WO2020061967A1 - 一种测距装置以及基于测距装置的时间测量方法 - Google Patents
一种测距装置以及基于测距装置的时间测量方法 Download PDFInfo
- Publication number
- WO2020061967A1 WO2020061967A1 PCT/CN2018/108149 CN2018108149W WO2020061967A1 WO 2020061967 A1 WO2020061967 A1 WO 2020061967A1 CN 2018108149 W CN2018108149 W CN 2018108149W WO 2020061967 A1 WO2020061967 A1 WO 2020061967A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- signal
- preset threshold
- operational amplifier
- time information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/04—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
- H03F3/08—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
- H03F3/087—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4861—Circuits for detection, sampling, integration or read-out
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4865—Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/487—Extracting wanted echo signals, e.g. pulse detection
- G01S7/4873—Extracting wanted echo signals, e.g. pulse detection by deriving and controlling a threshold value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/489—Gain of receiver varied automatically during pulse-recurrence period
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/52—Circuit arrangements for protecting such amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45475—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
Definitions
- the present invention relates to the technical field of ranging devices, and in particular, to a ranging device and a time measurement method based on the ranging device.
- the ranging device is a radar system that emits a laser beam to detect the target position, velocity and other characteristic quantities.
- the photosensitive sensor of the ranging device can convert the obtained light pulse signal into an electric signal, and obtain time information corresponding to the electric signal based on the comparator, thereby obtaining distance information between the ranging device and the target.
- the working environment of the ranging device is complicated, and the strength of the electrical signals it acquires has a large dynamic range, and the noise signals included in the electrical signals are also strong or weak.
- the voltage threshold is fixed. Noise signals included in wide dynamic electrical signals may trigger the comparator and cause distortion of the measured time information. Even when the threshold voltage is adjusted in use, it is very difficult to adjust the threshold when the sampling speed of the system is getting higher and higher.
- an embodiment of the present invention provides a distance measuring device including at least an ambient light sensor, a comparison circuit, and an arithmetic circuit, and a plurality of preset thresholds are set in parallel in the comparison circuit;
- the comparison circuit is configured to receive an electrical signal obtained through optical signal processing, and extract time information of a preset threshold triggered by the electrical signal;
- the ambient light sensor is configured to obtain an intensity of an ambient light signal in a time period in which the time information is located;
- the arithmetic circuit is configured to select, based on the intensity of the ambient light signal, time information of at least partially triggered preset thresholds from time information of the triggered preset thresholds, and according to the selected Time information is calculated.
- the operation circuit is specifically configured to compare the number of time information extracted by the comparison circuit and the number of thresholds that can be triggered with the intensity of the ambient light signal;
- the optical signal is a noise signal
- the light signal includes a valid light pulse signal.
- the arithmetic circuit is specifically configured to compare the magnitude of the maximum preset threshold triggered by the electrical signal with the maximum preset threshold corresponding to the intensity of the ambient light signal;
- the maximum preset threshold triggered by the electrical signal is not greater than the maximum preset threshold corresponding to the intensity of the ambient light signal, determining that the optical signal is a noise signal; and / or,
- the optical signal includes a valid light pulse signal.
- the arithmetic circuit is configured to select at least a value corresponding to the intensity of the ambient light signal. Time information when a preset threshold with a large maximum preset threshold is triggered.
- the arithmetic circuit is configured to be smaller than the maximum preset threshold corresponding to the intensity of the ambient light signal The preset threshold is discarded by the triggered time information.
- a preset threshold to be selected for comparison is determined according to the intensity of the ambient light signal. For example, when it is detected that the external ambient light is weak, all preset thresholds are selected for comparison and then the electrical signal is extracted. The time information of the triggered preset threshold is turned off when it is detected that the external ambient light is relatively strong, and the preset threshold with a smaller value is closed, and no further comparison or participation in the next calculation is performed. When the external light is strong, the threshold at the bottom will trigger some noise, but these data are not calculated as signals, and the point cloud output by the radar will not contain noise.
- the arithmetic circuit is configured to select at least a maximum prediction value corresponding to the intensity of the ambient light signal. Time information when a preset threshold with a large threshold is triggered
- time information generated by a preset value that is larger than a maximum preset threshold value corresponding to the intensity of the ambient light signal is time information generated by a valid electrical pulse signal, which is greater than that of the ambient light signal.
- the time information generated by the small preset threshold value corresponding to the maximum preset threshold value is the overlap of the time information generated by the effective electrical pulse signal and the time information generated by the environmental noise.
- the comparison circuit is configured to The preset threshold with a smaller maximum preset threshold corresponding to the intensity is discarded, and is no longer compared with the electrical signal. That is, overlapping data of time information generated by a valid electric pulse signal and time information generated by environmental noise is discarded, and the time information is no longer output.
- the distance measuring device further includes a photoelectric conversion circuit
- the photoelectric conversion circuit is configured to receive a light pulse signal, convert the light pulse signal into an electrical signal, and output the electrical signal;
- the comparison circuit is configured to receive an electrical signal from the photoelectric conversion circuit.
- the ranging device further includes a control circuit for turning off a smaller part of a preset threshold according to the intensity of the ambient light signal output by the ambient light sensor; and / or
- the comparison circuit includes a plurality of comparators.
- a first input terminal of the comparator is used to receive the electrical signal, and a second input terminal of the comparator is used to receive the preset threshold.
- the output terminal of the comparator is used to output a comparison result, wherein the comparison result includes time information corresponding to the electrical signal.
- the comparison circuit further includes a time-to-digital converter, and the time-to-digital converter is electrically connected to an output terminal of the comparator, and is configured to extract the power from the comparator according to a comparison result output by the comparator. Time information corresponding to the signal.
- the comparison circuit includes a plurality of comparators and a plurality of time-to-digital converters, the comparators and the time-to-digital converters are connected one-to-one correspondingly, and the output ends of the plurality of comparators are respectively connected to the The time-to-digital converters corresponding to the multiple comparators are electrically connected.
- the ranging device further includes a transmitting circuit
- the transmitting circuit is configured to transmit a light pulse signal
- the electrical signal received by the comparison circuit is an electrical signal obtained by processing at least a part of the signal reflected by the light pulse signal emitted by the transmitting circuit and reflected back by the object.
- the ranging device further includes a photoelectric conversion circuit and an amplification circuit;
- the photoelectric conversion circuit is configured to receive at least a part of a signal reflected by an optical pulse signal emitted by the transmitting circuit and reflected back by an object, and convert the at least part of the signal into an electric pulse signal to output;
- the amplifying circuit is configured to amplify the electric pulse signal
- the electric signal received by the comparison circuit is from the electric signal amplified and processed by the amplifying circuit; the arithmetic circuit is configured to determine between the object and the distance measuring device according to the time information output by the comparison circuit. the distance.
- the present invention also provides another distance measuring device, which is characterized in that it includes at least a photosensitive sensor, a controller, and a comparison circuit.
- the photosensitive sensor is configured to receive a light pulse signal, and convert the light pulse signal into an electric signal output;
- the comparison circuit is configured to compare an input electric signal with a preset threshold, and extract time information corresponding to the electric signal;
- the controller is configured to obtain a current temperature value and adjust a gain of the photosensitive sensor according to the current temperature value.
- the ranging device further includes an amplification circuit
- the amplifying circuit is configured to amplify the electrical signal input from the photosensitive sensor and output the amplified electrical signal to a comparison circuit;
- the electric signal input to the comparison circuit is from an electric signal output from the amplifier circuit.
- the comparison circuit includes at least one comparator, a first input terminal of the comparator is configured to receive the electrical signal input from the amplifier circuit, and a second input terminal of the comparator is configured to receive the electrical signal.
- a preset threshold is used, and an output end of the comparator is used to output a comparison result, wherein the comparison result includes time information corresponding to the electrical signal.
- the comparison circuit further includes at least a time-to-digital converter, and each of the time-to-digital converters is electrically connected to a corresponding output end of the comparator, and is configured to according to a comparison result output by the comparator, Extracting time information corresponding to the electrical signal.
- the controller is further configured to determine a preset threshold value according to the intensity of the noise signal, so that the preset threshold value is higher than the noise signal and the difference between the preset threshold value and the maximum value of the noise signal is not greater than default value.
- the ranging device further includes a digital-to-analog converter, and the controller is connected to the second input terminal of the comparator through the digital-to-analog converter, and controls the output of the digital-to-analog converter by The magnitude of the voltage is used to adjust a preset threshold of the comparison circuit.
- the ranging device further includes a comparison threshold adjustment circuit.
- the comparison threshold adjustment circuit includes a plurality of resistors. One end of the plurality of resistors is commonly connected to a second input terminal of the comparator. A signal is input to the other end of the plurality of resistors, and is configured to provide the preset threshold to a second input terminal of the comparator through the plurality of resistors, and adjust an input by adjusting a composition structure of the plurality of resistors. The preset threshold to a second input of the comparison circuit.
- the distance measuring device further includes a power management circuit, the power management circuit is electrically connected to the controller and the photosensor, and the power management circuit is configured to provide a working voltage for the photosensor, so that The controller adjusts the gain of the photosensitive sensor by controlling the power management circuit to change the working voltage.
- the photo sensor includes an avalanche photodiode, a cathode of the avalanche photodiode is electrically connected to the power management circuit, and is configured to obtain an operating voltage from the power management circuit.
- the input terminal of the amplifying circuit is connected, and the avalanche photodiode is used for receiving a light pulse signal, converting the light pulse signal into an electric signal, and outputting the electric signal to the amplifying circuit.
- the optical signal includes a noise signal
- the noise signal includes a light noise signal and an electronic noise signal
- the controller is further configured to obtain and compare the intensity of the optical noise signal and the intensity of the electronic noise signal, and When the intensity of the optical noise signal is less than the intensity of the electronic noise signal, the preset threshold of the comparison circuit is adjusted so that the noise signal is lower than the preset threshold.
- the controller is further configured to obtain the intensity of the noise signal, and when the intensity of the noise signal is less than a preset noise threshold, adjust the preset threshold of the comparison circuit so that the noise signal is low Based on the preset threshold.
- the optical signal includes a noise signal
- the noise signal includes a light noise signal and an electronic noise signal
- the controller is further configured to obtain and compare the intensity of the optical noise signal and the intensity of the electronic noise signal, and When the intensity of the optical noise signal is greater than the intensity of the electronic noise signal, adjusting the gain of the photosensitive sensor so that the noise signal is lower than the preset threshold.
- the controller is further configured to obtain the intensity of the noise signal, and when the intensity of the noise signal is greater than a preset noise threshold, adjust the gain of the photosensitive sensor so that the noise signal is lower than the pre- Set the threshold.
- the controller is further configured to determine whether the noise signal is higher than the preset threshold.
- controller is further configured to:
- the initial image is the controller according to the power input from the amplifier circuit; Signal and preset threshold before adjustment to generate initial image;
- the random noise number is higher than a preset noise number threshold, it is determined that the noise signal is higher than the preset threshold.
- the ranging device further includes a root mean square detector, and the controller is electrically connected to the amplification circuit through the root mean square detector to detect that the noise signal is within a preset frequency range. And output the power information to the controller, the controller is further configured to:
- the comparison circuit includes a plurality of comparators and a plurality of time-to-digital converters (TDC), and the comparators are connected to the time-to-digital converter in a one-to-one correspondence, and the plurality of The first input terminals of the comparators are used to receive the electrical signals input from the amplifier circuit, and the second input terminals of the plurality of comparators are electrically connected to the controller and are respectively used to receive thresholds;
- the output ends of the comparators are electrically connected to the controller through time-to-digital converters that are in one-to-one correspondence with the plurality of comparators, and the comparators output comparison results to the time-to-digital converters.
- the converter measures time information according to the comparison result and outputs the time information to the controller; the controller is further configured to:
- the difference between the first time information and the second time information is a random value, and the difference between the first time information and the second time information is greater than a preset time threshold, it is determined that the noise signal is higher than The first threshold.
- controller is further configured to:
- the controller is further configured to: fit a waveform of an electric signal input to the comparator according to time information measured by a plurality of time-to-digital converters, and calculate a time corresponding to the electric signal according to the fitted waveforms information.
- a corresponding relationship between a voltage and a gain of the photosensitive sensor at different temperatures is pre-stored in the controller;
- the controller is configured to determine a correspondence relationship between a voltage and a gain of the photosensitive sensor according to the current temperature value, and adjust a voltage of the photosensitive sensor according to the correspondence relationship.
- the ranging device further includes a transmitting circuit
- the transmitting circuit is configured to transmit a light pulse signal
- the light pulse signal received by the photosensitive sensor is at least a part of the signal reflected from the light pulse signal emitted by the transmitting circuit through the object.
- the distance measuring device further includes an arithmetic circuit for determining a distance between the object and the distance measuring device according to time information output by the comparison circuit.
- the invention also provides a time measuring method based on a ranging device, including:
- a plurality of preset thresholds are set in parallel in the ranging device
- time information of the triggered preset threshold value is selected, and an operation is performed according to the selected time information.
- the light signal is a noise signal
- the light signal includes a valid light pulse signal.
- the method includes: comparing a magnitude of a maximum preset threshold triggered by the electrical signal with a maximum preset threshold corresponding to an intensity of the ambient light signal;
- the optical signal is a noise signal
- the optical signal includes an effective light pulse signal.
- the method includes: if the maximum preset threshold triggered by the electrical signal is greater than the maximum preset threshold corresponding to the intensity of the ambient light signal, it is at least greater than the maximum corresponding to the intensity of the ambient light signal A preset threshold with a large preset threshold is compared with the electrical signal to extract corresponding time information.
- the method includes: if the maximum preset threshold triggered by the electrical signal is greater than the maximum preset threshold corresponding to the intensity of the ambient light signal, A preset threshold with a small threshold is discarded and is no longer compared with the electrical signal.
- the present invention also provides another time measurement method based on a ranging device, including:
- the method includes:
- the noise signal is a noise signal included in the electric signal after the amplification operation
- the preset threshold for adjusting comparison includes: determining the preset threshold according to the strength of the noise signal, so that the preset threshold is higher than the noise signal and the preset threshold and the maximum value of the noise signal The difference is not greater than the preset value.
- the noise signal includes a light noise signal and an electronic noise signal; adjusting the gain of the photosensitive sensor, or adjusting a preset threshold for comparison so that the noise signal is lower than the preset threshold includes:
- adjusting the gain of the photosensitive sensor, or adjusting a preset threshold for comparison, so that the noise signal is lower than the preset threshold includes:
- the gain of the photosensitive sensor is adjusted so that the noise signal is lower than the preset threshold.
- the method further includes:
- the step of adjusting a gain of the photosensitive sensor or adjusting a preset threshold for comparison is performed.
- the determining whether the noise signal is higher than the preset threshold includes:
- the initial image is an electrical signal after the ranging device according to the magnification operation and Generated by adjusting a preset threshold before;
- the random noise number is higher than a preset noise number threshold, it is determined that the noise signal is higher than the preset threshold.
- the determining whether the noise signal is higher than the preset threshold includes:
- the distance measuring device includes a plurality of comparators and a plurality of time-to-digital converters, and the comparators are connected to the time-to-digital converters in a one-to-one correspondence, and the judging whether the noise signal is higher than the preset value Thresholds include:
- the difference between the first time information and the second time information is a random value, and the difference between the first time information and the second time information is greater than a preset time threshold, it is determined that the noise signal is higher than The first threshold.
- the method further includes: selecting the smallest threshold value higher than the threshold value of the noise signal as The preset threshold.
- comparing the amplified electrical signal with the preset threshold and extracting time information corresponding to the electrical signal includes:
- the waveform of the amplified electrical signal is fitted according to the time information measured by the multiple time-to-digital converters, and the time information corresponding to the electrical signal is calculated according to the fitted waveforms.
- the distance measuring device receives the electrical signal obtained through the optical signal processing through a comparison circuit, extracts time information of a preset threshold triggered by the electrical signal, and simultaneously obtains the time information in the time period where the time information is located through an ambient light sensor.
- the intensity of the ambient light signal, and the arithmetic circuit is configured to select, based on the intensity of the ambient light signal, time information of the preset threshold value that is at least partially triggered from the time information of the triggered preset threshold value, and The selected time information is calculated.
- the program dynamically selects an effective threshold to participate in the calculation and implements a scheme for dynamically adjusting the threshold. In this way, the fineness of the adjustable threshold depends on the number of thresholds, and the more stages can be achieved when there are more thresholds.
- the ranging device can dynamically adjust the gain of the photosensitive sensor or the preset threshold of the comparison circuit according to the intensity of the noise signal, and further reduce the preset threshold as much as possible on the premise that the preset threshold is greater than the noise signal, and the time measurement accuracy is high.
- the gain of the photosensitive sensor the influence of temperature on the gain of the photosensitive sensor is taken into account, so that the gain of the APD can be precisely controlled, so that a trade-off is made before noise and protection.
- the invention also provides a light emitting device, comprising: a power source, a laser transmitter, an energy storage circuit and a control circuit, the energy storage circuit is respectively connected to the power source and the laser transmitter, and the energy storage circuit includes At least one capacitor; the control circuit is configured to turn on the power source and the energy storage circuit in a first period, so that the power source charges the capacitor in the energy storage circuit until the capacitor voltage is saturated; The control circuit is further configured to turn on the laser transmitter and the energy storage circuit during a second period, so that the energy storage circuit supplies power to the laser transmitter, so that the laser transmitter emits a light pulse signal, Until the output current of the capacitor is lower than the threshold current of the laser transmitter.
- the light emitting device further includes a boosting circuit, and the boosting circuit is configured to boost an input voltage to meet the requirements of different laser transmitters.
- the energy stored in the at least one capacitor has a preset upper limit value.
- control circuit includes a switching circuit connected to the laser transmitter and a driving circuit connected to the switching circuit; the driving circuit is configured to receive a second driving signal within the second period, and Controlling the switching circuit to turn on the laser transmitter and the energy storage circuit according to the second driving signal.
- the driving circuit is further configured to receive a first driving signal within the first period of time, and control the switching circuit to turn on the power source and the energy storage circuit according to the first driving signal.
- the light emitting device emits a laser pulse signal.
- the laser emitter includes a laser diode; a first end of the laser diode is connected to the energy storage circuit, a second end of the laser diode is connected to a first end of the switching circuit; the driver The circuit is connected to the second end of the switching circuit, wherein the driving circuit controls the switching circuit; and the third end of the switching circuit is connected to ground.
- the energy storage circuit includes a charging circuit for connecting the at least one capacitor and the power source, and the power source charges the at least one capacitor through the charging circuit during the first period.
- the charging circuit further includes at least one resistor, one end of the at least one resistor is connected to a third end of the transistor, and the other end is connected to the capacitor.
- the charging circuit includes at least two resistors, one end of the at least two resistors is connected to a third end of the transistor, and the other end is connected to the capacitor.
- one end of the capacitor is connected to the voltage calibration source and the charging circuit, and the other end is connected to the power source.
- a voltage limiting circuit for limiting the voltage across the energy storage circuit to prevent the voltage across the energy storage circuit from exceeding a predetermined value.
- the voltage limiting circuit includes a diode, one end of the diode in the voltage limiting circuit is connected to the power source, and the other end is connected to a ground terminal of the energy storage circuit.
- the charging circuit further includes a current limiting circuit for protecting the charging circuit to prevent the current on the charging circuit from exceeding its rated value.
- the current limiting circuit includes a resistor, a voltage calibration source, and a transistor.
- one end of the resistor in the current limiting circuit is connected to the output end of the boost circuit, and the other end is connected to a voltage calibration source.
- a first terminal of the transistor is connected to an output terminal of the boost circuit, a second terminal is connected to the other terminal of the resistor of the current limiting circuit, and a third terminal is connected to one terminal of the capacitor.
- a first end of the voltage calibration source is connected to a resistor in the current limiting circuit and a second end of the triode, a second end is connected to an input end of the laser transmitter, and a third end is connected to A third end of the triode.
- the power source includes two power sources, which respectively provide energy for the laser transmitter and the energy storage circuit.
- An embodiment of the present invention further provides a distance measuring device, including: the light emitting device according to the first aspect for sequentially emitting laser pulse signals; and a photoelectric conversion circuit for receiving the laser pulse signals emitted by the light emitting device. At least part of the optical signal reflected by the object and converting the received optical signal into an electrical signal; a sampling circuit for sampling the electrical signal from the photoelectric conversion circuit to obtain a sampling result; an arithmetic circuit for The sampling result calculates a distance between the object and the distance measuring device.
- the number of the light emitting devices and the number of the photoelectric conversion circuits are respectively at least two; each of the photoelectric conversion circuits is configured to receive a laser pulse signal emitted from a corresponding light emitting device and reflected back by an object. At least part of the optical signal, and converting the received optical signal into an electrical signal.
- the laser ranging device further includes a scanning module; the scanning module is configured to change the transmission direction of the laser pulse signal and emit the laser pulse signal, and the laser pulse signal reflected by the object passes through the scanning module and enters the laser pulse signal. Photoelectric conversion circuit.
- the scanning module includes a driver and a prism with uneven thickness, the driver is used to drive the prism to rotate to change the laser pulse signal passing through the prism to emit in different directions.
- the scanning module includes two drivers and two prisms of uneven thickness arranged side by side, the two drivers are respectively used to drive the two prisms to rotate in opposite directions; from the laser emission The laser pulse signal of the device passes through the two prisms in turn and is emitted after changing the transmission direction.
- An embodiment of the present invention further provides a mobile platform.
- the mobile platform includes any one of the light emitting device and the platform body described in the first aspect, and the ranging device is installed on the platform body.
- the mobile platform includes at least one of an unmanned aerial vehicle, a car, and a remotely controlled vehicle.
- the present invention provides a laser emitting device, which includes a transmitting circuit, a self-test circuit, and a control circuit:
- the transmitting circuit includes a laser transmitter and a driver, and the laser transmitter is configured to transmit a laser pulse signal under the driving of the driver;
- the self-test circuit is configured to detect a transmission energy or a transmission power of a laser pulse signal transmitted by the transmission circuit
- the control circuit is configured to adjust the transmission power of the transmission circuit when the transmission energy or transmission power of the laser pulse signal is changed according to the detection result of the self-test circuit, so that the laser pulse signal transmitted by the transmission circuit The power is kept within a preset range; or, the control circuit is configured to determine whether to turn off the transmitting circuit according to a detection result of the self-test circuit.
- the self-test circuit includes:
- a photoelectric conversion circuit configured to receive a portion of a laser pulse signal emitted by the transmitting circuit, and convert the portion of the laser pulse signal into an electrical pulse signal;
- a pulse stretching circuit for performing stretching processing on the electrical pulse signal
- the sampling circuit is configured to sample the electric signal after the stretching process.
- the stretched electrical signal is an electric pulse signal
- the duty cycle of the stretched electrical pulse signal is greater than at least 3 times the duty cycle of the stretched electrical pulse signal
- the stretched electrical signal is a level signal.
- the pulse stretching circuit includes an RC filter circuit.
- the RC filter circuit includes:
- a first-order RC filter circuit includes a first resistor and a first capacitor. One end of the first resistor receives an electric signal from a photoelectric conversion circuit, the other end is connected to one end of the first capacitor, and the other end of the first capacitor is grounded. .
- the RC filter circuit includes a high-order filter circuit.
- the self-test circuit further includes:
- An amplifying circuit configured to amplify a signal output by the RC filter circuit.
- the amplification circuit includes:
- a proportional amplifier circuit includes a first operational amplifier, a second resistor, and a third resistor; one end of the second resistor is connected to the filter circuit, and the other end is connected to the negative input terminal of the first operational amplifier; the first operational amplifier The positive input terminal is connected to the first reference power source, the output terminal is connected to the sampling circuit; one end of the third resistor is connected to the negative input terminal of the first operational amplifier, and the other end is connected to the input terminal of the first operational amplifier.
- the self-test circuit further includes:
- a coupling circuit is used to decouple the photoelectric conversion circuit and the amplifier circuit.
- the coupling circuit includes:
- a second capacitor receives an electrical signal from the photoelectric conversion circuit, and the other end is connected to the RC filter circuit and a second reference power source.
- the self-test circuit includes:
- a photoelectric conversion circuit configured to receive a portion of a laser pulse signal emitted by the transmitting circuit, and convert the portion of the laser pulse signal into an electrical pulse signal;
- a peak hold circuit for holding a peak value of the electrical pulse signal
- the sampling circuit is configured to sample the peak value of the electric pulse signal held by the peak hold circuit.
- the peak hold circuit includes:
- a first diode, a fourth resistor, and a first energy storage circuit wherein one end of the first diode receives an electrical signal from a photoelectric conversion circuit, and the other end of the first diode is connected to the first diode
- a second diode, a fifth resistor, and a second energy storage circuit wherein one end of the second diode receives an electrical signal from a photoelectric conversion circuit, and the other end of the second diode is in contact with the first diode
- One end of the five resistors and outputs a signal to the sampling circuit the other end of the fifth resistor is connected to one end of the second energy storage circuit, and the other end of the second energy storage circuit is connected to a fourth reference power source.
- the self-test circuit further includes:
- a first decoupling circuit is located between the photoelectric conversion circuit and the peak hold circuit, and is configured to decouple the photoelectric conversion circuit and the peak hold circuit.
- the first decoupling circuit includes:
- a second operational amplifier a positive input of the second operational amplifier receives an electrical signal from a photoelectric conversion circuit, a negative input of the second operational amplifier is connected to an output of the second operational amplifier, An output terminal of the amplifier is connected to the peak hold circuit.
- the first decoupling circuit includes:
- a third operational amplifier a positive input of the third operational amplifier receives an electrical signal of the photoelectric conversion circuit, a negative input of the third operational amplifier is connected to the second diode and the fifth resistor is connected One end of the third operational amplifier is connected to the other end of the second diode.
- the peak hold circuit further includes:
- a positive input terminal of the third operational amplifier is further connected to a fifth reference power source.
- the self-test circuit includes:
- a second decoupling circuit is connected between the sampling circuit and the peak hold circuit, or after the sampling circuit, and is used to decouple circuits before and after the second decoupling circuit.
- the second decoupling circuit includes:
- a fourth operational amplifier, a sixth resistor, and a third diode wherein a positive input terminal of the fourth operational amplifier is connected to the peak hold circuit or the sampling circuit; a negative input terminal of the fourth operational amplifier is connected One end of the sixth resistor and the positive electrode of the third diode; the other end of the sixth resistor is connected to a sixth reference power source, and the negative electrode of the third diode is connected to the fourth operational amplifier. Output; or
- a fifth operational amplifier a positive input terminal of the fifth operational amplifier is connected to the peak hold circuit or the sampling circuit; a negative input terminal of the fifth operational amplifier is connected to an output terminal of the fifth operational amplifier.
- the self-test circuit further includes a reset circuit for resetting the peak hold circuit.
- the reset circuit includes:
- a first switch, a second switch, and an inverter wherein one end of the switch receives an electrical signal of the photoelectric conversion circuit, and the other end of the first switch is connected to the peak hold circuit or the first decoupling circuit
- the second switch is connected to both ends of the first energy storage circuit or the second energy storage circuit; the first switch control signal controls the on and off of the first switch, and generates a first Two switch control signals control the on and off of the second switch, so that the on and off states of the first switch and the second switch are opposite.
- the photoelectric conversion circuit further includes:
- a seventh resistor one end of which is connected to the positive electrode of the photodiode, and the other end is grounded;
- the negative pole of the photodiode is connected to a working power source VCC.
- the sampling circuit includes: a low-speed ADC sampling circuit.
- control circuit is configured to adjust the transmitting power of the transmitting circuit or turn off the transmitting circuit according to a sampling voltage value of the sampling circuit.
- control circuit is configured to adjust the transmission power of the transmitting circuit according to a detection result of the self-test circuit, so that the power of the laser pulse signal transmitted by the transmitting circuit is maintained within a preset range.
