WO2020142947A1 - 一种光发射装置及测距装置、移动平台 - Google Patents

一种光发射装置及测距装置、移动平台 Download PDF

Info

Publication number
WO2020142947A1
WO2020142947A1 PCT/CN2019/071032 CN2019071032W WO2020142947A1 WO 2020142947 A1 WO2020142947 A1 WO 2020142947A1 CN 2019071032 W CN2019071032 W CN 2019071032W WO 2020142947 A1 WO2020142947 A1 WO 2020142947A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
emitting device
light emitting
laser
energy storage
Prior art date
Application number
PCT/CN2019/071032
Other languages
English (en)
French (fr)
Inventor
黄森洪
马亮亮
刘祥
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005426.7A priority Critical patent/CN111670378A/zh
Priority to PCT/CN2019/071032 priority patent/WO2020142947A1/zh
Publication of WO2020142947A1 publication Critical patent/WO2020142947A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Definitions

  • the invention relates to the technical field of circuits, in particular to a light emitting device, a distance measuring device, and a mobile platform.
  • AEL Accessible Emission Limit
  • the invention designs a laser emission scheme that meets human eye safety regulations. At the same time, when a single fault occurs in the system, the protection circuit can ensure that the laser energy does not exceed the safety regulations.
  • a first aspect of the present invention provides a light emitting device, including: a power supply, a laser emitter, a charging circuit, an energy storage circuit, and a control circuit, the power supply is connected to the charging circuit, and is used to provide an The charging circuit is charged; the energy storage circuit is connected to the laser emitter and the charging circuit respectively, the energy storage circuit includes at least one capacitor, the charging circuit includes at least one inductor; the control circuit is used for Cut off the connection between the laser emitter and the energy storage circuit within a first period of time, and at least part of the duration of the first period of time, the charging circuit is used to charge the energy storage circuit; the control circuit It is also used to turn on the connection between the laser emitter and the energy storage circuit in the second period, so that the energy storage circuit supplies power to the laser emitter, so that the laser emitter emits a light pulse signal, Until the output current of the capacitor is lower than the threshold current of the laser emitter; the first time period and the second time period are alternately performed, so that the laser emitter emit
  • the energy stored in the at least one capacitor has a preset upper limit value.
  • control circuit includes a first switching circuit and a driving circuit connected to the first switching circuit; the driving circuit is used to control the first switching signal according to the first driving signal during the first period A switching circuit cuts off the connection between the laser emitter and the energy storage circuit; the driving circuit is also used to control the first switching circuit to turn on the second driving signal during the second period The connection of the laser emitter and the energy storage circuit.
  • the power supply charges the charging circuit for at least part of the second time period.
  • a first loop is turned on, and the first loop includes the power supply, the charging circuit, and the first switching circuit connected in series with each other.
  • a second loop is turned on, and the second loop includes the energy storage circuit, the laser emitter, and the first switching circuit connected in series with each other.
  • the first loop also includes the laser transmitter.
  • the laser emitter is not located on the first loop.
  • the light emitting device further includes a second switching circuit between the charging circuit and the energy storage circuit.
  • the second switch circuit is located on the first loop, and is used to turn on the power supply, the charging circuit, and the first switch circuit during the second period.
  • the second switch circuit is used to turn on the connection between the charging circuit and the energy storage circuit within the first period, and when the charging circuit completes the energy storage of the energy storage circuit, Disconnect the charging circuit and the energy storage circuit.
  • the light emitting device further includes a third switching circuit between the charging circuit and the energy storage circuit.
  • the third switch circuit is used to cut off the connection between the charging circuit and the energy storage circuit within the second period.
  • the third switch circuit is used to turn on the charging circuit and the energy storage circuit within the first period, and when the charging circuit completes the energy storage of the energy storage circuit, the switch is turned off The third switch circuit is described.
  • the third switching circuit is a third diode.
  • the second switching circuit is a first diode.
  • the laser emitter includes a laser diode; the first end of the laser diode is connected to the energy storage circuit, and the second end of the laser diode is connected to the first end of the first switching circuit;
  • the driving circuit is connected to the second terminal of the first switching circuit, wherein the driving circuit controls the first switching circuit; the third terminal of the first switching circuit is connected to ground.
  • the charging circuit further includes at least one resistor connected to the inductor, for limiting the current of the charging circuit.
  • the charging circuit further includes a resistor, a voltage calibration source, and a transistor.
  • one end of the resistor in the current limiting circuit is connected to the power supply, and the other end is connected to the voltage calibration source.
  • the first end of the triode is connected to the power source, the second end is connected to the other end of the resistor of the current limiting circuit, and the third end is connected to the at least one capacitor.
  • the first end of the voltage calibration source is connected to the resistor in the current limiting circuit and the second end of the triode, the second end is connected to the input end of the laser emitter, and the third end is connected to The third end of the triode.
  • one end of the at least one capacitor is connected to the charging circuit, and the other end is grounded.
  • the light emitting device further includes a second diode, one end of the second diode is connected to the charging circuit, and the other end is grounded.
  • the light emitting device further includes a boosting circuit, and the boosting circuit is used to boost the input voltage to meet different requirements of the laser emitter.
  • an embodiment of the present invention further provides a distance measuring device, including: the light emitting device according to the first aspect for sequentially emitting laser pulse signals; and a photoelectric conversion circuit for receiving the light emitting device At least part of the optical signal reflected by the laser pulse signal of the object and converting the received optical signal into an electrical signal; a sampling circuit for sampling the electrical signal from the photoelectric conversion circuit to obtain a sampling result; an arithmetic circuit , Used to calculate the distance between the object and the distance measuring device according to the sampling result.
  • the number of the light emitting devices and the number of the photoelectric conversion circuits are at least two; each of the photoelectric conversion circuits is used to receive the laser pulse signal emitted from the corresponding light emitting device and reflected by the object At least part of the optical signal, and convert the received optical signal into an electrical signal.
  • the laser distance measuring device further includes a scanning module; the scanning module is used to change the transmission direction of the laser pulse signal and exit, and the laser pulse signal reflected back by the object passes through the scanning module and enters the Photoelectric conversion circuit.
  • the scanning module includes a driver and a prism with an uneven thickness.
  • the driver is used to drive the prism to rotate to change the laser pulse signal passing through the prism to different directions for exit.
  • the scanning module includes two drivers, and two prisms of uneven thickness arranged side by side, the two drivers are respectively used to drive the two prisms to rotate in opposite directions; from the laser emission The laser pulse signal of the device passes through the two prisms in turn and then changes the transmission direction to exit.
  • an embodiment of the present invention further provides a mobile platform, the mobile platform includes any one of the light emitting device and the platform body described in the first aspect, and the distance measuring device is installed on the platform body.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, and a remote control car.
  • the present invention provides a laser emission solution that meets human eye safety regulations by providing the above-mentioned light emitting device, distance measuring device and mobile platform.
  • the circuit in the above device can ensure that the laser radiation value does not exceed the safety Standard value, so as to ensure the safety of the laser device.
  • FIG. 1 is a schematic diagram of a connection method of a laser emitting device provided in the prior art
  • FIG. 2 is a schematic diagram of a first embodiment of a laser emitting device provided by the present invention.
  • FIG. 3 is a schematic diagram of a path when the NMOS tube in the first embodiment provided by the present invention is turned on;
  • FIG. 4 is a schematic diagram of the path when the NMOS tube in the first embodiment provided by the present invention is turned off;
  • FIG. 5 is a schematic diagram of a second embodiment of a laser emitting device provided by the present invention.
  • FIG. 6 is a schematic diagram of an alternative solution of the second embodiment of the laser emitting device provided by the present invention.
  • FIG. 7 is a schematic diagram of the NMOS tube in the second embodiment of the present invention when a short circuit fails;
  • FIG. 11 is a schematic diagram of D1 short circuit failure in the second embodiment provided by the present invention.
  • FIG. 13 is a schematic diagram of L1 short circuit failure in the second embodiment provided by the present invention.
  • 16 is a schematic diagram of a third embodiment of a laser emitting device provided by the present invention.
  • 17 is a schematic diagram of an inductive charging path when the NMOS tube in the third embodiment of the present invention is turned on;
  • FIG. 18 is a schematic diagram of a capacitor charging path when the NMOS tube in the third embodiment provided by the present invention is turned off;
  • 19 is a schematic diagram of the path of inductive charging and capacitive discharging when the NMOS tube in the third embodiment of the present invention is turned on;
  • 20 is a schematic diagram of the NMOS tube in the third embodiment of the present invention when the open circuit fails;
  • 21 is a schematic diagram of the NMOS tube short circuit failure in the third embodiment provided by the present invention.
  • 24 is a schematic frame diagram of a distance measuring device provided by an embodiment of the present invention.
  • 25 is a schematic diagram of an embodiment of a distance measuring device provided by an embodiment of the present invention using a coaxial optical path;
  • 26 is a schematic diagram of a fourth embodiment provided by the present invention.
  • FIG. 27 is a schematic diagram of a fifth embodiment provided by the present invention.
  • FIG. 29 is a timing control diagram in the fifth embodiment provided by the present invention.
  • control circuit 210 ranging module 209 axis
  • the existing scheme uses a pulse-driven light emitting device, which includes a power supply, a light source, and a control circuit, where the power supply is VCC_LD, the light source is a pulsed laser diode, and the control circuit includes a drive circuit and a switching circuit NMOS,
  • the driver When the pulse signal is at high level, the driver outputs high voltage and current, quickly turns on the NMOS tube, the cathode of the pulse laser diode is grounded, the anode is connected to the power supply VCC_LD, there is a voltage difference, at this time the laser diode is turned on and emits light, when the pulse signal When it is low, the NMOS tube is turned off, so that the laser diode is also turned off. Therefore, by controlling the duty cycle and frequency of the pulse signal, that is, the duration and frequency of the light emitted by the laser diode can be controlled, thereby controlling the radiation amount of the laser diode.
  • the luminous energy is determined by the following factors: (1) the luminous duration of the single-pulse laser diode, corresponding to the duty cycle or pulse width of the control pulse signal; (2) the laser diode per unit time The operating frequency corresponds to the frequency of the control pulse signal; (3) The peak power of the laser diode corresponds to the control operating voltage VCC_LD. Controlling the duty cycle or pulse width of the pulse signal determines the length of the light emission time of the single pulse laser diode. The larger the duty cycle or pulse width, the greater the luminous energy. On the contrary, the duty cycle or pulse width The smaller, the smaller the luminous energy, the frequency of the pulse signal is controlled, which determines the working frequency of the laser diode per unit time.
  • the higher the signal frequency, the greater the luminous energy, the lower the signal frequency, the smaller the luminous energy, the control operating voltage The peak power of the laser diode is determined. The higher the control operating voltage, the greater the luminous energy, and the lower the control operating voltage, the smaller the luminous energy.
  • the problem with this solution is that if there is a single fault in the system, for example: (1) there is a bug in the software, the pulse width of the pulse signal is too large; (2) the NMOS tube fails and is directly short-circuited; (3) the power supply is faulty, VCC_LD Too high, when the first (1) fault occurs, the pulse width is too large will cause the laser diode to emit light for too long, this will cause the total radiation amount to exceed the predetermined value, will exceed the human eye safety regulations, when the (2 ) In case of failure, the failure of the MOS tube will cause the laser diode to remain in the luminous state, which will cause the total radiation amount to exceed the predetermined value and the prescribed value for human eye safety.
  • the power supply voltage will exceed High, will cause the laser power to be too large, exceeding the eye-safety value. It can be seen that as long as one of the three conditions above fails, the laser diode's luminous radiation or luminous power will exceed the eye-safety value. , Causing harm to human eyes.
  • the laser emitting device of the present invention includes: a power supply, a laser emitter, a charging circuit, an energy storage circuit, and a control circuit, the power supply is connected to the charging circuit, and is used to charge the charging circuit for at least part of the duration;
  • the energy storage circuit is connected to the laser transmitter and the charging circuit respectively, the energy storage circuit includes at least one capacitor, the charging circuit includes at least one inductance;
  • the control circuit is used to cut off The connection between the laser emitter and the energy storage circuit, the charging circuit is used to charge the energy storage circuit for at least part of the first time period; the control circuit is also used for the second time period
  • the connection between the laser emitter and the energy storage circuit is internally turned on, so that the energy storage circuit supplies power to the laser emitter, so that the laser emitter emits a light pulse signal until the output current of the capacitor Is lower than the threshold current of the laser emitter; the first period and the second period are alternately performed, so that the laser emitter emits a laser pulse sequence.
  • the power supply includes the supply terminal of VCC_HV and the booster circuit.
  • the laser emitter includes a laser diode.
  • the charging circuit includes an inductance. In other alternative embodiments, the charging circuit includes an inductance and a resistance, wherein the number of inductances can be selected according to the situation of the system. Exemplarily, one may be selected, or two or more may be selected.
  • the energy storage circuit includes capacitors, wherein the number of capacitors can be selected according to the situation of the system, for example, one can be selected, or two or more can be selected.
  • the control circuit includes a transistor, and for example, a bipolar transistor or a field effect transistor can be selected.
  • the power supply is connected to the charging circuit for charging the charging circuit for at least part of the duration;
  • the energy storage circuit includes a capacitor, the capacitor is connected to the laser emitter and the charging circuit, respectively Connection;
  • the control circuit includes a switching circuit, exemplarily, the switching circuit includes a transistor, exemplarily, the transistor may be an NMOS or PMOS transistor, the transistor is used to cut off the laser emitter and The connection of the energy storage circuit, that is, the transistor is in a disconnected state, and the charging circuit is used to charge the energy storage circuit for at least part of the first period of time, when the transistor is in the disconnected state, the inductance
  • the capacitor is charged, but the charging process is not always carried out with the transistor off, and the charging process may only be performed for a part of the duration;
  • the control circuit is also used to turn on the laser emission during the second period
  • the connection between the energy storage circuit and the energy storage circuit so that the energy storage circuit supplies power to the laser emitter, so that the laser emitter emits a light pulse signal
  • FIG. 2 shows a first schematic structural view of a laser emitting device, including a pulsed laser diode 1, a pulse signal 2, a drive 3, a booster circuit 4, a charging circuit, Energy storage circuit and control circuit, etc.
  • the charging circuit includes an inductance L1
  • the control circuit includes a switching circuit, and is specifically an NMOS tube and a diode D1
  • the energy storage circuit includes a capacitor C1.
  • the switching circuit may be selected as other transistors
  • the diode D1 may be selected as a Schottky diode
  • the charging circuit may include more than two inductors
  • the energy storage circuit may include more than two capacitors.
  • the circuit working process is described as follows: 1) The initial state capacitor C1 is charged to be consistent with the power supply voltage VCC_HV; 2) When the NMOS tube is turned on, The capacitor C1 discharges and the pulsed laser diode emits light. At this time, D1 is turned on, and the inductor L1 is charged through the circuit of the NMOS tube; this step is specifically shown in FIG. 3. When the NMOS tube is turned on, the capacitor C1 discharges along the path shown in the figure. The laser diode emits light accordingly, and since the NMOS is in a conducting state, both the first loop and the second loop are in a conducting state.
  • the first loop includes a power supply, an inductor L1, a diode D1, a pulsed laser diode, and an NMOS tube.
  • the second loop includes a capacitor C1, a pulsed laser diode and an NMOS tube.
  • step 1) is performed in the first period
  • step 2) is executed, the capacitor supplies power to the laser diode, so that It emits light
  • the paths of the power supply, inductor, diode, laser diode, and switching circuit are also on.
  • the power supply can charge the inductor.
  • step 3) is performed The NMOS tube is in the cut-off state, and the inductor charges the capacitor through the diode. When the current in the inductor is 0, the charging is completed, and then the second period is continued, so that the laser pulse sequence is emitted.
  • the boost voltage value can be controlled by controlling the boost boost circuit 4 output, the inductance L1 and the conduction time of the NMOS tube, that is, the charging energy of the capacitor can be controlled, and finally the pulse
  • the luminous energy of the laser diode depends on the charging energy of the capacitor. Therefore, under the condition that the power supply voltage VCC_HV and the inductance L1 are unchanged, the longer the NMOS tube is turned on, the higher the voltage of the capacitor C1, the greater the charging energy, and the higher the laser luminous energy.
  • the adjustable luminous energy is mainly to compensate for individual differences of devices, temperature changes, aging attenuation differences, etc., so that different laser diodes can output uniform laser pulses.
  • the inductor L1 stores energy when the NMOS tube is turned on, the voltage of C1 after the capacitor L1 is charged by the inductor L1 is higher than VCC_HV. Since D1 is reversely turned off, the effect of low voltage input and high voltage energy storage can be realized. Since the charging voltage of capacitor C1 is higher, a capacitor with a smaller capacitance can be used, the discharge time is shorter, then the laser diode has a shorter light emitting time, and the pulse is narrower. When the luminous energy is constant, the pulse is narrower, and a longer detection distance can be achieved.
