压的控制。
  53. 根据权利要求33所述的光发射装置,其特征在于,所述控制模块具体用于调整所述第一时段的时长,来调整所述电源在所述第一时段内给所述储能模块的输出能量。
  54. 根据权利要求53所述的光发射装置,其特征在于,所述控制模块包括开关电路,所述开关电路用于根据控制信号控制所述电源与所述储能模块的导通与断开。
  55. 根据权利要求54所述的光发射装置,其特征在于,至少部分所述激光发射线路中的控制信号的占宽比不同。
  56. 根据权利要求55所述的光发射装置,其特征在于,所述开关电路包括MOS管,所述MOS管通过电阻或电感与所述储能电路连接。
  57. 根据权利要求32-56任一项所述的光发射装置,其特征在于,在所述至少两条激光发射线路中的一条激光发射线路相邻两次发射光脉冲之间,所述至少两条激光发射线路中的其余激光发射线路分别依次出射一个光脉冲。
  58. 根据权利要求32-56任一项所述的光发射装置,其特征在于,所述至少两条激光发射电路中,每条激光发射线路中的激光发射器用于出射光脉冲序列,且所述至少两条激光发射电路交替发射光脉冲序列。
  59. 根据权利要求32-56任一项所述的光发射装置,其特征在于,至少部分激光发射线路分别沿不同方向出射光脉冲;
    或者,所述至少两条激光发射线路分别沿相同方向出射。
  60. 根据权利要求32-56任一项所述的光发射装置,其特征在于,至少部分激光发射线路中的激光发射器的发射芯片封装在同一模块内。
  61. 根据权利要求32-56任一项所述的光发射装置,其特征在于,所述电源包括第一电源和升压模块,所述第一电源用于输出低于每条激光发射线路的激光发射器的工作电压的电压,所述升压模块用于将所述第一电源的输出电压升压至高于每条激光发射线路的激光发射器的工作电压的电压。
  62. 根据权利要求32-56任一项所述的光发射装置,其特征在于,所述储能电路包括电容,所述电容用于为所述激光发射器提供能量。
  63. 一种测距装置,其特征在于,包括:
    如权利要求32至62任一项所述的光发射装置,用于依次出射激光脉冲信号;
    与所述至少两条激光发射线路一一对应的至少两条探测线路,其中,每条探测线路包括:
    光电转换电路,用于接收对应的激光发射线路出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号;
    采样电路,用于对来自所述光电转换电路的电信号进行采样,获得采样结果;
    运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
  64. 根据权利要求63所述的测距装置,其特征在于,所述至少两条探测线路共用所述采样电路中的至少部分;和/或,
    所述至少两条探测线路共用所述运算电路中的至少部分。
  65. 根据权利要求62或63所述的测距装置,其特征在于,所述激光测距装置还包括扫描模块;
    所述扫描模块用于改变来自所述光发射装置的激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述探测线路。
  66. 根据权利要求65所述的测距装置,其特征在于,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
  67. 根据权利要求66所述的测距装置,其特征在于,所述扫描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;
    来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
  68. 一种移动平台,其特征在于,包括:
    权利要求63至67任一项所述的测距装置;和
    平台本体,所述测距装置的光发射装置安装在所述平台本体上。
  69. 根据权利要求68所述的移动平台,其特征在于,所述移动平台包括无人飞行器、汽车和机器人中的至少一种。
PCT/CN2019/110676 2019-10-11 2019-10-11 一种光发射装置及测距装置、移动平台 WO2021068212A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980031875.9A CN112955782A (zh) 2019-10-11 2019-10-11 一种光发射装置及测距装置、移动平台
PCT/CN2019/110676 WO2021068212A1 (zh) 2019-10-11 2019-10-11 一种光发射装置及测距装置、移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110676 WO2021068212A1 (zh) 2019-10-11 2019-10-11 一种光发射装置及测距装置、移动平台

Publications (1)

Publication Number Publication Date
WO2021068212A1 true WO2021068212A1 (zh) 2021-04-15

Family

ID=75437664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110676 WO2021068212A1 (zh) 2019-10-11 2019-10-11 一种光发射装置及测距装置、移动平台

Country Status (2)