- the control circuit when the sampling voltage value exceeds the preset upper voltage limit, the control circuit reduces the gain of the transmitting circuit; and / or,
- the control circuit increases the gain of the transmitting circuit; and / or,
- the transmitting circuit When the sampling voltage value is 0 or almost 0, the transmitting circuit is turned off.
- a correspondence relationship between the transmission power of the transmission circuit and the sampling value of the sampling circuit is stored in the laser emitting device, and the control circuit is configured to adjust the transmission power of the transmission circuit according to the correspondence relationship.
- the present invention also provides a peak hold circuit, including:
- a first diode, a fourth resistor, and a first energy storage circuit wherein one end of the first diode receives an electrical signal from a photoelectric conversion circuit, and the other end of the first diode is connected to the first diode
- a second diode, a fifth resistor, and a second energy storage circuit wherein one end of the second diode receives an electrical signal from a photoelectric conversion circuit, and the other end of the second diode is in contact with the first diode
- One end of the five resistors and outputs a signal to the sampling circuit the other end of the fifth resistor is connected to one end of the second energy storage circuit, and the other end of the second energy storage circuit is connected to a fourth reference power source.
- the peak hold circuit further includes:
- the first decoupling circuit is located before the peak hold circuit, and is configured to decouple the peak hold circuit from a circuit before the peak hold circuit.
- the first decoupling circuit includes:
- a second operational amplifier a positive input of the second operational amplifier receives an input signal, a negative input of the second operational amplifier is connected to an output of the second operational amplifier, and an output of the second operational amplifier is connected One end of the first diode or one end of the second diode.
- the first decoupling circuit includes:
- a third operational amplifier a positive input of the third operational amplifier receives an input signal, a negative input of the third operational amplifier is connected to the second diode and one end of the fifth resistor, and the third An output terminal of the operational amplifier is connected to the other terminal of the second diode.
- the peak hold circuit further includes:
- a positive input terminal of the third operational amplifier is further connected to a fifth reference power source.
- the peak hold circuit includes:
- the second decoupling circuit is connected to the peak-hold circuit and is used for decoupling the peak-hold circuit and the subsequent circuits.
- the second decoupling circuit includes:
- a fourth operational amplifier, a sixth resistor, and a third diode wherein a positive input terminal of the fourth operational amplifier is connected to the peak hold circuit; a negative input terminal of the fourth operational amplifier is connected to the sixth resistor One end of the third diode, and the positive end of the third diode; the other end of the sixth resistor is connected to a sixth reference power source, and the negative end of the third diode is connected to the output terminal of the fourth operational amplifier; or
- a fifth operational amplifier a positive input terminal of the fifth operational amplifier is connected to the peak hold circuit; a negative input terminal of the fifth operational amplifier is connected to an output terminal of the fifth operational amplifier.
- the present invention also provides a laser ranging device, including the laser emitting device according to any one of the first aspects.
- the present invention also provides a laser ranging device, including a laser receiving device, the laser receiving device including any one of the peak holding circuits described in the second aspect.
- the invention also provides a laser ranging device, comprising: the laser transmitting circuit according to any one of the first aspect, and the laser receiving device including the peak holding circuit according to the second aspect.
- An embodiment of the present invention provides a ranging device, including: a transmitting circuit for emitting a light pulse sequence; a photoelectric conversion circuit for sequentially receiving a plurality of light pulses in the light pulse sequence emitted by the transmitting circuit, respectively An optical pulse signal reflected by an object, and sequentially converting the received multiple optical pulse signals into an electrical pulse signal; an amplification circuit including an operational amplifier and a clamping circuit; the clamping circuit and the operational amplifier are respectively The input end and the output end are connected to sequentially clamp the plurality of electric pulse signals, and the plurality of electric pulse signals are sequentially input to the operational amplifier circuit for amplification after being clamped, wherein the clamp The circuit is used to make the magnitudes of the plurality of electrical pulse signals within a certain range to prevent the operational amplifier circuit from saturating the output.
- An embodiment of the present invention provides an amplifier circuit, including: an operational amplifier circuit and a clamp circuit;
- the clamping circuit is respectively connected to the input terminal and the output terminal of the operational amplifier, and is configured to clamp the input signal of the amplifier circuit, so that after the input signal of the amplifier circuit is clamped, its size is constant Fluctuations in the range to prevent the operational amplifier circuit from saturating the output.
- the clamping circuit includes a diode.
- the diode is a Zener tube or a TVS tube.
- the clamping circuit further includes a voltage dividing resistor.
- one end of the voltage dividing resistor is connected to a reference voltage, and the other end is connected to an output terminal of the operational amplifier circuit.
- the voltage dividing resistor includes at least two resistors.
- two resistors of the voltage dividing resistor are connected in series, a connected end of the two resistors is connected to one end of the diode, and the other end of one of the two resistors is connected to a reference voltage, The other end of the other of the two resistors is connected to an output terminal of the operational amplifier.
- one end of a diode of the clamping circuit is connected to the input signal, and the other end is connected to an output terminal of the operational amplifier.
- the operational amplifier circuit is an inverting amplifier circuit or a forward amplifier circuit.
- the amplifying circuit further includes a feedback circuit for adjusting an amplification factor of the operational amplifier circuit.
- the feedback circuit includes at least one of a resistor, a diode, and a capacitor.
- any diode or capacitor of the feedback circuit is connected in parallel with several resistors of the feedback circuit.
- resistors in the feedback circuit are connected in series to reduce parasitic parameters on the resistors in the feedback circuit, thereby achieving high bandwidth.
- the feedback circuit includes three resistors, the three resistors are connected in series, wherein a first resistor of the three resistors is connected in parallel with a capacitor, and a second of the three resistors is connected in parallel.
- the resistor is connected in parallel with the diode, and a third of the three resistors is connected in parallel with the diode.
- the amplifying circuit provided by the present invention can be used to clamp the input signal of the amplifying circuit through the clamping circuit, so that after the input signal of the amplifying circuit is clamped, its size is within Fluctuations within a certain range to prevent the operational amplifier circuit from saturating the output.
- An embodiment of the present invention provides a ranging device, including:
- the photoelectric conversion circuit is configured to sequentially receive light pulse signals in which a plurality of light pulses in a light pulse sequence emitted by the transmitting circuit are respectively reflected back by an object, and sequentially convert the received plurality of light pulse signals into electrical pulse signals.
- the amplifying circuit configured to sequentially receive a plurality of electrical pulse signals from the photoelectric conversion circuit;
- the clamping circuit is used to sequentially clamp the plurality of electric pulse signals, and the plurality of electric pulse signals are sequentially input to the operational amplifier circuit for amplification after being clamped, wherein the clamp The circuit is used to make the magnitudes of the plurality of electrical pulse signals within a certain range to prevent the operational amplifier circuit from saturating the output.
- the ranging device further includes:
- An arithmetic circuit is configured to calculate a distance between the object and the distance measuring device according to the sampling result.
- the number of each of the transmitting circuit, the photoelectric conversion circuit, and the amplifying circuit is at least two;
- the at least two transmitting circuits correspond to the at least two photoelectric conversion circuits in a one-to-one manner, and each photoelectric conversion circuit is configured to sequentially receive multiple light pulses in a light pulse sequence emitted by the corresponding transmitting circuit, respectively, and are reflected back by the object.
- Light pulse signal
- the at least two photoelectric conversion circuits correspond to the at least two amplifying circuits one by one, and each amplifying circuit is configured to sequentially receive electrical pulse signals from the corresponding photoelectric conversion circuits.
- the ranging device further includes a scanning module
- the scanning module is used to emit after changing the transmission direction of the laser pulse signal, and the laser pulse signal reflected by the object is incident on the photoelectric conversion circuit after passing through the scanning module.
- the scanning module includes a driver and a prism with uneven thickness, and the driver is used to drive the prism to rotate to change the laser pulse signal passing through the prism to emit in different directions.
- the scanning module includes two drivers and two prisms of uneven thickness arranged side by side, and the two drivers are respectively used to drive the two prisms to rotate in opposite directions;
- the laser pulse signal from the laser emitting device passes through the two prisms in order to be emitted after changing the transmission direction.
- An embodiment of the present invention further provides a mobile platform.
- the mobile platform includes any of the above-mentioned ranging devices and a platform body, and the ranging device is installed on the platform body.
- the mobile platform includes at least one of an unmanned aerial vehicle, a car, and a robot.
- the reference voltage of the clamping circuit of the amplifying circuit can be dynamically adjusted according to the energy of the input signal, so as to make a stronger clamping and avoid saturation of the operational amplifier.
- the ranging device and mobile platform used in the application can also achieve stronger clamp production due to the use of the amplifying circuit, avoiding saturation of the operational amplifier.
- FIG. 1 is a schematic frame diagram of a ranging device according to an embodiment of the present invention
- FIG. 2A is a schematic frame diagram of another ranging device according to an embodiment of the present invention.
- 2B is a schematic frame diagram of still another ranging device according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of a first comparison circuit for preventing a noise signal from triggering according to an embodiment of the present invention
- FIG. 4 is a schematic diagram of a principle of a second comparison circuit for preventing noise signals from being triggered according to an embodiment of the present invention
- FIG. 5 is a schematic diagram of a time extraction method according to an embodiment of the present invention.
- FIG. 6 is a schematic circuit diagram of a first implementation manner of adjusting a preset threshold according to an embodiment of the present invention
- FIG. 7 is a schematic circuit diagram of a second implementation manner of adjusting a preset threshold according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of still another ranging device according to an embodiment of the present invention.
- FIG. 9 is a schematic circuit diagram of an avalanche photodiode APD gain adjustment circuit according to an embodiment of the present invention.
- FIG. 10 is a schematic flowchart of a time measurement method based on a ranging device according to an embodiment of the present invention.
- FIG. 11 is a schematic flowchart of another time measurement method based on a ranging device according to an embodiment of the present invention.
- FIG. 12 is a schematic diagram of another time extraction method according to an embodiment of the present invention.
- FIG. 13 is a schematic frame diagram of still another ranging device according to an embodiment of the present invention.
- FIG. 14 is a schematic diagram of a connection mode of a laser emitting device provided in the prior art
- 15A is a first schematic structural diagram of a laser emitting device according to an embodiment of the present invention.
- 15B is a first schematic structural diagram of a laser emitting device according to an embodiment of the present invention.
- 16 is a schematic diagram of a second structure of a laser emitting device according to an embodiment of the present invention.
- FIG. 17 is a schematic diagram of a third structure of a laser emitting device according to an embodiment of the present invention.
- FIG. 18 is a first schematic structural diagram of a charging circuit according to an embodiment of the present invention.
- FIG. 19 is a schematic diagram of a second structure of a charging circuit according to an embodiment of the present invention.
- 20 is a schematic structural diagram of a part of an energy storage circuit according to an embodiment of the present invention.
- FIG. 21 is a schematic diagram of a wiring failure or short circuit of a first component according to an embodiment of the present invention.
- FIG. 22 is a schematic diagram of a wiring failure or short circuit of a second component according to an embodiment of the present invention.
- FIG. 23 is a schematic diagram of a third component wiring failure or short circuit provided by an embodiment of the present invention.
- FIG. 24 is a schematic wiring diagram of a fourth component failure or short circuit provided by an embodiment of the present invention.
- FIG. 25 is a schematic diagram of a fifth component failure or short circuit connection provided by an embodiment of the present invention.
- FIG. 26 is a schematic wiring diagram of a sixth component failure or short circuit provided by an embodiment of the present invention.
- FIG. 27 is a schematic diagram of a seventh component failure or short circuit connection provided by an embodiment of the present invention.
- FIG. 28 is a schematic wiring diagram of an eighth component failure or short circuit provided by an embodiment of the present invention.
- FIG. 29 is a schematic block diagram of a laser emitting device according to an embodiment of the present invention.
- FIG. 30 is a wiring diagram of a self-test circuit according to an embodiment of the present invention.
- FIG. 31 is a waveform diagram before and after filtering in a self-test circuit according to an embodiment of the present invention.
- FIG. 32 is a waveform diagram before and after amplification in a self-test circuit according to an embodiment of the present invention.
- FIG. 33 is a first wiring diagram of a peak hold circuit according to an embodiment of the present invention.
- FIG. 34 is a second wiring diagram of a peak hold circuit according to an embodiment of the present invention.
- 35 is a signal waveform of a positive input terminal and a negative input terminal of an operational amplifier according to an embodiment of the present invention.
- 36 is a schematic frame diagram of an amplifier circuit according to an embodiment of the present invention.
- FIG. 37 is a first wiring diagram of an amplifier circuit according to an embodiment of the present invention.
- FIG. 38 is a second wiring diagram of an amplifier circuit according to an embodiment of the present invention.
- FIG. 39 is a third wiring diagram of an amplifier circuit according to an embodiment of the present invention.
- FIG. 40 is a fourth wiring diagram of an amplifier circuit according to an embodiment of the present invention.
- 41 is a schematic view showing the effects of the first clamping module before and after the clamping provided by the embodiment of the present invention.
- FIG. 43 is a sixth wiring diagram of an amplifier circuit according to an embodiment of the present invention.
- FIG. 44 is a seventh wiring diagram of an amplifier circuit according to an embodiment of the present invention.
- FIG. 45 is a schematic view showing the effects of the third clamping module before and after the clamping provided by the embodiment of the present invention.
- FIG. 46 is an eighth wiring diagram of an amplifier circuit according to an embodiment of the present invention.
- FIG. 47 is a ninth wiring diagram of an amplifier circuit according to an embodiment of the present invention.
- FIG. 1 is a schematic frame diagram of a ranging device according to an embodiment of the present invention.
- the ranging device may include at least an ambient light sensor 150, a comparison circuit 130, an arithmetic circuit 160, and the like. Wherein, a plurality of preset thresholds are set in the comparison circuit 130 in parallel.
- the distance measuring device further includes a photoelectric conversion circuit 110, one end of the photoelectric conversion circuit 110 is electrically connected to the comparison circuit 130, the output end of the comparator circuit is electrically connected to one end of the operation circuit, and the other end of the operation circuit is connected to the environment.
- the sensors are electrically connected.
- the comparison circuit is configured to receive an electrical signal obtained through optical signal processing, and extract time information of a preset threshold triggered by the electrical signal;
- the ambient light sensor is configured to obtain an intensity of an ambient light signal in a time period in which the time information is located;
- the arithmetic circuit is configured to select, based on the intensity of the ambient light signal, time information of at least partially triggered preset thresholds from time information of the triggered preset thresholds, and according to the selected Time information is calculated.
- the operation circuit is configured to determine a distance between the object and the distance measuring device according to time information output by the comparison circuit.
- three or more preset thresholds are set in parallel in the comparison circuit, so that in a subsequent step, the comparison circuit separates the electrical signals after receiving the electrical signals obtained through the optical signal processing. Compare with at least a part of the plurality of preset thresholds, and then extract time information of the preset threshold triggered by the electrical signal.
- the arithmetic circuit is specifically configured to select a preset threshold value for performing an operation by using the intensity of the ambient light signal as a basis for determining whether the extracted time information is time information corresponding to a valid light pulse signal.
- a preset threshold to be selected for comparison is determined according to the intensity of the ambient light signal. For example, when it is detected that the external ambient light is weak, all preset thresholds are selected for comparison and then the electrical signal is extracted. The time information of the triggered preset threshold is turned off when it is detected that the external ambient light is relatively strong, and the preset threshold with a smaller value is closed, and no further comparison or participation in the next calculation is performed. When the external light is strong, the threshold at the bottom will trigger some noise, but these data are not calculated as signals, and the point cloud output by the radar will not contain noise.
- the arithmetic circuit is specifically configured to compare the magnitude of the maximum preset threshold triggered by the electrical signal with the maximum preset threshold corresponding to the intensity of the ambient light signal;
- the optical signal is a noise signal
- the optical signal includes an effective light pulse signal.
- the arithmetic circuit is configured to select at least a maximum prediction value corresponding to the intensity of the ambient light signal. Set the time information when a preset threshold with a large threshold is triggered.
- time information generated by a preset value that is larger than a maximum preset threshold value corresponding to the intensity of the ambient light signal is time information generated by a valid electrical pulse signal, which is greater than that of the ambient light signal.
- the time information generated by the small preset threshold value corresponding to the maximum preset threshold value of the intensity is the time information generated when the preset threshold value is triggered by the effective electric pulse signal and the signal superimposed by the environmental noise.
- the arithmetic circuit is configured to The preset threshold with a smaller maximum preset threshold corresponding to the intensity is discarded, and is no longer compared with the electrical signal. That is, overlapping data of time information generated by a valid electric pulse signal and time information generated by environmental noise is discarded, and the time information is no longer output.
- the operation circuit is configured to select all time information for calculation, or select only time information that is triggered by a preset threshold that is greater than a maximum preset threshold corresponding to the intensity of the ambient light signal.
- the arithmetic circuit is specifically configured to compare the number of time information extracted by the comparison circuit and a threshold that can be triggered with the intensity of the ambient light signal. Number of;
- the optical signal is a noise signal
- the light signal includes a valid light pulse signal.
- the distance measuring device further includes a control circuit 140 for turning off a smaller preset threshold value according to the intensity of the ambient light signal output by the ambient light sensor.
- Implementation methods include at least the following two methods:
- the comparison circuit includes a comparator and a TDC
- the comparator and the TDC corresponding to a smaller part of the preset threshold can be turned off, so that part of the preset threshold is turned off.
- the comparison circuit includes an ADC
- the ADC corresponding to a smaller part of the preset threshold can be turned off, so that part of the preset threshold can be turned off.
- the comparison circuit 130 includes at least one comparator. Please refer to FIG. 2B.
- FIG. 2B is a schematic frame diagram of another ranging device provided by an embodiment of the present invention.
- a first input terminal of the comparator 1301 is configured to receive an electrical signal input from the amplifier circuit 120, that is, an amplified electrical signal
- a second input terminal of the comparator 1301 is configured to receive a preset threshold.
- the output terminal of the comparator 1301 is used to output a comparison result, wherein the comparison result includes time information corresponding to the electrical signal.
- the preset threshold value received by the second input end of the comparator 1301 may be an electric signal having a preset threshold value.
- the comparison result may be a digital signal corresponding to the amplified electrical signal.
- the comparison circuit 130 further includes a time-to-digital converter (TDC) 1302.
- TDC time-to-digital converter
- the time-to-digital converter 1302 is electrically connected to the output terminal of the comparator 1301, and is used for comparing the output of the comparator 1301 with As a result, time information corresponding to the electric signal is extracted.
- Multi-threshold comparator to collect pulse signals refers to the use of multiple comparators. Each comparator can use different voltage thresholds to obtain more information about the pulse signal.
- the comparison circuit includes a plurality of comparators, a first input terminal of the comparator is used to receive the electrical pulse signal, a second input terminal of the comparator is used to receive the preset threshold, and the comparator The output terminal of is used to output a comparison result, wherein the comparison result includes time information corresponding to the electrical signal.
- the comparison circuit further includes a time-to-digital converter, and the time-to-digital converter is electrically connected to an output terminal of the comparator, and is configured to extract the power from the comparator according to a comparison result output by the comparator. Time information corresponding to the signal.
- the comparison circuit includes a plurality of comparators and a plurality of time-to-digital converters.
- the comparators are connected to the time-to-digital converter in a one-to-one correspondence, and the output ends of the plurality of comparators are respectively connected to the plurality of comparators.
- the one-to-one time-to-digital converters are electrically connected. It should be noted that one said time-to-digital converter may also correspond to two or more than two comparators, and is configured to perform extraction and description based on the comparison results of the two or more than two comparators. Time information corresponding to electrical signals.
- a four-threshold comparator acquisition circuit is taken as an example.
- the four comparators respectively set different thresholds, which are Vf01, Vf02, Vf03, and Vf04 in this order.
- the square wave signals output by the four comparators are respectively connected to four TDC measurement units to obtain the threshold time information corresponding to the pulse signals.
- the distance measuring device further includes a photoelectric conversion circuit 110 for receiving a light pulse signal, converting the light pulse signal into an electrical signal, and outputting the electrical signal.
- the photoelectric conversion circuit 110 may use a light-sensitive sensor, but it is not limited to the light-sensitive sensor, and other elements that can implement the functions described in the present invention can be used in the distance measuring device, which will not be enumerated here. .
- the comparison circuit is configured to receive an electrical signal from the photoelectric conversion circuit.
- the comparison circuit and the photoelectric conversion circuit can be directly connected, or an amplification circuit is provided between the two.
- a first-stage amplification circuit and a second-stage amplification circuit are provided.
- the electric signal output by the photoelectric conversion circuit is amplified after two stages and then input.
- the amplification circuit may be directly connected to the comparison circuit, or there may be other processing circuits provided between the amplification circuit and the comparison circuit, without limitation.
- one end of the photoelectric conversion circuit 110 is electrically connected to the first end of the amplification circuit 120, and the other end of the photoelectric conversion circuit 110 is electrically connected to the control circuit 140; the second end of the amplification circuit 120 is electrically connected to the comparison circuit 130 and the control circuit 140, respectively. Connected; the control circuit 140 is electrically connected to the comparison circuit 130.
- the amplifier circuit 120 is configured to amplify the electric signal input from the photoelectric conversion circuit 110 and output the amplified electric signal to the comparison circuit 130.
- control circuit 140 is further configured to adjust the gain of the photoelectric conversion circuit 110 or adjust a preset threshold of the comparison circuit 130 so that the noise signal is lower than the preset threshold.
- the electric signal includes noise
- the electric signal after the amplification operation also includes the noise signal.
- the above-mentioned distance measuring device avoids distortion of the measured time information caused by the noise signal triggering the comparison circuit when the noise signal is greater than the preset threshold by adjusting the gain of the photoelectric conversion circuit 110 or adjusting the preset threshold of the comparison circuit 130.
- Method 1 By adjusting the preset threshold of the comparison circuit, that is, the preset threshold of the comparator.
- Method 2 Adjust the strength of the electrical signal by adjusting the gain of the photosensitive sensor (such as APD), so that the strength of the electrical signal input from the amplification circuit, that is, the strength of the noise signal in the amplified electrical signal is lower than a preset threshold.
- the arithmetic circuit selects at least part of the triggered preset threshold time information from the triggered preset threshold time information according to the intensity of the ambient light signal, and according to the selection, In the case that the time information is calculated, it is unnecessary to use the first method to adjust the preset threshold of the comparison circuit.
- FIG. 3 is a schematic diagram of a first comparison circuit for preventing noise signals from being triggered according to an embodiment of the present invention.
- the electric signal 310 input to the first input terminal of the comparator includes an electric pulse signal U1 and a noise signal U2.
- the preset threshold value is the threshold value V1
- the intensity of the noise signal exceeds the threshold value V1
- the noise signal triggers the comparator to output a high-level signal, resulting in The distortion of the comparator output signal further leads to the error of the extracted time information.
- the preset threshold can be increased.
- the preset threshold can be adjusted to the threshold V2, and the intensity of the noise signal is less than the threshold V1, so as to prevent the noise signal U2 from triggering the comparator. .
- the control circuit 140 is further configured to adjust the preset threshold value according to the strength of the noise signal, so that the preset threshold value is less than the strength of the noise signal, so that Under the wide dynamic light pulse signal, the preset threshold of the comparison circuit is dynamically adjusted according to the intensity of the noise signal in the amplified electrical signal.
- FIG. 5 is a schematic diagram of a time extraction method according to an embodiment of the present invention.
- the electrical signal 510 input to the comparison circuit is compared with a preset threshold V1 to obtain a first square wave signal 520 as shown by a dashed line.
- the time T1 of the transition edge of the first square wave signal 520 can be regarded as It is the time when the electrical signal 510 crosses the comparator.
- the electrical signal 510 input to the comparison circuit is compared with a preset threshold V2 to obtain a second square wave signal 530 as shown by the dotted line.
- the time T2 of the transition edge of the second square wave signal 530 can be considered as the electrical signal 510.
- T0 is the real time when the electrical signal 510 crosses the comparator. It can be seen that the smaller the preset threshold value, the closer the transition edge time is to the real time when the electrical signal after the amplification operation passes through the comparator.
- control circuit 140 is further configured to determine a preset threshold according to the strength of the noise signal, so that the preset threshold is higher than the noise signal and the difference between the preset threshold and the maximum value of the noise signal is not greater than a preset value, such as 0.1V , 0.2A, etc., to realize that the ranging device determines the most suitable preset threshold of the comparison circuit 130 according to the strength of the noise signal, and reduces the preset threshold as much as possible under the premise that the preset threshold is greater than the noise signal, so that the time extracted by the comparison circuit 130 The information is closer to the real time when the electrical signal input from the amplifier circuit passes through the comparison circuit 130, which avoids the error caused by the change in signal amplitude to the collection of time information, and the accuracy of the time measurement is high.
- a preset threshold according to the strength of the noise signal
- FIG. 6 is a schematic circuit diagram of a first implementation manner of adjusting a preset threshold according to an embodiment of the present invention.
- the ranging device may further include a digital-to-analog converter 150.
- the control circuit 140 may be connected to the second input terminal of the comparison circuit 130 through the digital-to-analog converter 150 and control the output voltage of the digital-to-analog converter 150. To adjust the preset threshold of the comparison circuit.
- the second implementation manner of adjusting the preset threshold may be: the ranging device may further include a comparison threshold adjustment circuit, the comparison threshold adjustment circuit includes a plurality of resistors, and one end of the plurality of resistors is connected to the comparator.
- the second input terminal where multiple voltage signals are input to the other ends of the plurality of resistors, is used to provide a preset threshold to the second input terminal of the comparator through the plurality of resistors, and the input to the comparison is adjusted by adjusting the composition structure of the plurality of resistors.
- a preset threshold of the second input of the circuit is used to provide a preset threshold to the second input terminal of the comparator through the plurality of resistors.
- FIG. 7 is a schematic circuit diagram of a second implementation manner of adjusting a preset threshold according to an embodiment of the present invention.
- the comparison threshold adjustment circuit 160 includes a plurality of resistors, such as a first resistor R1, a second resistor R2, a third resistor R3, and the like. Among them, a first terminal such as a first resistor R1, a second resistor R2, a third resistor R3 and the like are commonly connected to a second input terminal of the comparator 1301, and the other ends of the first resistor R1, the second resistor R2, and the third resistor R3 are respectively connected to The multiple identical input / output interfaces 1601 of the control circuit 140 are connected one-to-one correspondingly.
- the control circuit 140 adjusts the preset threshold of the comparison circuit 130 by controlling the output levels of the multiple identical input / output interfaces 1601.
- FIG. 4 is a schematic diagram of a second comparison circuit for preventing noise signals from being triggered according to an embodiment of the present invention.
- the electric signal 410 shown by the solid line is an electric signal input to the first input terminal of the comparator before adjusting the gain of the photosensitive sensor.
- the electric signal 410 includes an electric pulse signal U1 and a noise signal U2.
- the preset threshold is the threshold V1
- the noise The strength of the signal exceeds the threshold V1
- the noise signal triggers the comparator to output a high-level signal, resulting in distortion of the comparator output signal.
- the gain of the photosensor can be reduced.
- the electrical signal input to the first input terminal of the comparator after adjusting the gain of the photosensor (that is, the electrical signal 420 shown by the dotted line) is proportional to the electrical signal 410.
- Lowering the intensity of the electric pulse signal U1 ′ and the noise signal U2 ′ in the electric signal 420 makes the noise signal U2 ′ smaller than the preset threshold V1, thereby preventing the noise signal U2 ′ from triggering the comparator.
- the ranging device may further include a power management circuit 170.
- the power management circuit 170 is electrically connected to the control circuit 140 and the photoelectric conversion circuit 110.
- the power management circuit 170 is used to provide a working voltage for the photoelectric conversion circuit 110.
- the control circuit 140 controls the power management circuit by 170 changes the operating voltage to adjust the gain of the photoelectric conversion circuit 110.
- FIG. 9 is a schematic circuit diagram of an avalanche photodiode APD gain adjustment circuit according to an embodiment of the present invention.
- the photoelectric conversion circuit 110 includes an avalanche photodiode 1101.