  • the laser emitting device further includes another diode, for example, D2 shown in FIG. 2, which is used to ground L1, and one end is connected to the inductor L1, the other end is grounded.
  • D2 shown in FIG. 2
  • the first embodiment includes a booster circuit between the power supply and the charging circuit.
  • the booster circuit 4 may not be included.
  • the inductive charging process itself has a booster process, which may partially replace the booster circuit.
  • the second embodiment of the laser emitting device of the present invention is shown in FIG. 5.
  • a current limiting circuit 5 is added to the charging circuit.
  • the charging circuit and the current limiting circuit are arranged in series.
  • the current limiting circuit 5 includes at least one resistor.
  • the current limiting circuit includes resistors R1 and R2.
  • the resistors R1, R2 and the inductor L1 are arranged in series.
  • the circuit working process in the embodiment shown in FIG. 5 is the same as the circuit working process in the embodiment shown in FIG. 2, wherein R1 and R2 can be directly replaced with a resistor.
  • FIG. 5 shows that as shown in FIG. 2, wherein R1 and R2 can be directly replaced with a resistor.
  • the current limiting circuit includes R1, R2, R3, R4, T1, and D4, where D4 is a voltage calibration source, T1 is a transistor, one end of the resistor R1 is connected to the power supply, and the other end is connected to The common terminal of the first end of the voltage calibration source D4 and the second end of the transistor T1, one end of the resistor R2 is connected to the power supply, the other end is connected to the first end of the transistor T1, the resistors R3 and R4 are connected in series, and one end is connected to the third end of the transistor T1 , The other end is connected to the inductor L1, the first end of the voltage calibration source D4 is connected to the common end of the resistor R1 and the second end of the transistor T1, the second end is connected to the inductor L1, and the third end is connected to the third end of the transistor T1, where R3 , R4 can be directly replaced with a resistor.
  • the current limiting circuit in Figure 6 can better solve the problem that when the NMOS tube is accidentally short-circuited, the inductance L1 is equivalent to a wire, then VCC_HV directly excites the pulsed laser diode to continue to emit light, thereby exceeding the luminous energy prescribed by human eye safety and ensuring laser emission. Device security.
  • the NMOS tube is short-circuited due to the partial voltage with the resistors R1 and R2, as long as the resistance of the designed resistors R1 and R2 is relatively large, it can be Ensure that the voltage across the laser diode 1 is very small, and the current flowing through the laser diode 1 is less than the threshold current of light emission, which can ensure that the laser diode 1 will not continue to emit light, so that the light emitting energy of the laser diode does not exceed the prescribed value of human eye safety.
  • the energy storage circuit C1 fails to open, and when the NMOS tube is turned on, the resistance values of the design resistors R1 and R2 flow through the laser diode 1 If the current is less than the threshold current of light emission, the light emission cannot be turned on, so it can be guaranteed that the light emission energy of the laser diode does not exceed the prescribed value of human eye safety.
  • the energy storage circuit C1 fails and shorts, and both ends of the laser diode are GND and cannot be turned on to emit light, then it can be guaranteed that the laser diode does not exceed the luminous energy Specified value for human eye safety.
  • the diode D1 fails to open and cannot charge the energy storage capacitor C1, then the laser diode cannot emit light, then it can be guaranteed that the laser diode does not exceed the human light emission energy. Specified value for eye safety.
  • the diode D2 fails and shorts, then the charging voltage of the capacitor will be stabilized at VCC_HV, then the energy stored will be reduced, and thus the luminous energy will be reduced. Ensure that the luminous energy of the laser diode does not exceed the prescribed value for human eye safety.
  • the inductance L1 achieves an open circuit and cannot charge the energy storage capacitor C1, then the laser diode cannot emit light, which can ensure that the laser diode does not exceed the human eye. Safety regulations.
  • inductance L1 fails and shorts, then the charging voltage of the capacitor is not greater than VCC_HV, then the energy stored is reduced, so that the luminous energy is reduced, and the laser can be guaranteed
  • the luminous energy of the diode does not exceed the prescribed value for human eye safety.
  • the resistor R1 or R2 has a single failure open circuit and cannot charge the storage capacitor C1, then the laser diode cannot emit light, which can guarantee the laser diode luminous energy Does not exceed the prescribed value for human eye safety.
  • FIG. 15 which shows that in the second embodiment shown in FIG. 5, if the resistor R1 or R2 is single-failed and short-circuited, the circuit can still work normally without affecting the luminous energy of the laser diode, which can ensure that the laser diode emits light The energy does not exceed the prescribed value for human eye safety.
  • the laser emitting device further includes another diode, for example, as shown in FIG. 5 and D2 in FIG. 6, which is used to ground L1, which One end is connected to the inductor L1, and the other end is grounded.
  • another diode for example, as shown in FIG. 5 and D2 in FIG. 6, which is used to ground L1, which One end is connected to the inductor L1, and the other end is grounded.
  • the second embodiment includes a booster circuit between the power supply and the charging circuit.
  • the booster circuit 4 may not be included.
  • the inductive charging process itself has a booster process, which may partially replace the booster circuit.
  • the third embodiment of the laser emitting device of the present invention is shown in FIG. 16.
  • a current limiting circuit is introduced, but if the circuit The presence of resistive devices consumes energy, resulting in lower energy efficiency of the entire laser emitting device. Therefore, the third embodiment of the laser emitting device is a further preferred embodiment, further improving the second embodiment, and reducing the energy consumption of the current limiting circuit.
  • the working process of the circuit is described as follows in conjunction with FIGS. 17-19: the initial state, the NMOS tube is turned on, and the inductor L1 is charged and stored.
  • This step is specifically shown in FIG. 17, when When the NMOS tube is turned on, the power supply charges the inductor L1, and the charging path is shown in the path in FIG. 17; when the NMOS tube is turned off, the inductor L1 current cannot be abruptly changed, so that the capacitor C1 is charged through D2, similar to boost boost During the charging process, when the current of the inductor L1 is 0, the charging is completed and the D2 is turned off. This step is specifically shown in Figure 18.
  • the capacitor C1 discharges along the path shown in the figure, the pulsed laser diode emits light accordingly, and since the NMOS is in the on state, both the first loop and the second loop are in the conductive state, the first loop includes the power supply Inductor L1, diode D1 and NMOS tube, the second loop includes capacitor C1, pulsed laser diode and NMOS tube, when the NMOS tube is turned on, the first loop is in the conductive state, therefore, the inductor L1 can pass through the loop The circuit is charged, and the second loop is also in the conductive state, and the capacitor C1 is discharged through the path described in FIG.
  • step 2) the pulsed laser diode emits light; the process of 2) and 3) is repeated in sequence, so that the laser diode emits a laser pulse In sequence, each time step 2) is executed, the laser diode emits a laser pulse, and then charging is performed using step 3) to ensure the execution of the next step 2).
  • the boost voltage value can be controlled by controlling the conduction time of the inductor L1 and the MOS tube, that is, the charging energy of the capacitor can be controlled, and finally the luminous energy of the pulsed laser diode can be controlled;
  • the power supply voltage VCC and the inductance L1 are unchanged, the longer the MOS tube is turned on, the higher the voltage of the capacitor C1, the greater the charging energy, and the higher the laser luminous energy.
  • the adjustable luminous energy is mainly to compensate for individual differences of devices, temperature changes, aging attenuation differences, etc., so that different laser diodes can output uniform laser pulses.
  • a further advantage of the third embodiment is that a lower voltage input can be realized, that is, the voltage of VCC can be very low.
  • the NMOS tube fails to open, the laser diode and the capacitor cannot form a discharge circuit, so the laser diode cannot emit light, which can ensure that the luminous energy of the laser diode does not exceed Specified value for human eye safety.
  • the NMOS tube fails and shorts, then the inductor L1 and the MOS tube form a loop, which is always on and cannot store energy to the capacitor C1, so that the laser diode cannot Luminescence can ensure that the luminous energy of the laser diode does not exceed the prescribed value for human eye safety.
  • the diode D2 fails to open and the capacitor C1 cannot charge and store energy, so that the laser diode cannot emit light, which can ensure that the laser diode does not exceed the human eye safety.
  • the specified value it shows that in the third embodiment shown in FIG. 16, the diode D2 fails to open and the capacitor C1 cannot charge and store energy, so that the laser diode cannot emit light, which can ensure that the laser diode does not exceed the human eye safety. The specified value.
  • FIG. 23 which shows that in the third embodiment shown in FIG. 16, the diode D2 fails and shorts, then the discharge path of the capacitor C1 does not pass through the laser diode and thus cannot emit light, which can ensure that the luminous energy of the laser diode does not exceed the human eye Safety regulations.
  • the failure or short circuit of each component will not cause the output of the light emitting device to exceed the safety value. Therefore, the above circuit can effectively ensure that the output of the light emitting device complies with human eye safety regulations.
  • the laser emitting device further includes another diode for grounding L1, one end is connected to the inductor L1, and the other end is grounded, the diode for grounding the inductor Not shown in the drawings corresponding to the third embodiment.
  • the laser emitting device further includes a booster circuit. It is used to boost the output of the power supply, one end of which is connected to the power supply, and the other end is connected to the inductor.
  • the diode for boosting the output of the power supply is not shown in the drawings corresponding to the third embodiment.
  • the energy stored in the energy storage circuit has a preset upper limit value, which can ensure that the luminous energy of the laser diode has a preset upper limit value, To further ensure that the radiation value of the laser diode does not exceed the safety value.
  • the light emitting device provided by the present invention can achieve a laser emission solution that meets human eye safety regulations.
  • the circuit in the above device can ensure that the laser radiation value does not exceed the safety value, thereby Ensure the safety of the laser device.
  • FIG. 26 shows a schematic structural diagram of a laser emitting device, including a pulsed laser diode 1, a pulse signal 2, a charging circuit, an energy storage circuit, a control circuit, and so on.
  • the charging circuit includes an inductance L1
  • the control circuit includes a switching circuit, and specifically a PMOS transistor Q1 and a diode D1
  • the energy storage circuit includes a capacitor C1.
  • the switching circuit may be selected as other transistors
  • the diode D1 may be selected as a Schottky diode
  • the charging circuit may include more than two inductors
  • the energy storage circuit may include more than two capacitors.
  • the initial state capacitor C1 is charged to be consistent with the power supply voltage; 2) when the PMOS tube is turned on, the capacitor C1 discharges, the pulsed laser diode emits light, at this time D1 is turned on, and the inductance L1 is charged through the circuit of the PMOS tube; when the PMOS tube is turned on, the capacitor C1 discharges, the pulse laser diode glows accordingly, and because the PMOS is in the on state, the first loop and the second loop are in the on state, so
  • the first loop includes a power supply, an inductor L1, a diode D1, a pulsed laser diode and a PMOS tube, and the second loop includes a capacitor C1, a pulsed laser diode and a PMOS tube.
  • step 1) is performed in the first period
  • step 2) is executed, the capacitor supplies power to the laser diode, so that It emits light
  • the paths of the power supply, inductor, diode, laser diode, and switching circuit are also on.
  • the power supply can charge the inductor.
  • step 3) is performed The PMOS tube is in the cut-off state, and the inductor charges the capacitor through the diode. When the current in the inductor is 0, the charging is completed, and then the second period is continued, so that the laser pulse sequence is emitted.
  • FIG. 27 shows a schematic structural diagram of a laser emitting device, including a pulsed laser diode 1, a pulse signal 2, a charging circuit, an energy storage circuit, a control circuit, and a reset circuit and many more.
  • the charging circuit includes an inductance L1
  • the control circuit includes a switching circuit, specifically a PMOS tube Q1 and a diode D1
  • the energy storage circuit includes a capacitor C1
  • the reset circuit includes a switching circuit, which is used to reset the voltage on the capacitor C1.
  • the switching circuit may be selected as other transistors
  • the diode D1 may be selected as a Schottky diode
  • the charging circuit may include more than two inductors
  • the energy storage circuit may include more than two capacitors.
  • FIG. 28 is a current flow diagram in the fifth embodiment provided by the present invention, which shows that in the laser emitting device shown in FIG. 27, 1) the initial state capacitor C1 is charged to be consistent with the power supply voltage; 2) when the PMOS tube When turned on, the capacitor C1 discharges and the pulsed laser diode emits light. At this time, D1 is turned on, and the inductor L1 is charged through the circuit of the PMOS tube; when the PMOS tube is turned on, the capacitor C1 discharges, and the pulsed laser diode emits light accordingly. In the conducting state, both the first loop and the second loop are in the conducting state.
  • the first loop includes a power supply, an inductor L1, a diode D1 and a PMOS tube
  • the second loop includes a capacitor C1, a pulsed laser diode and PMOS tube
  • step 1) is performed in the first period
  • step 2) is executed, the capacitor supplies power to the laser diode, so that It emits light
  • the paths of the power supply, inductor, diode, laser diode, and switching circuit are also on.
  • the power supply can charge the inductor.
  • step 3) is performed The PMOS tube is in the cut-off state, and the inductor charges the capacitor through the diode. When the current in the inductor is 0, the charging is completed, and then the second period is continued, so that the laser pulse sequence is emitted.
  • the reset circuit includes a switch circuit, which is connected to the capacitor C1 It is used to reset the voltage on capacitor C1.
  • the reset circuit is also reset accordingly, that is to say, the reset circuit is before and/or after the light pulse is emitted by the laser emitter, Reset the voltage on the capacitor C1 which is the energy storage circuit, so as to ensure that the final voltage on the capacitor can be controlled, so as to ensure that it does not exceed the predetermined value when discharging the laser diode, and ensure that the output of the laser diode is not Exceed the safety regulation value.
  • the reset circuit includes a switch circuit RESET, which is connected to both ends of the capacitor C1 and is used to reset the voltage on the capacitor C1.
  • the signal of the reset circuit is located inside the switch signal of the control circuit.
  • the reset circuit resets the capacitor C1 after the laser transmitter emits a pulse, and this reset is before the next time the laser transmitter emits a light pulse, that is, before time t3, at time t3, the laser transmitter will start to emit The next light pulse, therefore, the reset operation of the reset circuit is located after the current light pulse emission and before the next light pulse emission.
  • the energy stored in the energy storage circuit has a preset upper limit value, as shown in FIGS. 2-7, FIG. 10, and FIG. 26-28.
  • C1 in Embodiments 1 to 5 in Embodiment 1 has a predetermined upper limit Limit.
  • control circuit includes a first switching circuit and a driving circuit connected to the first switching circuit; the driving circuit is used to control the first switching signal according to the first driving signal during the first period A switching circuit cuts off the connection between the laser emitter and the energy storage circuit; the driving circuit is also used to control the first switching circuit to turn on the laser according to the second driving signal during the second period The connection of the transmitter and the energy storage circuit.
  • the driving circuit is used to control the first switching signal according to the first driving signal during the first period
  • a switching circuit cuts off the connection between the laser emitter and the energy storage circuit
  • the driving circuit is also used to control the first switching circuit to turn on the laser according to the second driving signal during the second period The connection of the transmitter and the energy storage circuit.
  • the power supply charges the charging circuit for at least part of the second period of time, as in the period when the control circuit in Embodiments 1 to 5 is turned on, at least part of the period of time, the power supply Charge the inductor L1.
  • a first loop is turned on, and the first loop includes the power supply, the charging circuit, and the first switching circuit connected in series with each other.
  • the first loop includes a power supply, an inductor L1, and an NMOS tube, and the loop constitutes the first loop.
  • the first loop includes a power supply, an inductor L1, and a PMOS transistor, and the loop constitutes the first loop.
  • a second loop is turned on, and the second loop includes the energy storage circuit, the laser emitter, and the first switching circuit connected in series with each other.
  • the second loop includes a capacitor C1, a laser diode 1, and an NMOS tube, and the loop constitutes a second loop.
  • the second loop includes a capacitor C1, a laser diode 1, and a PMOS tube, and the loop constitutes a second loop.
  • the first loop also includes the laser emitter. Exemplarily, as in the laser diode 1 in FIGS. 3 and 26.
  • the laser emitter is not located on the first loop.
  • the laser diode 1 is not located on the first loop.
  • the light emitting device further includes a second switching circuit between the charging circuit and the energy storage circuit.
  • a second switching circuit between the charging circuit and the energy storage circuit.
  • the second switch circuit is located on the first loop, and is used to turn on the power supply, the charging circuit and the first switch circuit in the second period.
  • the diode D1 shown in FIG. 3 is, for example, the diode D1 shown in FIG. 26. They are all located on the first loop and are used to turn on the power supply, the inductor L1, and the transistor switch.
  • the second switch circuit is used to turn on the connection between the charging circuit and the energy storage circuit in the first period, and when the charging circuit completes the energy storage of the energy storage circuit, it is turned off. Open the connection between the charging circuit and the energy storage circuit.
  • the diode D1 shown in FIG. 3 is, for example, the diode D1 shown in FIG. 26. They all constitute a second switching circuit for turning on the connection between the inductor L1 and the capacitor C1 in the first period. Due to its unidirectional conduction effect, when the energy storage of the capacitor C1 is completed, the connection between the inductor L1 and the capacitor C1 is broken open.
  • the light emitting device further includes a third switching circuit between the charging circuit and the energy storage circuit.
  • the third switch circuit is used to cut off the connection between the charging circuit and the energy storage circuit in the second period.