Country Link
CN (1) CN112955782A (zh)
WO (1) WO2021068212A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022253656A1 (en) * 2021-06-02 2022-12-08 Valeo Schalter Und Sensoren Gmbh Active optical sensor system with improved eye safety
WO2022261835A1 (zh) * 2021-06-15 2022-12-22 深圳市大疆创新科技有限公司 光发射装置及其控制方法、测距装置、可移动平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201898278U (zh) * 2010-12-10 2011-07-13 许继集团有限公司 一种激光电源控制电路
WO2014156749A1 (ja) * 2013-03-25 2014-10-02 富士フイルム株式会社 光音響計測装置及びレーザ光源
CN106340799A (zh) * 2016-03-10 2017-01-18 北京国科欣翼科技有限公司 激光器控制系统
CN107884762A (zh) * 2016-09-30 2018-04-06 比亚迪股份有限公司 激光雷达及车辆
CN109116333A (zh) * 2018-09-14 2019-01-01 南京理工大学 一种多脉冲错时叠加的激光雷达回波模拟器
CN210142193U (zh) * 2018-12-07 2020-03-13 深圳市大疆创新科技有限公司 一种测距装置、移动平台

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200986592Y (zh) * 2006-01-07 2007-12-05 何兴 一种激光敌我识别系统整机发射、接收功能检测仪
CN104714220A (zh) * 2013-12-11 2015-06-17 重庆爱特光电有限公司 激光发射电路、激光接收电路、距离计算电路及其设备
CN104218448B (zh) * 2014-09-17 2017-11-17 威海北洋光电信息技术股份公司 一种大功率半导体激光管脉冲驱动电路
CN110149007B (zh) * 2019-05-23 2023-09-05 山东联合电力产业发展有限公司 一种交流有源电子式电流互感器及供电方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201898278U (zh) * 2010-12-10 2011-07-13 许继集团有限公司 一种激光电源控制电路
WO2014156749A1 (ja) * 2013-03-25 2014-10-02 富士フイルム株式会社 光音響計測装置及びレーザ光源
CN106340799A (zh) * 2016-03-10 2017-01-18 北京国科欣翼科技有限公司 激光器控制系统
CN107884762A (zh) * 2016-09-30 2018-04-06 比亚迪股份有限公司 激光雷达及车辆
CN109116333A (zh) * 2018-09-14 2019-01-01 南京理工大学 一种多脉冲错时叠加的激光雷达回波模拟器
CN210142193U (zh) * 2018-12-07 2020-03-13 深圳市大疆创新科技有限公司 一种测距装置、移动平台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022253656A1 (en) * 2021-06-02 2022-12-08 Valeo Schalter Und Sensoren Gmbh Active optical sensor system with improved eye safety
WO2022261835A1 (zh) * 2021-06-15 2022-12-22 深圳市大疆创新科技有限公司 光发射装置及其控制方法、测距装置、可移动平台

Also Published As

Publication number Publication date
CN112955782A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
US20210333362A1 (en) Light emitting device, distance measuring device and mobile platform
WO2020143542A1 (zh) 一种激光雷达
CN108351413B (zh) 紧凑芯片级lidar解决方案
CN210142193U (zh) 一种测距装置、移动平台
WO2020142947A1 (zh) 一种光发射装置及测距装置、移动平台
WO2021068212A1 (zh) 一种光发射装置及测距装置、移动平台
EP3301473B1 (en) Distance measuring device
WO2018133089A1 (zh) Tof测距系统及可移动平台
US20210336566A1 (en) Ranging apparatus and scan mechanism thereof, control method, and mobile platform
US10132926B2 (en) Range finder, mobile object and range-finding method
CN211505895U (zh) 激光发射装置、峰值保持电路、测距装置和移动平台
US20210333370A1 (en) Light emission method, device, and scanning system
CN101561500B (zh) 激光雷达自动准直系统
US20220120899A1 (en) Ranging device and mobile platform
US9482938B2 (en) Laser beam projection apparatus and projector having light source module for combination
CN211236240U (zh) 一种光发射装置及测距装置、移动平台
KR102578131B1 (ko) 라이다 광학 시스템
JP2018004372A (ja) 光走査装置および距離計測装置
CN112219330A (zh) 一种激光接收电路及测距装置、移动平台
JP2018004374A (ja) 光走査装置および距離計測装置
WO2022261835A1 (zh) 光发射装置及其控制方法、测距装置、可移动平台
WO2023065589A1 (zh) 一种测距系统及测距方法
CN209264958U (zh) 一种激光雷达功能模块
CN113567999A (zh) 一种激光装置和激光雷达系统及其控制方法
WO2021138770A1 (zh) 一种光发射装置及测距设备、移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948790

Country of ref document: EP

Kind code of ref document: A1