- the cathode of the avalanche photodiode 1101 is electrically connected to the power management circuit 170 for obtaining the operating voltage from the power management circuit 170.
- the anode of the avalanche photodiode 1101 is connected to the input of the amplifier circuit.
- the photodiode 1101 is configured to receive a light pulse signal, convert the light pulse signal into an electric signal, and output the electric signal to the amplifier circuit 120.
- control circuit 140 may also determine the working voltage of the photoelectric conversion circuit 110 according to the intensity of the noise signal. It can be understood that a large noise signal corresponds to a smaller operating voltage, and in contrast, a first noise signal corresponds to a higher operating voltage.
- the ranging device may choose to use the first method or the second method to prevent the noise signal from triggering to a preset threshold.
- the noise signal may include an electronic noise signal and a light noise signal.
- control circuit 140 is further configured to obtain and compare the intensity of the optical noise signal and the intensity of the electronic noise signal, and when the intensity of the optical noise signal is less than the intensity of the electronic noise signal, that is, when the electronic noise is dominant,
- the preset threshold of the comparison circuit 130 is adjusted so that the noise signal is lower than the preset threshold.
- the intensity of electronic noise is relatively stable, and the intensity of light noise is greatly affected by the environment.
- the gain of the APD is expected to be stable or the gain of the APD is known, but the gain of the APD is also related to temperature, and there are also large individual differences.
- the APD may be calibrated.
- the controller in the distance measuring device in this embodiment is configured to obtain a current temperature value, and adjust the gain of the photosensitive sensor according to the current temperature value.
- the controller is further configured to determine a preset threshold value according to the intensity of the noise signal, so that the preset threshold value is higher than the noise signal and the difference between the preset threshold value and the maximum value of the noise signal is not greater than default value.
- the gain of APD is related to temperature
- the controller has pre-stored the corresponding relationship between the voltage and gain of the photosensitive sensor at different temperatures; the controller first reads the current temperature value of the APD, And calculate the voltage value under different gain through the calibration curve. Then, by controlling the high-voltage power supply, the gain of the APD is precisely controlled, so that a trade-off is made before noise and protection.
- a time measurement method based on a ranging device is also provided, as shown in FIG. 11, including:
- Step S2010 receiving a light pulse signal, and converting the light pulse signal into an electric signal output;
- Step S2020 comparing the input electrical signal with a preset threshold, and extracting time information corresponding to the electrical signal;
- Step S2030 Acquire a current temperature value, and adjust the gain of the photosensitive sensor according to the current temperature value.
- the influence of temperature on the gain of the photosensitive sensor is taken into account when adjusting the gain of the photosensitive sensor, so that the gain of the APD is accurately controlled, so that a trade-off is made before noise and protection.
- control circuit 140 may also trigger the adjustment of the preset threshold of the pair by the above method or the gain of the photoelectric conversion circuit 110 of the pair by the above method when the comparison circuit 130 is detected by detecting the noise signal.
- the control circuit 140 can also be used to determine whether the noise signal is higher than a preset threshold. When the noise signal is higher than the preset threshold, trigger the controller to adjust the gain of the photoelectric conversion circuit 110 or adjust the preset threshold of the comparison circuit 130. Otherwise, the control circuit 140 does not adjust the gain of the photoelectric conversion circuit 110 or the preset threshold of the comparison circuit 130.
- the first implementation manner that the control circuit 140 determines whether the noise signal is higher than a preset threshold may be: the control circuit 140 obtains the number of random noises in the initial image generated by the ranging device, and determines whether the number of random noises is higher than the preset noise number Threshold, the initial image is the control circuit 140 generating an initial image according to the electrical signal input from the amplifier circuit and a preset threshold before adjustment. If the random noise number is higher than the preset noise number threshold, it is judged that the noise signal is higher than the preset threshold; otherwise It is determined that the noise signal is lower than a preset threshold.
- the second implementation manner in which the control circuit 140 determines whether the noise signal is higher than a preset threshold may be: the ranging device further includes a root mean square detector, and the control circuit 140 is electrically connected to the amplification circuit 120 through the root mean square detector, and is used for Detect the power information of the noise signal within a preset frequency range and output the power information to the control circuit 140.
- the control circuit 140 is further configured to determine whether the power information input by the rms detector exceeds a preset power threshold. If the preset power threshold is exceeded, the noise signal is judged to be higher than the preset threshold; otherwise, the noise signal is judged to be lower than the preset threshold.
- the third embodiment in which the control circuit 140 determines whether the noise signal is higher than a preset threshold may be: the comparison circuit 130 includes a plurality of comparators and a plurality of TDCs, where the TDCs and the comparators are connected one-to-one correspondingly, One input terminal is used to receive the electric signal input from the amplifier circuit 120, and the second input terminal control circuits 140 of the multiple comparators are electrically connected to receive the thresholds respectively; the output terminals of the multiple comparators are respectively connected to the controller through the TDC (
- the control circuit 140 may include one or more controllers) electrically connected, the comparator outputs a comparison result to the TDC, and the TDC measures time information according to the comparison result and outputs time information to the controller; the control circuit 140 is further used for: calculating and comparing all The first time information corresponding to the first threshold of the plurality of comparators and the second time information corresponding to the second threshold of the comparators; wherein the first threshold is smaller than the second threshold; if the first The difference between a time information
- the control circuit 140 is further configured to: select a smallest threshold value among the threshold values higher than the noise signal as a preset threshold value, and further obtain a higher noise signal
- the minimum threshold value of the threshold value is compared with the time information output by the electrical signal input from the amplifier circuit, and then the preset threshold value is reduced as much as possible on the premise that the preset threshold value is greater than the noise signal, so that the time information extracted by the comparison circuit 130 is closer
- the thresholds of the multiple comparators may be the same.
- the control circuit 140 is further configured to calculate the time corresponding to the electrical signal according to the time information measured by the multiple TDCs. Information, for example, taking the average of the time information measured by the TDC as the time information corresponding to the electrical signal, and then calibrating the time information corresponding to the electrical signal, so that the time accuracy of the measurement is higher.
- the thresholds of the multiple comparators may be different, and the controller is further configured to: fit the power of the input comparator according to the time information measured by the multiple TDCs.
- the time information corresponding to the electrical signal is calculated according to the fitted waveform. As shown in FIG. 5, T0 can be regarded as the time information corresponding to the electrical signal, and the time can be measured more accurately.
- the light pulse signal may be transmitted by other equipment, or may be transmitted by the ranging device of the present invention.
- the laser can communicate with the ranging device so that the ranging device can know the transmitting power of the laser transmitter, the wavelength of the emitted laser, and the direction of emission Waiting for at least one of the control parameters, and obtaining information such as the direction of the obstacle based on the control parameter.
- FIG. 10 is a schematic flowchart of a time measurement method based on a ranging device according to an embodiment of the present invention.
- the signal processing method disclosed in this method embodiment can be implemented based on the ranging device shown in FIG. 1, FIG. 2 or FIG. 8, the above-mentioned example ranging device does not constitute the signal processing disclosed in the method embodiment of the present invention The only qualification of the method.
- the signal processing method may include the following steps:
- Step S1010 a plurality of preset thresholds are set in parallel in the ranging device
- Step S1020 receiving the electrical signal obtained by the optical signal processing, and extracting time information of a preset threshold triggered by the electrical signal;
- Step S1030 acquiring the intensity of the ambient light signal during the time period in which the time information is located;
- Step S1040 According to the intensity of the ambient light signal, from the time information of the triggered preset threshold, pick out at least part of the time information of the triggered preset threshold, and perform according to the selected time information. Operation.
- step S1040 the operation includes at least determining a distance between the object and the distance measuring device according to time information output by the comparison circuit.
- the ranging device may further include other steps, which are not limited in the present invention.
- step S1010 three or more preset thresholds are set in parallel, so that in a subsequent step, after the comparison circuit receives the electrical signal obtained through the optical signal processing, the comparison circuit separates the electrical signal from the plurality of electrical signals. At least a part of the preset thresholds are compared to further extract time information of the preset thresholds triggered by the electrical signal.
- step S1030 the intensity of the ambient light signal is used as a basis for judging whether the extracted time information is time information corresponding to a valid light pulse signal, and a preset threshold value for performing a calculation is selected.
- step S1020 the method includes: comparing the magnitude of the maximum preset threshold triggered by the electrical signal with the maximum preset threshold corresponding to the intensity of the ambient light signal;
- the maximum preset threshold triggered by the electrical signal is not greater than the maximum preset threshold corresponding to the intensity of the ambient light signal, determining that the optical signal is a noise signal; and / or,
- the optical signal includes a valid light pulse signal.
- the arithmetic circuit is configured to at least select a maximum prediction value corresponding to the intensity of the ambient light signal. Set the time information when a preset threshold with a large threshold is triggered.
- the arithmetic circuit is configured to be smaller than the maximum preset threshold corresponding to the intensity of the ambient light signal The preset threshold is discarded by the triggered time information.
- a preset threshold to be selected for comparison is determined according to the intensity of the ambient light signal. For example, when it is detected that the external ambient light is weak, all preset thresholds are selected for comparison and then the electrical signal is extracted. The time information of the triggered preset threshold is turned off when it is detected that the external ambient light is relatively strong, and the preset threshold with a smaller value is closed, and no further comparison or participation in the next calculation is performed. When the external light is strong, the threshold at the bottom will trigger some noise, but these data are not calculated as signals, and the point cloud output by the radar will not contain noise.
- the arithmetic circuit is configured to select at least a maximum prediction value corresponding to the intensity of the ambient light signal. Time information when a preset threshold with a large threshold is triggered
- time information generated by a preset value that is larger than a maximum preset threshold value corresponding to the intensity of the ambient light signal is time information generated by a valid electrical pulse signal, which is greater than that of the ambient light signal.
- the time information generated by the small preset threshold value corresponding to the maximum preset threshold value is the overlap of the time information generated by the effective electrical pulse signal and the time information generated by the environmental noise.
- the comparison circuit is configured to The preset threshold with a smaller maximum preset threshold corresponding to the intensity is discarded, and is no longer compared with the electrical signal. That is, the overlapping data of the time information generated by the effective electric pulse signal and the time information generated by the environmental noise is discarded, and the time information is no longer output.
- the arithmetic circuit is specifically configured to compare the number of time information extracted by the comparison circuit and a threshold that can be triggered with the intensity of the ambient light signal. Number of;
- the optical signal is a noise signal
- the light signal includes a valid light pulse signal.
- the program dynamically selects an effective threshold to participate in the calculation and implements a scheme for dynamically adjusting the threshold.
- the fineness of the adjustable threshold depends on the number of thresholds. When there are more thresholds, the number of stages that can be achieved can be increased, which can be further improved. Time information extraction efficiency.
- step S1030 may include: the ranging device acquires and compares the intensity of the optical noise signal and the intensity of the electronic noise signal; and when the intensity of the optical noise signal is less than the intensity of the electronic noise signal, the ranging device adjusts the comparison prediction.
- the threshold is set so that the noise signal is lower than the preset threshold; when the intensity of the optical noise signal is greater than the intensity of the electronic noise signal, the distance measuring device adjusts the gain of the photosensitive sensor so that the noise signal is lower than the preset threshold.
- step S1030 may include: the ranging device obtains the intensity of the noise signal in the amplified electrical signal; and when the intensity of the noise signal is less than the preset noise threshold, the ranging device adjusts the preset threshold for comparison to Make the noise signal lower than the preset threshold; when the intensity of the noise signal is greater than the preset noise threshold, the ranging device adjusts the gain of the photosensitive sensor so that the noise signal is lower than the preset threshold.
- the method further includes: the ranging device determines whether the noise signal is higher than a preset threshold; when the noise signal is higher than the preset threshold, the ranging device executes step S1030; If the distance measuring device does not adjust the gain of the photosensitive sensor or the preset threshold value of the circuit, step S1040 is performed.
- the first implementation manner in which the ranging device determines whether the noise signal is higher than a preset threshold may be: the ranging device acquires the number of random noises in the initial image generated by the ranging device, and determines whether the number of random noises is higher than a preset Noise number threshold.
- the initial image is generated by the ranging device according to the electrical signal after the magnification operation and a preset threshold before adjustment. If the random noise number is higher than the preset noise number threshold, the noise signal is judged to be higher than the preset threshold.
- the distance-measuring device may perform step S1030; otherwise, the distance-measuring device does not perform gain adjustment of the photosensitive sensor or a preset threshold value of the circuit, and performs step S1040.
- the second implementation manner of the ranging device to determine whether the noise signal is higher than a preset threshold may be: the ranging device detects power information of the noise signal within a preset frequency range, and judges the noise signal if the power information exceeds a preset power threshold. Above the preset threshold, the ranging device may perform step S1030; otherwise, the ranging device does not perform the gain adjustment of the photosensitive sensor or the preset threshold of the circuit, and executes step S1040.
- a third implementation manner in which the ranging device determines whether the noise signal is higher than a preset threshold may be: the ranging device may include multiple comparators and multiple TDCs, where the TDC and the comparator are connected one by one, and the ranging device will amplify The calculated electrical signals are compared with threshold values of a plurality of comparators, and time information measured by a plurality of TDCs is extracted, and first time information corresponding to a comparator of a first threshold value in the plurality of comparators is compared with the first time information.
- Second time information corresponding to a two-threshold comparator wherein the first threshold is smaller than the second threshold; if the difference between the first time information and the second time information is a random value, and the first If the difference between the time information and the second time information is greater than a preset time threshold, it is determined that the noise signal is higher than the first threshold.
- the ranging device may perform step S1030; otherwise, the ranging device does not perform adjustment of the gain of the photosensitive sensor or a preset threshold value of the circuit, and performs step S1040.
- the method further includes: selecting the smallest threshold higher than the noise signal as the preset threshold, and then obtaining the signal higher than the noise.
- the smallest threshold value and the electrical signal after the amplification operation are compared with the time information output by the circuit, and then the preset threshold value is minimized on the premise that the preset threshold value is greater than the noise signal, so that the time information extracted by the comparison algorithm is closer to that after the amplification operation.
- the real time of the electrical signal acquisition avoids errors caused by changes in signal amplitude to the collection of time information, and the accuracy of time measurement is high.
- Step S1040 may include: The electrical signals are compared with the thresholds of multiple comparators, and the time information measured by multiple TDCs (for example, t1, t2, t3, t4, t5) is extracted; the electrical signals are calculated based on the time information measured by the multiple TDCs The corresponding time information may be calculated by taking the average of t1, t2, t3, t4, and t5 as the time information corresponding to the electrical signal.
- Step S1040 may include: The electrical signals are compared with threshold values of multiple comparators, and time information corresponding to the multiple comparators is measured through the multiple TDCs, such as (v1, t1), (v2, t3), (v3, t3), (v4, t4), (v5, t5), and further fit the waveform of the amplified electrical signal according to the time information measured by multiple TDCs, and calculate the time information corresponding to the electrical signal based on the fitted waveforms. Referring to FIG. 5, T0 can be considered as the time information corresponding to the electrical signal.
- the comparison circuit may be provided with an amplifier circuit before the amplifier circuit amplifies the electric signal and then inputs the signal into the comparison circuit.
- the amplifier circuit may be provided with various structures of the amplifier circuit.
- the energy of signals collected by lidar usually has a wide range, that is, when obstacles are closer to the lidar The energy of the signal obtained by the lidar through the receiving tube is large; when the obstacle is far away from the lidar, the energy of the signal obtained by the receiving tube is small.
- the electric signal input to the amplifier circuit is too large, the op amp of the amplifier circuit may be saturated. The saturation will cause distortion of the output signal, which will affect the measurement of distance by the lidar.
- it takes a certain time for the lidar to return to normal after saturation So that the lidar can not continuously respond and generate a measurement blind zone.
- the embodiments of the present invention also provide some amplifier circuits, which can solve the problems mentioned above.
- FIG. 36 is a schematic frame diagram of an amplifier circuit according to an embodiment of the present invention.
- the amplifier circuit may include: an operational amplifier module 21 and an adjustment module 22; the adjustment module 22 is located at least one of a pre-stage circuit, a post-stage circuit, or a feedback circuit of the op-amp module 21, It is used to adjust the amplification factor of the input signal of the amplifier circuit, so that the amplifier circuit amplifies the energy of the input signal with the adjusted amplification factor and outputs the amplified signal.
- the amplification factor of the amplifier circuit is equal to the ratio of the output signal of the amplifier circuit to the input signal of the amplifier circuit.
- the adjustment of the amplification factor by the adjustment module 22 is such that when the energy of the input signal of the amplification circuit is greater than a threshold value, the greater the energy of the input signal, the greater the The smaller the magnification.
- the adjusting module 22 includes a first clamping module, and the first clamping module is located on a front stage circuit of the operational amplifier module 21.
- the first clamping module is connected to an The first input terminal of the operational amplifier module 21; the second input terminal of the operational amplifier module 21 can be connected to a third reference level REF3; the first clamp module is used for input signals to the operational amplifier module 21 The adjustment is performed, and a signal is output through an output terminal of the operational amplifier module 21.
- the first clamping module may include a first diode.
- FIG. 37 is a schematic diagram of a first connection of an amplifier circuit according to an embodiment of the present invention.
- FIG. 37 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit.
- the voltage signal is a positive voltage signal
- the positive electrode of the first diode D1 is connected to the operational amplifier module.
- the first input terminal of 21 ie, the inverting input terminal of the operational amplifier IC
- the negative electrode of the first diode D1 is connected to the first reference level REF1
- the input signal Uin of the amplifier circuit passes the first two
- the output terminal of the operational amplifier IC is the output terminal Uout of the amplifier circuit.
- the second input terminal of the operational amplifier module 21 (that is, the non-inverting input terminal of the operational amplifier IC) is connected to the first reference level REF3.
- the first diode D1 When the voltage signal of the input amplifier circuit exceeds the conduction voltage drop of the first diode D1, the first diode D1 is turned on, thereby limiting the voltage signal input to the operational amplifier module 21 to the voltage of the first diode D1. In the vicinity of the on-voltage, saturation of the input operational amplifier module 21 is avoided.
- connection method of the positive and negative electrodes of the first diode is opposite to the connection method of the positive and negative electrodes of the first diode D1 in the amplification circuit shown in FIG. 37. .
- the first clamping module may include a first diode and a first resistor.
- FIG. 38 is a schematic diagram of a second wiring of an amplifier circuit according to an embodiment of the present invention.
- FIG. 38 illustrates the connection relationship of the amplifier circuit by taking the operational amplifier module 21 as an operational amplifier IC as an example.
- the positive electrode of the first diode D1 is connected to the first input terminal of the operational amplifier module 21 (that is, the operational amplifier IC) through the first resistor R1.
- the negative electrode of the first diode D1 is connected to the first reference level REF1; the input signal Uin of the amplifier circuit passes the positive electrode of the first diode D1 and the first resistor 2212
- the common terminal input; the output terminal of the operational amplifier IC is the output terminal Uout of the amplifier circuit.
- the second input terminal of the operational amplifier module 21 (that is, the non-inverting input terminal of the operational amplifier IC) is connected to the third reference level REF3.
- the voltage drop generated on the first resistor R1 increases.
- the voltage drop generated on the first resistor R1 exceeds the turn-on voltage drop of the first diode D1
- the first The diode D1 is turned on, thereby reducing the current signal input to the operational amplifier module 21 and avoiding saturation of the input operational amplifier module 21.
- connection method of the positive and negative electrodes of the first diode is opposite to the connection method of the positive and negative electrodes of the first diode D1 in the amplification circuit shown in FIG. 38. .
- the adjusting module 22 includes a second clamping module; the second clamping module is located on a rear stage circuit of the operational amplifier module 21, and the second clamping module is connected to an The output terminal of the operational amplifier module 21 is described; the second clamp module is used to adjust the output signal of the operational amplifier module 21.
- the input signal of the amplifier circuit can be input to the first input terminal of the operational amplifier module; it can also be input to the first input terminal of the operational amplifier module 21 through the first clamp module;
- the second input terminal of the operational amplifier module is connected to a third reference level REF3.
- the second clamping module may include a second diode.
- FIG. 39 is a schematic diagram of a third connection of an amplifier circuit according to an embodiment of the present invention.
- FIG. 39 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit.
- the voltage signal is a positive voltage signal
- the positive electrode of the second diode D2 is connected to the operation.
- the output terminal of the amplifier module 21 (that is, the output terminal of the operational amplifier IC); the negative electrode of the second diode D2 is connected to the second reference level REF2; the output signal Uout of the amplifier circuit is from the second diode D2 is output from a common terminal of an output terminal of the operational amplifier IC.
- the second diode D2 When the voltage signal of the output amplifier module 21 exceeds the conduction voltage drop of the second diode D2, the second diode D2 is turned on, thereby limiting the voltage signal of the input post-amplifier to the second diode D2 Near the on-state voltage to avoid saturation of the post-amp.
- connection method of the positive and negative electrodes of the second diode is opposite to the connection method of the positive and negative electrodes of the second diode D2 in the amplification circuit shown in FIG. 39 .
- the second clamping module may include a second diode and a second resistor.
- FIG. 40 is a schematic diagram of a fourth connection of an amplifier circuit according to an embodiment of the present invention.
- FIG. 40 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit. As shown in FIG.
- the anode of the second diode D2 passes through the first Two resistors R2 are connected to the output terminal of the operational amplifier module 21 (ie, the output terminal of the operational amplifier IC); the negative electrode of the second diode D2 is connected to the second reference level REF2; the output signal Uout of the amplifier circuit is from A common terminal of the second diode D2 and the second resistor R2 is output.
- connection method of the positive and negative electrodes of the second diode is opposite to the connection method of the positive and negative electrodes of the second diode D2 in the amplification circuit shown in FIG. 40. .
- the input signal Uin of the amplifier circuit can be directly input to the first input terminal of the operational amplifier module 21 (that is, the inverting input terminal of the operational amplifier IC).
- the non-inverting input terminal of the operational amplifier IC is connected to the third reference level REF3.
- FIG. 41 is a schematic diagram of the effect of the first clamping module before and after the clamping provided by the embodiment of the present invention.
- the solid line is the actual signal
- the dashed straight line represents the on-voltage of the first diode D1
- the dashed curve represents the signal after clamping.
- the effect before and after the clamping of the second clamping module is also shown in FIG. 41.
- the adjustment module 22 includes a third clamp module; the third clamp module is located on a feedback circuit of the operational amplifier module 21; and a first input of the operational amplifier module 21 Terminal is connected to the first port of the third clamping module; the output terminal of the operational amplifier module 21 is connected to the second port of the third clamping module; the third clamping module is specifically configured to: When the energy information of the signal of the operational amplifier module 21 is greater than the first threshold, the amplification factor of the input signal of the operational amplifier module 21 by the operational amplifier module 21 is reduced.
- the input signal of the amplifier circuit can be input to the first input terminal of the operational amplifier module 21; the first input terminal of the operational amplifier module 21 can also be connected through the first clamp module; The second input terminal of the operational amplifier module 21 may be connected to a third reference level REF3.
- the third clamping module may include a third diode and a fifth resistor.
- FIG. 42 is a schematic diagram of a fifth connection of an amplifier circuit according to an embodiment of the present invention.
- FIG. 42 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit.
- the anode of the third diode D3 is connected to the first input terminal of the operational amplifier module 21 ( That is, the inverting input terminal of the operational amplifier IC); the negative electrode of the third diode D3 is connected to the output terminal of the operational amplifier module 21 (that is, the output terminal of the operational amplifier IC).
- the second input terminal of the operational amplifier module 21 (that is, the non-inverting input terminal of the operational amplifier IC) is connected to the third reference level REF3.
- the input signal Uin of the amplifier circuit can be input to the inverting input terminal of the operational amplifier IC through the fifth resistor R5; the inverting input terminal of the operational amplifier IC is the output terminal Uout of the amplifier circuit.
- the amplification factor of the operational amplifier module 21 is R D3 / R5.
- the operational amplifier module 21 amplifies a signal input to the operational amplifier module 21.
- the voltage is greater than the turn-on voltage of the third diode D3, the third diode D3 is turned on, and the resistance R D3 of the third diode is small.
- the amplification factor R D3 / R5 of the operational amplifier module 21 decreases. , Reducing the energy of the signal outputting the operational amplifier module 21, thereby reducing the amplification factor of the amplifier circuit.
- the third clamping module may include a third diode, a third resistor, and a fifth resistor.
- FIG. 43 is a sixth wiring diagram of an amplifier circuit according to an embodiment of the present invention.
- FIG. 43 illustrates the connection relationship of the amplifier circuit by using the operational amplifier module 21 as an operational amplifier IC as an example. As shown in FIG.
- the anode of the third diode D3 is connected to the first input terminal of the operational amplifier module 21 ( (Ie, the inverting input terminal of the operational amplifier IC); the negative electrode of the third diode D3 is connected to the output terminal of the operational amplifier module 21 (that is, the output terminal of the operational amplifier IC); the third resistor R3 and the The third diode D3 is connected in parallel.
- the second input terminal of the operational amplifier module 21 (that is, the non-inverting input terminal of the operational amplifier IC) is connected to the third reference level REF3.
- the input signal Uin of the amplifier circuit can be input to the inverting input terminal of the operational amplifier IC through the fifth resistor R5; the inverting input terminal of the operational amplifier IC is the output terminal Uout of the amplifier circuit.
- the operational amplifier module 21 is a magnification other R / R5, operational amplifier module 21 on the signal input of the operational amplifier amplifying module 21;
- the energy of the signal input to the operational amplifier module 21 is large, the voltage across the third diode D3 is greater than the on-voltage of the third diode D3, the third diode D3 is turned on, and the voltage of the third diode D3 is turned on.
- the resistance R D3 is smaller, and R and the like are reduced. At this time, the amplification factor R and / R5 of the operational amplifier module 21 is reduced, the energy of the signal outputting the operational amplifier module 21 is reduced, and the amplification factor of the amplifier circuit is further reduced.
- the third clamping module includes a third diode, a third resistor, a fourth resistor, and a fifth resistor; please refer to FIG. 44, which is a seventh wiring of an amplifier circuit provided by an embodiment of the present invention schematic diagram.
- FIG. 44 uses the operational amplifier module 21 as an operational amplifier IC as an example to explain the connection relationship of the amplifier circuit.
- the anode of the third diode D3 is connected to the operational amplifier through the third resistor R3.
- a first input terminal of the module 21, a negative electrode of the third diode D3 is connected to an output terminal of the operational amplifier module 21, and the fourth resistor R4 is connected in parallel with the third diode D3.
- the second input terminal of the operational amplifier module 21 (that is, the non-inverting input terminal of the operational amplifier IC) is connected to the third reference level REF3.
- the input signal Uin of the amplifier circuit can be input to the inverting input terminal of the operational amplifier IC through the fifth resistor R5; the inverting input terminal of the operational amplifier IC is the output terminal Uout of the amplifier circuit.
- the amplification factor of the operational amplifier module 21 is equal to R / R5.
- the signal is amplified; when the energy of the signal input to the operational amplifier module 21 is large, the voltage across the third diode D3 is greater than the on-voltage of the third diode D3, the third diode D3 is turned on, and the third The resistance R D3 of the diode is small, and R and the like are reduced. At this time, the amplification factor R and / R5 of the operational amplifier module 21 is reduced, and the energy of the signal output from the operational amplifier module 21 is reduced, thereby reducing the gain.
- the fifth resistor R5 is not a necessary component of the third clamp module.
- the input signal Uin of the amplifier circuit It can also be directly input to the inverting input of the operational amplifier IC.
- the input signal of the amplifier circuit is a positive current signal or a positive voltage signal.
- the input signal of the amplifier circuit is a negative voltage signal or a negative current signal
- the first The connection of the positive and negative electrodes of the three diodes is opposite to the connection of the positive and negative electrodes of the third diode D3 in the amplifier circuits shown in FIG. 42, FIG. 43, and FIG. 44.
- FIG. 45 is a schematic diagram of the effect of the third clamping module before and after the clamping provided by the embodiment of the present invention.