  • the diode D2 of the embodiment shown in FIGS. 16 and 17. They all constitute a third switching circuit for cutting off the connection between the inductor L1 and the capacitor C1 in the second period, and due to its unidirectional conduction effect, it cuts off the connection in the second period.
  • the third switch circuit is used to turn on the charging circuit and the energy storage circuit within the first period, and when the charging circuit completes the energy storage of the energy storage circuit, cut off the The third switch circuit.
  • the diode D2 of the embodiment shown in FIGS. 16, 17 and 27 is shown. They all constitute a third switching circuit for turning on the connection between the inductor L1 and the capacitor C1 in the first period. Due to the unidirectional conduction effect, when the energy storage of the capacitor C1 is completed, the connection between the inductor L1 and the capacitor C1 is broken open.
  • the third switch circuit is a third diode.
  • the diode D2 of the embodiment shown in FIGS. 16, 17 and 27 is shown.
  • the second switch circuit is a first diode.
  • the diode D1 in the first to fifth embodiments Exemplarily, as in the diode D1 in the first to fifth embodiments.
  • the laser emitter includes a laser diode; the first end of the laser diode is connected to the energy storage circuit, and the second end of the laser diode is connected to the first end of the first switching circuit;
  • the drive circuit is connected to the second end of the first switch circuit, wherein the drive circuit controls the first switch circuit; the third end of the first switch circuit is connected to ground.
  • the first end of the laser diode is connected to the inductor L1, and the second end is connected to the drive circuit 3, which controls the NMOS transistor, and the NMOS transistor has a ground terminal.
  • the charging circuit further includes at least one resistor connected to the inductor, for limiting the current of the charging circuit. Exemplarily, as R1 and R2 in FIG. 5 of the first embodiment.
  • the charging circuit further includes a resistor, a voltage calibration source and a transistor.
  • resistors R1-R4 voltage calibration source
  • transistor T1 transistor
  • one end of the resistor in the current limiting circuit is connected to the power supply, and the other end is connected to the voltage calibration source.
  • one end of the resistor R1 is connected to the power supply, and the other end is connected to the voltage calibration source and the transistor T1.
  • the first end of the triode is connected to the power supply
  • the second end is connected to the other end of the resistor of the current limiting circuit
  • the third end is connected to the at least one capacitor.
  • the first end of the transistor T1 is connected to the power supply
  • the second end is connected to the resistor R1
  • the third end is connected to the capacitor C1.
  • the first end of the voltage calibration source is connected to the resistor in the current limiting circuit and the second end of the triode, the second end is connected to the input end of the laser emitter, and the third end is connected to the Describe the third end of the transistor.
  • the first end is connected to the resistor R1 and the second end of the transistor T1
  • the second end is connected to the input end of the laser diode 1
  • the third end is connected to the third end of the transistor T1 end.
  • one end of the at least one capacitor is connected to the charging circuit, and the other end is grounded.
  • the capacitor C1 in the first to fifth embodiments has one end connected to the inductor L1 and the other end grounded.
  • the light emitting device further includes a second diode, one end of the second diode is connected to the charging circuit, and the other end is grounded.
  • the second diode D2 is connected to the inductor L1 at one end and grounded at the other end.
  • the light emitting device further includes a boosting circuit, and the boosting circuit is used to boost the input voltage to meet different requirements of the laser emitter.
  • the embodiment shown in FIGS. 2-14 includes a boost circuit BOOST for boosting the input voltage.
  • a reset circuit is included.
  • the reset circuit includes a switch circuit, which is connected to both ends of the energy storage circuit and used for resetting the voltage on the energy storage circuit.
  • the reset circuit includes a switch circuit RESET, which is connected to both ends of the capacitor C1 and used to reset the voltage on the capacitor C1.
  • the reset circuit resets the voltage on the energy storage circuit before and/or after the laser emitter emits the light pulse.
  • the reset circuit includes a switch circuit RESET, which is connected to both ends of the capacitor C1 and used to reset the voltage on the capacitor C1, and the signal of the reset circuit is located in the control Inside the circuit switch signal, when the control circuit opens the first switch circuit, the capacitor C1 discharges quickly, and the laser diode emits a light pulse, that is, within the period t0 to t1, the pulse is sent out, and then reset at time t1, so that the capacitor C1 The voltage on is reset.
  • the reset circuit resets the capacitor C1 after the laser emitter emits pulses, and this reset is before the next time the laser emitter emits light pulses, that is, before time t3, At time t3, the laser emitter will start to emit the next light pulse. Therefore, the reset operation of the reset circuit is located after the current light pulse emission and before the next light pulse emission.
  • an embodiment of the present invention further provides a distance measuring device, including any light emitting device according to the first aspect; a receiving circuit, configured to receive the light pulse signal emitted by the light emitting device to be reflected by the object At least part of the optical signal returned, and converting the received optical signal into an electrical signal; a sampling circuit for sampling the electrical signal from the receiving circuit to obtain a sampling result; and an arithmetic circuit for according to the sampling result Calculate the distance between the object and the distance measuring device.
  • the number of the light emitting devices is at least 2.
  • an embodiment of the present invention further provides a mobile platform, the mobile platform includes any distance measuring device according to the second aspect and a platform body, the distance measuring device is installed on the platform body . Further, the mobile platform includes at least one of a manned aircraft, an unmanned aerial vehicle, a car, a robot, and a remote control car.
  • the light emitting devices provided by the various embodiments of the present invention may be applied to a distance measuring device, and the distance measuring device may be an electronic device such as a laser radar or a laser distance measuring device.
  • the distance measuring device is used to sense external environment information, for example, distance information, azimuth information, reflection intensity information, speed information, etc. of the environmental target.
  • the distance measuring device can detect the distance between the detecting object and the distance measuring device by measuring the time of light propagation between the distance measuring device and the detection object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • the distance measuring device may also detect the distance between the detected object and the distance measuring device through other techniques, such as a distance measuring method based on phase shift measurement, or a distance measuring method based on frequency shift measurement. There are no restrictions.
  • the distance measuring device 100 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130, and an arithmetic circuit 140.
  • the transmission circuit 110 may transmit a sequence of light pulses (for example, a sequence of laser pulses).
  • the receiving circuit 120 can receive the optical pulse sequence reflected by the detected object, and photoelectrically convert the optical pulse sequence to obtain an electrical signal, which can be output to the sampling circuit 130 after processing the electrical signal.
  • the sampling circuit 130 may sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 140 may determine the distance between the distance measuring device 100 and the detected object based on the sampling result of the sampling circuit 130.
  • the distance measuring device 100 may further include a control circuit 150, which can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • a control circuit 150 can control other circuits, for example, can control the working time of each circuit and/or set parameters for each circuit.
  • the distance measuring device shown in FIG. 24 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit for emitting a beam of light for detection
  • the embodiments of the present application are not limited thereto, and the transmitting circuit
  • the number of any one of the receiving circuit, the sampling circuit, and the arithmetic circuit may also be at least two, for emitting at least two light beams in the same direction or respectively in different directions; wherein, the at least two light paths may be simultaneously
  • the shot may be shot at different times.
  • the light-emitting chips in the at least two emission circuits are packaged in the same module.
  • each emitting circuit includes a laser emitting chip, and the die in the laser emitting chips in the at least two emitting circuits are packaged together and housed in the same packaging space.
  • the distance measuring apparatus 100 may further include a scanning module 160 for changing at least one laser pulse sequence emitted by the transmitting circuit to change the propagation direction.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as a measurement A distance module, the distance measuring module may be independent of other modules, for example, the scanning module 160.
  • a coaxial optical path may be used in the distance measuring device, that is, the light beam emitted by the distance measuring device and the reflected light beam share at least part of the optical path in the distance measuring device.
  • the distance measuring device may also adopt an off-axis optical path, that is, the light beam emitted from the distance measuring device and the reflected light beam are respectively transmitted along different optical paths in the distance measuring device.
  • FIG. 25 shows a schematic diagram of an embodiment of the distance measuring device of the present invention using a coaxial optical path.
  • the distance measuring device 200 includes a distance measuring module 210.
  • the distance measuring module 210 includes a transmitter 203 (which may include the above-mentioned transmitting circuit), a collimating element 204, and a detector 205 (which may include the above-mentioned receiving circuit, sampling circuit, and arithmetic circuit) and Optical path changing element 206.
  • the distance measuring module 210 is used to emit a light beam and receive back light, and convert the back light into an electrical signal.
  • the transmitter 203 may be used to transmit a light pulse sequence.
  • the transmitter 203 may emit a sequence of laser pulses.
  • the laser beam emitted by the transmitter 203 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 204 is disposed on the exit optical path of the emitter, and is used to collimate the light beam emitted from the emitter 203, and collimate the light beam emitted by the emitter 203 into parallel light to the scanning module.
  • the collimating element is also used to converge at least a part of the return light reflected by the detection object.
  • the collimating element 204 may be a collimating lens or other element capable of collimating the light beam.
  • the optical path changing element 206 is used to combine the transmitting optical path and the receiving optical path in the distance measuring device before the collimating element 104, so that the transmitting optical path and the receiving optical path can share the same collimating element, so that the optical path More compact.
  • the transmitter 103 and the detector 105 may use respective collimating elements, and the optical path changing element 206 is disposed on the optical path behind the collimating element.
  • the light path changing element can use a small-area mirror to convert The transmitting optical path and the receiving optical path are combined.
  • the light path changing element may also use a reflector with a through hole, where the through hole is used to transmit the outgoing light of the emitter 203, and the reflector is used to reflect the return light to the detector 205. In this way, it is possible to reduce the blocking of the return light by the support of the small mirror in the case of using the small mirror.
  • the optical path changing element is offset from the optical axis of the collimating element 204. In some other implementations, the optical path changing element may also be located on the optical axis of the collimating element 204.
  • the distance measuring device 200 further includes a scanning module 202.
  • the scanning module 202 is placed on the exit optical path of the distance measuring module 210.
  • the scanning module 102 is used to change the transmission direction of the collimated light beam 219 emitted through the collimating element 204 and project it to the external environment, and project the return light to the collimating element 204 .
  • the returned light is converged on the detector 105 via the collimating element 104.
  • the scanning module 202 may include at least one optical element for changing the propagation path of the light beam, wherein the optical element may change the propagation path of the light beam by reflecting, refracting, diffracting, etc. the light beam.
  • the scanning module 202 includes a lens, a mirror, a prism, a galvanometer, a grating, a liquid crystal, an optical phased array (Optical Phased Array), or any combination of the above optical elements.
  • at least part of the optical element is moving, for example, the at least part of the optical element is driven to move by a driving module, and the moving optical element can reflect, refract or diffract the light beam to different directions at different times.
  • multiple optical elements of the scanning module 202 may rotate or vibrate about a common axis 209, and each rotating or vibrating optical element is used to continuously change the direction of propagation of the incident light beam.
  • the multiple optical elements of the scanning module 202 may rotate at different rotation speeds, or vibrate at different speeds.
  • at least part of the optical elements of the scanning module 202 can rotate at substantially the same rotational speed.
  • the multiple optical elements of the scanning module may also rotate around different axes.
  • the multiple optical elements of the scanning module may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 202 includes a first optical element 214 and a driver 216 connected to the first optical element 214.
  • the driver 216 is used to drive the first optical element 214 to rotate about a rotation axis 209 to change the first optical element 214 The direction of the collimated light beam 219.
  • the first optical element 214 projects the collimated light beam 219 in different directions.
  • the angle between the direction of the collimated light beam 219 changed by the first optical element and the rotation axis 109 changes with the rotation of the first optical element 214.
  • the first optical element 214 includes a pair of opposed non-parallel surfaces through which the collimated light beam 219 passes.
  • the first optical element 214 includes a prism whose thickness varies along at least one radial direction.
  • the first optical element 114 includes a wedge-angle prism that aligns the straight beam 119 for refraction.
  • the scanning module 202 further includes a second optical element 215 that rotates about a rotation axis 209.
  • the rotation speed of the second optical element 215 is different from the rotation speed of the first optical element 214.
  • the second optical element 215 is used to change the direction of the light beam projected by the first optical element 214.
  • the second optical element 115 is connected to another driver 217, and the driver 117 drives the second optical element 215 to rotate.
  • the first optical element 214 and the second optical element 215 may be driven by the same or different drivers, so that the first optical element 214 and the second optical element 215 have different rotation speeds and/or rotations, thereby projecting the collimated light beam 219 to the outside space Different directions can scan a larger spatial range.
  • the controller 218 controls the drivers 216 and 217 to drive the first optical element 214 and the second optical element 215, respectively.
  • the rotation speeds of the first optical element 214 and the second optical element 215 can be determined according to the area and pattern expected to be scanned in practical applications.
  • Drives 216 and 217 may include motors or other drives.
  • the second optical element 115 includes a pair of opposed non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 115 includes a prism whose thickness varies along at least one radial direction. In one embodiment, the second optical element 115 includes a wedge angle prism.
  • the scanning module 102 further includes a third optical element (not shown) and a driver for driving the third optical element to move.
  • the third optical element includes a pair of opposed non-parallel surfaces through which the light beam passes.
  • the third optical element includes a prism whose thickness varies along at least one radial direction.
  • the third optical element includes a wedge angle prism. At least two of the first, second and third optical elements rotate at different rotational speeds and/or turns.
  • each optical element in the scanning module 202 can project light into different directions, for example, the directions of the light 211 and 213, so as to scan the space around the distance measuring device 200.
  • the light 211 projected by the scanning module 202 hits the object 201 to be detected, a part of the light object 201 is reflected to the distance measuring device 200 in a direction opposite to the projected light 211.
  • the returned light 212 reflected by the detection object 201 passes through the scanning module 202 and enters the collimating element 204.
  • the detector 205 is placed on the same side of the collimating element 204 as the emitter 203.
  • the detector 205 is used to convert at least part of the returned light passing through the collimating element 204 into an electrical signal.
  • each optical element is coated with an antireflection coating.
  • the thickness of the antireflection film is equal to or close to the wavelength of the light beam emitted by the emitter 103, which can increase the intensity of the transmitted light beam.
  • a filter layer is plated on the surface of an element on the beam propagation path in the distance measuring device, or a filter is provided on the beam propagation path to transmit at least the wavelength band of the beam emitted by the transmitter, Reflect other bands to reduce the noise caused by ambient light to the receiver.
  • the transmitter 203 may include a laser diode through which laser pulses in the order of nanoseconds are emitted.
  • the laser pulse receiving time may be determined, for example, by detecting the rising edge time and/or the falling edge time of the electrical signal pulse. In this way, the distance measuring device 200 can use the pulse receiving time information and the pulse sending time information to calculate the TOF, thereby determining the distance between the detected object 201 and the distance measuring device 200.
  • the distance and orientation detected by the distance measuring device 200 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the distance measuring device of the embodiment of the present invention may be applied to a mobile platform, and the distance measuring device may be installed on the platform body of the mobile platform.
  • a mobile platform with a distance measuring device can measure the external environment, for example, measuring the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping on the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the distance measuring device is applied to an unmanned aerial vehicle, the platform body is the fuselage of the unmanned aerial vehicle.
  • the platform body When the distance measuring device is applied to an automobile, the platform body is the body of the automobile.
  • the car may be a self-driving car or a semi-automatic car, and no restriction is made here.
  • the platform body When the distance measuring device is applied to a remote control car, the platform body is the body of the remote control car.
  • the platform body When the distance measuring device is applied to a robot, the platform body is a robot.
  • the distance measuring device is applied to a camera, the platform body is the camera itself.
  • the present invention provides a laser emission solution that meets human eye safety regulations by providing the above-mentioned light emitting device, distance measuring device and mobile platform.
  • the circuit in the above device can ensure that the laser radiation value does not exceed the safety Standard value, so as to ensure the safety of the laser device.