- the solid line in Figure 45 is the actual signal, and the dashed line represents the signal after clamping.
- the third clamping module amplifies the input signal; when the energy of the signal is large, as shown in the right curve of FIG. 46, the amplification of the operational amplifier module 21 The multiple is reduced so that its output signal does not exceed the on-voltage of the third diode D3.
- the amplification circuit may include a first clamping module, a second clamping module, and a third clamping module.
- FIG. 46 is a schematic diagram of an eighth connection of an amplifier circuit according to an embodiment of the present invention.
- first clamping module the second clamping module
- third clamping module which are not described herein again.
- FIG. 47 is a schematic diagram of a clamp circuit connection of an amplifier circuit according to an embodiment of the present invention.
- These include: an operational amplifier circuit and a clamping circuit; the clamping circuit is used to clamp the input signal of the amplifier circuit, so that after the input signal of the amplifier circuit is clamped, its size fluctuates within a certain range To prevent the operational amplifier circuit from saturating the output.
- the anode of the first diode D1 is connected to the signal input terminal Signal, the anode of the first diode D1 is connected to the output of the operational amplifier through a resistor R5, and the anode of the first diode is also connected to
- the resistor R6 is connected to the reference voltage CLAP_REF, that is, R5 and R6 constitute a voltage dividing resistor, which can adjust the trigger position of a specific threshold.
- the negative electrode of the first diode may be directly connected to the op amp.
- the output terminals are connected; R2, R3, and R4 form a feedback circuit in series.
- a capacitor C1 is connected in parallel at both ends of R2.
- Diodes D3 and D4 are connected in parallel at both ends of R2.
- the number of resistors in the feedback circuit may be 2, 4, 5, or more, and a parallel capacitor or a diode may be selected on each resistor. Such a setting may reduce parasitic parameters on the resistor in the feedback circuit. Makes the parasitic capacitance on the feedback resistor smaller, thus achieving high bandwidth.
- a capacitor is connected in series with the feedback resistor. The capacitor can compensate the feedback resistor and ensure the stability of the feedback system.
- the feedback circuit described above may not be included.
- the anode of the fifth diode D5 is connected to the output terminal of the operational amplifier module through the seventh resistor R7, and the anode of the fifth diode D5 is connected to the reference voltage CLAP_REF_01.
- the fifth diode D5 and the seventh resistor R7 may not be included.
- the operational amplifier module When the energy of the signal input to the operational amplifier module is small, the voltage across the first diode D1 is low, and the operational amplifier module amplifies the signal input to the operational amplifier module. Since the input signal enters the inverting input terminal, the output signal is lower. Large, at this time the voltage divided to the negative electrode of the first diode is also higher, the voltage across the first diode becomes higher, and the input signal can obtain a higher range without the first diode conducting; When the energy of the signal of the operational amplifier module is large, the voltage across the first diode D1 is high, so that the first diode is turned on, and the current will flow through the first diode to CLAP_REF without flowing. It is amplified on the operational amplifier.
- the operational amplifier module amplifies the signal input to the operational amplifier module. Since the input signal enters the inverting input terminal, the output signal is small. At this time, the voltage divided to the negative electrode of the first diode is also lower. The turn-on voltage difference becomes smaller and the input signal rises slightly, which will cause the first diode to be turned on. Therefore, the high value of the input voltage can be limited to a smaller range.
- the reference voltage of the first diode D1 fluctuates with the signal. When the signal is strong, it outputs a low level. At this time, the reference voltage of the first diode D1 will follow. The downward swing makes the first diode D1 be conductive when the signal is slightly larger, and plays a stronger role in making the clamp.
- the inverting amplifier in FIG. 47 can also be a forward amplifier, and the corresponding strong clamp can be obtained by adjusting the circuit.
- first diode D1, the second diode D2, the third diode D3, the fourth diode D4, and the fifth diode D5 may also be Zener diodes or TVS diodes.
- the on-voltage of the diode is the breakdown voltage of the Zener diode or TVS diode.
- first reference level, the second reference level, and the third reference level are used to distinguish the reference levels, where the first reference level, the second reference level, or The third reference level may be the same or different.
- the amplifier circuit provided by the present invention includes an operational amplifier circuit and a clamp circuit; the clamp circuit is configured to clamp an input signal of the amplifier circuit so that the input signal of the amplifier circuit passes through After clamping, its size fluctuates within a certain range to prevent the operational amplifier circuit from saturating the output.
- the reference voltage of the clamping circuit of the amplifying circuit can be dynamically adjusted according to the energy of the input signal, so as to make a stronger clamping and avoid saturation of the operational amplifier.
- Accessible Emission Limit stipulates that the laser emission cannot exceed The radiation value stipulated by safety.
- the embodiment of the present invention also provides a laser emission scheme that meets the requirements of human eye safety. When a single fault occurs in the system, the protection circuit can ensure that the laser radiation value does not exceed the safety value.
- the existing solution uses a pulse-driven design light emitting device, which includes a power source, a light source, and a control circuit.
- the power source is VCC_LD
- the light source is a pulsed laser diode
- the control circuit includes a driving circuit and a switching circuit NMOS.
- the driver When the pulse signal is at a high level, the driver outputs high voltage and high current, quickly turns on the MOS tube, the cathode of the pulsed laser diode is grounded, and the anode is connected to the power source VCC_LD. There is a voltage difference. At this time, the laser diode is turned on and emits light.
- the MOS tube When the pulsed signal is At a low level, the MOS tube is turned off, and the laser diode is also turned off. Therefore, by controlling the duty cycle and frequency of the pulse signal, the duration and frequency of light emission of the laser diode can be controlled, and then the radiation amount of the laser diode can be controlled.
- the problem with this solution is that if there is a single fault in the system, for example: (1) there is a bug in the software, the pulse width of the pulse signal is too large; (2) the MOS tube fails, and it is directly short-circuited; (3) the power supply is faulty, VCC_LD Too high, when the (1) failure occurs, the pulse width is too long will cause the laser diode to emit light for too long, which will cause the total radiation amount to exceed the predetermined value, will exceed the human eye safety regulations, when the (2) In the case of failure, the failure of the MOS tube will cause the laser diode to be always in the light-emitting state. This will cause the total radiation to exceed the predetermined value and exceed the human eye safety requirement.
- FIG. 15A a light emitting circuit is shown in FIG. 15A:
- the light emitting device includes a power source, a light source, a control circuit, and an energy storage circuit.
- the power source is VCC_LD, which is the energy supply end of the light source.
- the light source is a pulsed laser diode.
- the control circuit includes a driving circuit and a switching circuit NMOS.
- the energy storage circuit includes a resistor R and a capacitor C.
- the energy storage circuit is a capacitor C and the charging circuit is a resistor R. .
- the voltage control signal can set the output value of the BOOST booster circuit to adjust the working voltage of the laser diode VCC_LD.
- the pulse signal is at a low level, the MOS tube is turned off and the laser diode is also turned off. At this time, the capacitor C is connected to the capacitor C through the resistor R. Charge until the capacitor voltage is VCC_LD;
- the driver When the pulse signal is at a high level, the driver outputs high voltage and large current, quickly turns on the MOS tube, and the capacitor C is discharged through the laser diode and the MOS tube, so that the laser diode is turned on and lighted; that is, the control circuit is used for the first period The VCC_LD and the capacitor C are turned on, so that the power source charges the capacitor C until the capacitor voltage is saturated; the control circuit is further configured to turn on the laser diode and the capacitor C in the second period, so that the capacitor C is connected to the laser The diode is powered to make the light source emit a light pulse signal until the output current of the capacitor is lower than the threshold current of the laser transmitter.
- the energy stored in the energy storage circuit has an upper limit value, which is determined by the capacitance value of the capacitor C and the operating voltage VCC_LD.
- the emission power of the laser diode is related to the charge of the capacitor.
- the laser diode stops emitting light. Because the light emitting power and light emitting time of the laser diode are only related to the capacitor C, even if the above (1) failure occurs, there is a bug in the software, and the pulse width of the pulse signal is too large.
- the MOS tube is turned on for a long time, but the laser diode
- the luminous power is mainly related to the charge of the capacitor and has nothing to do with the pulse signal; therefore, after one light emission, the amount of the capacitor charge is not enough to excite the diode to emit light, and even if the MOS tube is turned on, it will not continue to emit light; the second fault occurs 2)
- the MOS tube fails and is directly short-circuited. As in the case of (1), after the laser diode emits light once, it will not continue to emit light.
- the light transmitting circuit further includes a zener diode connected in parallel with the capacitor C, which is used to protect the voltage of the capacitor C not exceeding a preset value, and the zener diode can conduct shunt even if the transmission voltage is too high .
- this embodiment can solve the problem that the diode output caused by the three types of faults exceeds the safety value.
- the light emitting device is shown in FIG. 16:
- the light emitting device includes a power source, a light source, a control circuit, and an energy storage circuit.
- the power source is VCC_LD, which is the energy supply end of the light source.
- the light source is a pulsed laser diode.
- the control circuit includes a driving circuit and a switching circuit NMOS.
- the energy storage circuit includes an energy storage circuit and a charging circuit.
- the two circuits of energy storage include resistors R2 and R3. And capacitor C, where the energy storage circuit includes capacitor C.
- the charging circuit includes resistors R2 and R3.
- the charging circuit further includes a current limiting circuit and a voltage limiting circuit.
- the current limiting circuit includes R1, a voltage calibration source D1, and a transistor, which protects the current on R2 and R3 from exceeding the rated power value of the resistor, and prevents excessive use from generating heat and failure.
- the voltage limiting circuit includes D2, which protects VCC_LD from exceeding the designed limit value.
- the voltage control signal can set the output value of the BOOST booster circuit, thereby adjusting the working voltage VCC_LD of the laser diode; when the pulse signal is at a low level, the MOS tube is turned off, and the laser diode is also turned off. Charge capacitor C through resistors R2 and R3 until the capacitor voltage approaches VCC_LD;
- the driver When the pulse signal is at a high level, the driver outputs high voltage and large current, quickly turns on the MOS tube, and the capacitor C is discharged through the laser diode and the MOS tube, so that the laser diode is turned on and emits light;
- the emission power of the laser diode is related to the charge of the capacitor.
- the laser diode stops emitting light. Because the light emitting power and light emitting time of the laser diode are only related to the capacitor C, even if the above (1) failure occurs, there is a bug in the software, the pulse width of the pulse signal is too large, and the MOS tube is turned on for a long time at this time, but the laser diode
- the luminous power is mainly related to the charge of the capacitor and has nothing to do with the pulse signal; therefore, after one light emission, the amount of the capacitor charge is not enough to excite the diode to emit light, even if the MOS tube is turned on, it will not continue to emit light; the second fault 2)
- the MOS tube fails and is directly short-circuited.
- this embodiment can solve the problem that the diode output caused by the first and second faults described above exceeds Problems with safety values.
- this embodiment can also solve the following problems: the power supply is faulty, and VCC_LD is too high. At this time, the Zener or TVS tube D2 is turned on, thereby protecting VCC_LD from exceeding the design limit; the resistor R2 or R3 fails.
- the light emitting device is shown in FIG. 17:
- two power supply circuits VCC_LD and VCC_HV are provided, where VCC_LV is connected to the laser diode, and VDD_LD is connected to the voltage limiting circuit D2 and Voltage reference source D1.
- the first end of the triode in the current-limiting circuit is connected to VCC_HV through a resistor R4, and other components and contents that are the same as those in the second embodiment are not described herein again.
- the present invention can protect the light emitting power or radiation of the laser diode from exceeding the rated power and rated radiation:
- the pulse width of the pulse signal is too large. At this time, the MOS tube is turned on for a long time. However, the light emitting power of the laser diode is mainly related to the charge of the capacitor and has nothing to do with the pulse signal. The amount of charge is not enough to excite the diode to emit light, so even if the MOS tube is turned on, it will not continue to emit light;
- the resistor R1 fails to open, the transistor T1 is turned off, and the system does not work, so the laser does not emit light, as shown in Figure 21A; while R1 fails and shorts, the transistor T1 is normally turned on. Considering the protection of D1, the entire charging circuit can work normally. , Does not affect the normal light emission of the laser diode, as shown in Figure 21B.
- T1 fails open, D1 is cut off, the system does not work, so the laser diode does not emit light, as shown in Figure 23A; the base of the transistor T1 and the emitter are short-circuited, and R1, D1, R2, R3 still constitute a normal charging circuit and do not affect the laser The diode emits light normally, as shown in FIG. 23B.
- R1, R2, D1, R3, and R4 still form a normal charging circuit, which does not affect the normal light emission of the laser diode, as shown in Figure 24.
- the reference voltage regulator D1 fails to open.
- the voltage regulator circuit D2 can ensure that VCC_LD does not exceed the design value, thereby ensuring that the stored energy of the capacitor C does not exceed the involved limit value, as shown in Figure 25A. If the reference voltage regulator D1 fails and is short-circuited, then charging The circuit is equivalent to only R1, which can still meet the normal operation of the charging circuit, as shown in Figure 25B.
- the resistor R2 or R3 fails to open.
- the voltage regulator circuit D2 can ensure that VCC_LD does not exceed the design value, thereby ensuring that the stored energy of the capacitor C does not exceed the involved limit value, as shown in Figure 26A.
- the resistor R2 or R3 fails and is short-circuited, if it is a single fault If the two resistors are connected in series, even if one of them fails, the circuit still works normally without affecting the charge of the capacitor C, so as to ensure that the laser emission power does not change, as shown in FIG. 26B.
- the voltage regulator circuit D2 fails to open.
- the charging circuit is designed to ensure that the stored energy of the capacitor C does not exceed the design limit. As shown in FIG. 28A, the voltage regulator circuit D2 fails and shorts out, D1 is turned off, and the charging circuit does not work, as shown in FIG. 28B.
- the resistor R1 / R2 / R3 / R4, the transistor T1, and the voltage calibration source D1 are charging circuits;
- the capacitor C is an energy storage circuit;
- D2 is a voltage stabilization circuit.
- the core of the charging circuit is the resistors R2 and R3.
- the other circuits are to limit the current of R2 and R3 and protect the charging circuit.
- the current I1 through R1 turns on the transistor, so that the current I2 flows through the emitter and collector of transistor T1, after passing through R3 and R4, but if VCC_HV is set too large, then I2 becomes larger, and the resistances R3 and R4
- the voltage drop increases, when it reaches a certain threshold, D1 is turned on, and the I2 current is shunted.
- I3 flows through the voltage reference source D1, thereby ensuring that the currents flowing through R2 and R3 do not exceed the rated value, as shown in Figure 18. .
- the charging circuit is not limited to the foregoing implementations, and other implementations are provided below:
- the second implementation method is based on the zener diode D1 and the transistor T1. Even when VCC_HV changes, the voltage drop of R2 and R3 can be guaranteed to be stable at the design value. Then, a corresponding limitation is imposed on the energy storage circuit to ensure the energy storage value of capacitor C. , As shown in Figure 19.
- the voltage stabilization circuit is designed as a redundancy to ensure that the voltage drop on the energy storage circuit C does not exceed the design value.
- the voltage stabilization circuit can also be implemented in other ways, as shown in Figure 20: If the voltage is too high, then the voltage regulator diode T1 It is turned on to ensure that the voltage drop of capacitor C does not exceed the design value and the voltage across capacitor C is guaranteed.
- the failure or short circuit of each component will not cause the output of the light emitting device to exceed the safety value. Therefore, the above circuit can effectively ensure that the output of the light emitting device meets human eye safety regulations.
- the light emitting device provided by the present invention can achieve a laser emitting scheme that meets the requirements of human eye safety.
- the circuit in the above device can ensure that the laser radiation value does not exceed the safety value. Ensure the safety of the laser device.
- a laser diode is used as a signal source, and according to a specific application, a laser signal with a specific range of wavelengths and optical power is emitted.
- the characteristics of the laser must remain stable.
- the laser driving circuit does not change, the laser diode optical power shifts with the change of the ambient temperature; in addition, the laser diode or the driving circuit may fail during use.
- An embodiment of the present invention also provides a laser emitting device, which can detect laser light in real time and the laser power or energy.
- FIG. 29 is a schematic frame diagram of a laser emitting device according to an embodiment of the present invention.
- the laser emitting device 1 may include a transmitting circuit 11, a self-test circuit 12, and a control circuit 13.
- the transmitting circuit 11 includes a laser transmitter 111 and a driver 112.
- the laser transmitter 111 is configured to transmit a laser pulse signal under the driving of the driver 112.
- the self-test circuit 12 is configured to detect a laser emitted by the transmitting circuit.
- control circuit 13 is configured to adjust the transmission power of the transmission circuit when the transmission energy or transmission power of the laser pulse signal is changed according to the detection result of the self-test circuit, so that The power of the laser pulse signal emitted by the circuit is maintained within a preset range; or, the control circuit is configured to determine whether to close the transmitting circuit according to a detection result of the self-test circuit.
- the self-test circuit detects the emission energy or transmission power of the laser pulse signal includes: detecting the emission energy of the laser pulse signal and then converting it into the transmission power, or detecting the transmission power of the laser pulse signal and then converting it into the transmission energy, and then Adjust the transmit power of the transmit circuit according to the change of transmit power or transmit energy.
- FIG. 30 is a wiring diagram of a self-test circuit provided by an embodiment of the present invention. As shown in FIG. 30, the self-test circuit 30 includes:
- the photoelectric conversion circuit 21 is configured to receive a part of a laser pulse signal emitted by the transmitting circuit, and convert the part of the laser pulse signal into an electric pulse signal;
- the sampling circuit 23 is configured to sample the electric signal after the stretching process.
- the stretched electrical signal is an electrical pulse signal or a level signal.
- the electric signal after the stretching process is an electric pulse signal
- the duty cycle of the electric pulse signal after the stretching process is greater than at least 3 of the duty cycle of the electric pulse signal before the stretching process. Times.
- the pulse stretching circuit 22 includes an RC filter circuit.
- the RC filter circuit includes:
- the first-order RC filter circuit includes a first resistor R2 and a first capacitor C2. One end of the first resistor R2 receives an electric signal from the photoelectric conversion circuit, and the other end is connected to one end of the first capacitor C2. The other end of C2 is grounded.
- receiving an electrical signal from the photoelectric conversion circuit includes an RC filter circuit directly connected to the photoelectric conversion circuit; or other circuits may be provided between the RC filter circuit and the photoelectric conversion circuit.
- the RC filter circuit includes a high-order filter circuit.
- the self-test circuit 2 further includes:
- the amplifying circuit 24 is configured to amplify a signal output by the RC filter circuit.
- the amplification circuit 24 includes:
- a proportional amplifier circuit includes a first operational amplifier U1, a second resistor R3, and a third resistor R4; one end of the second resistor R3 is connected to the RC filter circuit, and the other end is connected to a negative input terminal of the first operational amplifier U1; A positive input terminal of the first operational amplifier U1 is connected to a first reference power source, and an output terminal is connected to the sampling circuit; one end of the third resistor R4 is connected to a negative input terminal of the first operational amplifier U1, and the other end is connected to the An input terminal of the first operational amplifier U1.
- the self-test circuit 2 further includes:
- the coupling circuit 25 is configured to decouple the photoelectric conversion circuit 21 and the amplifier circuit 24.
- the coupling circuit 25 includes:
- a second capacitor C1 One end of the second capacitor C1 receives an electric signal from the photoelectric conversion circuit 21, and the other end is connected to the RC filter circuit and a second reference power source.
- the photoelectric conversion circuit 21 includes:
- a seventh resistor R1 one end of which is connected to the positive electrode of the photodiode, and the other end is grounded;
- the negative pole of the photodiode is connected to a working power source VCC.
- the photodiode of the photoelectric conversion circuit 21 receives the light pulse signal emitted by the laser diode in the laser transmitter, the photodiode is turned on; the connection point between the photodiode and the resistor R1 generates an electrical signal, that is, the photoelectric conversion circuit converts light The pulse signal is converted into the electric signal;
- the electric signal is stretched to obtain an approximate DC or low-frequency signal, and the waveform is shown in FIG. 31.
- the waveform stretched by the RC filter circuit depends on the RC filter.
- the time constant of the circuit ⁇ R2 * C2, the smaller the value of the time constant ⁇ , the smaller the pulse width expansion;
- the filtered electric signal is amplified by a proportional amplifier.
- the ratio of the resistors R3 and R4 in the proportional amplifier can be used to adjust the amplification factor.
- the specific amplification factor depends on the design needs and actual conditions.
- the amplified electrical signal ( That is, the electrical signal for sampling is shown in FIG. 32;
- the present invention uses RC filtering to stretch high-frequency narrow pulses into low-frequency or even near-DC signals. After amplification by an amplifier, a low-sampling rate ADC is used for sampling, thereby greatly reducing the cost of power detection.
- the output of the photoelectric conversion circuit can also be selected
- the electric signal is AC-coupled to the second reference power source through the capacitor C1 in the coupling circuit 25, and then amplified by the amplifier, so as to realize a low-speed ADC sampling signal value.
- the capacitor C1 also functions as an isolation circuit. It should be noted that the coupling circuit can be set or not set as required.
- the self-test circuit includes:
- a photoelectric conversion circuit configured to receive a portion of a laser pulse signal emitted by the transmitting circuit, and convert the portion of the laser pulse signal into an electrical pulse signal;
- a peak hold circuit for holding a peak value of the electrical pulse signal
- the sampling circuit is configured to sample the peak value of the electric pulse signal held by the peak hold circuit.
- the difference between the self-test circuit in this embodiment and the self-test circuit described in FIG. 30 is that the sample peak hold circuit replaces the pulse stretching circuit described in FIG. 30.
- FIG. 33 is a first wiring diagram of a peak hold circuit according to an embodiment of the present invention. As shown in FIG. 33, the peak hold circuit includes:
- FIG. 34 is a second wiring diagram of a peak hold circuit provided by an embodiment of the present invention. As shown in FIG. 34, the peak hold circuit includes:
- the other end of the fifth resistor R7 is connected to one end of the second energy storage circuit C4. Connect the other end to the fourth reference power supply.
- the self-test circuit further includes:
- a first decoupling circuit is located between the photoelectric conversion circuit and the peak hold circuit, and is configured to decouple the photoelectric conversion circuit and the peak hold circuit.
- the first decoupling circuit includes:
- a second operational amplifier U2 a positive input terminal of the second operational amplifier U2 receives an electric signal from a photoelectric conversion circuit, a negative input terminal of the second operational amplifier U2 is connected to an output terminal of the second operational amplifier, and An output terminal of the second operational amplifier U2 is connected to the peak hold circuit.
- the first decoupling circuit includes:
- a third operational amplifier U4 a positive input terminal of the third operational amplifier U4 receives an electrical signal of the photoelectric conversion circuit, and a negative input terminal of the third operational amplifier U4 is connected to the second diode and the first One end connected with five resistors, and the output end of the third operational amplifier U4 is connected to the other end of the second diode.
- the peak hold circuit further includes:
- a positive input terminal of the third operational amplifier U4 is also connected to a fifth reference power source.
- the self-test circuit includes:
- a second decoupling circuit is connected between the sampling circuit and the peak hold circuit, or after the sampling circuit, and is used to decouple circuits before and after the second decoupling circuit.
- the second decoupling circuit includes:
- a fifth operational amplifier U5 a positive input terminal of the fifth operational amplifier U5 is connected to the peak hold circuit or the sampling circuit; a negative input terminal of the fifth operational amplifier U5 is connected to an output of the fifth operational amplifier U5 end.
- the working principle of the peak hold circuit shown in FIG. 33 is as follows:
- the output signal Singal_in of the photoelectric conversion circuit is input to the positive input terminal of the operational amplifier U2, and the negative input terminal of the operational amplifier U2 is connected to the output terminal of the operational amplifier U2 to form a voltage follower to maintain the photoelectric conversion circuit and the peak value.
- the circuit is decoupled, and the signal output from the output terminal of the operational amplifier U2 is the same as the output signal Singal_in of the photoelectric conversion circuit;
- the signal output from the output terminal of the operational amplifier U2 when the signal rises or falls, so that the voltage across the diode exceeds the threshold voltage of the diode D1, the diode D1 is turned on, and the output signal of the operational amplifier U2 passes through the diode D1 and the resistor R5 Charge the capacitor C3.
- the voltage waveform of the capacitor C3 changes with the output signal of the operational amplifier U2, and then drops or rises after the peak.
- the diode D1 is turned off.
- the capacitor C3 is further charged; in this process, the peak value of the output signal of the operational amplifier U2 is detected and maintained through the voltage waveform of the capacitor C3.
- the electric signal of the capacitor C3 is output to the positive input terminal of the operational amplifier U3.
- the negative input terminal of the operational amplifier U3 is connected to one end of the resistor R6 and one end of the diode D2, and the other end of the resistor R6 is connected to the sixth reference power source.
- the other end of D2 is connected to the output of an operational amplifier U3.
- the operational amplifier U3, the resistor R6, and the diode D2 constitute a second decoupling circuit, that is, another voltage follower, to decouple the peak hold circuit and other circuits. Couple. It can be understood that the second decoupling circuit located after the peak hold circuit may also be located after the sampling circuit.
- the diode D2 in FIG. 33 is located outside the feedback path of the operational amplifier U1.
- the peak value held by the capacitor C1 has a voltage drop relative to Signal_in.
- the voltage of the diode D2 must be the same as the voltage drop of the diode D1. That is, the diodes D2 and D1 must be the same to ensure that the peak value of Signal_out is consistent with Signal_in.
- the above-mentioned peak hold circuit has no problem, but when the accuracy requirements are very high, in fact, there are individual differences in electronic components, and it is basically impossible to ensure that the voltages on the diodes D2 and D1 are completely equal.
- the embodiment of the present invention provides another peak detection circuit.
- the working principle of the peak detection circuit shown in FIG. 34 is as follows:
- the output signal Singal_In of the photoelectric conversion circuit is input to the positive input terminal of the operational amplifier U4, the negative input terminal of the operational amplifier U4 is connected to one end of the diode D3, and the other end of the diode D3 is connected to the output terminal of the operational amplifier U2, so that Decoupling the photoelectric conversion circuit and the peak hold circuit;
- the diode D3 is turned on, and the output signal of the operational amplifier U4 charges the capacitor C4 through the diode D3 and the resistor R7.
- the voltage waveform of the capacitor C4 changes with the output signal of the operational amplifier U4, and then drops or Rise, when the voltage across the diode is less than the threshold voltage of the diode D3, the diode D3 is turned off, and the capacitor C4 is no longer charged; in this process, the voltage waveform of the capacitor C4 is used to detect and maintain the operational amplifier U2. The peak value of the output signal;
- the diode D3 is placed in the feedback loop of the operational amplifier U4, then the positive input terminal of the operational amplifier U5 and the negative input terminal of the operational amplifier U4 have the same voltage, so as to ensure that the peak value of the signal Signal_Out of the output terminal of the operational amplifier U5 and the photoelectricity are maintained.
- the peak value of the output signal Signal_In of the conversion circuit is consistent, which improves the problem of the diode mismatch of the peak-hold circuit in the previous embodiment. Therefore, in the second decoupling circuit after the peak-hold circuit, a diode or the same as the previous The diodes in a decoupling circuit are the same.
- connection terminal of the diode D3 and the resistor R7 outputs a signal to the second decoupling circuit
- the second decoupling circuit may adopt the circuit structure of the first or second decoupling circuit in the previous embodiment, which is not repeated here.
- the second decoupling circuit located after the peak hold circuit may also be located after the sampling circuit.
- the first decoupling circuit, the peak detection circuit, and the second decoupling circuit all include at least one form. It can be understood that the three can be based on design requirements and practical applications. In some cases, the use or non-use is selected, and the settings are coordinated with each other. Therefore, in addition to the circuit settings described in the figure of the present invention, other variations of the above three coordinated settings also belong to the scope of the present invention.
- the present invention adds a switch S1 to the positive input terminal of the operational amplifier U4 to prevent interference from other signals.