Abstract

一种光发射装置,包括:电源、激光发射器(1)、充电电路、储能电路和控制电路,该控制电路用于在第一时段内切断激光发射器(1)和储能电路的连接,在第一时段的至少部分时长内,该充电电路用于给储能电路充电;该控制电路还用于在第二时段内导通激光发射器(1)和储能电路的连接,使得储能电路对激光发射器(1)供电,以使激光发射器(1)出射光脉冲信号,直至电容(C1)的输出电流低于激光发射器(1)的阈值电流;该第一时段和第二时段交替进行,使得激光发射器(1)出射激光脉冲序列,该光发射装置可以保证其输出值符合人眼安全规定值。还提供了一种包括该光发射装置的测距装置以及包括该测距装置的移动平台。

Description

一种光发射装置及测距装置、移动平台 技术领域
本发明涉及电路技术领域,尤其涉及一种光发射装置及测距装置、移动平台。
背景技术
在激光雷达、激光测距等领域,由于产品直接在现实生活场景中使用,那么激光存在直接射入人眼的风险,因此Accessible Emission Limit(AEL)规定了激光发射不能超过安全规定的能量值,从而保证即使激光入射人眼的时候也不会造成人体的伤害。进一步地,任何器件都存在失效的可能,那么为了避免器件或者系统控制失效的时候,尽可能减少对于人体的伤害。所以,AEL要求当系统发生单一故障时,激光发射能量也不能超过安全规定的值。
本发明设计了一种符合人眼安全规定的激光发射方案,同时当系统发生单一故障时,保护电路可以保证激光能量不超过安规值。
发明内容
本发明第一方面提供了一种光发射装置,包括:电源、激光发射器、充电电路、储能电路和控制电路,所述电源与所述充电电路连接,用于在至少部分时长内给所述充电电路充电;所述储能电路分别与所述激光发射器连接和所述充电电路连接,所述储能电路包括至少一个电容,所述充电电路包括至少一个电感;所述控制电路用于在第一时段内切断所述激光发射器和所述储能电路的连接,在所述第一时段的至少部分时长内,所述充电电路用于给所述储能电路充电;所述控制电路还用于在第二时段内导通所述激光发射器和所述储能电路的连接,使得所述储能电路对所述激光发射器供电,以使所述激光发射器出射光脉冲信号,直至所述电容的输出电流低于所述激光发射器的阈值电流;所述第一时段和所述第二时段交替进行,使得所述激光发射器出射激光脉冲序列。
进一步地,所述至少一个电容所存储的能量具有预设上限值。
进一步地,所述控制电路包括第一开关电路,以及与所述第一开关电路连接的驱动电路;所述驱动电路用于在所述第一时段内根据所述第一驱动信号控制所述第一开关电路切断所述激光发射器和所述储能电路的连接;所述驱动电路还用于在所述第二时段内根据所述第二驱动信号控制所述第一开关电路导通所述激光发射器和所述储能电路的连接。
进一步地,在所述第二时段的至少部分时长内,所述电源给所述充电电路充电。
进一步地,在所述第二时段的所述至少部分时长内,第一环路导通,所述第一环路包括相互串联的所述电源、所述充电电路和所述第一开关电路。
进一步地,在所述第二时段内,第二环路导通,所述第二环路包括相互串联的所述储能电路、所述激光发射器和所述第一开关电路。
进一步地,述第一环路还包括所述激光发射器。
进一步地,所述激光发射器不位于所述第一环路上。
进一步地,所述光发射装置还包括位于所述充电电路和所述储能电路之间的第二开关电路。
进一步地,所述第二开关电路位于所述第一环路上,用于在所述第二时段内导通所述电源、所述充电电路和所述第一开关电路。
进一步地,所述第二开关电路用于在所述第一时段内导通所述充电电路和所述储能电路的连接,当所述充电电路完成对所述储能电路的储能时,断开所述充电电路和所述储能电路的连接。
进一步地,所述光发射装置还包括位于所述充电电路和所述储能电路之间的第三开关电路。
进一步地,所述第三开关电路用于在所述第二时段内切断所述充电电路和所述储能电路的连接。
进一步地,所述第三开关电路用于在所述第一时段内导通所述充电电路和所述储能电路,当所述充电电路完成对所述储能电路的储能时,切断所述第三开关电路。
进一步地,所述第三开关电路为第三二极管。
进一步地,所述第二开关电路为第一二极管。
进一步地,所述激光发射器包括激光二极管;所述激光二极管的第一端与所述储能电路连接,所述激光二极管的第二端与所述第一开关电路的第一端连接;所述驱动电路与所述第一开关电路的第二端连接,其中所述驱动电路对所述第一开关电路进行控制;所述第一开关电路的第三端接地连接。
进一步地,所述充电电路还包括与所述电感连接的至少一个电阻,用于限制所述充电电路的电流。
进一步地,所述充电电路还包括电阻、电压校准源和三极管。
进一步地,所述限流电路中的电阻的一端连接于所述电源,另一端连接于所述电压校准源。
进一步地,所述三极管第一端连接于所述电源,第二端连接于所述限流电路的电阻的另一端,第三端连接于所述至少一个电容。
进一步地,所述电压校准源的第一端连接于所述限流电路中的电阻和所述三极管的第二端,第二端连接于所述激光发射器的输入端,第三端连接于所述三极管的第三端。
进一步地,所述至少一个电容的一端连接于所述充电电路,另一端接地。
进一步地,所述光发射装置还包括第二二极管,所述第二二极管的一端连接于所述充电电路,另一端接地。
进一步地,所述光发射装置还包括升压电路,所述升压电路用于对输入电压进行升压以适应不同所述激光发射器的需求。
第二方面,本发明实施例还提供了一种测距装置,包括:第一方面所述的光发射装置,用于依次出射激光脉冲信号;光电转换电路,用于接收所述光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号;采样电路,用于对来自所述光电转换电路的电信号进行采样,获得采样结果;运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
进一步地,所述光发射装置的数量和所述光电转换电路的数量分别为至少 2个;每个所述光电转换电路用于接收来自对应的光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号。
进一步地,所述激光测距装置还包括扫描模块;所述扫描模块用于改变所述激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述光电转换电路。
进一步地,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
进一步地,所述扫描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
第三方面,本发明实施例还提供了一种移动平台,所述移动平台包括第一方面所述的任一光发射装置以及平台本体,所述测距装置安装在所述平台本体。
进一步地,所述移动平台包括无人飞行器、汽车和遥控车中的至少一种。
本发明通过提供上述光发射装置、测距装置以及移动平台,以提供一种符合人眼安全规定的激光发射方案,当系统发生单一故障时,上述装置中的电路可以保证激光辐射值不超过安规值,从而保证激光装置的使用安全。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中提供的一种激光发射装置连接方式的示意图;
图2是本发明提供的激光发射装置第一实施例的示意图;
图3是本发明提供第一实施例中的NMOS管导通时的路径示意图;
图4是本发明提供第一实施例中的NMOS管截止时的路径示意图;
图5是本发明提供的激光发射装置第二实施例的示意图;
图6是本发明提供的激光发射装置第二实施例的替换方案示意图;
图7是本发明提供的第二实施例中的NMOS管短路失效时的示意图;
图8是本发明提供的第二实施例中的C1开路失效时的示意图;
图9是本发明提供的第二实施例中的C1短路失效时的示意图;
图10是本发明提供的第二实施例中的D1开路失效时的示意图;
图11是本发明提供的第二实施例中的D1短路失效时的示意图;
图12是本发明提供的第二实施例中的L1开路失效时的示意图;
图13是本发明提供的第二实施例中的L1短路失效时的示意图;
图14是本发明提供的第二实施例中的R1开路失效时的示意图;
图15是本发明提供的第二实施例中的R1短路失效时的示意图;
图16是本发明提供的激光发射装置第三实施例的示意图;
图17是本发明提供的第三实施例中的NMOS管导通时的电感充电路径示意图;
图18是本发明提供的第三实施例中的NMOS管截止时的电容充电路径示意图;
图19是本发明提供的第三实施例中的NMOS管导通时的电感充电以及电容放电的路径示意图;
图20是本发明提供的第三实施例中的NMOS管开路失效时的示意图;
图21是本发明提供的第三实施例中的NMOS管短路失效时的示意图;
图22是本发明提供的第三实施例中的D2开路失效时的示意图;
图23是本发明提供的第三实施例中的D2短路失效时的示意图;
图24是本发明实施例提供的测距装置的示意性框架图;
图25是本发明实施例提供的测距装置采用同轴光路的一种实施例的示意图;
图26是本发明提供的第四实施例的示意图;
图27是本发明提供的第五实施例的示意图;
图28是本发明提供的第五实施例中的电流流向图;
图29是本发明提供的第五实施例中的时序控制图。
附图标记说明
1脉冲激光二极管   2脉冲信号   3驱动
4升压电路      5限流电路
100,200测距装置   201被探测物   202扫描模块
110发射电路    103,203发射器
120接收电路    104,204准直元件
130采样电路    105,205探测器
140运算电路    206光路改变元件   207光飞行时间
150控制电路    210测距模块       209轴
160,202扫描模块   214第一光学元件   215第二光学元件
117,216驱动器     119,219准直光束
211,213光   212回光   218控制器
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,现有的方案采用脉冲驱动的设计的光发射装置,其中包括电源、光源和控制电路,其中电源为VCC_LD,光源为脉冲激光二极管,控制电路包括驱动电路和开关电路NMOS,当脉冲信号为高电平的时候,驱动输出高电压和大电流,迅速打开NMOS管,脉冲激光二极管的阴极接地,阳极接电源VCC_LD,存在压差,此时激光二极管导通发光,当脉冲信号为低电平的时候,NMOS管截止,从而激光二极管也截止。因此,通过控制脉冲信号的占空比和频率,即可以控制激光二极管的发光的时长和频率,进而控制激光二极管的辐射量。
那么对于特定的激光二极管选型来说,发光能量由以下因素确定:(1)单脉冲激光二极管的发光时长,对应控制脉冲信号的占空比或脉宽;(2)单位时间内激光二极管的工作频率,对应控制脉冲信号的频率;(3)激光二极管的峰值功率,对应控制工作电压VCC_LD。控制脉冲信号的占空比或者脉宽的大 小,决定了单脉冲激光二极管的发光时间的长短,占空比或脉宽越大,其发光能量越大,相反的,占空比或脉宽越小,其发光能量越小,控制脉冲信号的频率,决定了单位时间内激光二极管的工作频率,信号频率越高,其发光能量越大,信号频率越低,其发光能量越小,控制工作电压决定了激光二极管的峰值功率,控制工作电压越高,其发光能量越大,控制工作电压越低,其发光能量越小。但该方案存在的问题在于,如果系统存在单一故障,例如:(1)软件上存在bug,脉冲信号的脉宽过大;(2)NMOS管失效,直接短路;(3)电源有故障,VCC_LD过高,当出现第(1)种故障时,脉冲宽度过大将导致激光二极管发光时间过长,如此将导致总的辐射量超出预定值,将超过人眼安全的规定值,当出现第(2)种故障时,MOS管失效将导致激光二极管一直处于发光状态,如此将导致总的辐射量超出预定值,将超过人眼安全的规定值,当出现第(3)中情况时,电源电压过高,将导致激光功率过大,超出人眼安全的规定值,由此可见,只要出现前述三种情况中的某一个故障,都会导致激光二极管发光辐射量或发光功率超过人眼安全的规定值,对人眼造成伤害。
本发明的激光发射装置包括:电源、激光发射器、充电电路、储能电路和控制电路,所述电源与所述充电电路连接,用于在至少部分时长内给所述充电电路充电;所述储能电路分别与所述激光发射器连接和所述充电电路连接,所述储能电路包括至少一个电容,所述充电电路包括至少一个电感;所述控制电路用于在第一时段内切断所述激光发射器和所述储能电路的连接,在所述第一时段的至少部分时长内,所述充电电路用于给所述储能电路充电;所述控制电路还用于在第二时段内导通所述激光发射器和所述储能电路的连接,使得所述储能电路对所述激光发射器供电,以使所述激光发射器出射光脉冲信号,直至所述电容的输出电流低于所述激光发射器的阈值电流;所述第一时段和所述第二时段交替进行,使得所述激光发射器出射激光脉冲序列。
其中,电源包括VCC_HV的提供端以及升压电路。激光发射器包括激光二极管。充电电路包括电感,在其他可选择的实施例中,充电电路包括电感和电阻,其中,电感的数量可以根据系统的情况进行选择,示例性地,可以选择一个,也可以选择两个及以上。储能电路包括电容,其中,电容的数量可以根据系统的情况进行选择,示例性地,可以选择一个,也可以选择两个及以上。 控制电路,包括晶体管,示例性地,可以选择双极晶体管或场效应晶体管。
其中,所述电源与所述充电电路连接,用于在至少部分时长内给所述充电电路充电;所述储能电路包括电容,所述电容分别与所述激光发射器连接和所述充电电路连接;所述控制电路包括开关电路,示例性地,该开关电路包括晶体管,示例性地,该晶体管可以是NMOS或PMOS晶体管,所述晶体管用于在第一时段内切断所述激光发射器和所述储能电路的连接,即晶体管处于断开状态,在所述第一时段的至少部分时长内,所述充电电路用于给所述储能电路充电,当晶体管处于断开状态时,电感对电容进行充电,但是,该充电过程并非在晶体管断开状态下,一直进行,该充电过程可能仅在部分时长内进行;所述控制电路还用于在第二时段内导通所述激光发射器和所述储能电路的连接,使得所述储能电路对所述激光发射器供电,以使所述激光发射器出射光脉冲信号,直至所述电容的输出电流低于所述激光发射器的阈值电流,即晶体管处于导通状态,在所述第二时段内,激光二极管与电容导通,电容对激光二极管供电,使得激光二极管出射光脉冲信号;所述第一时段和所述第二时段交替进行,使得所述激光发射器出射激光脉冲序列,晶体管的断开和导通交替进行,激光二极管在晶体管切断状态下没有光信号出射,在晶体管导通状态下,出射光脉冲信号,则激光二极管出射了光脉冲序列。
示例性地,本发明的第一实施例如图2所示,其中示出了激光发射装置的第一结构示意图,包括脉冲激光二极管1、脉冲信号2、驱动3、升压电路4、充电电路、储能电路和控制电路等等。其中充电电路包括电感L1,控制电路包括开关电路,并具体为NMOS管和二极管D1,储能电路包括电容C1。在其他实施例中,开关电路可以选择为其他晶体管,二极管D1可以选择为肖特基二极管,且其中充电电路可以包括两个以上的电感,储能电路可以包括两个以上的电容。
在图2所示的激光发射装置中,结合图3,图4对其电路工作过程进行如下说明:1)初始状态电容C1充电至和电源电压VCC_HV一致;2)当NMOS管导通的时候,电容C1放电,脉冲激光二极管发光,此时D1导通,电感L1通过NMOS管的回路充电;该步骤具体参见图3所示,当NMOS管导通时,电容C1沿图示路径进行放电,脉冲激光二极管相应发光,且由于NMOS处于 导通状态,第一环路和第二环路均处于导通状态,所述第一环路包括电源、电感L1,二极管D1、脉冲激光二极管和NMOS管,第二环路包括电容C1、脉冲激光二极管和NMOS管,当NMOS管导通时,第一环路导处于导通状态,因此,电感L1能够通过该环路进行充电,且第二环路也处于导通状态,电容C1通过图3所述的路径进行放电,从而使得脉冲激光二极管发光;3)当NMOS管截止的时候,电感L1电流不能突变,从而经过D1给电容C1充电,类似boost升压的充电过程;当电感L1电流为0的时候,充电结束,D1截止状态;该步骤具体参见图4所示,当NMOS管截止时,由于电感L1的电流不能突变,其维持在相对稳定的电流大小,其输出的电流经过D1给电容C1充电,其充电路径如图4中所示路径,4)依次交替重复2)、3)的过程,使得激光二极管出射激光脉冲序列,每一次执行步骤2),激光二极管出射一个激光脉冲,然后利用步骤3)进行充电以保证下一个步骤2)的执行。
其中,在第一时段内,NMOS管处于切断状态,步骤1)在该第一时段内进行,在第二时段内,NMOS管处于导通状态,步骤2)执行,电容对激光二极管供电,使其发光,同时,电源、电感、二极管、激光二极管和开关电路的通路也是导通的,电源能够对电感充电,第一时段和第二时段交替进行,接下来继续第一时段,步骤3)执行,NMOS管处于切断状态,电感通过二极管对电容充电,当电感内的电流为0时,充电结束,然后继续第二时段,从而出射激光脉冲序列。
由激光发射装置的第一实施例可以看出,通过控制boost升压电路4输出、电感L1和NMOS管的导通时间可以控制升压电压值,也就可以控制电容的充电能量,最终控制脉冲激光二极管的发光能量,激光二极管的发光能量取决于电容的充电能量。因此,在供电电压VCC_HV和电感L1不变的情况下,NMOS管导通时间越长,那么电容C1的电压越高,充电能量越大,从而激光发光能量也就越高。发光能量可调主要是为了补偿器件个体差异、温度变化、老化衰减差异等,从而使得不同的激光二极管能够输出一致化的激光脉冲。并且,由于电感L1在NMOS管导通的时候蓄能,那么电感L1给电容C1充电后C1的电压比VCC_HV高,由于D1反向截止,可以实现低电压输入,高电压蓄能的效果。由于电容C1的充电电压更高,那么可以使用更小容值的电容,放电 时间更短,那么激光二极管发光时间更短,脉冲更窄。在发光能量不变的情况下,脉冲更窄,可以实现更远的探测距离。
可选择地,在第一实施例的其他实施方式中,激光发射装置还包括另一个二极管,示例性地,如附图2中所示的D2,其用来将L1接地,其一端连接于电感L1,另一端接地。
可选择地,第一实施例中在电源和充电电路之间包括升压电路。但是在其他实施方式中,也可以不包含该升压电路4,示例性地,电感充电的过程本身就有升压过程,可以部分替代该升压电路。
示例性地,本发明的激光发射装置的第二实施例如图5所示。与图2所示实施方式不同的是,在图5所示实施方式中,充电电路中增加限流电路5。当NMOS管意外短路时,电感L1等价为导线,那么VCC_HV直接激发脉冲激光二极管持续发光,可能会超过人眼安全规定的发光能量。在充电电路中增加限流电路可以避免这种情况出现。一个示例中,充电电路和限流电路串联设置。
一个示例中,限流电路5包括至少一个电阻。例如,如图5所示,限流电路包括电阻R1、R2。可选地,电阻R1、R2与电感L1串联设置。图5所示实施例中电路工作的过程与图2所示实施例中电路工作过程一致,其中R1、R2可以直接用一个电阻代替。又例如,如图6所示,所述限流电路包括R1、R2、R3、R4、T1、D4,其中,D4为电压校准源,T1为三极管,电阻R1一端连接于电源,另一端连接于电压校准源D4第一端和三极管T1第二端的公共端,电阻R2一端连接于电源,另一端连接于三极管T1的第一端,电阻R3、R4串联连接,一端连接于三极管T1的第三端,另一端连接于电感L1,电压校准源D4第一端连接于电阻R1和三极管T1第二端的公共端,第二端连接于电感L1,第三端连接于三极管T1的第三端,其中R3、R4可以直接用一个电阻代替。图6的限流电路能够更好的解决当NMOS管意外短路时,电感L1等价为导线,那么VCC_HV直接激发脉冲激光二极管持续发光,从而超过人眼安全规定的发光能量的问题,保障激光发射装置的安全性。
下面结合图5,图7-图15以电阻实现限流电路的方案分析电路发生单一故障的时候,仍能保证激光二极管发光能量不超过人眼安全的规定值。
如图7所示,其中示出了图5所示的第二实施例中,NMOS管失效短路,由于和电阻R1、R2分压,只要设计电阻R1、R2的阻值相对较大,即可保证激光二极管1两端的电压非常小,流经激光二极管1的电流小于发光的阈值电流,即可保证激光二极管1不会持续发光,那么可以保证激光二极管发光能量不超过人眼安全的规定值。
如图8所示,其中示出了图5所示的第二实施例中,蓄能电路C1失效开路,当NMOS管导通的时候,设计电阻R1、R2的阻值,流经激光二极管1的电流小于发光的阈值电流,则无法导通发光,那么可以保证激光二极管发光能量不超过人眼安全的规定值。
如图9所示,其中示出了图5所示的第二实施例中,蓄能电路C1失效短路,激光二极管两端均为GND,无法导通发光,那么可以保证激光二极管发光能量不超过人眼安全的规定值。
如图10所示,其中示出了图5所示的第二实施例中,二极管D1失效开路,无法给蓄能电容C1充电,那么激光二极管无法发光,那么可以保证激光二极管发光能量不超过人眼安全的规定值。
如图11所示,其中示出了图5所示的第二实施例中,二极管D2失效短路,那么电容的充电电压会稳定在VCC_HV,那么储蓄的能量减小,从而发光能量降低,那么可以保证激光二极管发光能量不超过人眼安全的规定值。
如图12所示,其中示出了图5所示的第二实施例中,电感L1实现开路,无法给蓄能电容C1充电,那么激光二极管无法发光,可以保证激光二极管发光能量不超过人眼安全的规定值。
如图13所示,其中示出了图5所示的第二实施例中,电感L1失效短路,那么电容的充电电压不大于VCC_HV,那么储蓄的能量减小,从而发光能量降低,可以保证激光二极管发光能量不超过人眼安全的规定值。
如图14所示,其中示出了图5所示的第二实施例中,电阻R1或R2串单一失效开路,无法给蓄能电容C1充电,那么激光二极管无法发光,可以保证激光二极管发光能量不超过人眼安全的规定值。
如图15所示,其中示出了图5所示的第二实施例中,电阻R1或R2串单 一失效短路,那么电路仍能正常工作,不影响激光二极管的发光能量,可以保证激光二极管发光能量不超过人眼安全的规定值。
值得说明的是,电阻R1与R2串联,单一失效的效果是一致,因此图15以R1为例说明问题。
可选择地,在第二实施例的其他实施方式中,激光发射装置还包括另一个二极管,示例性地,如附图5,附图6中所示的D2,其用来将L1接地,其一端连接于电感L1,另一端接地。
可选择地,第二实施例中在电源和充电电路之间包括升压电路。但是在其他实施方式中,也可以不包含该升压电路4,示例性地,电感充电的过程本身就有升压过程,可以部分替代该升压电路。
本发明的激光发射装置的第三实施例如图16所示,激光发射装置的第二实施例中为了保证器件单一故障的时候不超过安全规定的发光能量,引入了限流电路,但是如果电路中存在阻性器件,会消耗能量,导致整个激光发射装置能量效率较低。因此,激光发射装置的第三实施例作为进一步优选的实施例,对第二实施例进一步改进,减少了限流电路的能量消耗。
在图16所示的激光发射装置中,结合图17-图19对其电路工作过程进行如下说明:初始状态,NMOS管导通,电感L1充电蓄能,该步骤具体参见图17所示,当NMOS管导通时,电源对电感L1进行充电,其充电路径如图17中的路径所示;当NMOS管截止的时候,电感L1电流不能突变,从而经过D2给电容C1充电,类似boost升压的充电过程,当电感L1电流为0的时候,充电结束,D2截止状态,该步骤具体参见图18所示,当NMOS管截止的时候,由于电感L1的特性,其电流不能产生突变,因此,其通过二极管D2给电容C1进行充电,该充电过程类似boost升压过程,随着时间的推移,电流L1的电流会缓慢减小,当其减小到为0的时候,充电结束,此时D2为截止状态;当NMOS管导通的时候,电容C1放电,脉冲激光二极管发光,此时D1导通,电感L1通过NMOS管的回路充电,该步骤具体参见图19所示,当NMOS管导通时,电容C1沿图示路径进行放电,脉冲激光二极管相应发光,且由于NMOS处于导通状态,第一环路导通和第二环路均处于导通状态,所述第一 环路包括电源、电感L1,二极管D1和NMOS管,第二环路包括电容C1、脉冲激光二极管和NMOS管,当NMOS管导通时,第一环路导处于导通状态,因此,电感L1能够通过该环路进行充电,且第二环路也处于导通状态,电容C1通过图19所述的路径进行放电,从而使得脉冲激光二极管发光;依次重复2)、3)的过程,使得激光二极管出射激光脉冲序列,每一次执行步骤2),激光二极管出射一个激光脉冲,然后利用步骤3)进行充电以保证下一个步骤2)的执行。
由激光发射装置第三实施例可以看出,可以通过控制电感L1和MOS管的导通时间来控制升压电压值,也就可以控制电容的充电能量,最终控制脉冲激光二极管的发光能量;在供电电压VCC和电感L1不变的情况下,MOS管导通时间越长,那么电容C1的电压越高,充电能量越大,从而激光发光能量也就越高。发光能量可调主要是为了补偿器件个体差异、温度变化、老化衰减差异等,从而使得不同的激光二极管能够输出一致化的激光脉冲。
并且,由于电感L1在MOS管导通的时候蓄能,那么电感L1给电容C1充电后C1的电压比VCC_HV高,由于D1、D2反向截止,可以实现低电压输入,高电压蓄能的效果。与激光发射装置第二实施例的效果类似,第三实施例的更进一步的优势在于可以实现更低的电压输入,即VCC的电压可以非常低。
下面结合图16,图20-图23分析电路发生单一故障的时候,仍能保证激光二极管发光能量不超过人眼安全的规定值。考虑到在第二实施例中已经做了一定的分析,对于第三实施例中,相同部件,其失效的效果类似,因此,针对激光发射装置第三实施例,我们只讨论NMOS和D2的失效。
如图20所示,其中示出了图16所示的第三实施例中,NMOS管失效开路,激光二极管无法和电容无法构成放电回路,因此激光二极管无法发光,可以保证激光二极管发光能量不超过人眼安全的规定值。
如图21所示,其中示出了图16所示的第三实施例中,NMOS管失效短路,那么电感L1和MOS管构成回路,一直导通,无法给电容C1蓄能,从而激光二极管无法发光,可以保证激光二极管发光能量不超过人眼安全的规定值。
如图22所示,其中示出了图16所示的第三实施例中,二极管D2失效开 路,电容C1无法充电蓄能,从而激光二极管无法发光,可以保证激光二极管发光能量不超过人眼安全的规定值。
如图23所示,其中示出了图16所示的第三实施例中,二极管D2失效短路,那么电容C1放电路径不经过激光二极管,从而无法发光,可以保证激光二极管发光能量不超过人眼安全的规定值。
如上所述各个元件的失效或短路均不会导致光发射装置的输出超出安规值,因此,上述电路能够有效的保证光发射装置的输出符合人眼安全规定。
可选择地,在第三实施例的其他实施方式中,激光发射装置还包括另一个二极管,其用来将L1接地,其一端连接于电感L1,另一端接地,该用于将电感接地的二极管在第三实施例对应的附图中未示出。
可选择地,第二实施例中的其他实施方式中,激光发射装置还包括升压电路。其用来对电源的输出进行升压,其一端连接于电源,另一端连接于电感,该用于对电源的输出进行升压的二极管在第三实施例对应的附图中未示出。
在前述第一实施例、第二实施例以及第三实施中,其中,储能电路所存储的能量具有预设的上限值,其能够保证激光二极管的发光能量具有预设的上限值,进一步保证激光二极管的辐射值不超过安规值。相较于现有技术,本发明提供的光发射装置可以达到符合人眼安全规定的激光发射方案,当系统发生单一故障时,上述装置中的电路可以保证激光辐射值不超过安规值,从而保证激光装置的使用安全。
本发明的第四实施例示意如图26所示,其中示出了激光发射装置的一种结构示意图,包括脉冲激光二极管1、脉冲信号2、充电电路、储能电路和控制电路等等。其中充电电路包括电感L1,控制电路包括开关电路,并具体为PMOS管Q1和二极管D1,储能电路包括电容C1。在其他实施例中,开关电路可以选择为其他晶体管,二极管D1可以选择为肖特基二极管,且其中充电电路可以包括两个以上的电感,储能电路可以包括两个以上的电容。
在图26所示的激光发射装置中,1)初始状态电容C1充电至和电源电压一致;2)当PMOS管导通的时候,电容C1放电,脉冲激光二极管发光,此时D1导通,电感L1通过PMOS管的回路充电;当PMOS管导通时,电容 C1进行放电,脉冲激光二极管相应发光,且由于PMOS处于导通状态,第一环路和第二环路均处于导通状态,所述第一环路包括电源、电感L1,二极管D1、脉冲激光二极管和PMOS管,第二环路包括电容C1、脉冲激光二极管和PMOS管,当PMOS管导通时,第一环路导处于导通状态,因此,电感L1能够通过该环路进行充电,且第二环路也处于导通状态,电容C1通过放电,从而使得脉冲激光二极管发光;3)当PMOS管截止的时候,电感L1电流不能突变,从而经过D1给电容C1充电;当电感L1电流为0的时候,充电结束,D1截止状态;4)依次交替重复2)、3)的过程,使得激光二极管出射激光脉冲序列,每一次执行步骤2),激光二极管出射一个激光脉冲,然后利用步骤3)进行充电以保证下一个步骤2)的执行。
其中,在第一时段内,PMOS管处于切断状态,步骤1)在该第一时段内进行,在第二时段内,PMOS管处于导通状态,步骤2)执行,电容对激光二极管供电,使其发光,同时,电源、电感、二极管、激光二极管和开关电路的通路也是导通的,电源能够对电感充电,第一时段和第二时段交替进行,接下来继续第一时段,步骤3)执行,PMOS管处于切断状态,电感通过二极管对电容充电,当电感内的电流为0时,充电结束,然后继续第二时段,从而出射激光脉冲序列。
本发明的第五实施例示意如图27所示,其中示出了激光发射装置的一种结构示意图,包括脉冲激光二极管1、脉冲信号2、充电电路、储能电路、控制电路和重置电路等等。其中充电电路包括电感L1,控制电路包括开关电路,并具体为PMOS管Q1和二极管D1,储能电路包括电容C1,重置电路包括开关电路,其用于对电容C1上的电压进行重置。在其他实施例中,开关电路可以选择为其他晶体管,二极管D1可以选择为肖特基二极管,且其中充电电路可以包括两个以上的电感,储能电路可以包括两个以上的电容。
图28是本发明提供的第五实施例中的电流流向图,其中示出了在图27所示的激光发射装置中,1)初始状态电容C1充电至和电源电压一致;2)当PMOS管导通的时候,电容C1放电,脉冲激光二极管发光,此时D1导通,电感L1通过PMOS管的回路充电;当PMOS管导通时,电容C1进行放电, 脉冲激光二极管相应发光,且由于PMOS处于导通状态,第一环路和第二环路均处于导通状态,所述第一环路包括电源、电感L1,二极管D1和PMOS管,第二环路包括电容C1、脉冲激光二极管和PMOS管,当PMOS管导通时,第一环路导处于导通状态,因此,电感L1能够通过该环路进行充电,且第二环路也处于导通状态,电容C1通过放电,从而使得脉冲激光二极管发光;3)当PMOS管截止的时候,电感L1电流不能突变,从而经过D1和D2给电容C1充电;当电感L1电流为0的时候,充电结束,D1和D2截止状态;4)依次交替重复2)、3)的过程,使得激光二极管出射激光脉冲序列,每一次执行步骤2),激光二极管出射一个激光脉冲,然后利用步骤3)进行充电以保证下一个步骤2)的执行。
其中,在第一时段内,PMOS管处于切断状态,步骤1)在该第一时段内进行,在第二时段内,PMOS管处于导通状态,步骤2)执行,电容对激光二极管供电,使其发光,同时,电源、电感、二极管、激光二极管和开关电路的通路也是导通的,电源能够对电感充电,第一时段和第二时段交替进行,接下来继续第一时段,步骤3)执行,PMOS管处于切断状态,电感通过二极管对电容充电,当电感内的电流为0时,充电结束,然后继续第二时段,从而出射激光脉冲序列。
图29是本发明提供的第五实施例中的时序控制图,其中,示出了重置电路的控制信号与控制电路控制信号之间的关系,重置电路包括开关电路,其连接于电容C1的两端,其用于对电容C1上的电压进行重置。根据其中的时序控制关系,控制电路每打开一次,重置电路也随之重置一次,也就是说,所述重置电路在所述激光发射器发射光脉冲前和/或发射光脉冲后,对所述储能电路即电容C1上的电压进行重置,如此能够保证电容上最终获得电压是可以控制的,从而保证其对于激光二极管放电时,不会超出预定值,保证激光二极管的输出不超过安规值。所述重置电路包括开关电路RESET,其连接于所述电容C1的两端,用于对电容C1上的电压进行重置,重置电路的信号位于控制电路开关信号的内部,当控制电路打开第一开关电路时,电容C1迅速放电,激光二极管发出光脉冲,即在t0到t1时段内,脉冲发出,此时在t1时刻进行 重置,使得电容C1上的电压得到重置,此时,重置电路在激光发射器发射脉冲后,对电容C1进行重置,而本次重置位于下一次激光发射器发射光脉冲之前,即在t3时刻之前,在t3时刻,激光发射器将开始发射下一次光脉冲,因此,重置电路的重置操作位于本次光脉冲发射之后并位于下一次光脉冲发射之前。
其中,所述储能电路所存储的能量具有预设上限值,如图2-图7,图10,图26-图28所示实施例一至实施例五中的C1均具有预设的上限值。
其中,所述控制电路包括第一开关电路,以及与所述第一开关电路连接的驱动电路;所述驱动电路用于在所述第一时段内根据所述第一驱动信号控制所述第一开关电路切断所述激光发射器和所述储能电路的连接;所述驱动电路还用于在所述第二时段内根据所述第二驱动信号控制所述第一开关电路导通所述激光发射器和所述储能电路的连接。如实施例一至实施例三中的NMOS晶体管,或者实施例四或实施例五中的PMOS晶体管。
其中,在所述第二时段的至少部分时长内,所述电源给所述充电电路充电,如实施例一至实施例五中的控制电路打开的时段内,至少在该时段的部分时间内,电源给电感L1充电。示例性地,可以参见图3的充电路径。
其中,在所述第二时段的所述至少部分时长内,第一环路导通,所述第一环路包括相互串联的所述电源、所述充电电路和所述第一开关电路。示例性地,在第一实施例中,如图3所示,第一环路包括电源、电感L1和NMOS管,该环路构成第一环路。示例性地,如图26所示,第一环路包括电源、电感L1和PMOS管,该环路构成第一环路。