- the self-test circuit further includes a reset circuit for resetting the peak hold circuit.
- the reset circuit includes:
- a first switch, a second switch, and an inverter wherein one end of the switch receives an electrical signal of the photoelectric conversion circuit, and the other end of the first switch is connected to the peak hold circuit or the first decoupling circuit
- the second switch is connected to both ends of the first energy storage circuit or the second energy storage circuit; the first switch control signal controls the on and off of the first switch, and generates a first Two switch control signals control the on and off of the second switch, so that the on and off states of the first switch and the second switch are opposite.
- the reset circuit includes switches S1, S2, and an inverter; the switch S2 is connected in series between the input signal and the positive input terminal of the operational amplifier U4, and the switch S2 is connected in parallel with both ends of the capacitor C4 to be controlled by the switching signal Switch S1, and control switch S2 after passing the inverter.
- This can ensure that switches S1 and S2 are opened and closed in opposite states.
- S2 is closed, the capacitor C4 is discharged, and S1 is opened at this time to ensure that the weak interference signal cannot be Enter the non-inverting input of U1.
- S2 opens and S1 closes. At this time, the system can normally respond to the input pulse signal.
- control circuit 13 is configured to adjust the transmission power of the transmitting circuit according to the detection result of the self-test circuit, so that the power of the laser pulse signal transmitted by the transmitting circuit is maintained within a preset range.
- control circuit 13 is configured to adjust the transmitting power of the transmitting circuit or turn off the transmitting circuit according to the sampling voltage value of the sampling circuit.
- the control circuit when the sampling voltage value exceeds the preset upper voltage limit, the control circuit reduces the gain of the transmitting circuit; and / or,
- the control circuit increases the gain of the transmitting circuit; and / or,
- the transmitting circuit When the sampling voltage value is 0 or almost 0, the transmitting circuit is turned off.
- a correspondence relationship between the transmission power of the transmission circuit and the sampling value of the sampling circuit is stored in the laser emitting device, and the control circuit is configured to adjust the transmission power of the transmission circuit according to the correspondence relationship.
- the correspondence between the stored transmission power of the transmitting circuit and the sampling value of the sampling circuit can be the correspondence between the voltage of the transmitting circuit and the sampling value, or the correspondence between the gain and the sampling value, or other adjustments to it. Correspondence between the parameters that can affect the transmit power of the transmit circuit and the sampled values.
- the laser emission frequency is at a constant value for a certain period of time.
- the peak value of the stretched pulse corresponds to the peak value of the narrow pulse; if the stretch circuit directly stretches the pulse width to a DC signal, the amplitude of the DC signal corresponds to the energy value of the narrow pulse.
- the transmit power can be deduced according to the ADC sampling voltage value. For example, when the ambient temperature rises, the transmit power decreases accordingly.
- the power detection circuit finds that the power drops, it feeds back to the system to increase the transmit voltage, and finally maintains the stability of the transmit power.
- the first reference power source to the sixth reference power source are used to distinguish the reference power source, and the levels of the first reference power source to the sixth reference power source may be the same or different.
- the first to seventh resistors include at least one resistor and its series-parallel form
- the first capacitor to the second energy storage circuit include at least one capacitor and its series-parallel form
- the polarity connection of the first diode to the third diode is set according to a positive pulse signal or a negative pulse signal of the laser.
- the laser emitting device provided by the present invention can detect the power of the emitted laser pulse signal through a self-test circuit, timely feedback the relative change of the power or the failure of the laser emission, and determine the adjustment according to the feedback detection result. Or turning off the laser pulse signal, thereby ensuring that the laser wave transmission power is kept constant in different scenarios, and realizing the function of the system failure self-check.
- a ranging device may be an electronic device such as a laser radar, a laser ranging device, or the like.
- various embodiments of the present invention provide a ranging device for sensing external environmental information, such as distance information, orientation information, reflection intensity information, velocity information, and the like of environmental targets.
- the distance measuring device can detect the distance between the detection object and the distance measuring device by measuring a time of light propagation between the distance measuring device and the detection object, that is, a time-of-flight (TOF).
- TOF time-of-flight
- the ranging device can also detect the distance from the probe to the ranging device by other techniques, such as a ranging method based on phase shift measurement, or a ranging method based on frequency shift measurement. There are no restrictions.
- the ranging device 100 may include a transmitting circuit, a receiving circuit, a sampling circuit (TDC), and an arithmetic circuit.
- the transmitting circuit is the transmitting circuit in the foregoing embodiment, and the sampling circuit includes the amplifier circuit and the like described in the foregoing embodiment.
- the transmitting circuit may transmit a light pulse sequence (for example, a laser pulse sequence).
- the receiving circuit can receive the light pulse sequence reflected by the detected object, and perform photoelectric conversion on the light pulse sequence to obtain an electric signal, and then the electric signal can be processed and output to the sampling circuit.
- the sampling circuit can sample the electrical signal to obtain a sampling result.
- the arithmetic circuit may determine the distance between the distance measuring device 100 and the detected object based on the sampling result of the sampling circuit.
- the ranging device 100 may further include a control circuit, which may control other circuits, for example, may control the working time of each circuit and / or set parameters of each circuit.
- a control circuit which may control other circuits, for example, may control the working time of each circuit and / or set parameters of each circuit.
- the ranging device shown in FIG. 1 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit
- the embodiments of the present application are not limited thereto.
- the transmitting circuit, the receiving circuit, the sampling circuit, and the arithmetic The number of any one of the circuits may be at least two.
- the distance-measuring device 100 may further include a scanning module for changing the laser pulse sequence emitted by the transmitting circuit to change the propagation direction.
- a module including a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit or a module including a transmitting circuit, a receiving circuit, a sampling circuit, an arithmetic circuit, and a control circuit may be referred to as a ranging module, and the ranging module may be independent For other modules, such as the scan module.
- the distance measuring device may use a coaxial optical path, that is, the light beam emitted by the distance measuring device and the reflected light beam share at least part of the optical path in the distance measuring device.
- the distance measuring device may also use an off-axis optical path, that is, the light beam emitted by the distance measuring device and the reflected light beam are transmitted along different optical paths in the distance measuring device, respectively.
- the ranging device 100 includes a light transmitting and receiving device.
- the light transmitting and receiving device includes a light source 103 (including the above-mentioned transmitting circuit), a collimating element 104, a detector 105 (may include the above-mentioned receiving circuit, sampling circuit, and operation circuit), and an optical path changing element 106. .
- the optical transceiver 121 is configured to transmit a light beam, receive the returned light, and convert the returned light into an electrical signal.
- the light source 103 is used to emit a light beam.
- the light source 103 may emit a laser beam.
- the laser beam emitted by the light source 103 is a narrow-bandwidth beam with a wavelength outside the visible light range.
- the collimating element 104 is disposed on the exit light path of the light source, and is used to collimate the light beam emitted from the light source 103 and collimate the light beam emitted from the light source 103 into parallel light.
- the collimating element is also used to focus at least a portion of the reflected light reflected by the probe.
- the collimating element 104 may be a collimating lens or other elements capable of collimating a light beam.
- the transmitting optical path and the receiving optical path in the ranging device are combined before the collimating element 104 by the optical path changing element 106, so that the transmitting optical path and the receiving optical path can share the same collimating element, making the optical path more compact.
- the light source 103 and the detector 105 may also use respective collimating elements, and the optical path changing element 106 may be disposed behind the collimating elements.
- the light path changing element may use a small area mirror to Combine the transmitting and receiving optical paths.
- the light path changing element may also be a reflector with a through hole, wherein the through hole is used to transmit the light emitted from the light source 103, and the reflector is used to reflect the returned light to the detector 105. This can reduce the situation that the bracket of the small mirror can block the return light in the case of using a small mirror.
- the optical path changing element is offset from the optical axis of the collimating element 104.
- the light path changing element may also be located on the optical axis of the collimating element 104.
- the ranging device 100 further includes a scanning module 102.
- the scanning module 102 is placed on the output light path of the optical transceiver 121.
- the scanning module 102 is used to change the transmission direction of the collimated light beam 119 emitted by the collimating element 104 and project it to the external environment, and project the returned light onto the collimating element 104. .
- the returned light is focused on the detector 105 via the collimating element 104.
- the scanning module 102 may include one or more optical elements, such as a lens, a mirror, a prism, a grating, an optical phased array, or any combination thereof.
- multiple optical elements of the scanning module 102 can rotate around a common axis 109, and each rotating optical element is used to continuously change the propagation direction of the incident light beam.
- multiple optical elements of the scanning module 102 can be rotated at different rotation speeds.
- multiple optical elements of the scan module 102 may be rotated at substantially the same rotation speed.
- multiple optical elements of the scanning module may also rotate around different axes. In some embodiments, multiple optical elements of the scanning module may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
- the scanning module 102 includes a first optical element 114 and a driver 116 connected to the first optical element 114.
- the driver 116 is configured to drive the first optical element 114 to rotate about the rotation axis 109, so that the first optical element 114 is changed.
- the first optical element 114 projects the collimated light beam 119 to different directions.
- the angle between the direction of the collimated light beam 119 after being changed by the first optical element and the rotation axis 109 changes with the rotation of the first optical element 114.
- the first optical element 114 includes a pair of opposing non-parallel surfaces through which a collimated light beam 119 passes.
- the first optical element 114 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the first optical element 114 includes a wedge-shaped prism, which is directed toward the straight beam 119 for refraction. In one embodiment, the first optical element 114 is coated with an antireflection coating, and the thickness of the antireflection coating is equal to the wavelength of the light beam emitted by the light source 103, which can increase the intensity of the transmitted light beam.
- the scanning module 102 further includes a second optical element 115 that rotates about the rotation axis 109.
- the rotation speed of the second optical element 115 is different from the rotation speed of the first optical element 114.
- the second optical element 115 is used to change the direction of the light beam projected by the first optical element 114.
- the second optical element 115 is connected to another driver 117, and the driver 117 drives the second optical element 115 to rotate.
- the first optical element 114 and the second optical element 115 can be driven by different drivers, so that the rotation speeds of the first optical element 114 and the second optical element 115 are different, so that the collimated light beam 119 is projected into different directions of the external space and can be scanned Large spatial range.
- the controller 118 controls the drivers 116 and 117 to drive the first optical element 114 and the second optical element 115, respectively.
- the rotation speeds of the first optical element 114 and the second optical element 115 can be determined according to the area and pattern expected to be scanned in practical applications.
- Drivers 116 and 117 may include motors or other driving devices.
- the second optical element 115 includes a pair of opposing non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 115 includes a prism whose thickness varies in at least one radial direction. In one embodiment, the second optical element 115 includes a wedge-shaped prism. In one embodiment, the second optical element 115 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