其中,在所述第二时段内,第二环路导通,所述第二环路包括相互串联的所述储能电路、所述激光发射器和所述第一开关电路。示例性地,在第一实施例中,如图3所示,第二环路包括电容C1、激光二极管1和NMOS管,该环路构成第二环路。示例性地,如图26所示,第二环路包括电容C1、激光二极管1和PMOS管,该环路构成第二环路。
其中,所述第一环路还包括所述激光发射器。示例性地,如图3和图26中的激光二极管1。
其中,所述激光发射器不位于所述第一环路上。示例性地,如图16和图17所示的实施例中,激光二极管1不位于第一环路上。
其中,所述光发射装置还包括位于所述充电电路和所述储能电路之间的第二开关电路。示例性地,如图3所示的二极管D1,示例性地,如图26所示的二极管D1。其均构成第二开关电路。
其中,所述第二开关电路位于所述第一环路上,用于在所述第二时段内导通所述电源、所述充电电路和所述第一开关电路。如图3所示的二极管D1,示例性地,如图26所示的二极管D1。其均位于第一环路上,用于导通电源、电感L1和晶体管开关。
其中,所述第二开关电路用于在所述第一时段内导通所述充电电路和所述储能电路的连接,当所述充电电路完成对所述储能电路的储能时,断开所述充电电路和所述储能电路的连接。如图3所示的二极管D1,示例性地,如图26所示的二极管D1。其均构成第二开关电路,用于在第一时段内导通电感L1和电容C1的连接,由于其单向导通作用,当完成电容C1的储能后,电感L1与电容C1的连接被断开。
其中,其特征在于,所述光发射装置还包括位于所述充电电路和所述储能电路之间的第三开关电路。示例性地,如图16和图17所示实施例的二极管D2。
其中,所述第三开关电路用于在所述第二时段内切断所述充电电路和所述储能电路的连接。示例性地,如图16和图17所示实施例的二极管D2。其均构成第三开关电路,用于在第二时段内切断电感L1和电容C1的连接,由于其单向导通作用,其在第二时段内切断上述连接。
其中,所述第三开关电路用于在所述第一时段内导通所述充电电路和所述储能电路,当所述充电电路完成对所述储能电路的储能时,切断所述第三开关电路。示例性地,如图16、图17和图27所示实施例的二极管D2。其均构成第三开关电路,用于在第一时段内导通电感L1和电容C1的连接,由于其单向导通作用,当完成电容C1的储能后,电感L1与电容C1的连接被断开。
其中,所述第三开关电路为第三二极管。示例性地,如图16、图17和图 27所示实施例的二极管D2。
其中,所述第二开关电路为第一二极管。示例性地,如第一实施例至第五实施例中的二极管D1。
其中,所述激光发射器包括激光二极管;所述激光二极管的第一端与所述储能电路连接,所述激光二极管的第二端与所述第一开关电路的第一端连接;所述驱动电路与所述第一开关电路的第二端连接,其中所述驱动电路对所述第一开关电路进行控制;所述第一开关电路的第三端接地连接。示例性地,在第一实施例中,激光二极管的第一端与电感L1连接,第二端与驱动电路3连接,驱动电路3对NMOS晶体管进行控制,且NMOS晶体管具有接地端。
其中,所述充电电路还包括与所述电感连接的至少一个电阻,用于限制所述充电电路的电流。示例性地,如第一实施例图5中的R1和R2。
其中,所述充电电路还包括电阻、电压校准源和三极管。示例性地,如图6中的电阻R1-R4、电压校准源和三极管T1。
其中,所述限流电路中的电阻的一端连接于所述电源,另一端连接于所述电压校准源。示例性地,如图6中的电阻R1一端连接于电源,另一端连接于电压校准源和三极管T1。
其中,所述三极管第一端连接于所述电源,第二端连接于所述限流电路的电阻的另一端,第三端连接于所述至少一个电容。示例性地,如图6中的三极管T1第一端连接于电源,第二端连接于电阻R1,第三端连接于电容C1。
其中,所述电压校准源的第一端连接于所述限流电路中的电阻和所述三极管的第二端,第二端连接于所述激光发射器的输入端,第三端连接于所述三极管的第三端。示例性地,如图6中的电压校准源,第一端连接于电阻R1和三极管T1的第二端,第二端连接于激光二极管1的输入端,第三端连接于三极管T1的第三端。
其中,所述至少一个电容的一端连接于所述充电电路,另一端接地。示例性地,第一实施例至第五实施例中的电容C1一端连接于电感L1,另一端接地。
其中,所述光发射装置还包括第二二极管,所述第二二极管的一端连接于所述充电电路,另一端接地。示例性地,如图2-图14所示的实施例中,第二 二极管D2一端连接于电感L1,另一端接地。
其中,所述光发射装置还包括升压电路,所述升压电路用于对输入电压进行升压以适应不同所述激光发射器的需求。示例性地,如图2-图14所示的实施例中,包括升压电路BOOST,用于对输入电压升压。
其中,还包括重置电路。示例性地,如图27和图28所示,包括重置电路。
其中,所述重置电路包括开关电路,其连接于所述储能电路的两端,用于对所述储能电路上的电压进行重置。示例性地,如图27和图28所示,所述重置电路包括开关电路RESET,其连接于所述电容C1的两端,用于对电容C1上的电压进行重置。
其中,所述重置电路在所述激光发射器发射光脉冲前和/或发射光脉冲后,对所述储能电路上的电压进行重置。示例性地,如图29所示,所述重置电路包括开关电路RESET,其连接于所述电容C1的两端,用于对电容C1上的电压进行重置,重置电路的信号位于控制电路开关信号的内部,当控制电路打开第一开关电路时,电容C1迅速放电,激光二极管发出光脉冲,即在t0到t1时段内,脉冲发出,此时在t1时刻进行重置,使得电容C1上的电压得到重置,此时,重置电路在激光发射器发射脉冲后,对电容C1进行重置,而本次重置位于下一次激光发射器发射光脉冲之前,即在t3时刻之前,在t3时刻,激光发射器将开始发射下一次光脉冲,因此,重置电路的重置操作位于本次光脉冲发射之后并位于下一次光脉冲发射之前。
在另一个实施例中,本发明实施例还提供了一种测距装置,包括第一方面所述的任一光发射装置;接收电路,用于接收所述光发射装置出射的光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号;采样电路,用于对来自所述接收电路的电信号进行采样,获得采样结果;运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。进一步地,所述光发射装置的数量为至少2个。
在另一个实施例中,本发明实施例还提供了一种移动平台,所述移动平台包括第二方面所述的任一测距装置以及平台本体,所述测距装置安装在所述平台本体。进一步地,所述移动平台包括载人飞行器、无人飞行器、汽车、机器人和遥控车中的至少一种。
本发明各个实施例提供的光发射装置可以应用于测距装置,该测距装置可以是激光雷达、激光测距设备等电子设备。在一种实施例中,测距装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,测距装置可以通过测量测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距装置的距离。或者,测距装置也可以通过其他技术来探测探测物到测距装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图24所示的测距装置100对测距的工作流程进行举例描述。
如图24所示,测距装置100可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定测距装置100与被探测物之间的距离。
可选地,该测距装置100还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图24示出的测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。一个示例中,该至少两个发射电路中的发光芯片封装在同一个模块中。例如,每个发射电路包括一个激光发射芯片,该至少两个发射电路中的激光发射芯片中的die封装到一起,容置在同一个封装空间中。
一些实现方式中,除了图24所示的电路,测距装置100还可以包括扫描模块160,用于将发射电路出射的至少一路激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为测距模块,该测距模块可以独立于其他模块,例如,扫描模块160。
测距装置中可以采用同轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内共用至少部分光路。例如,发射电路出射的至少一路激光脉冲序列经扫描模块改变传播方向出射后,经探测物反射回来的激光脉冲序列经过扫描模块后入射至接收电路。或者,测距装置也可以采用异轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内分别沿不同的光路传输。图25示出了本发明的测距装置采用同轴光路的一种实施例的示意图。
测距装置200包括测距模块210,测距模块210包括发射器203(可以包括上述的发射电路)、准直元件204、探测器205(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件206。测距模块210用于发射光束,且接收回光,将回光转换为电信号。其中,发射器203可以用于发射光脉冲序列。在一个实施例中,发射器203可以发射激光脉冲序列。可选的,发射器203发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件204设置于发射器的出射光路上,用于准直从发射器203发出的光束,将发射器203发出的光束准直为平行光出射至扫描模块。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件204可以是准直透镜或者是其他能够准直光束的元件。
在图25所示实施例中,通过光路改变元件206来将测距装置内的发射光路和接收光路在准直元件104之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以是发射器103和探测器105分别使用各自的准直元件,将光路改变元件206设置在准直元件之后的光路上。
在图25所示实施例中,由于发射器103出射的光束的光束孔径较小,测 距装置所接收到的回光的光束孔径较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射发射器203的出射光,反射镜用于将回光反射至探测器205。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡。
在图25所示实施例中,光路改变元件偏离了准直元件204的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件204的光轴上。
测距装置200还包括扫描模块202。扫描模块202放置于测距模块210的出射光路上,扫描模块102用于改变经准直元件204出射的准直光束219的传输方向并投射至外界环境,并将回光投射至准直元件204。回光经准直元件104汇聚到探测器105上。
在一个实施例中,扫描模块202可以包括至少一个光学元件,用于改变光束的传播路径,其中,该光学元件可以通过对光束进行反射、折射、衍射等等方式来改变光束传播路径。例如,扫描模块202包括透镜、反射镜、棱镜、振镜、光栅、液晶、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。一个示例中,至少部分光学元件是运动的,例如通过驱动模块来驱动该至少部分光学元件进行运动,该运动的光学元件可以在不同时刻将光束反射、折射或衍射至不同的方向。在一些实施例中,扫描模块202的多个光学元件可以绕共同的轴209旋转或振动,每个旋转或振动的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块202的多个光学元件可以以不同的转速旋转,或以不同的速度振动。在另一个实施例中,扫描模块202的至少部分光学元件可以以基本相同的转速旋转。在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块202包括第一光学元件214和与第一光学元件214连接的驱动器216,驱动器216用于驱动第一光学元件214绕转动轴209转动,使第一光学元件214改变准直光束219的方向。第一光学元件214将准 直光束219投射至不同的方向。在一个实施例中,准直光束219经第一光学元件改变后的方向与转动轴109的夹角随着第一光学元件214的转动而变化。在一个实施例中,第一光学元件214包括相对的非平行的一对表面,准直光束219穿过该对表面。在一个实施例中,第一光学元件214包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件114包括楔角棱镜,对准直光束119进行折射。
在一个实施例中,扫描模块202还包括第二光学元件215,第二光学元件215绕转动轴209转动,第二光学元件215的转动速度与第一光学元件214的转动速度不同。第二光学元件215用于改变第一光学元件214投射的光束的方向。在一个实施例中,第二光学元件115与另一驱动器217连接,驱动器117驱动第二光学元件215转动。第一光学元件214和第二光学元件215可以由相同或不同的驱动器驱动,使第一光学元件214和第二光学元件215的转速和/或转向不同,从而将准直光束219投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器218控制驱动器216和217,分别驱动第一光学元件214和第二光学元件215。第一光学元件214和第二光学元件215的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器216和217可以包括电机或其他驱动器。
在一个实施例中,第二光学元件115包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件115包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件115包括楔角棱镜。
一个实施例中,扫描模块102还包括第三光学元件(图未示)和用于驱动第三光学元件运动的驱动器。可选地,该第三光学元件包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第三光学元件包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第三光学元件包括楔角棱镜。第一、第二和第三光学元件中的至少两个光学元件以不同的转速和/或转向转动。
扫描模块202中的各光学元件旋转可以将光投射至不同的方向,例如光211和213的方向,如此对测距装置200周围的空间进行扫描。当扫描模块202投射出的光211打到被探测物201时,一部分光被探测物201沿与投射的光 211相反的方向反射至测距装置200。被探测物201反射的回光212经过扫描模块202后入射至准直元件204。
探测器205与发射器203放置于准直元件204的同一侧,探测器205用于将穿过准直元件204的至少部分回光转换为电信号。
一个实施例中,各光学元件上镀有增透膜。可选的,增透膜的厚度与发射器103发射出的光束的波长相等或接近,能够增加透射光束的强度。
一个实施例中,测距装置中位于光束传播路径上的一个元件表面上镀有滤光层,或者在光束传播路径上设置有滤光器,用于至少透射发射器所出射的光束所在波段,反射其他波段,以减少环境光给接收器带来的噪音。
在一些实施例中,发射器203可以包括激光二极管,通过激光二极管发射纳秒级别的激光脉冲。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置200可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定被探测物201到测距装置200的距离。
测距装置200探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。在一种实施例中,本发明实施例的测距装置可应用于移动平台,测距装置可安装在移动平台的平台本体。具有测距装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施例中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应用于相机时,平台本体为相机本身。
本发明通过提供上述光发射装置、测距装置以及移动平台,以提供一种符合人眼安全规定的激光发射方案,当系统发生单一故障时,上述装置中的电路可以保证激光辐射值不超过安规值,从而保证激光装置的使用安全。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限 定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (35)

  1. 一种光发射装置,其特征在于,包括:电源、激光发射器、充电电路、储能电路和控制电路,所述电源与所述充电电路连接,用于在至少部分时长内给所述充电电路充电;
    所述储能电路分别与所述激光发射器连接和所述充电电路连接,所述储能电路包括至少一个电容,所述充电电路包括至少一个电感;
    所述控制电路用于在第一时段内切断所述激光发射器和所述储能电路的连接,在所述第一时段的至少部分时长内,所述充电电路用于给所述储能电路充电;
    所述控制电路还用于在第二时段内导通所述激光发射器和所述储能电路的连接,使得所述储能电路对所述激光发射器供电,以使所述激光发射器出射光脉冲信号,直至所述电容的输出电流低于所述激光发射器的阈值电流;
    所述第一时段和所述第二时段交替进行,使得所述激光发射器出射激光脉冲序列。
  2. 根据权利要求1所述的光发射装置,其特征在于,所述储能电路所存储的能量具有预设上限值。
  3. 根据权利要求1所述的光发射装置,其特征在于,所述控制电路包括第一开关电路,以及与所述第一开关电路连接的驱动电路;
    所述驱动电路用于在所述第一时段内根据所述第一驱动信号控制所述第一开关电路切断所述激光发射器和所述储能电路的连接;
    所述驱动电路还用于在所述第二时段内根据所述第二驱动信号控制所述第一开关电路导通所述激光发射器和所述储能电路的连接。
  4. 根据权利要求3所述的光发射装置,其特征在于,在所述第二时段的至少部分时长内,所述电源给所述充电电路充电。
  5. 根据权利要求4所述的光发射装置,其特征在于,在所述第二时段的所述至少部分时长内,第一环路导通,所述第一环路包括相互串联的所述电源、所述充电电路和所述第一开关电路。
  6. 根据权利要求4或5所述的光发射装置,其特征在于,在所述第二时 段内,第二环路导通,所述第二环路包括相互串联的所述储能电路、所述激光发射器和所述第一开关电路。
  7. 根据权利要求5所述的光发射装置,其特征在于,所述第一环路还包括所述激光发射器。
  8. 根据权利要求5所述的光发射装置,其特征在于,所述激光发射器不位于所述第一环路上。
  9. 根据权利要求3-5、7、8任一项所述的光发射装置,其特征在于,所述光发射装置还包括位于所述充电电路和所述储能电路之间的第二开关电路。
  10. 根据权利要求9所述的光发射装置,其特征在于,所述第二开关电路位于所述第一环路上,用于在所述第二时段内导通所述电源、所述充电电路和所述第一开关电路。
  11. 根据权利要求9所述的光发射装置,其特征在于,所述第二开关电路用于在所述第一时段内导通所述充电电路和所述储能电路的连接,当所述充电电路完成对所述储能电路的储能时,断开所述充电电路和所述储能电路的连接。
  12. 根据权利要求1-5、7、8、10、11任一项所述的光发射装置,其特征在于,所述光发射装置还包括位于所述充电电路和所述储能电路之间的第三开关电路。
  13. 根据权利要求12所述的光发射装置,其特征在于,所述第三开关电路用于在所述第二时段内切断所述充电电路和所述储能电路的连接。
  14. 根据权利要求12所述的光发射装置,其特征在于,所述第三开关电路用于在所述第一时段内导通所述充电电路和所述储能电路,当所述充电电路完成对所述储能电路的储能时,切断所述第三开关电路。
  15. 根据权利要求13或14所述的光发射装置,其特征在于,所述第三开关电路为第三二极管。
  16. 根据权利要求9所述的任一项光发射装置,其特征在于,所述第二开关电路为第一二极管。
  17. 根据权利要求3所述的光发射装置,其特征在于,所述激光发射器包括激光二极管;
    所述激光二极管的第一端与所述储能电路连接,所述激光二极管的第二端与所述第一开关电路的第一端连接;
    所述驱动电路与所述第一开关电路的第二端连接,其中所述驱动电路对所述第一开关电路进行控制;
    所述第一开关电路的第三端接地连接。
  18. 根据权利要求1所述的光发射装置,其特征在于,所述充电电路还包括与所述电感连接的至少一个电阻,用于限制所述充电电路的电流。
  19. 根据所述权利要求18的光发射装置,其特征在于,所述充电电路还包括电阻、电压校准源和三极管。
  20. 如权利要求19所述的光发射装置,其特征在于,所述限流电路中的电阻的一端连接于所述电源,另一端连接于所述电压校准源。
  21. 如权利要求19所述的光发射装置,其特征在于,所述三极管第一端连接于所述电源,第二端连接于所述限流电路的电阻的另一端,第三端连接于所述至少一个电容。
  22. 如权利要求19所述的光发射装置,其特征在于,所述电压校准源的第一端连接于所述限流电路中的电阻和所述三极管的第二端,第二端连接于所述激光发射器的输入端,第三端连接于所述三极管的第三端。
  23. 根据权利要求1所述的光发射装置,其特征在于,所述至少一个电容的一端连接于所述充电电路,另一端接地。
  24. 根据权利要求1所述的光发射装置,其特征在于,所述光发射装置还包括第二二极管,所述第二二极管的一端连接于所述充电电路,另一端接地。
  25. 如权利要求1所述的光发射装置,其特征在于,所述光发射装置还包括升压电路,所述升压电路用于对输入电压进行升压以适应不同所述激光发射器的需求。
  26. 如权利要求1所述的光发射装置,其特征在于,还包括重置电路。
  27. 如权利要求26所述的光发射装置,其特征在于,所述重置电路包括开关电路,其连接于所述储能电路的两端,用于对所述储能电路上的电压进行重置。
  28. 如权利要求26或27所述的光发射装置,其特征在于,所述重置电路在所述激光发射器发射光脉冲前和/或发射光脉冲后,对所述储能电路上的电压进行重置。
  29. 一种测距装置,其特征在于,包括:
    如权利要求1至28任一项所述的光发射装置,用于依次出射激光脉冲信号;
    光电转换电路,用于接收所述光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号;
    采样电路,用于对来自所述光电转换电路的电信号进行采样,获得采样结果;
    运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
  30. 根据权利要求29所述的测距装置,其特征在于,所述光发射装置的数量和所述光电转换电路的数量分别为至少2个;
    每个所述光电转换电路用于接收来自对应的光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号。
  31. 根据权利要求29或30所述的测距装置,其特征在于,所述激光测距装置还包括扫描模块;
    所述扫描模块用于改变所述激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述光电转换电路。
  32. 根据权利要求31所述的测距装置,其特征在于,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
  33. 根据权利要求32所述的测距装置,其特征在于,所述扫描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;
    来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
  34. 一种移动平台,其特征在于,包括:
    权利要求29至33任一项所述的测距装置;和
    平台本体,所述测距装置的光发射装置安装在所述平台本体上。
  35. 根据权利要求34所述的移动平台,其特征在于,所述移动平台包括无人飞行器、汽车和机器人中的至少一种。
PCT/CN2019/071032 2019-01-09 2019-01-09 一种光发射装置及测距装置、移动平台 WO2020142947A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980005426.7A CN111670378A (zh) 2019-01-09 2019-01-09 一种光发射装置及测距装置、移动平台
PCT/CN2019/071032 WO2020142947A1 (zh) 2019-01-09 2019-01-09 一种光发射装置及测距装置、移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071032 WO2020142947A1 (zh) 2019-01-09 2019-01-09 一种光发射装置及测距装置、移动平台