- the rotation of the scanning module 102 can project light into different directions, such as directions 111 and 113, so as to scan the space around the ranging device 100.
- directions 111 and 113 are directions that are projected by the scanning module 102.
- the scanning module 102 receives the return light 112 reflected by the detection object 101 and projects the return light 112 onto the collimating element 104.
- the collimating element 104 condenses at least a part of the return light 112 reflected by the probe 101.
- the collimating element 104 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
- the detector 105 and the light source 103 are placed on the same side of the collimating element 104. The detector 105 is used to convert at least a part of the returned light passing through the collimating element 104 into an electrical signal.
- the light source 103 may include a laser diode through which laser light in the nanosecond range is emitted.
- the laser pulse emitted by the light source 103 lasts for 10 ns.
- the laser pulse receiving time may be determined, for example, the laser pulse receiving time may be determined by detecting a rising edge time and / or a falling edge time of an electrical signal pulse. In this way, the ranging device 100 can calculate the TOF by using the pulse reception time information and the pulse transmission time information, thereby determining the distance between the detection object 101 and the distance measurement device 100.
- the distance and orientation detected by the ranging device 100 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
- the ranging device according to the embodiment of the present invention can be applied to a mobile platform, and the ranging device can be installed on the platform body of the mobile platform.
- a mobile platform with a ranging device can measure the external environment, for example, measuring the distance between the mobile platform and an obstacle for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping on the external environment.
- the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remotely controlled vehicle, a robot, and a camera.
- the platform body is the fuselage of the unmanned aerial vehicle.
- the ranging device is applied to a car
- the platform body is the body of the car.
- the car may be a self-driving car or a semi-autonomous car, and there is no limitation here.
- the platform body is the body of the remote control car.
- the platform body is a robot.
- the ranging device is applied to a camera, the platform body is the camera itself.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种测距装置,包括:环境光传感器(150)、比较电路(130)和运算电路(160),在比较电路(130)中并行设置有多个预设阈值;比较电路(130),用于接收经光信号处理得到的电信号,提取电信号所触发的预设阈值的时间信息;环境光传感器(150),用于获取时间信息所在时段内的环境光信号的强度;运算电路(160)用于根据环境光信号的强度,从触发的预设阈值的时间信息中,挑选出至少部分触发的预设阈值的时间信息,以及根据挑选出的时间信息进行运算。还提供了一种基于测距装置的时间测量方法。通过该测距装置,可以挑选出至少部分触发的预设阈值的时间信息,以及根据挑选出的时间信息进行运算。
Description
本发明涉及测距装置技术领域,尤其涉及一种测距装置以及基于测距装置的时间测量方法。
测距装置是以发射激光束探测目标的位置、速度等特征量的雷达系统。测距装置的光敏传感器可以将获取到的光脉冲信号转变为电信号,基于比较器获取该电信号对应的时间信息,从而得到测距装置与目标物之间的距离信息。
然而,测距装置工作的环境情况复杂,其获取的电信号的强度具有较大的动态变化范围,电信号中包括的噪声信号也或强或弱。基于比较器采集时间信息的方式,电压阈值固定不变,宽动态电信号中包括的噪声信号可能触发比较器,造成测量到的时间信息的失真。即使在使用中对阈值电压进行调整,当系统的采样速度越来越高时调整阈值是非常困难的。
发明内容
第一方面,本发明实施例提供了一种测距装置,至少包括环境光传感器、比较电路和运算电路,在所述比较电路中并行设置有多个预设阈值;
所述比较电路,用于接收经光信号处理得到的电信号,提取所述电信号所触发的预设阈值的时间信息;
所述环境光传感器,用于获取所述时间信息所在时段内的环境光信号的强度;
所述运算电路用于根据所述环境光信号的强度,从所述触发的预设阈值的时间信息中,挑选出至少部分触发的预设阈值的时间信息,以及根据所述挑选出的所述时间信息进行运算。
可选地,所述运算电路具体用于比较所述比较电路提取的时间信息的数目以及与所述环境光信号的强度所能触发的阈值的数目;
若所述比较电路提取的时间信息的数目不大于所述环境光信号产生的时间信息的数目,则该光信号为噪声信号;和/或,
若所述比较电路提取的时间信息的数目大于所述环境光信号产生的时间信息的数目,则该光信号包括有效光脉冲信号。
可选地,所述运算电路具体用于比较所述电信号所触发的最大预设阈值与所述环境光信号的强度对应的最大预设阈值的大小;
若所述电信号所触发的最大预设阈值不大于所述环境光信号的强度对应的最大预设阈值,则确定所述光信号为噪声信号;和/或,
若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则确定所述光信号包括有效光脉冲信号。
可选地,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则所述运算电路用于至少挑选比所述环境光信号的强度对应的最大预设阈值大的预设阈值被触发的时间信息。
若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则所述运算电路用于将比所述环境光信号的强度对应的最大预设阈值小的预设阈值被触发的时间信息丢弃。
在本发明的一示例中,根据环境光信号的强度来确定要选择进行比较的预设阈值,例如当检测到外部的环境光比较弱时选取全部的预设阈值进行比较然后提取所述电信号所触发的预设阈值的时间信息,当检测到外部的环境光比较强时关闭部分数值较小的预设阈值,不再进行比较或不参与下一步的运算。在外部光线较强时,底部的阈值会触发一定的噪声,但是这些数据不被计算为信号,最终雷达输出的点云将不会包含噪点。
进一步,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则所述运算电路用于至少挑选比所述 环境光信号的强度对应的最大预设阈值大的预设阈值被触发的时间信息
作为示例,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则可以将全部的预设阈值与所述电信号进行比较,提取相应时间信息。其中,提取的全部时间信息中,比所述环境光信号的强度对应的最大预设阈值的大的预设阈值产生的时间信息为有效电脉冲信号产生的时间信息,比所述环境光信号的强度对应的最大预设阈值的小的预设阈值产生的时间信息为有效电脉冲信号产生的时间信息和环境噪声产生的时间信息的重叠。
作为示例,当所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,为了提高时间信息提取效率,所述比较电路用于将比所述环境光信号的强度对应的最大预设阈值小的预设阈值丢弃,不再与所述电信号进行比较。即将有效电脉冲信号产生的时间信息和环境噪声产生的时间信息的重叠的数据丢弃,不再输出该时间信息。
可选地,所述测距装置还包括光电转换电路,
所述光电转换电路,用于接收光脉冲信号,以及将所述光脉冲信号转换为电信号、将所述电信号输出;
所述比较电路用于接收来自所述光电转换电路的电信号。
可选地,所述测距装置还包括控制电路,用于根据所述环境光传感器输出的环境光信号的强度将较小的部分预设阈值关闭;和/或
用于调整所述光电转换电路的增益,或调整比较电路的预设阈值,以使得噪声信号低于所述预设阈值。
可选地,所述比较电路包括多个比较器,所述比较器的第一输入端用于接收所述电信号,所述比较器的第二输入端用于接收所述预设阈值,所述比较器的输出端用于输出比较的结果,其中,所述比较的结果中包含与所述电信号对应的时间信息。
可选地,所述比较电路还包括时间数字转换器,所述时间数字转 换器与所述比较器的输出端电连接,用于根据所述比较器输出的比较的结果,提取与所述电信号对应的时间信息。
可选地,所述比较电路包括多个比较器以及多个时间数字转换器,所述比较器与所述时间数字转换器一一对应连接,所述多个比较器的输出端分别与所述多个比较器一一对应的时间数字转换器电连接。
可选地,所述测距装置还包括发射电路;
所述发射电路用于发射光脉冲信号;
所述比较电路所接收的电信号,来自所述发射电路发射的光脉冲信号经物体反射回的至少部分信号经处理后得到的电信号。
可选地,所述测距装置还包括光电转换电路和放大电路;
所述光电转换电路用于接收所述发射电路发射的光脉冲信号经物体反射回的至少部分信号,以及将所述至少部分信号转换为电脉冲信号输出;
所述放大电路用于对所述电脉冲信号进行放大处理;
其中,所述比较电路所接收的电信号来自所述放大电路放大处理后的电信号;所述运算电路用于根据所述比较电路输出的时间信息确定所述物体与所述测距装置之间的距离。
本发明还提供了另外一种测距装置,其特征在于,至少包括光敏传感器、控制器和比较电路,
所述光敏传感器,用于接收光脉冲信号,以及将所述光脉冲信号转换为电信号输出;
所述比较电路,用于将输入的电信号与预设阈值进行比较,提取与所述电信号对应的时间信息;
控制器,用于获取当前温度值,以及根据所述当前温度值调整所述光敏传感器的增益。
可选地,所述测距装置还包括放大电路;
所述放大电路用于,将从光敏传感器输入的电信号放大运算,并将放大运算后的电信号输出到比较电路;
其中,输入所述比较电路的电信号来自所述放大电路输出的电信号。
可选地,所述比较电路包括至少一个比较器,所述比较器的第一输入端用于接收所述从放大电路输入的电信号,所述比较器的第二输入端用于接收所述预设阈值,所述比较器的输出端用于输出比较的结果,其中,所述比较的结果中包含与所述电信号对应的时间信息。
可选地,所述比较电路还至少包括时间数字转换器,每个所述时间数字转换器与对应的所述比较器的输出端电连接,用于根据所述比较器输出的比较的结果,提取与所述电信号对应的时间信息。
可选地,控制器还用于:根据噪声信号的强度确定预设阈值,使得所述预设阈值高于所述噪声信号且所述预设阈值与所述噪声信号的最大值之差不大于预设值。
可选地,所述测距装置还包括数模转换器,所述控制器通过所述数模转换器与所述比较器的第二输入端连接,并通过控制所述数模转换器的输出电压的大小来调整所述比较电路的预设阈值。
可选地,所述测距装置还包括比较阈值调整电路,所述比较阈值调整电路包括多个电阻,所述多个电阻的一端共同连接至所述比较器的第二输入端,多个电压信号输入到所述多个电阻的另一端,用于通过所述多个电阻向所述比较器的第二输入端提供所述预设阈值,通过调整所述多个电阻的组成结构,调整输入到所述比较电路的第二输入端的所述预设阈值。
可选地,所述测距装置还包括电源管理电路,所述电源管理电路与所述控制器及所述光敏传感器电连接,所述电源管理电路用于为所述光敏传感器提供工作电压,所述控制器通过控制所述电源管理电路改变所述工作电压来调整所述光敏传感器的增益。
可选地,所述光敏传感器包括雪崩光电二极管,所述雪崩光电二极管的阴极与所述电源管理电路电连接,用于从所述电源管理电路获取工作电压,所述雪崩光电二极管的阳极与所述放大电路的输入端连 接,所述雪崩光电二极管用于接收光脉冲信号,以及将所述光脉冲信号转换为电信号,并将所述电信号输出给所述放大电路。
可选地,所述光信号包括噪声信号,所述噪声信号包括光噪声信号和电子噪声信号,控制器还用于获取并比较所述光噪声信号的强度和所述电子噪声信号的强度,并在所述光噪声信号的强度小于所述电子噪声信号的强度时,调整所述比较电路的预设阈值,以使得所述噪声信号低于所述预设阈值。
可选地,所述控制器还用于获取所述噪声信号的强度,在所述噪声信号的强度小于预设噪声阈值时,调整所述比较电路的预设阈值,以使得所述噪声信号低于所述预设阈值。
可选地,所述光信号包括噪声信号,所述噪声信号包括光噪声信号和电子噪声信号,控制器还用于获取并比较所述光噪声信号的强度和所述电子噪声信号的强度,并在所述光噪声信号的强度大于所述电子噪声信号的强度时,调整所述光敏传感器的增益,以使得所述噪声信号低于所述预设阈值。
可选地,控制器还用于获取所述噪声信号的强度,在所述噪声信号的强度大于预设噪声阈值时,调整所述光敏传感器的增益,以使得所述噪声信号低于所述预设阈值。
可选地,控制器还用于判断所述噪声信号是否高于所述预设阈值。
可选地,所述控制器还用于:
获取所述测距装置生成的初始图像中的随机噪点数,并判断所述随机噪点数是否高于预设噪点数阈值;所述初始图像为所述控制器根据所述从放大电路输入的电信号和调整前的预设阈值生成初始图像;
若所述随机噪点数高于预设噪点数阈值,则判断所述噪声信号高于所述预设阈值。
可选地,所述测距装置还包括均方根检波器,所述控制器通过所述均方根检波器与所述放大电路电连接,用于检测所述噪声信号在预设频率范围内的功率信息,并将所述功率信息输出给所述控制器,所 述控制器还用于:
判断所述均方根检波器输入的功率信息是否超过预设功率阈值;
若所述功率信息超过所述预设功率阈值,则判断所述噪声信号高于所述预设阈值。
可选地,所述比较电路包括多个比较器以及多个时间数字转换器(Time-to-Digital Converter,TDC),所述比较器与所述时间数字转换器一一对应连接,所述多个比较器的第一输入端用于接收所述从放大电路输入的电信号,所述多个比较器的第二输入端与所述控制器电连接,分别用于接收阈值;所述多个比较器的输出端分别通过与所述多个比较器一一对应连接的时间数字转换器与所述控制器电连接,所述比较器向所述时间数字转换器输出比较结果,所述时间数字转换器根据所述比较结果测量时间信息以及向所述控制器输出所述时间信息;所述控制器还用于:
计算并比较所述多个比较器中第一阈值的比较器对应的第一时间信息与第二阈值的比较器对应的第二时间信息;其中,所述第一阈值小于所述第二阈值;
若所述第一时间信息与所述第二时间信息之差为随机值,且所述第一时间信息与所述第二时间信息之差大于预设时间阈值,则判断所述噪声信号高于所述第一阈值。
可选地,所述控制器还用于:
选定高于所述噪声信号的阈值中最小的阈值作为所述预设阈值。
可选地,所述控制器还用于:根据多个时间数字转换器测得的时间信息拟合输入所述比较器的电信号的波形,根据该拟合的波形计算该电信号对应的时间信息。
可选地,所述控制器内预存有在不同温度下所述光敏传感器的电压与增益的对应关系;
所述控制器用于根据所述当前温度值确定所述光敏传感器的电压与增益的对应关系,以及根据所述对应关系调整所述光敏传感器的 电压。
可选地,所述测距装置还包括发射电路;
所述发射电路用于发射光脉冲信号;
所述光敏传感器所接收的光脉冲信号,来自所述发射电路发射的光脉冲信号经物体反射回的至少部分信号。
可选地,所述测距装置还包括运算电路,用于根据所述比较电路输出的时间信息确定所述物体与所述测距装置之间的距离。
本发明还提供了一种基于测距装置的时间测量方法,包括:
在所述测距装置中并行设置有多个预设阈值;
接收经光信号处理得到的电信号,提取所述电信号所触发的预设阈值的时间信息;
获取所述时间信息所在时段内的环境光信号的强度;
根据所述环境光信号的强度,从所述触发的预设阈值的时间信息中,挑选出至少部分触发的预设阈值的时间信息,以及根据所述挑选出的所述时间信息进行运算。
可选地,比较所述比较电路提取的时间信息的数目以及与所述环境光信号的强度所能触发的阈值的数目;
若提取的时间信息的数目不大于所述环境光信号产生的时间信息的数目,则该光信号为噪声信号;和/或,
若提取的时间信息的数目大于所述环境光信号产生的时间信息的数目,则该光信号包括有效光脉冲信号。
可选地,所述方法包括:比较所述电信号所触发的最大预设阈值与所述环境光信号的强度对应的最大预设阈值的大小;
若所述电信号所触发的最大预设阈值不大于所述环境光信号的强度对应的最大预设阈值,则该光信号为噪声信号;和/或,
若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则该光信号包括有效光脉冲信号。
可选地,所述方法包括:若所述电信号所触发的最大预设阈值大 于所述环境光信号的强度对应的最大预设阈值,则至少将比所述环境光信号的强度对应的最大预设阈值大的预设阈值与所述电信号进行比较,提取相应时间信息。
可选地,所述方法包括:若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则将比所述环境光信号的强度对应的最大预设阈值小的预设阈值丢弃,不再与所述电信号进行比较。
本发明还提供了另外一种基于测距装置的时间测量方法,包括:
接收光脉冲信号,以及将所述光脉冲信号转换为电信号输出;
将输入的电信号与预设阈值进行比较,提取与所述电信号对应的时间信息;
获取当前温度值,以及根据所述当前温度值调整所述光敏传感器的增益。
可选地,所述方法包括:
将所述电信号进行放大运算;
调整所述光敏传感器的增益,或调整比较的预设阈值,以使得噪声信号低于所述预设阈值;所述噪声信号为放大运算后的电信号中包含的噪声信号;
将所述放大运算后的电信号与所述预设阈值进行比较,并提取与所述电信号对应的时间信息。
可选地,所述调整比较的预设阈值包括:根据噪声信号的强度确定预设阈值,使得所述预设阈值高于所述噪声信号且所述预设阈值与所述噪声信号的最大值之差不大于预设值。
可选地,所述噪声信号包括光噪声信号和电子噪声信号;所述调整所述光敏传感器的增益,或调整比较的预设阈值,以使得噪声信号低于所述预设阈值包括:
获取并比较所述光噪声信号的强度和所述电子噪声信号的强度;
在所述光噪声信号的强度小于所述电子噪声信号的强度时,调整 所述比较的预设阈值,以使得所述噪声信号低于所述预设阈值;
在所述光噪声信号的强度大于所述电子噪声信号的强度时,调整所述光敏传感器的增益,以使得所述噪声信号低于所述预设阈值。
可选地,所述调整所述光敏传感器的增益,或调整比较的预设阈值,以使得噪声信号低于所述预设阈值包括:
获取放大运算后的电信号中噪声信号的强度;
在所述噪声信号的强度小于预设噪声阈值时,调整所述比较的预设阈值,以使得所述噪声信号低于所述预设阈值;
在所述噪声信号的强度大于预设噪声阈值时,调整所述光敏传感器的增益,以使得所述噪声信号低于所述预设阈值。
可选地,所述将所述电信号进行放大运算之后,所述调整所述光敏传感器的增益,或调整比较的预设阈值之前;所述方法还包括:
判断所述噪声信号是否高于所述预设阈值;
在所述噪声信号高于所述预设阈值时,执行所述调整所述光敏传感器的增益,或调整比较的预设阈值的步骤。
可选地,所述判断所述噪声信号是否高于所述预设阈值包括:
获取测距装置生成的初始图像中的随机噪点数,并判断所述随机噪点数是否高于预设噪点数阈值;所述初始图像为所述测距装置根据所述放大运算后的电信号以及调整之前的预设阈值生成的;
若所述随机噪点数高于预设噪点数阈值,则判断所述噪声信号高于所述预设阈值。
可选地,所述判断所述噪声信号是否高于所述预设阈值包括:
检测所述噪声信号在预设频率范围内的功率信息;
若所述功率信息超过所述预设功率阈值,则判断所述噪声信号高于所述预设阈值。
可选地,测距装置包括多个比较器以及多个时间数字转换器,所述比较器与所述时间数字转换器一一对应连接,所述判断所述噪声信号是否高于所述预设阈值包括:
将所述放大运算后的电信号与所述多个比较器的阈值进行比较,并通过所述多个时间数字转换器测量与所述多个比较器对应的时间信息;
计算并比较所述多个比较器中第一阈值的比较器对应的第一时间信息与第二阈值的比较器对应的第二时间信息;其中,所述第一阈值小于所述第二阈值;
若所述第一时间信息与所述第二时间信息之差为随机值,且所述第一时间信息与所述第二时间信息之差大于预设时间阈值,则判断所述噪声信号高于所述第一阈值。
可选地,判断所述噪声信号是否高于所述预设阈值之后,所述调整比较的预设阈值之前,所述方法还包括:选定高于所述噪声信号的阈值中最小的阈值作为所述预设阈值。
可选地,所述将所述放大运算后的电信号与所述预设阈值进行比较,并提取与所述电信号对应的时间信息包括:
将所述放大运算后的电信号与所述多个比较器的阈值分别进行比较,并通过所述多个时间数字转换器测量所述多个比较器对应的时间信息;
根据所述多个时间数字转换器测得的时间信息拟合所述放大运算后的电信号的波形,根据拟合的波形计算所述电信号对应的时间信息。
本发明实施例中测距装置通过比较电路接收经光信号处理得到的电信号,提取所述电信号所触发的预设阈值的时间信息,同时通过环境光传感器获取所述时间信息所在时段内的环境光信号的强度,所述运算电路用于根据所述环境光信号的强度,从所述触发的预设阈值的时间信息中,挑选出至少部分触发的预设阈值的时间信息,以及根据所述挑选出的所述时间信息进行运算。通过程序动态的选择有效的阈值参与计算,实现动态调整阈值的方案,所述方式下可调整阈值的精细程度取决于阈值的数量,当阈值较多时可以实现的级数就越多。
而且,测距装置可根据噪声信号的强度动态调节光敏传感器的增益或比较电路的预设阈值,进而在预设阈值大于噪声信号的前提下尽量减小预设阈值,时间测量的精确度高。在调节光敏传感器的增益时考虑了温度对光敏传感器的增益的影响,实现对APD的增益进行精确控制,从而在噪声和保护之前取得权衡。
本发明还提供了一种光发射装置,包括:电源、激光发射器、储能电路和控制电路,所述储能电路分别与所述电源和所述激光发射器连接,所述储能电路包括至少一个电容;所述控制电路用于在第一时段导通所述电源和所述储能电路,使得所述电源对所述储能电路中的电容进行充电,直至所述电容电压饱和;所述控制电路还用于在第二时段导通所述激光发射器和所述储能电路,使得所述储能电路对所述激光发射器供电,以使所述激光发射器出射光脉冲信号,直至所述电容的输出电流低于所述激光发射器的阈值电流。
进一步地,所述光发射装置还包括升压电路,所述升压电路用于对输入电压进行升压以适应不同所述激光发射器的需求。
进一步地,所述至少一个电容所存储的能量具有预设上限值。
进一步地,所述控制电路包括与所述激光发射器连接的开关电路,以及与所述开关电路连接的驱动电路;所述驱动电路用于在所述第二时段内接收第二驱动信号,以及根据所述第二驱动信号控制所述开关电路导通所述激光发射器和所述储能电路。
进一步地,所述驱动电路还用于在接收所述第一时段内接收第一驱动信号,以及根据所述第一驱动信号控制所述开关电路导通所述电源和所述储能电路。
进一步地,所述光发射装置出射激光脉冲信号。
进一步地,所述激光发射器包括激光二极管;所述激光二极管的第一端与所述储能电路连接,所述激光二极管的第二端与所述开关电路的第一端连接;所述驱动电路与所述开关电路的第二端连接,其中所述驱动电路对所述开关电路进行控制;所述开关电路的第三端接地 连接。
进一步地,所述储能电路包括用于连接所述至少一个电容和所述电源的充电电路,所述电源在所述第一时段通过所述充电电路对所述至少一个电容进行充电。
进一步地,所述充电电路还包括至少一个电阻,所述至少一个电阻的一端连接于所述三极管的第三端,另一端连接于所述电容。
进一步地,所述充电电路包括至少两个电阻,所述至少两个电阻的一端连接于所述三极管的第三端,另一端连接于所述电容。
进一步地,所述电容的一端连接于所述电压校准源和所述充电电路,另一端连接于所述电源。
进一步地,还包括限压电路,用于对所述储能电路两端的电压进行限定,以防止储能电路两端的电压超出预定值。
进一步地,所述限压电路包括二极管,所述限压电路中的二极管的一端连接于所述电源,另一端连接于所述蓄能电路的接地端。
进一步地,所述充电电路进一步包括限流电路,所述限流电路用于保护所述充电电路以防止所述充电电路上的电流超过其额定值。
进一步地,所述限流电路包括电阻,电压校准源和三极管。
进一步地,所述限流电路中的电阻的一端连接于升压电路的输出端,另一端连接于电压校准源。
进一步地,所述三极管第一端连接于升压电路的输出端,第二端连接于所述限流电路的电阻的另一端,第三端连接于所述电容的一端。
进一步地,所述电压校准源的第一端连接于所述限流电路中的电阻和所述三极管的第二端,第二端连接于所述激光发射器的输入端,第三端连接于所述三极管的第三端。
进一步地,所述电源包括两个电源,分别为所述激光发射器和所述储能电路提供能量。
本发明实施例还提供了一种测距装置,包括:第一方面所述的光发射装置,用于依次出射激光脉冲信号;光电转换电路,用于接收所 述光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号;采样电路,用于对来自所述光电转换电路的电信号进行采样,获得采样结果;运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
进一步地,所述光发射装置的数量和所述光电转换电路的数量分别为至少2个;每个所述光电转换电路用于接收来自对应的光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号。
进一步地,所述激光测距装置还包括扫描模块;所述扫描模块用于改变所述激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述光电转换电路。
进一步地,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
进一步地,所述扫描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
本发明实施例还提供了一种移动平台,所述移动平台包括第一方面所述的任一光发射装置以及平台本体,所述测距装置安装在所述平台本体。
进一步地,所述移动平台包括无人飞行器、汽车和遥控车中的至少一种。
本发明提供了一种激光发射装置,包括:包括发射电路、自检电路和控制电路:
所述发射电路包括激光发射器和驱动器,所述激光发射器用于在所述驱动器的驱动下发射激光脉冲信号;
所述自检电路,用于检测所述发射电路发射的激光脉冲信号的发射能量或发射功率;
所述控制电路用于在根据所述自检电路的检测结果确定所述激光脉冲信号的发射能量或发射功率变化时调整所述发射电路的发射功率,使得所述发射电路的发射的激光脉冲信号的功率保持在预置范围内;或者,所述控制电路用于根据所述自检电路的检测结果确定是否关闭所述发射电路。
可选地,所述自检电路包括:
光电转换电路,用于接收所述发射电路发射的激光脉冲信号的部分,并将所述部分激光脉冲信号转换为电脉冲信号;
脉冲展宽电路,用于将所述电脉冲信号进行展宽处理;
采样电路,用于对经过所述展宽处理后的电信号进行采样。
可选地,所述展宽处理后的电信号为电脉冲信号,且所述展宽处理后的电脉冲信号的占空比大于所述展宽处理前的电脉冲信号的占空比的至少3倍。
可选地,所述展宽处理后的电信号为电平信号。
可选地,所述脉冲展宽电路包括RC滤波电路。
可选地,所述RC滤波电路包括:
一阶RC滤波电路,包括第一电阻和第一电容,所述第一电阻一端接收来自光电转换电路的电信号,另一端连接所述第一电容的一端,所述第一电容的另一端接地。
可选地,所述RC滤波电路包括高阶滤波电路。
可选地,所述自检电路还包括:
放大电路,用于对所述RC滤波电路输出的信号进行放大。
可选地,所述放大电路包括:
比例放大电路,包括第一运算放大器及第二电阻、第三电阻;所述第二电阻一端连接所述滤波电路,另一端连接所述第一运算放大器的负输入端;所述第一运算放大器的正输入端连接第一参考电源,输出端连接所述采样电路;所述第三电阻一端连接所述第一运算放大器的负输入端,另一端连接所述第一运算放大器的输入端。
可选地,所述自检电路还包括:
耦合电路,用于对所述光电转换电路和所述放大电路解耦。
可选地,所述耦合电路包括:
第二电容,所述第二电容一端接收来自光电转换电路的电信号,另一端连接所述RC滤波电路,以及第二参考电源。
可选地,所述自检电路包括:
光电转换电路,用于接收所述发射电路发射的激光脉冲信号的部分,并将所述部分激光脉冲信号转换为电脉冲信号;
峰值保持电路,用于保持所述电脉冲信号的峰值;
采样电路,用于对所述峰值保持电路的所保持的电脉冲信号的峰值进行采样。
可选地,所述峰值保持电路包括:
第一二极管,第四电阻和第一储能电路,其中,所述第一二极管的一端接收来自光电转换电路的电信号,所述第一二极管的另一端连接所述第四电阻的一端;所述第四电阻的另一端连接所述第一储能电路的一端,以及向所述采样电路输出信号;所述第一储能电路的另一端接第三参考电源;或
第二二极管,第五电阻和第二储能电路,其中,所述第二二极管的一端接收来自光电转换电路的电信号,所述第二二极管的另一端与所述第五电阻的一端,以及向所述采样电路输出信号;所述第五电阻的另一端连接所述第二储能电路的一端,所述第二储能电路的另一端连接第四参考电源。
可选地,所述自检电路还包括:
第一解耦电路,位于所述光电转换电路和所述峰值保持电路之间,用于对所述光电转换电路和所述峰值保持电路进行解耦。
可选地,所述第一解耦电路包括:
第二运算放大器,所述第二运算放大器的正输入端接收来自光电转换电路的电信号,所述第二运算放大器的负输入端连接所述第二运算放大器的输出端,所述第二运算放大器的输出端连接所述峰值保持电路。
可选地,所述第一解耦电路包括:
第三运算放大器,所述第三运算放大器的正输入端接收所述光电 转换电路的电信号,所述第三运算放大器的负输入端连接所述第二二极管与所述第五电阻连接的一端,所述第三运算放大器的输出端连接所述第二二极管的另一端。
可选地,所述峰值保持电路还包括:
所述第三运算放大器的正输入端还连接第五参考电源。
可选地,所述自检电路包括:
第二解耦电路,连接于所述采样电路和所述峰值保持电路之间,或所述采样电路之后,用于对所述第二解耦电路前后的电路进行解耦。
可选地,所述第二解耦电路包括:
第四运算放大器,第六电阻和第三二极管,其中,所述第四运算放大器的正输入端连接所述峰值保持电路或所述采样电路;所述第四运算放大器的负输入端连接所述第六电阻的一端,以及所述第三二极管的正极;所述第六电阻的另一端连接第六参考电源,所述第三二极管的负极连接所述第四运算放大器的输出端;或
第五运算放大器,所述第五运算放大器的正输入端连接所述峰值保持电路或所述采样电路;所述第五运算放大器的负输入端连接所述第五运算放大器的输出端。
可选地,所述自检电路还包括:复位电路,用于将所述峰值保持电路复位。
可选地,所述复位电路包括:
第一开关,第二开关和反相器,其中,所述开关一端接收所述光电转换电路的电信号,所述第一开关另一端连接于所述峰值保持电路或所述第一解耦电路;所述第二开关连接在所述第一储能电路或第二储能电路所述的两端;第一开关控制信号控制所述第一开关的通断,并经过反相器后生成第二开关控制信号控制所述第二开关的通断,使所述第一开关和第二开关的通断状态相反。
可选地,所述光电转换电路还包括:
第七电阻,所述第七电阻一端连接所述光电二极管的正极,另一端接地;
所述光电二极管的负极接工作电源VCC。
可选地,所述采样电路包括:低速ADC采样电路。
可选地,所述控制电路用于根据所述采样电路的采样电压值调整所述发射电路的发射功率或关闭所述发射电路。
可选地,所述控制电路用于根据所述自检电路的检测结果调整所述发射电路的发射功率,使得所述发射电路的发射的激光脉冲信号的功率保持在预置范围内。
可选地,当所述采样电压值超过预置电压上限时,控制电路减小所述发射电路的增益;和/或,
当所述采样电压值低于预置电压下限时,控制电路增大所述发射电路的增益;和/或,
当所述采样电压值为0或几乎为0时,关闭所述发射电路。
可选地,所述激光发射装置内存储有所述发射电路的发射功率与所述采样电路的采样值的对应关系,所述控制电路用于根据所述对应关系调整所述发射电路的发射功率。
本发明还提供了一种峰值保持电路,包括:
第一二极管,第四电阻和第一储能电路,其中,所述第一二极管的一端接收来自光电转换电路的电信号,所述第一二极管的另一端连接所述第四电阻的一端;所述第四电阻的另一端连接所述第一储能电路的一端,以及向所述采样电路输出信号;所述第一储能电路的另一端接地;或
第二二极管,第五电阻和第二储能电路,其中,所述第二二极管的一端接收来自光电转换电路的电信号,所述第二二极管的另一端与所述第五电阻的一端,以及向所述采样电路输出信号;所述第五电阻的另一端连接所述第二储能电路的一端,所述第二储能电路的另一端连接第四参考电源。
可选地,所述峰值保持电路还包括:
第一解耦电路,位于所述峰值保持电路之前,用于对所述峰值保持电路与所述峰值保持电路之前的电路进行解耦。
可选地,所述第一解耦电路包括:
第二运算放大器,所述第二运算放大器的正输入端接收输入信号, 所述第二运算放大器的负输入端连接所述第二运算放大器的输出端,所述第二运算放大器的输出端连接所述第一二极管的一端或第二二极管的一端。
可选地,所述第一解耦电路包括:
第三运算放大器,所述第三运算放大器的正输入端接收输入信号,所述第三运算放大器的负输入端连接所述第二二极管与所述第五电阻的一端,所述第三运算放大器的输出端连接所述第二二极管的另一端。
可选地,所述峰值保持电路还包括:
所述第三运算放大器的正输入端还连接第五参考电源。
可选地,所述峰值保持电路包括:
第二解耦电路,连接于所述峰值保持电路之后,用于对所述峰值保持电路及其之后的电路进行解耦。
可选地,所述第二解耦电路包括:
第四运算放大器,第六电阻和第三二极管,其中,所述第四运算放大器的正输入端连接所述峰值保持电路;所述第四运算放大器的负输入端连接所述第六电阻的一端,以及所述第三二极管的正极;所述第六电阻的另一端连接第六参考电源,所述第三二极管的负极连接所述第四运算放大器的输出端;或
第五运算放大器,所述第五运算放大器的正输入端连接所述峰值保持电路;所述第五运算放大器的负输入端连接所述第五运算放大器的输出端。
本发明还提供了一种激光测距装置,包括第一方面所述的任一项的激光发射装置。
本发明还提供了一种激光测距装置,包括激光接收装置,所述激光接收装置包括第二方面所述的任一项的峰值保持电路。
本发明还提供了一种激光测距装置,包括:第一方面所述的任一项的激光发射电路,以及包括第二方面所述的峰值保持电路的激光接收装置。
本发明实施例提供了一种一种测距装置,包括:发射电路,用于 出射光脉冲序列;光电转换电路,用于依次接收所述发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号,以及将所述接收的多个光脉冲信号依次转换成电脉冲信号;放大电路,包括运算放大器和钳位电路;所述钳位电路分别与所述运算放大器的输入端和输出端连接,用于依次对所述多个电脉冲信号进行钳位,所述多个电脉冲信号经过钳位后依次输入至所述运算放大器电路进行放大,其中,所述钳位电路用于使得所述多个电脉冲信号的大小位于一定范围内,以防止所述运算放大器电路饱和输出。
本发明实施例提供了一种放大电路,包括:运算放大器电路和钳位电路;
所述钳位电路分别与所述运算放大器的输入端和输出端连接,用于对所述放大电路的输入信号进行钳位,使得所述放大电路的输入信号经过钳位后,其大小在一定范围内波动以防止所述运算放大器电路饱和输出。
可选地,所述钳位电路包括二极管。
可选地,所述二极管是齐纳管或TVS管。
可选地,所述钳位电路还包括分压电阻。
可选地,所述分压电阻的一端连接于参考电压,另一端连接于所述运算放大器电路的输出端。
可选地,所述分压电阻包括至少两个电阻。
可选地,所述分压电阻中的两个电阻串联,所述两个电阻的相连端与所述二极管的一端相连,所述两个电阻中的其中一个电阻的另一端连接于参考电压,所述两个电阻中的另一个电阻的另一端连接至所述运算放大器的输出端。
可选地,所述钳位电路的二极管的一端连接于所述输入信号,另一端连接于所述运算放大器的输出端。
可选地,所述运算放大器电路为反相放大器电路或正向放大器电路。
可选地,所述放大电路还包括反馈电路,所述反馈电路用于对所 述运算放大器电路的放大倍数进行调整。
可选地,所述反馈电路包括电阻、二极管、电容中的至少一项。
可选地,所述反馈电路的任一个二极管或任一个电容与所述反馈电路的若干个电阻并联连接。
可选地,所述反馈电路中的若干个电阻之间串联连接,以减小所述反馈电路中电阻上的寄生参数,从而实现高带宽。
可选地,所述反馈电路中包括三个电阻,所述三个电阻串联连接,其中,所述三个电阻中的第一个电阻与电容并联连接,所述三个电阻中的第二个电阻与二极管并联连接,所述三个电阻中的第三个电阻与二极管并联连接。
相较于现有技术,本发明提供的放大电路可以通过所述钳位电路用于对所述放大电路的输入信号进行钳位,使得所述放大电路的输入信号经过钳位后,其大小在一定范围内波动以防止所述运算放大器电路饱和输出。
本发明实施例提供了一种测距装置,包括:
发射电路,用于出射光脉冲序列;
光电转换电路,用于依次接收所述发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号,以及将所述接收的多个光脉冲信号依次转换成电脉冲信号;
上述任一项所述的放大电路,用于依次接收来自所述光电转换电路的多个电脉冲信号;
其中,所述钳位电路用于对所述多个电脉冲信号进行依次钳位,所述多个电脉冲信号经过钳位后依次输入至所述运算放大器电路进行放大,其中,所述钳位电路用于使得所述多个电脉冲信号的大小位于一定范围内,以防止所述运算放大器电路饱和输出。
可选地,所述测距装置还包括:
采样电路,用于对来自所述放大电路的电脉冲信号进行采样,获 得采样结果;
运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
可选地,所述发射电路、光电转换电路和所述放大电路中,每个电路的数量为至少2个;
所述至少2个发射电路和所述至少2个光电转换电路一一对应,每个光电转换电路用于依次接收对应的发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号;
所述至少2个光电转换电路和所述至少2个放大电路一一对应,每个放大电路用于依次接收来自对应的光电转换电路的电脉冲信号。
可选地,所述测距装置还包括扫描模块;
所述扫描模块用于改变所述激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述光电转换电路。
可选地,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
可选地,所述扫描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;
来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
本发明实施例还提供了一种移动平台,所述移动平台包括上述的任一测距装置以及平台本体,所述测距装置安装在所述平台本体。
可选地,所述移动平台包括无人飞行器、汽车和机器人中的至少一种。
通过该放大电路可以实现放大电路的钳位电路的参考电压根据输入信号的能量进行动态调整,起到更强的钳制作用,避免运放饱和。其应用的测距装置以及移动平台由于采用了该放大电路也可以实现 更强的钳制作用,避免运放饱和。
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种测距装置的示意性框架图;
图2A是本发明实施例提供的另一种测距装置的示意性框架图;
图2B是本发明实施例提供的又一种测距装置的示意性框架图;
图3是本发明实施例提供的第一种避免噪声信号触发比较电路的原理示意图;
图4是本发明实施例提供的第二种避免噪声信号触发比较电路的原理示意图;
图5是本发明实施例提供的一种时间提取方法的原理示意图;
图6是本发明实施例提供的调整预设阈值的第一种实现方式的电路示意图;
图7是本发明实施例提供的调整预设阈值的第二种种实现方式的电路示意图;
图8是本发明实施例提供的又一种测距装置的结构示意图;
图9是本发明实施例提供的一种雪崩光电二极管APD增益的调整电路的电路示意图;
图10是本发明实施例提供的一种基于测距装置的时间测量方法的流程示意图;
图11是本发明实施例提供的另一种基于测距装置的时间测量方法的流程示意图;
图12是本发明本发明实施例提供的又一种时间提取方法的原理示意图;
图13是本发明本发明实施例提供的再一种测距装置的示意性框 架图;
图14是现有技术中提供的一种激光发射装置连接方式的示意图;
图15A是本发明实施例提供的一种激光发射装置的第一结构示意图;
图15B是本发明实施例提供的一种激光发射装置的第一结构示意图;
图16是本发明实施例提供的一种激光发射装置的第二结构示意图;
图17是本发明实施例提供的一种激光发射装置的第三结构示意图;
图18是本发明实施例提供的一种充电电路的第一结构示意图;
图19是本发明实施例提供的一种充电电路的第二结构示意图;
图20是本发明实施例提供的一种储能电路的部分结构示意图;
图21是本发明实施例提供的第一种元件失效或短路的接线示意图;
图22是本发明实施例提供的第二种元件失效或短路的接线示意图;
图23是本发明实施例提供的第三种元件失效或短路的接线示意图;
图24是本发明实施例提供的第四种元件失效或短路的接线示意图;
图25是本发明实施例提供的第五种元件失效或短路的接线示意 图;
图26是本发明实施例提供的第六种元件失效或短路的接线示意图;
图27是本发明实施例提供的第七种元件失效或短路的接线示意图;
图28是本发明实施例提供的第八种元件失效或短路的接线示意图;
图29是本发明实施例提供的一种激光发射装置的示意性框图;
图30是本发明实施例提供的一种自检电路的接线示意图;
图31是本发明实施例提供的一种自检电路中滤波前后的波形示意图;
图32是本发明实施例提供的一种自检电路中放大前后的波形示意图;
图33是本发明实施例提供的一种峰值保持电路的第一接线示意图;
图34是本发明实施例提供的一种峰值保持电路的第二接线示意图;
图35是本发明实施例提供的运算放大器的一种正、负输入端的信号波形;
图36是本发明实施例提供的一种放大电路的示意性框架图;
图37是本发明实施例提供的一种放大电路的第一接线示意图;
图38是本发明实施例提供的一种放大电路的第二接线示意图;
图39是本发明实施例提供的一种放大电路的第三接线示意图;
图40是本发明实施例提供的一种放大电路的第四接线示意图;
图41是本发明实施例提供的第一钳位模块的钳位前后的效果示意图;
图42是本发明实施例提供的一种放大电路的第五接线示意图;
图43是本发明实施例提供的一种放大电路的第六接线示意图;
图44是本发明实施例提供的一种放大电路的第七接线示意图;
图45是本发明实施例提供的第三钳位模块的钳位前后的效果示意图;
图46是本发明实施例提供的一种放大电路的第八接线示意图;
图47是本发明实施例提供的一种放大电路的第九接线示意图。
下面将结合本发明实施例中的附图,对本发明实施例的技术方中案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1是本发明实施例提供的一种测距装置的示意性框架图。该测距装置可以包括:至少包括环境光传感器150、比较电路130和运算电路160等。其中,在所述比较电路130中并行设置有多个预设阈值。
可选地,所述测距装置还包括光电转换电路110,光电转换电路110的一端与比较电路130电连接;比较器电路的输出端与运算电路 的一端电连接,运算电路的另一端与环境传感器电连接。
其中,所述比较电路,用于接收经光信号处理得到的电信号,提取所述电信号所触发的预设阈值的时间信息;
所述环境光传感器,用于获取所述时间信息所在时段内的环境光信号的强度;
所述运算电路用于根据所述环境光信号的强度,从所述触发的预设阈值的时间信息中,挑选出至少部分触发的预设阈值的时间信息,以及根据所述挑选出的所述时间信息进行运算。
具体地,所述运算电路用于根据所述比较电路输出的时间信息确定所述物体与所述测距装置之间的距离。
可选地,在所述比较电路中并行设置有三个或三个以上的预设阈值,以在后续的步骤中所述比较电路在接收经光信号处理得到的电信号之后将所述电信号分别与所述多个预设阈值中的至少一部分进行比较,进而提取所述电信号所触发的预设阈值的时间信息。
其中,所述运算电路具体用于将所述环境光信号的强度作为判断提取的所述时间信息是否为有效光脉冲信号对应的时间信息的依据,来选取用于进行运算的预设阈值。
在本发明的一示例中,根据环境光信号的强度来确定要选择进行比较的预设阈值,例如当检测到外部的环境光比较弱时选取全部的预设阈值进行比较然后提取所述电信号所触发的预设阈值的时间信息,当检测到外部的环境光比较强时关闭部分数值较小的预设阈值,不再进行比较或不参与下一步的运算。在外部光线较强时,底部的阈值会触发一定的噪声,但是这些数据不被计算为信号,最终雷达输出的点云将不会包含噪点。
可选地,所述运算电路具体用于比较所述电信号所触发的最大预设阈值与所述环境光信号的强度对应的最大预设阈值的大小;
若所述电信号所触发的最大预设阈值不大于所述环境光信号的强度对应的最大预设阈值,则该光信号为噪声信号;和/或,
若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则该光信号包括有效光脉冲信号。
进一步,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则所述运算电路用于至少挑选比所述环境光信号的强度对应的最大预设阈值大的预设阈值被触发的时间信息。
作为示例,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则可以将全部的预设阈值与所述电信号进行比较,提取相应时间信息。其中,提取的全部时间信息中,比所述环境光信号的强度对应的最大预设阈值的大的预设阈值产生的时间信息为有效电脉冲信号产生的时间信息,比所述环境光信号的强度对应的最大预设阈值的小的预设阈值产生的时间信息,为有效电脉冲信号和环境噪声叠加的信号触发预设阈值所产生的时间信息。
作为示例,当所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,为了提高时间信息提取效率,所述运算电路用于将比所述环境光信号的强度对应的最大预设阈值小的预设阈值丢弃,不再与所述电信号进行比较。即将有效电脉冲信号产生的时间信息和环境噪声产生的时间信息的重叠的数据丢弃,不再输出该时间信息。
在后续的运算中,所述运算电路用于挑选全部的时间信息进行运算,或者仅挑选比所述环境光信号的强度对应的最大预设阈值大的预设阈值被触发的时间信息。
进一步,判断时间信息为有效电脉冲信号还是噪声的另一个方法为:所述运算电路具体用于比较所述比较电路提取的时间信息的数目以及与所述环境光信号的强度所能触发的阈值的数目;
若所述比较电路提取的时间信息的数目不大于所述环境光信号产生的时间信息的数目,则该光信号为噪声信号;和/或,
若所述比较电路提取的时间信息的数目大于所述环境光信号产 生的时间信息的数目,则该光信号包括有效光脉冲信号。
本发明一实施例中,如图2A所示,所述测距装置还包括控制电路140,用于根据所述环境光传感器输出的环境光信号的强度将较小的部分预设阈值关闭。实现方式至少包括以下两种方式:
第一,如果比较电路包括比较器和TDC,即可通过关闭掉较小的部分预设阈值对应的比较器和TDC,从而实现部分预设阈值关闭。
第二,如果比较电路包括包括ADC,即可通过关闭掉较小的部分预设阈值对应的ADC,从而实现部分预设阈值关闭。
本发明一实施例中,比较电路130包括至少一个比较器,请参阅图2B,图2B是本发明实施例提供的另一种测距装置的示意性框架图。如图2B所示,比较器1301的第一输入端用于接收从放大电路120输入的电信号,也即放大运算后的电信号,比较器1301的第二输入端用于接收预设阈值,比较器1301的输出端用于输出比较的结果,其中,比较的结果中包含与电信号对应的时间信息。可以理解,比较器1301的第二输入端接收的预设阈值可以是强度为预设阈值的电信号。比较的结果可以是放大运算后的电信号对应的数字信号。
可选地,比较电路130还包括时间数字转换器(Time-to-Digital Converter,TDC)1302,时间数字转换器1302与比较器1301的输出端电连接,用于根据比较器1301输出的比较的结果,提取与电信号对应的时间信息。
作为示例,采用比较器实现信号采集时,为了获取更多的信息,可以采用多阈值比较方式。多阈值比较器采集脉冲信号,是指采用多路比较器,各比较器可以采用不同的电压阈值,以获得脉冲信号更多信息。
所述比较电路包括多个比较器,所述比较器的第一输入端用于接收所述电脉冲信号,所述比较器的第二输入端用于接收所述预设阈值,所述比较器的输出端用于输出比较的结果,其中,所述比较的结果中包含与所述电信号对应的时间信息。
可选地,所述比较电路还包括时间数字转换器,所述时间数字转换器与所述比较器的输出端电连接,用于根据所述比较器输出的比较的结果,提取与所述电信号对应的时间信息。
所述比较电路包括多个比较器以及多个时间数字转换器,所述比较器与所述时间数字转换器一一对应连接,所述多个比较器的输出端分别与所述多个比较器一一对应的时间数字转换器电连接。需要说明的是,一个所述时间数字转换器还可以对应两个及两个以上的比较器,用于根据两个及两个以上所述比较器输出的比较的结果,分别进行提取与所述电信号对应的时间信息。
在本发明的一具体实施方式中,以四阈值比较器采集电路为例,如图12所示,四个比较器分别设置不同的阈值,依次为Vf01、Vf02、Vf03和Vf04。四个比较器的输出的方波信号分别连接到四个TDC测量单元上,以获取脉冲信号对应的阈值时间信息。
可选地,所述测距装置还包括光电转换电路110,所述光电转换电路,用于接收光脉冲信号,以及将所述光脉冲信号转换为电信号、将所述电信号输出。可选地,所述光电转换电路110可选用光敏传感器,但是并不局限于光敏传感器,其他可以实现本发明所述功能的元件均可以用于该测距装置,在此不再进行一一列举。
所述比较电路用于接收来自所述光电转换电路的电信号。其中,比较电路和光电转换电路可以直接相连,或者两者之间还设有放大电路,例如设置了一级放大电路和二级放大电路,光电转换电路输出的电信号经过两级放大后再输入到比较电路中。其中,放大电路可能和比较电路直接连接,也可能放大电路和比较电路之间还设置有其他处理电路,不做限制。
例如,光电转换电路110的一端与放大电路120的第一端电连接,光电转换电路110的另一端与控制电路140电连接;放大电路120的第二端分别与比较电路130与控制电路140电连接;控制电路140与 比较电路130电连接。放大电路120用于,将从光电转换电路110输入的电信号放大运算,并将放大运算后的电信号输出到比较电路130。
在本发明的一示例中,控制电路140还用于调整光电转换电路110的增益,或调整比较电路130的预设阈值,以使得噪声信号低于预设阈值。
可以理解,电信号中包括噪声,进而放大运算后的电信号中也包括噪声信号。上述测距装置通过调整光电转换电路110的增益或调整比较电路130的预设阈值,避免在噪声信号大于预设阈值时,噪声信号触发比较电路所引起的测量到的时间信息的失真。
可以通过两种方式来避免噪声信号触发比较电路130。方法一:通过调节比较电路的预设阈值,即比较器的预设阈值。方法二:通过调整光敏传感器(比如APD)的增益来调节电信号的强度,使得从放大电路输入的电信号,即放大运算后的电信号中噪声信号的强度低于预设阈值。
在一些实现方式中,在“运算电路根据所述环境光信号的强度,从所述触发的预设阈值的时间信息中,挑选出至少部分触发的预设阈值的时间信息,以及根据所述挑选出的所述时间信息进行运算”的情况下,就无需采用方法一来调整比较电路的预设阈值。
下面对方法一和方法二进行具体解释。
方法一
请参阅图3,图3是本发明实施例提供的第一种避免噪声信号触发比较电路的原理示意图。输入到比较器第一输入端的电信号310包括电脉冲信号U1以及噪声信号U2,当预设阈值为阈值V1时,噪声信号的强度超过阈值V1,噪声信号触发比较器输出高电平信号,导致比较器输出信号的失真,进一步导致提取的时间信息的错误;可以增大预设阈值,如将该预设阈值调整为阈值V2,噪声信号的强度小 于阈值V1,进而避免噪声信号U2触发比较器。
本发明一实施例中,在第一种避免噪声信号触发到预设阈值方法中,控制电路140还用于:根据噪声信号的强度调节预设阈值,使得预设阈值小于噪声信号的强度,可以实现在宽动态光脉冲信号下,根据放大运算后的电信号中噪声信号的强度动态调节比较电路的预设阈值。
请参阅图5,图5是本发明实施例提供的一种时间提取方法的原理示意图。如图5,所示,输入比较电路的电信号510与预设阈值V1进行比较,获得如虚线所示的第一方波信号520,第一方波信号520的跳变沿的时间T1可以认为是电信号510穿越比较器时的时间。同理,输入比较电路的电信号510与预设阈值V2进行比较,获得如虚线所示的第二方波信号530,第二方波信号530的跳变沿的时间T2可以认为是电信号510穿越比较器时的时间,而T0是电信号510穿越比较器时的真实时间,可见,预设阈值越小,跳变沿时间更接近放大运算后的电信号穿越比较器时的真实时间。
可选地,控制电路140还用于:根据噪声信号的强度确定预设阈值,使得预设阈值高于噪声信号且预设阈值与噪声信号的最大值之差不大于预设值,比如0.1V、0.2A等,实现测距装置根据噪声信号的强度确定比较电路130的最合适的预设阈值,在预设阈值大于噪声信号的前提下尽量减小预设阈值,使得比较电路130提取的时间信息更接近从放大电路输入的电信号穿越比较电路130时的真实时间,避免信号幅度的变化对时间信息的采集带来的误差,时间测量的精确度高。
本发明一实施例中,调整预设阈值的第一种实现方式可以参阅图6,图6是本发明实施例提供的调整预设阈值的第一种实现方式的电路示意图。测距装置还可以包括数模转换器150,如图6所示,控制电路140可以通过数模转换器150与比较电路130的第二输入端连接,并通过控制数模转换器150的输出电压的大小来调整比较电路的预设阈值。
本发明一实施例中,调整预设阈值的第二种实现方式可以是:测距装置还可以包括比较阈值调整电路,比较阈值调整电路包括多个电阻,多个电阻的一端连接至比较器的第二输入端,多个电压信号输入到多个电阻的另一端,用于通过多个电阻向比较器的第二输入端提供预设阈值,通过调整多个电阻的组成结构,调整输入到比较电路的第二输入端的预设阈值。
例如,请参阅图7,图7是本发明实施例提供的调整预设阈值的第二种实现方式的电路示意图。该比较阈值调整电路160包括多个电阻,比如第一电阻R1、第二电阻R2、第三电阻R3等。其中,第一电阻R1、第二电阻R2、第三电阻R3等第一端共同连接比较器1301的第二输入端,第一电阻R1、第二电阻R2、第三电阻R3等另一端分别与控制电路140的多个同一输入输出接口1601一一对应连接,控制电路140通过控制多个同一输入输出接口1601输出电平的高低来调整比较电路130的预设阈值。
方法二:
请参阅图4,图4是本发明实施例提供的第二种避免噪声信号触发比较电路的原理示意图。实线所示的电信号410为在调整光敏传感器的增益前输入到比较器第一输入端的电信号,电信号410包括电脉冲信号U1以及噪声信号U2,当预设阈值为阈值V1时,噪声信号的强度超过阈值V1,噪声信号触发比较器输出高电平信号,导致比较器输出信号的失真。此时,可以降低光敏传感器的增益,光敏传感器的增益降低后,调整光敏传感器的增益后输入到比较器第一输入端的电信号(即虚线所示的电信号420)相对于电信号410同比例降低,电信号420中电脉冲信号U1’以及噪声信号U2’的强度降低,使得噪声信号U2’小于预设阈值V1,进而避免噪声信号U2’触发比较器。
请参阅图8,图8是本发明实施例提供的又一种测距装置的结构示意图。测距装置还可以包括电源管理电路170,电源管理电路170 与控制电路140及光电转换电路110电连接,电源管理电路170用于为光电转换电路110提供工作电压,控制电路140通过控制电源管理电路170改变工作电压来调整光电转换电路110的增益。
例如,请参阅图图9,图9是本发明实施例提供的一种雪崩光电二极管APD增益的调整电路的电路示意图。光电转换电路110包括雪崩光电二极管1101,雪崩光电二极管1101的阴极与电源管理电路170电连接,用于从电源管理电路170获取工作电压,雪崩光电二极管1101的阳极与放大电路的输入端连接,雪崩光电二极管1101用于接收光脉冲信号,以及将光脉冲信号转换为电信号,并将电信号输出给放大电路120。
可以理解,工作电压越大APD的增益越大,APD获取的光光脉冲信号和噪声信号越大。可选地,控制电路140还可以根据噪声信号的强度确定光电转换电路110的工作电压。可以理解,大的噪声信号对应较小的工作电压,相反,第一噪声信号对应较高的工作电压。
需要说明的是,测距装置可以选择采用方法一或方法二来避免噪声信号触发到预设阈值。可以理解,该噪声信号可以包括电子噪声信号以及光噪声信号。
本发明实施例中,控制电路140还用于获取并比较光噪声信号的强度和电子噪声信号的强度,并在光噪声信号的强度小于电子噪声信号的强度时,即电子噪声占主导时,通过上述方法一,即调整比较电路130的预设阈值,以使得噪声信号低于预设阈值;在光噪声信号的强度大于电子噪声信号的强度时,即光噪声占主导时,通过上述方法二,即调整光电转换电路110的增益,以使得噪声信号低于预设阈值。
可以理解,对于既定的电子设备,电子学噪声的强度比较稳定,而光噪声的强度受环境影响较大,环境中光强度越高,光噪声的强度越高。因此可以测定噪声信号的强度来表征光噪声的强度。
其中,对于TDC测量方案希望APD的增益是稳定的或者APD的增益是已知的,但是APD的增益同时与温度有关,也存在较大的 个体差异。为了保持增益稳定可以对APD进行校准,该实施例中所述测距装置中所述控制器用于获取当前温度值,以及根据所述当前温度值调整所述光敏传感器的增益。
可选地,控制器还用于:根据噪声信号的强度确定预设阈值,使得所述预设阈值高于所述噪声信号且所述预设阈值与所述噪声信号的最大值之差不大于预设值。
由于APD的增益与温度有关,为了准确的控制APD增益,首先在不同温度、不同电压下测量增益与温度、电压的值,通过计算将会得到三者的曲线。在实际使用过程中,与上述实施例不同之处还在于,所述控制器内预存有在不同温度下所述光敏传感器的电压与增益的对应关系;控制器首先读取APD当前的温度值,并通过校准曲线计算得到不同增益下的电压值。然后通过对高压电源的控制实现对APD的增益进行精确控制,从而在噪声和保护之前取得权衡。
相应地,本发明实施例中,还提供一种基于测距装置的时间测量方法,如图11所示,包括:
步骤S2010:接收光脉冲信号,以及将所述光脉冲信号转换为电信号输出;
步骤S2020:将输入的电信号与预设阈值进行比较,提取与所述电信号对应的时间信息;
步骤S2030:获取当前温度值,以及根据所述当前温度值调整所述光敏传感器的增益。
在该实施例中,在调节光敏传感器的增益时考虑了温度对光敏传感器的增益的影响,实现对APD的增益进行精确控制,从而在噪声和保护之前取得权衡。
本发明实施例中,控制电路140也可以在检测到噪声信号触发比较电路130时,触发通过上述方法一对的预设阈值进行调整或通过上述方法二对的光电转换电路110的增益进行调整。
其中,控制电路140还可以用于判断噪声信号是否高于预设阈值,在噪声信号高于预设阈值时,触发控制器调整光电转换电路110的增益,或调整比较电路130的预设阈值;否者,控制电路140不进行光电转换电路110的增益或比较电路130的预设阈值的调整。
控制电路140判断噪声信号是否高于预设阈值的第一种实施方式可以是:控制电路140获取测距装置生成的初始图像中的随机噪点数,并判断随机噪点数是否高于预设噪点数阈值,初始图像为控制电路140根据从放大电路输入的电信号和调整前的预设阈值生成初始图像,若随机噪点数高于预设噪点数阈值,则判断噪声信号高于预设阈值;否则判断噪声信号低于预设阈值。
控制电路140判断噪声信号是否高于预设阈值的第二种实施方式可以是:测距装置还包括均方根检波器,控制电路140通过均方根检波器与放大电路120电连接,用于检测噪声信号在预设频率范围内的功率信息,并将功率信息输出给控制电路140,控制电路140还用于:判断均方根检波器输入的功率信息是否超过预设功率阈值,若功率信息超过预设功率阈值,则判断噪声信号高于预设阈值;否则判断噪声信号低于预设阈值。
控制电路140判断噪声信号是否高于预设阈值的第三种实施方式可以是:比较电路130包括多个比较器与多个TDC,其中TDC与比较器一一对应连接,多个比较器的第一输入端用于接收从放大电路120输入的电信号,多个比较器的第二输入端控制电路140电连接,分别用于接收阈值;多个比较器的输出端分别通过TDC与控制器(控制电路140可包括一个或一个以上的控制器)电连接,比较器向TDC输出比较结果,TDC根据比较结果测量时间信息以及向控制器输出时间信息;控制电路140还用于:计算并比较所述多个比较器中第一阈值的比较器对应的第一时间信息与第二阈值的比较器对应的第二时间信息;其中,所述第一阈值小于所述第二阈值;若所述第一时间信息与所述第二时间信息之差为随机值,且所述第一时间信息与所述 第二时间信息之差大于预设时间阈值,则判断所述噪声信号高于所述第一阈值。
可选地,在测距装置包括多个比较器以及多个TDC时,控制电路140还用于:选定高于噪声信号的阈值中最小的阈值作为预设阈值,进而,获取高于噪声信号的阈值中最小的阈值与从放大电路输入的电信号通过比较电路输出的时间信息,进而在预设阈值大于噪声信号的前提下尽量减小预设阈值,使得比较电路130提取的时间信息更接近从放大电路120输入的电信号穿越比较电路130时的真实时间,减少信号幅度的变化对时间信息的采集带来的误差,时间测量的精确度高
可选地,在测距装置包括多个比较器以及多个TDC时,多个比较器的阈值可以相同,控制电路140还用于:根据多个TDC测得的时间信息计算电信号对应的时间信息,比如,取该TDC测得的时间信息的平均值作为电信号对应的时间信息,进而对电信号对应的时间信息进行校准,使得测量的时间精度更高。
可选地,在测距装置包括多个比较器以及多个TDC时,多个比较器的阈值可以不同,控制器还用于:根据多个TDC测得的时间信息拟合输入比较器的电信号的波形,根据该拟合的波形计算该电信号对应的时间信息,可参见图5,T0可以认为是电信号对应时间信息,进而更加精确的测量时间。
需要说明的是,光脉冲信号可以由其他设备发射,也可以是本发明的测距装置发射的。在光脉冲信号由其他设备(比如测距装置绑定的激光器)时,该激光器可以与测距装置进行通信,以使得测距装置可以获知激光发射器的发射功率、发射激光的波长、发射方向等控制参数中的至少一种,并基于该控制参数而获知与障碍物的方向等信息。
与上述技术方案一致的,请参阅图10,图10是本发明实施例提供的一种基于测距装置的时间测量方法的流程示意图。需要注意的是,虽然本方法实施例公开的信号处理方法能够基于图1、图2或图8所 示的测距装置实现,但上述示例测距装置不构成对本发明方法实施例公开的信号处理方法的唯一限定。该信号处理方法可以包括如下步骤:
步骤S1010:在所述测距装置中并行设置有多个预设阈值;
步骤S1020:接收经光信号处理得到的电信号,提取所述电信号所触发的预设阈值的时间信息;
步骤S1030:获取所述时间信息所在时段内的环境光信号的强度;
步骤S1040:根据所述环境光信号的强度,从所述触发的预设阈值的时间信息中,挑选出至少部分触发的预设阈值的时间信息,以及根据所述挑选出的所述时间信息进行运算。
在所述步骤S1040中,所述运算至少包括根据所述比较电路输出的时间信息确定所述物体与所述测距装置之间的距离。
可以理解,步骤S1040之后,测距装置还可以包含其他步骤,本发明不作限制。
在所述步骤S1010中,并行设置有三个或三个以上的预设阈值,以在后续的步骤中比较电路在接收经光信号处理得到的电信号之后将所述电信号分别与所述多个预设阈值中的至少一部分进行比较,进而提取所述电信号所触发的预设阈值的时间信息。
在所述步骤S1030中,将所述环境光信号的强度作为判断提取的所述时间信息是否为有效光脉冲信号对应的时间信息的依据,来选取用于进行运算的预设阈值。
在步骤S1020中,所述方法包括:比较所述电信号所触发的最大预设阈值与所述环境光信号的强度对应的最大预设阈值的大小;
若所述电信号所触发的最大预设阈值不大于所述环境光信号的强度对应的最大预设阈值,则确定所述光信号为噪声信号;和/或,
若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则确定所述光信号包括有效光脉冲信号。
其中,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则所述运算电路用于至少挑选比所述环 境光信号的强度对应的最大预设阈值大的预设阈值被触发的时间信息。
若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则所述运算电路用于将比所述环境光信号的强度对应的最大预设阈值小的预设阈值被触发的时间信息丢弃。
在本发明的一示例中,根据环境光信号的强度来确定要选择进行比较的预设阈值,例如当检测到外部的环境光比较弱时选取全部的预设阈值进行比较然后提取所述电信号所触发的预设阈值的时间信息,当检测到外部的环境光比较强时关闭部分数值较小的预设阈值,不再进行比较或不参与下一步的运算。在外部光线较强时,底部的阈值会触发一定的噪声,但是这些数据不被计算为信号,最终雷达输出的点云将不会包含噪点。
进一步,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则所述运算电路用于至少挑选比所述环境光信号的强度对应的最大预设阈值大的预设阈值被触发的时间信息
作为示例,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则可以将全部的预设阈值与所述电信号进行比较,提取相应时间信息。其中,提取的全部时间信息中,比所述环境光信号的强度对应的最大预设阈值的大的预设阈值产生的时间信息为有效电脉冲信号产生的时间信息,比所述环境光信号的强度对应的最大预设阈值的小的预设阈值产生的时间信息为有效电脉冲信号产生的时间信息和环境噪声产生的时间信息的重叠。
作为示例,当所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,为了提高时间信息提取效率,所述比较电路用于将比所述环境光信号的强度对应的最大预设阈值小的预设阈值丢弃,不再与所述电信号进行比较。即将有效电脉冲信号产生的时间信息和环境噪声产生的时间信息的重叠的数据丢弃,不再输 出该时间信息。