Publications (1)

Publication Number Publication Date
WO2020142947A1 true WO2020142947A1 (zh) 2020-07-16

Family

ID=71520636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071032 WO2020142947A1 (zh) 2019-01-09 2019-01-09 一种光发射装置及测距装置、移动平台

Country Status (2)

Country Link
CN (1) CN111670378A (zh)
WO (1) WO2020142947A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731342A (zh) * 2020-12-17 2021-04-30 武汉万集信息技术有限公司 用于多线激光雷达的驱动电路及激光发射模组
WO2022061909A1 (zh) * 2020-09-28 2022-03-31 深圳市大疆创新科技有限公司 测距模块及测距装置
US20220239063A1 (en) * 2019-10-17 2022-07-28 Suteng Innovation Technology Co., Ltd. Laser emitting circuit and lidar
WO2022253656A1 (en) * 2021-06-02 2022-12-08 Valeo Schalter Und Sensoren Gmbh Active optical sensor system with improved eye safety
WO2022261835A1 (zh) * 2021-06-15 2022-12-22 深圳市大疆创新科技有限公司 光发射装置及其控制方法、测距装置、可移动平台
CN116961369A (zh) * 2023-07-26 2023-10-27 上海科乃特激光科技有限公司 一种脉冲激光器的开关电源均衡输出方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112955777A (zh) * 2021-02-07 2021-06-11 深圳阜时科技有限公司 发光裸片、发射模组、感测装置和电子设备
CN113725724B (zh) * 2021-09-01 2024-02-27 上海沛塬电子有限公司 一种激光脉冲发射集成电路模组、制造方法及系统
CN114023255A (zh) * 2021-11-22 2022-02-08 惠州视维新技术有限公司 驱动电路、驱动装置和显示装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588014A (zh) * 2009-06-02 2009-11-25 上海华魏光纤传感技术有限公司 一种窄脉冲大电流半导体激光器驱动电路
CN202276062U (zh) * 2011-11-02 2012-06-13 吉林市江机民科实业有限公司 一种电量控制脉冲激光驱动器
CN103094833A (zh) * 2013-02-09 2013-05-08 复旦大学 基于雪崩晶体管的半导体激光器脉冲驱动电路
US9368936B1 (en) * 2013-09-30 2016-06-14 Google Inc. Laser diode firing system
JP2016127214A (ja) * 2015-01-08 2016-07-11 株式会社リコー 光源駆動装置、光源装置、距離測定装置、移動体装置、レーザ加工機及び光源駆動方法
CN206116865U (zh) * 2016-10-31 2017-04-19 深圳市镭神智能系统有限公司 一种激光二极管驱动电路
CN206412630U (zh) * 2016-12-01 2017-08-15 武汉万集信息技术有限公司 一种双脉冲控制的半导体激光器驱动电路
CN108631151A (zh) * 2018-06-05 2018-10-09 成都楼兰科技有限公司 激光驱动电路
CN208241074U (zh) * 2018-06-15 2018-12-14 常州第二电子仪器有限公司 一种二极管泵浦固体激光器电源控制电路
CN109116366A (zh) * 2018-06-27 2019-01-01 上海禾赛光电科技有限公司 一种非均匀脉冲能量的多线束激光雷达
CN109391006A (zh) * 2018-11-14 2019-02-26 深圳市速腾聚创科技有限公司 供能电路以及激光雷达装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882899A1 (de) * 2006-07-17 2008-01-30 Leica Geosystems AG Elektrooptischer Entfernungsmesser
CN201876545U (zh) * 2010-09-02 2011-06-22 淄博职业学院 脉冲相位式激光测距仪
CN102540196A (zh) * 2011-12-29 2012-07-04 扬州大学 基于激光测距的汽车防撞传感器
CN102529807B (zh) * 2011-12-29 2013-10-30 扬州大学 基于脉冲激光测距的汽车防撞报警系统
CN103605133A (zh) * 2013-11-18 2014-02-26 奇瑞汽车股份有限公司 车载激光测距装置
CN104714220A (zh) * 2013-12-11 2015-06-17 重庆爱特光电有限公司 激光发射电路、激光接收电路、距离计算电路及其设备
PL224520B1 (pl) * 2014-01-27 2017-01-31 Politechnika Łódzka Urządzenie do odchylania wiązki światła, zwłaszcza wąskokątnych przestrzennych dalmierzy laserowych
CN103941262B (zh) * 2014-04-01 2016-06-29 中国科学院合肥物质科学研究院 一种脉冲激光测距装置及采用该装置的脉冲激光测距方法
CN104175952A (zh) * 2014-05-26 2014-12-03 上海大学 一种汽车防撞气垫装置
CN104242422B (zh) * 2014-08-27 2016-09-28 武汉凌云光电科技有限责任公司 一种脉冲氙灯电源储能电容的充电方法和充电电路
CN204422755U (zh) * 2015-03-03 2015-06-24 雷刚 一种新型高速高精度激光测距系统
CN104849720A (zh) * 2015-05-29 2015-08-19 厦门大学 一种基于相关取样的激光多脉冲测距系统
CN106371275B (zh) * 2015-07-22 2018-07-24 浙江欣邦科技信息有限公司 一种对光源进行时序脉冲补偿的激光投影机
CN204885822U (zh) * 2015-09-14 2015-12-16 深圳市迅捷光通科技有限公司 半导体激光器驱动电路及包括该电路的半导体激光器
US10158211B2 (en) * 2015-09-22 2018-12-18 Analog Devices, Inc. Pulsed laser diode driver
CN205229458U (zh) * 2015-09-28 2016-05-11 于春雨 激光测距雷达
CN105514796B (zh) * 2015-12-29 2019-01-08 西安交通大学 一种新型高重频短脉冲ld激光器及其工作过程
CN205752971U (zh) * 2016-01-22 2016-11-30 北京国科欣翼科技有限公司 用于汽车防撞系统的激光超短脉冲生成装置
CN205543678U (zh) * 2016-01-22 2016-08-31 北京国科欣翼科技有限公司 用于汽车防撞系统的激光超短脉冲生成装置
CN106338735B (zh) * 2016-03-10 2019-01-11 北京国科欣翼科技有限公司 激光测距装置
CN106340800B (zh) * 2016-03-10 2019-03-12 北京国科欣翼科技有限公司 激光器
CN205899019U (zh) * 2016-03-21 2017-01-18 广州德泰克自动化科技有限公司 一种基于激光雷达的测距系统
CN205880205U (zh) * 2016-07-22 2017-01-11 北京凯波兰特科技发展有限公司 微型测距机激光发射电路
CN107884762A (zh) * 2016-09-30 2018-04-06 比亚迪股份有限公司 激光雷达及车辆
CN106340804B (zh) * 2016-11-09 2023-10-31 苏州圣昱激光测量技术有限公司 激光扫描用短脉冲大电流半导体激光器驱动源结构
CN206585193U (zh) * 2016-11-09 2017-10-24 苏州圣昱激光测量技术有限公司 激光扫描用短脉冲大电流半导体激光器驱动源结构
CN106772407A (zh) * 2016-12-02 2017-05-31 深圳市镭神智能系统有限公司 基于mems微镜扫描的激光雷达系统
CN108181621A (zh) * 2016-12-08 2018-06-19 北京万集科技股份有限公司 一种双激光驱动电路和扫描式激光雷达测距设备及方法
CN106814366A (zh) * 2017-03-23 2017-06-09 上海思岚科技有限公司 一种激光扫描测距装置
CN108496093A (zh) * 2017-03-29 2018-09-04 深圳市大疆创新科技有限公司 激光脉冲发射装置、激光测量装置和移动平台
CN107101596A (zh) * 2017-06-12 2017-08-29 昆山锐芯微电子有限公司 距离传感器和3d图像传感器
CN107315177B (zh) * 2017-07-06 2018-09-28 深圳乐创信息通讯技术有限公司 激光测距电路、激光测距装置、车辆防碰撞装置及其控制方法
CN107436431A (zh) * 2017-07-17 2017-12-05 南京理工大学 一种脉冲激光发射电路
CN207038921U (zh) * 2017-07-21 2018-02-23 湖北大学 一种半导体激光驱动电路
WO2019104679A1 (zh) * 2017-11-30 2019-06-06 深圳市大疆创新科技有限公司 一种功率调整方法及激光测量装置
CN108011293B (zh) * 2017-12-16 2019-12-27 南京理工大学 一种窄脉冲红外半导体激光发射电路
CN108445506B (zh) * 2018-05-11 2023-11-03 北醒(北京)光子科技有限公司 一种提高激光雷达透雾性的测量方法
CN208156196U (zh) * 2018-05-11 2018-11-27 北醒(北京)光子科技有限公司 一种驱动发射电路及激光雷达
CN109116331B (zh) * 2018-06-27 2020-04-24 上海禾赛光电科技有限公司 一种编码激光收发装置、测距装置以及激光雷达系统
CN108614254B (zh) * 2018-08-13 2021-06-29 北京经纬恒润科技股份有限公司 一种激光雷达
CN108627813B (zh) * 2018-08-13 2021-10-15 北京经纬恒润科技股份有限公司 一种激光雷达
CN109116329A (zh) * 2018-10-18 2019-01-01 成都捷测科技有限公司 一种提高激光测距性能的结构及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588014A (zh) * 2009-06-02 2009-11-25 上海华魏光纤传感技术有限公司 一种窄脉冲大电流半导体激光器驱动电路
CN202276062U (zh) * 2011-11-02 2012-06-13 吉林市江机民科实业有限公司 一种电量控制脉冲激光驱动器
CN103094833A (zh) * 2013-02-09 2013-05-08 复旦大学 基于雪崩晶体管的半导体激光器脉冲驱动电路
US9368936B1 (en) * 2013-09-30 2016-06-14 Google Inc. Laser diode firing system
JP2016127214A (ja) * 2015-01-08 2016-07-11 株式会社リコー 光源駆動装置、光源装置、距離測定装置、移動体装置、レーザ加工機及び光源駆動方法
CN206116865U (zh) * 2016-10-31 2017-04-19 深圳市镭神智能系统有限公司 一种激光二极管驱动电路
CN206412630U (zh) * 2016-12-01 2017-08-15 武汉万集信息技术有限公司 一种双脉冲控制的半导体激光器驱动电路
CN108631151A (zh) * 2018-06-05 2018-10-09 成都楼兰科技有限公司 激光驱动电路
CN208241074U (zh) * 2018-06-15 2018-12-14 常州第二电子仪器有限公司 一种二极管泵浦固体激光器电源控制电路
CN109116366A (zh) * 2018-06-27 2019-01-01 上海禾赛光电科技有限公司 一种非均匀脉冲能量的多线束激光雷达
CN109391006A (zh) * 2018-11-14 2019-02-26 深圳市速腾聚创科技有限公司 供能电路以及激光雷达装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220239063A1 (en) * 2019-10-17 2022-07-28 Suteng Innovation Technology Co., Ltd. Laser emitting circuit and lidar
WO2022061909A1 (zh) * 2020-09-28 2022-03-31 深圳市大疆创新科技有限公司 测距模块及测距装置
CN112731342A (zh) * 2020-12-17 2021-04-30 武汉万集信息技术有限公司 用于多线激光雷达的驱动电路及激光发射模组
WO2022253656A1 (en) * 2021-06-02 2022-12-08 Valeo Schalter Und Sensoren Gmbh Active optical sensor system with improved eye safety
WO2022261835A1 (zh) * 2021-06-15 2022-12-22 深圳市大疆创新科技有限公司 光发射装置及其控制方法、测距装置、可移动平台
CN116961369A (zh) * 2023-07-26 2023-10-27 上海科乃特激光科技有限公司 一种脉冲激光器的开关电源均衡输出方法

Also Published As

Publication number Publication date
CN111670378A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2020142947A1 (zh) 一种光发射装置及测距装置、移动平台
US20210333362A1 (en) Light emitting device, distance measuring device and mobile platform
CN108351413B (zh) 紧凑芯片级lidar解决方案
US11240894B2 (en) Drive circuit, light emitting device, distance measurement apparatus, and mobile body
US20210286051A1 (en) Distance measuring device, and time measurement method based on distance measuring device
CN210142193U (zh) 一种测距装置、移动平台
US20210333370A1 (en) Light emission method, device, and scanning system
US10132926B2 (en) Range finder, mobile object and range-finding method
JP6980369B2 (ja) 光源駆動装置および距離測定装置
WO2020147116A1 (zh) 异常检测方法、报警方法、测距装置及可移动平台
CN211505895U (zh) 激光发射装置、峰值保持电路、测距装置和移动平台
WO2020061968A1 (zh) 一种光发射装置及测距装置、移动平台
CN111566510A (zh) 测距装置及其扫描视场的均衡方法、移动平台
US20210293929A1 (en) Ranging system and mobile platform
WO2020113564A1 (zh) 一种激光接收电路及测距装置、移动平台
WO2021068212A1 (zh) 一种光发射装置及测距装置、移动平台
WO2022261835A1 (zh) 光发射装置及其控制方法、测距装置、可移动平台
US20210333374A1 (en) Ranging apparatus and mobile platform
CN112909723B (zh) 一种用于空间交会对接的大动态激光发射装置
US20210341588A1 (en) Ranging device and mobile platform
US20210341580A1 (en) Ranging device and mobile platform
CN113567999A (zh) 一种激光装置和激光雷达系统及其控制方法
WO2020142956A1 (zh) 用于测距装置的放电电路、分布式雷达系统及可移动平台
WO2021138770A1 (zh) 一种光发射装置及测距设备、移动平台
WO2020142893A1 (zh) 雷达接入检测方法、电路及可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908895

Country of ref document: EP

Kind code of ref document: A1