进一步,判断时间信息为有效电脉冲信号还是噪声的另一个方法为:所述运算电路具体用于比较所述比较电路提取的时间信息的数目以及与所述环境光信号的强度所能触发的阈值的数目;
若所述比较电路提取的时间信息的数目不大于所述环境光信号产生的时间信息的数目,则该光信号为噪声信号;和/或,
若所述比较电路提取的时间信息的数目大于所述环境光信号产生的时间信息的数目,则该光信号包括有效光脉冲信号。
通过程序动态的选择有效的阈值参与计算,实现动态调整阈值的方案,所述方式下可调整阈值的精细程度取决于阈值的数量,当阈值较多时可以实现的级数就越多,可以进一步提高时间信息提取效率。
本发明实施例中,步骤S1030可以包括:测距装置获取并比较光噪声信号的强度和电子噪声信号的强度;在光噪声信号的强度小于电子噪声信号的强度时,测距装置调整比较的预设阈值,以使得噪声信号低于预设阈值;在光噪声信号的强度大于电子噪声信号的强度时,测距装置调整光敏传感器的增益,以使得噪声信号低于预设阈值。
本发明实施例中,步骤S1030可以包括:测距装置获取放大运算后的电信号中噪声信号的强度;在噪声信号的强度小于预设噪声阈值时,测距装置调整比较的预设阈值,以使得噪声信号低于预设阈值;在噪声信号的强度大于预设噪声阈值时,测距装置调整光敏传感器的增益,以使得噪声信号低于预设阈值。
本发明实施例中,步骤S1020之后,步骤S1030之前;方法还包括:测距装置判断噪声信号是否高于预设阈值;在噪声信号高于预设阈值时,测距装置执行步骤S1030;否者,测距装置不进行光敏传感器的增益或较电路的预设阈值的调整,执行步骤S1040。
其中,测距装置判断噪声信号是否高于预设阈值的第一种实施方式可以是:测距装置获取测距装置生成的初始图像中的随机噪点数,并判断随机噪点数是否高于预设噪点数阈值,该初始图像为测距装置 根据放大运算后的电信号以及调整之前的预设阈值生成的,若随机噪点数高于预设噪点数阈值,则判断噪声信号高于预设阈值,测距装置可以执行步骤S1030;否者,测距装置不进行光敏传感器的增益或较电路的预设阈值的调整,执行步骤S1040。
测距装置判断噪声信号是否高于预设阈值的第二种实施方式可以是:测距装置检测噪声信号在预设频率范围内的功率信息,若功率信息超过预设功率阈值,则判断噪声信号高于预设阈值,测距装置可以执行步骤S1030,否则,测距装置不进行光敏传感器的增益或较电路的预设阈值的调整,执行步骤S1040。
测距装置判断噪声信号是否高于预设阈值的第三种实施方式可以是:测距装置可以包括多个比较器以及多个TDC,其中TDC与比较器一一对应连接,测距装置将放大运算后的电信号与多个比较器的阈值进行比较,并提取多个TDC测得的时间信息,计算并比较所述多个比较器中第一阈值的比较器对应的第一时间信息与第二阈值的比较器对应的第二时间信息;其中,所述第一阈值小于所述第二阈值;若所述第一时间信息与所述第二时间信息之差为随机值,且所述第一时间信息与所述第二时间信息之差大于预设时间阈值,则判断所述噪声信号高于所述第一阈值。测距装置可以执行步骤S1030,否则,测距装置不进行光敏传感器的增益或较电路的预设阈值的调整,执行步骤S1040。
可选地,判断噪声信号是否高于预设阈值之后,调整比较的预设阈值之前,该方法还包括:选定高于噪声信号中最小的阈值作为预设阈值,进而,获取高于噪声信号中最小的阈值与放大运算后的电信号通过比较电路输出的时间信息,进而在预设阈值大于噪声信号的前提下尽量减小预设阈值,使得通过比较算法提取的时间信息更接近放大运算后的电信号获取的真实时间,避免信号幅度的变化对时间信息的采集带来的误差,时间测量的精确度高。
可选地,当测距装置包括多个比较器以及多个TDC,且TDC与 比较器一一对应连接时,多个比较器的阈值可以相同,步骤S1040可以包括:测距装置将放大运算后的电信号与多个比较器的阈值进行比较,并提取多个TDC测得的时间信息(比如,t1、t2、t3、t4、t5);根据该多个TDC测得的时间信息计算电信号对应的时间信息,计算的方法可以是取t1、t2、t3、t4、t5的平均值作为电信号对应的时间信息。
可选地,当测距装置包括多个比较器以及多个TDC,且TDC与比较器一一对应连接时,多个比较器的阈值可以不同,步骤S1040可以包括:测距装置将放大运算后的电信号与多个比较器的阈值分别进行比较,并通过所述多个TDC测量所述多个比较器对应的时间信息,比如,(v1,t1)、(v2,t3)、(v3,t3)、(v4,t4)、(v5,t5),进而根据多个TDC测得的时间信息拟合放大运算后的电信号的波形,根据该拟合的波形计算电信号对应的时间信息,可参见图5,T0可以认为是电信号对应时间信息。
上文中提到,比较电路之前可以设置有放大电路,放大电路对电信号进行放大之后再输入到比较电路中。实际应用中,放大电路的结构可以有多种。
在一些电子设备中,如激光雷达往往会涉及对信号采集以及对采集的信号进行放大处理,然而激光雷达采集的信号的能量通常具有较宽的范围,即:当障碍物距离激光雷达较近时,激光雷达通过接收管获取到的信号的能量较大;当障碍物距离激光雷达较远时,通过接收管获取到的信号的能量较小。当放大电路输入的电信号过大时,可能造成放大电路的运放饱和,饱和会造成输出信号的失真,进而影响激光雷达对距离的测量;而且,饱和后激光雷达恢复到正常需要一定的时间,使得激光雷达不能连续响应而产生测量盲区。本发明实施例中还提供一些放大电路,可以解决上述提到的问题。
请参阅图36,图36是本发明实施例提供的一种放大电路的示意性框架图。如图36所示,该放大电路可以包括:运算放大器模块21 和调整模块22;所述调整模块22位于所述运算放大器模块21的前级电路、后级电路或反馈电路中的至少一处,用于对所述放大电路的输入信号的放大倍数进行调整,使得所述放大电路以调整后的放大倍数对所述输入信号的能量进行放大后输出。
可以理解,放大电路的放大倍数等于放大电路的输出信号与放大电路的输入信号的比值。
可以理解,所述调整模块22对所述放大倍数的调整,使得当所述放大电路的输入信号的能量大于阈值时,所述输入信号的能量越大,所述放大电路对所述输入信号的放大倍数越小。
本发明的第一实施例中,所述调整模块22包括第一钳位模块,所述第一钳位模块位于所述运算放大器模块21的前级电路上,所述第一钳位模块连接所述运算放大器模块21的第一输入端;所述运算放大器模块21的第二输入端可以连接第三参考电平REF3;所述第一钳位模块用于对所述运算放大器模块21的输入信号进行调整,并通过所述运算放大器模块21的输出端输出信号。
可选地,当放大电路的输入信号为电压信号时,第一钳位模块可以包括第一二极管。请参阅图37,图37是本发明实施例提供的一种放大电路的第一接线示意图。图37以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图37所示,在电压信号为正电压信号时,所述第一二极管D1的正极连接运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第一二极管D1的负极连接第一参考电平REF1;所述放大电路的输入信号Uin通过所述第一二极管D1的正极与运算放大器IC的反向输入端的公共端输入;运算放大器IC的输出端即为放大电路的输出端Uout。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第一参考电平REF3。
当输入放大电路的电压信号超过了第一二极管D1的导通压降时,第一二极管D1导通,进而将输入运算放大器模块21的电压信号限 制在第一二极管D1的导通电压附近,避免输入运算放大器模块21的饱和。
可以理解,当放大电路的输入信号为负电压信号时,第一二极管的正负极的连接方式与图37所示的放大电路中第一二极管D1的正负极的连接方式相反。
可选地,当放大电路的输入信号为电流信号时,第一钳位模块可以包括第一二极管以及第一电阻。请参阅图38,图38是本发明实施例提供的一种放大电路的第二接线示意图。图38以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系。如图38所示,在电流信号为正电流信号时,所述第一二极管D1的正极通过所述第一电阻R1连接所述运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第一二极管D1的负极连接第一参考电平REF1;所述放大电路的输入信号Uin通过所述第一二极管D1的正极与所述第一电阻2212的公共端输入;运算放大器IC的输出端即为放大电路的输出端Uout。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。
当输入放大电路的电流信号增大时,第一电阻R1上产生的压降增大,当第一电阻R1上产生的压降超过了第一二极管D1的导通压降时,第一二极管D1导通,进而降低将输入到运算放大器模块21的电流信号,避免输入运算放大器模块21的饱和。
可以理解,当放大电路的输入信号为负电流信号时,第一二极管的正负极的连接方式与图38所示的放大电路中第一二极管D1的正负极的连接方式相反。
本发明的第二实施例中,所述调整模块22包括第二钳位模块;所述第二钳位模块位于所述运算放大器模块21的后级电路上,所述第二钳位模块连接所述运算放大器模块21的输出端;所述第二钳位模块用于对所述运算放大器模块21的输出信号进行调整。可以理解,所述放大电路的输入信号可以输入到所述运算放大器模块的第一输 入端;也可以通过所述第一钳位模块输入到所述运算放大器模块21的第一输入端;所述运算放大器模块的第二输入端连接第三参考电平REF3。
可选地,当放大电路的输入信号为电压信号时,第二钳位模块可以包括第二二极管。请参阅图39,图39是本发明实施例提供的一种放大电路的第三接线示意图。图39以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图39所示,在电压信号为正电压信号时,所述第二二极管D2的正极连接所述运算放大器模块21的输出端(即运算放大器IC的输出端);所述第二二极管D2的负极连接第二参考电平REF2;所述放大电路的输出信号Uout从所述第二二极管D2与所述运算放大器IC的输出端的公共端输出。
当输出放大器模块21的电压信号超过了第二二极管D2的导通压降时,第二二极管D2导通,进而将输入后级运放的电压信号限制在第二二极管D2的导通电压附近,避免后记运放的饱和。
可以理解,当放大电路的输入信号为负电压信号时,第二二极管的正负极的连接方式与图39所示的放大电路中第二二极管D2的正负极的连接方式相反。
可选地,当放大电路的输入信号为电流信号时,所述第二钳位模块可以包括:第二二极管以及第二电阻。请参阅图40,图40是本发明实施例提供的一种放大电路的第四接线示意图。图40以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图40所示,在电流信号为正电流信号时,所述第二二极管D2的正极通过所述第二电阻R2连接所述运算放大器模块21的输出端(即运算放大器IC的输出端);所述第二二极管D2的负极连接第二参考电平REF2;所述放大电路的输出信号Uout从所述第二二极管D2与所述第二电阻R2的公共端输出。
当输出运算放大器模块21的电流信号增大时,第二电阻R2上产生的压降增大,当第二电阻R2上产生的压降超过了第二二极管D2 的导通压降时,第二二极管D2导通,进而降低将输出的电流信号,避免后记运放的饱和。
可以理解,当放大电路的输入信号为负电流信号时,第二二极管的正负极的连接方式与图40所示的放大电路中第二二极管D2的正负极的连接方式相反。
可以理解,在图39或图40所示的放大电路接线示意图中,所述放大电路的输入信号Uin可以直接输入到运算放大器模块21的第一输入端(即运算放大器IC的反向输入端),运算放大器IC的同向输入端连接第三参考电平REF3。
请参阅图41,图41是本发明实施例提供的第一钳位模块的钳位前后的效果示意图。图41中实线为实际信号,虚直线表示第一二极管D1的导通电压,虚曲线表示钳位后的信号。同理,第二钳位模块的钳位前后的效果也如图41所示。
本发明的第三实施例中,所述调整模块22包括第三钳位模块;所述第三钳位模块位于所述运算放大器模块21的反馈电路上;所述运算放大器模块21的第一输入端连接所述第三钳位模块的第一端口;所述运算放大器模块21的输出端连接所述第三钳位模块的第二端口;所述第三钳位模块具体用于:在输入所述运算放大器模块21的信号的能量信息大于第一阈值时,减小所述运算放大器模块21对所述运算放大器模块21的输入信号的放大倍数。
可以理解,所述放大电路的输入信号可以输入到所述运算放大器模块21的第一输入端;也可以通过所述第一钳位模块连接所述运算放大器模块21的第一输入端;所述运算放大器模块21的第二输入端可以连接第三参考电平REF3。
可选地,第三钳位模块可以包括第三二极管以及第五电阻。请参阅图42,图42是本发明实施例提供的一种放大电路的第五接线示意图。图42以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图42所示,所述第三二极管D3的正极连接所述 运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第三二极管D3的负极连接所述运算放大器模块21的输出端(即运算放大器IC的输出端)。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。所述放大电路的输入信号Uin可以通过第五电阻R5输入到运算放大器IC的反向输入端;运算放大器IC的反向输入端即为放大电路的输出端Uout。
当输入运算放大器模块21的信号的能量较小时,第三二极管D3两端的电压较小,第三二极管D3不导通,第三二极管的电阻R
D3较大,此时,运算放大器模块21的放大倍数为R
D3/R5,运算放大器模块21对输入运算放大器模块21的信号进行放大;当输入运算放大器模块21的信号的能量较大时,第三二极管D3两端的电压大于第三二极管D3的导通电压,第三二极管D3导通,第三二极管的电阻R
D3较小,此时,运算放大器模块21的放大倍数R
D3/R5减小,减小输出运算放大器模块21的信号的能量,进而减小放大电路的放大倍数。
可选地,第三钳位模块可以包括第三二极管、第三电阻以及第五电阻。请参阅图43,图43是本发明实施例提供的一种放大电路的第六接线示意图。图43以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图43所示,所述第三二极管D3的正极连接所述运算放大器模块21的第一输入端(即运算放大器IC的反向输入端);所述第三二极管D3的负极连接所述运算放大器模块21的输出端(即运算放大器IC的输出端);所述第三电阻R3与所述第三二极管D3并联。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。所述放大电路的输入信号Uin可以通过第五电阻R5输入到运算放大器IC的反向输入端;运算放大器IC的反向输入端即为放大电路的输出端Uout。
当输入运算放大器模块21的信号的能量较小时,第三二极管D3两端的电压较小,第三二极管D3不导通,第三二极管D3的电阻R
D3较大,第三二极管D3与第三电阻R3并联的等效电阻R
等较大,此时, 运算放大器模块21的放大倍数为R
等/R5,运算放大器模块21对输入运算放大器模块21的信号进行放大;当输入运算放大器模块21的信号的能量较大时,第三二极管D3两端的电压大于第三二极管D3的导通电压,第三二极管D3导通,第三二极管的电阻R
D3较小,R
等减小,此时,运算放大器模块21的放大倍数R
等/R5减小,减小输出运算放大器模块21的信号的能量,进而减小放大电路的放大倍数。
可选地,第三钳位模块包括第三二极管、第三电阻、第四电阻以及第五电阻;请参阅图44,图44是本发明实施例提供的一种放大电路的第七接线示意图。图44以运算放大器模块21为运算放大器IC为例来说明放大电路的连接关系,如图44所示,所述第三二极管D3的正极通过所述第三电阻R3连接至所述运算放大器模块21的第一输入端,所述第三二极管D3的负极连接至所述运算放大器模块21的输出端,所述第四电阻R4与所述第三二极管D3并联。运算放大器模块21的第二输入端(即运算放大器IC的同向输入端)连接第三参考电平REF3。所述放大电路的输入信号Uin可以通过第五电阻R5输入到运算放大器IC的反向输入端;运算放大器IC的反向输入端即为放大电路的输出端Uout。
当输入运算放大器模块21的信号的能量较小时,第三二极管D3两端的电压较小,第三二极管D3不导通,第三二极管D3的电阻R
D3较大,第三二极管D3与第三电阻R4并联在与R3串联的等效电阻R
等较大,此时,运算放大器模块21的放大倍数为R
等/R5,运算放大器模块21对输入运算放大器模块21的信号进行放大;当输入运算放大器模块21的信号的能量较大时,第三二极管D3两端的电压大于第三二极管D3的导通电压,第三二极管D3导通,第三二极管的电阻R
D3较小,R
等减小,此时,运算放大器模块21的放大倍数R
等/R5减小,减小输出运算放大器模块21的信号的能量,进而减小放大电路的放大倍数。
需要说明的是,在图42、图43以及图44所示的实施例中,第 五电阻R5不是第三钳位模块必须的元件,对于运放稳定的运算放大器IC,放大电路的输入信号Uin也可以直接输入到运算放大器IC的反向输入端。
可以理解,在图42、图43以及图44所示的实施例中,放大电路的输入信号为正电流信号或正电压信号,当放大电路的输入信号为负电压信号或负电流信号时,第三二极管的正负极的连接方式分别与图42、图43以及图44所示的放大电路中第三二极管D3的正负极的连接方式相反。
请参阅图45,图45是本发明实施例提供的第三钳位模块的钳位前后的效果示意图。图45中实线为实际信号,虚线表示钳位后的信号。当信号的能量较小时,如图45右边曲线所示,第三钳位模块对输入的信号进行放大处理;当信号的能量较大时,如图46右边曲线所示,运算放大器模块21的放大倍数减小,以使其输出信号不超过第三二极管D3的导通电压。
本发明的第四实施例中,放大电路可以同时包括第一钳位模块第二钳位模块以及第三钳位模块。请参阅图46,图46是本发明实施例提供的一种放大电路的第八接线示意图。详细的描述可以参见上述第一钳位模块第二钳位模块以及第三钳位模块中的相关描述,此处不再赘述。
请参阅图47,图47是本发明实施例提供的一种放大电路的钳位电路连接示意图。其中包括:运算放大器电路和钳位电路;所述钳位电路用于对所述放大电路的输入信号进行钳位,使得所述放大电路的输入信号经过钳位后,其大小在一定范围内波动以防止所述运算放大器电路饱和输出。
如图47所示,第一二极管D1的正极与信号输入端Signal in连接,第一二极管D1的负极通过电阻R5与运算放大器的输出端连接,第一二极管的负极还通过电阻R6与参考电压CLAP_REF连接,即R5,R6构成分压电阻,该分压电阻可以调整具体阈值的触发位置,当 然,在其他实施例中,第一二极管的负极可以直接与运算放大器的输出端连接;其中R2,R3,R4串联构成了反馈电路,R2的两端并联一个电容C1,R3、R4的两端分别并联二极管D3,D4,上述反馈电路采用分级导通电路,当然,在其他实施例中,反馈电路中的电阻个数可以是2、4、5或者更多,每个电阻上可以选择并联电容或二极管,如此设置可以减小所述反馈电路中电阻上的寄生参数,使得反馈电阻上的寄生电容更小,从而实现高带宽。在反馈电阻上串联电容,电容可以补偿反馈电阻,保证反馈系统稳定。当然,在其他实施例中,可以不包含上述反馈电路。第五二极管D5的正极通过所述第七电阻R7连接至所述运算放大器模块的输出端,所述第五二极管D5的负极连接至参考电压CLAP_REF_01,当然,在其他实施例中,可以不包含第五二极管D5和第七电阻R7。
当输入运算放大器模块的信号的能量较小时,第一二极管D1两端的电压较低,运算放大器模块对输入运算放大器模块的信号进行放大,由于输入信号进入反相输入端,则输出信号较大,此时分压到第一二极管负极的电压也较高,第一二极管的两端的电压变高输入信号可以获得更高的范围而不致第一二极管导通;当输入运算放大器模块的信号的能量较大时,第一二极管D1两端的电压较高,使得该第一二极管导通,电流会通过第一二极管流到CLAP_REF上,而不会流到运算放大器上被放大。运算放大器模块对输入运算放大器模块的信号进行放大,由于输入信号进入反相输入端,则输出信号较小,此时分压到第一二极管负极的电压也较低,第一二极管的导通压差变小,输入信号稍微升高,将导致第一二极管导通,因此,可以将输入电压的高值限定在一个较小的范围内。
根据图47所示的电路结构,第一二极管D1的参考电压是随信号波动的,当信号较强时,其输出低电平,此时第一二极管D1的参考电压会随之向下摆动,使第一二极管D1在信号稍大时即可导通,起到更强的钳制作用。
当然,图47中的反相放大器也可以选择正向放大器,通过对电路的调整也可以获得相应的强钳制作用。
需要说明的是,第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4以及第五二极管D5也可以采用齐纳二极管或者TVS二极管,此时,二极管的导通电压为齐纳二极管或者TVS二极管的击穿电压。
还需要说明的是,本发明各个实施例中,第一参考电平、第二参考电平以及第三参考电平用于区分参考电平,其中第一参考电平、第二参考电平或第三参考电平可以相同,也可以不同。
相较于现有技术,本发明提供的放大电路包括运算放大器电路和钳位电路;所述钳位电路用于对所述放大电路的输入信号进行钳位,使得所述放大电路的输入信号经过钳位后,其大小在一定范围内波动以防止所述运算放大器电路饱和输出。通过该放大电路可以实现放大电路的钳位电路的参考电压根据输入信号的能量进行动态调整,起到更强的钳制作用,避免运放饱和。
在一些应用领域(例如激光雷达、激光测距等领域),由于产品直接在现实生活场景中使用,那么激光存在直接射入人眼的风险,因此Accessible Emission Limit(AEL)规定了激光发射不能超过安全规定的辐射值,同时,当系统发生单一故障时,激光发射功率也不能超过安全规定的值。因此,本发明实施例还提供一种符合人眼安全规定的激光发射方案,当系统发生单一故障时,保护电路可以保证激光辐射值不超过安规值。
请参阅图14,现有的方案采用脉冲驱动的设计的光发射装置,其中包括电源、光源和控制电路,其中电源为VCC_LD,光源为脉冲激光二极管,控制电路包括驱动电路和开关电路NMOS,当脉冲信号为高电平的时候,驱动输出高电压和大电流,迅速打开MOS管,脉冲激光二极管的阴极接地,阳极接电源VCC_LD,存在压差,此时激光二极管导通发光,当脉冲信号为低电平的时候,MOS管截止,从 而激光二极管也截止。因此,通过控制脉冲信号的占空比和频率,即可以控制激光二极管的发光的时长和频率,进而控制激光二极管的辐射量。
但该方案存在的问题在于,如果系统存在单一故障,例如:(1)软件上存在bug,脉冲信号的脉宽过大;(2)MOS管失效,直接短路;(3)电源有故障,VCC_LD过高,当出现第(1)种故障时,脉冲宽度过大将导致激光二极管发光时间过长,如此将导致总的辐射量超出预定值,将超过人眼安全的规定值,当出现第(2)种故障时,MOS管失效将导致激光二极管一直处于发光状态,如此将导致总的辐射量超出预定值,将超过人眼安全的规定值,当出现第(3)中情况时,电源电压过高,将导致激光功率过大,超出人眼安全的规定值,由此可见,只要出现前述三种情况中的某一个故障,都会导致激光二极管发光辐射量或发光功率超过人眼安全的规定值,对人眼造成伤害。
本发明的第一实施例中,光发射电路如图15A所示:
光发射装置包括电源、光源、控制电路和储能电路。电源为VCC_LD,作为光源的能量提供端,光源为脉冲激光二极管,控制电路包括驱动电路和开关电路NMOS,储能电路包括电阻R和电容C,其中蓄能电路为电容C,充电电路为电阻R。
电压控制信号可以设置BOOST升压电路的输出值,从而调整激光二极管的工作电压VCC_LD;当脉冲信号为低电平的时候,MOS管截止,从而激光二极管也截止,此时通过电阻R给电容C充电,直到电容电压为VCC_LD;
当脉冲信号为高电平的时候,驱动输出高电压和大电流,迅速打开MOS管,电容C通过激光二极管和MOS管进行放电,从而激光二极管导通发光;即控制电路用于在第一时段导通VCC_LD和所述电容C,使得所述电源对电容C进行充电,直至所述电容电压饱和;所述控制电路还用于在第二时段导通激光二极管和电容C,使得电容C对激光二极管供电,以使所述光源出射光脉冲信号,直至所述电容 的输出电流低于所述激光发射器的阈值电流。储能电路所存储的能量具有上限值,该上限值由电容C的电容值和工作电压VCC_LD确定。
本实施例中,激光二极管的发射功率与电容的电荷量相关,当电容的输出电流低于激光二极管的阈值电流后,激光二极管则停止发光。由于激光二极管的发光功率以及发光时间仅与电容C有关,即使出现上述第(1)种故障,软件上存在bug,脉冲信号的脉宽过大,此时MOS管长时间导通,但是激光二极管的发光功率主要与电容的电荷量相关,与脉冲信号无关;因此一次发光后,电容电荷量不足以激发二极管发光,则即使MOS管导通,也不会继续发光;出现第(2)种故障,2)MOS管失效,直接短路,同(1)的情况,激光二极管进行一次发光后,不会继续发光。
可选的,如图15B所示:光发射电路还包括与电容C并联的稳压二极管,用于保护电容C的电压不超过预设值,即使发射电压过高,稳压二极管可以导通分流。这样,出现第(3)中故障,激光二极管的功率也不会超过预定值,因此,本实施例能够解决由上述三种故障导致的二极管输出超过安规值的问题。
本发明的第二实施例中,光发射装置如图16所示:
光发射装置包括电源、光源、控制电路和储能电路。电源为VCC_LD,作为光源的能量提供端,光源为脉冲激光二极管,控制电路包括驱动电路和开关电路NMOS,储能电路包括蓄能电路、充电电路,所述储能两路电路包括电阻R2,R3和电容C,其中蓄能电路包括电容C。充电电路包括电阻R2,R3,其中充电电路还进一步包括限流电路、限压电路。所述限流电路包括R1、电压校准源D1和三极管,其保护R2、R3上的电流不超过电阻的额定功率值,防止超额使用发热失效。所述限压电路包括D2,其保护VCC_LD不会超过设计的限定值。
在本实施例中,电压控制信号可以设置BOOST升压电路的输出值,从而调整激光二极管的工作电压VCC_LD;当脉冲信号为低电 平的时候,MOS管截止,从而激光二极管也截止,此时通过电阻R2,R3给电容C充电,直到电容电压接近于VCC_LD;
当脉冲信号为高电平的时候,驱动输出高电压和大电流,迅速打开MOS管,电容C通过激光二极管和MOS管进行放电,从而激光二极管导通发光;
本实施例中,激光二极管的发射功率与电容的电荷量相关,当电容的输出电流低于激光二极管的阈值电流后,激光二极管则停止发光。由于激光二极管的发光功率以及发光时间仅与电容C有关,即使出现上述第(1)种故障,软件上存在bug,脉冲信号的脉宽过大,此时MOS管长时间导通,但是激光二极管的发光功率主要与电容的电荷量相关,与脉冲信号无关;因此一次发光后,电容电荷量不足以激发二极管发光,则即使MOS管导通,也不会继续发光;出现第(2)种故障,2)MOS管失效,直接短路,同1)的情况,激光二极管进行一次发光后,不会继续发光;因此,本实施例能够解决由上述第一种和第二种故障导致的二极管输出超过安规值的问题。除此之外,本实施例还能解决如下问题:电源有故障,VCC_LD过高,此时齐纳管或者TVS管D2导通,从而保护VCC_LD不会超过设计的限定值;电阻R2或R3失效短路,如果只是单一故障的话,由于两个电阻串联,即使其中一个失效,电路仍然正常工作,只会加快电容C的充电时间,不影响电容C的电荷量,从而保证激光发射功率不改变。本实施例使得光发射装置更加可靠,从而避免其由于故障导致输出超过安规值。
本发明的第三实施例中,光发射装置如图17所示:在第三实施例中,设置了两个电源电路VCC_LD和VCC_HV,其中VCC_LV连接于激光二极管,VDD_LD连接于限压电路D2和电压基准源D1。限流电路中的三极管的第一端通过电阻R4与VCC_HV连接,其他与第二实施例相同的部件及内容在此不再赘述。
当系统出现以下某一故障时,本发明可以保护激光二极管发光功率或辐射量不超过额定功率值及额定辐射量:
(1)软件上存在bug,脉冲信号的脉宽过大,此时MOS管长时间导通,但是激光二极管的发光功率主要与电容的电荷量相关,与脉冲信号无关;因此一次发光后,电容电荷量不足以激发二极管发光,则即使MOS管导通,也不会继续发光;
(2)MOS管失效,直接短路,同(1)的情况,激光二极管进行一次发光后,不会继续发光;
(3)电源有故障,VCC_LD过高,此时齐纳管或者TVS管D2导通,从而保护VCC_LD不会超过设计的限定值;
(4)电路中各种部分都存在着失效或者短路的可能,而本发明能够针对各种失效或短路情况,对光发射装置的安规值进行保证,具体情况可以参见如下描述:
如果电阻R1失效开路,三极管T1截止,系统不工作,从而激光不发光,如图21A所示;而R1失效短路,三级管T1正常导通,考虑到D1的保护,整个充电电路可以正常工作,不影响激光二极管正常发光,如图21B所示。
如果R4失效开路,D1截止,从而充电电路不工作,激光二极管不发光,如图22A所示;而电阻R4失效短路,整个充电电路可以正常工作,不影响激光管正常发光,如图22B所示;
如果T1失效开路,D1截止,系统不工作,从而激光二极管不发光,如图23A所示;三极管T1基极与发射极短路,R1,D1,R2,R3仍然构成正常的充电电路,不影响激光二极管正常发光,如图23B所示。
如果三级管T1三个极两两短路,那么R1,R2,D1,R3,R4仍然组成正常的充电电路,不影响激光二极管正常发光,如图24所示。
基准稳压源D1失效开路,稳压电路D2可以保证VCC_LD不超过设计值,从而保证电容C的储蓄电能不超过涉及的限定值,如图25A所示;基准稳压源D1失效短路,那么充电电路相当于只有R1,仍能满足充电电路正常工作,如图25B所示。
电阻R2或R3失效开路,稳压电路D2可以保证VCC_LD不超 过设计值,从而保证电容C的储蓄电能不超过涉及的限定值,如图26A所示;电阻R2或R3失效短路,如果只是单一故障的话,由于两个电阻串联,即使其中一个失效,电路仍然正常工作,不影响电容C的电荷量,从而保证激光发射功率不改变,如图26B所示。
蓄能电路C失效开路,MOS管导通的时候,激光二极管的压差瞬间缩减接近0V,无法导通发光,如图27A所示;储能电路C失效短路,激光二极管两端均为GND,无法导通发光,如图27B所示。
稳压电路D2失效开路,充电电路设计保证电容C的储蓄电能不超过设计的限定值,如图28A所示,稳压电路D2失效短路,D1截止,充电电路不工作,如图28B所示。
其中,电阻R1/R2/R3/R4、三极管T1、电压校准源D1是充电电路;电容C是储能电路;D2是稳压电路。
其中充电电路的核心是电阻R2,R3,其他电路是为了限制R2,R3的电流,起保护充电电路的作用。正常情况下,通过R1的电流I1导通三极管,从而电流I2流经三极管T1的发射极和集电极,在经过R3和R4的,但如果VCC_HV设置偏大,那么I2变大,电阻R3和R4的压降升高,当升高到一定阈值后,D1导通,把I2电流进行分流I3流经电压基准源D1,从而保证流经R2和R3的电流不超过额定值,如图18所示。
充电电路不限于前述的实现方式,下面提供其他的实现方式:
第二种实现方式基于稳压二极管D1和三极管T1,即使VCC_HV变化时,可以保证R2和R3的压降稳定在设计值,那么对于蓄能电路也产生相应的限制,从而保证电容C蓄能值,如图19所示。
稳压电路作为冗余的设计,保证蓄能电路C上的压降不超过设计值,稳压电路也可以采用其他的实现方式,如图20所示:如果电压偏高,那么稳压二极管T1导通,从而保证电容C的压降不超过设计值,保证电容C两端的电压。
如上所述各个元件的失效或短路均不会导致光发射装置的输出 超出安规值,因此,上述电路能够有效的保证光发射装置的输出符合人眼安全规定。
相较于现有技术,本发明提供的光发射装置可以达到符合人眼安全规定的激光发射方案,当系统发生单一故障时,上述装置中的电路可以保证激光辐射值不超过安规值,从而保证激光装置的使用安全。
在一些应用场景中(例如在激光雷达、光纤通信等领域),激光二极管作为信号源,根据具体应用场合,发射特定范围波长、光功率的激光信号。为了保证系统性能的良好,激光的特性必须保持稳定。但是在激光驱动电路不改变的前提下,激光二极管光功率随着环境温度的改变而发生偏移;另外,激光二极管或者驱动电路在使用过程中可能失效。本发明实施例中还提供一种激光发射装置,能够实时检测激光而激光的发射功率或发射能量。
请参阅图29,图29是本发明实施例提供的一种激光发射装置的示意性框架图。该激光发射装置1可包括:发射电路11、自检电路12、控制电路13。其中,发射电路11包括激光发射器111和驱动器112,所述激光发射器111用于在所述驱动器112的驱动下发射激光脉冲信号;自检电路12,用于检测所述发射电路发射的激光脉冲信号的发射能量或发射功率;控制电路13用于根据所述自检电路的检测结果确定所述激光脉冲信号的发射能量或发射功率变化时调整所述发射电路的发射功率,使得所述发射电路的发射的激光脉冲信号的功率保持在预置范围内;或者,所述控制电路用于根据所述自检电路的检测结果确定是否关闭所述发射电路。
其中,可以理解,所述自检电路检测激光脉冲信号的发射能量或发射功率包括:检测激光脉冲信号的发射能量进而换算为发射功率,或检测激光脉冲信号的发射功率进而换算为发射能量,然后根据发射功率或发射能量的变化来调整发射电路的发射功率。
本发明一实施例中,图30是本发明实施例提供的一种自检电路的接线示意图。如图30所示,自检电路30包括:
光电转换电路21,用于接收所述发射电路发射的激光脉冲信号的部分,并将所述部分激光脉冲信号转换为电脉冲信号;
脉冲展宽电路22,用于将所述电脉冲信号进行展宽处理;
采样电路23,用于对经过所述展宽处理后的电信号进行采样。
可以理解,所述展宽处理后的电信号为电脉冲信号或者电平信号。其中,如果展宽处理后的电信号是电脉冲信号,那么,可选地,所述展宽处理后的电脉冲信号的占空比大于所述展宽处理前的电脉冲信号的占空比的至少3倍。
可选地,所述脉冲展宽电路22包括RC滤波电路。
可选地,所述RC滤波电路包括:
一阶RC滤波电路,包括第一电阻R2和第一电容C2,所述第一电阻R2一端接收来自光电转换电路的电信号,另一端连接所述第一电容C2的一端,所述第一电容C2的另一端接地。
可以理解,接收来自光电转换电路的电信号包括RC滤波电路直接和光电转换电路连接;也可以是RC滤波电路和光电转换电路之间还设置了其他电路。
可选地,所述RC滤波电路包括高阶滤波电路。
可选地,所述自检电路2还包括:
放大电路24,用于对所述RC滤波电路输出的信号进行放大。
可选地,所述放大电路24包括:
比例放大电路,包括第一运算放大器U1及第二电阻R3、第三电阻R4;所述第二电阻R3一端连接所述RC滤波电路,另一端连接所述第一运算放大器U1的负输入端;所述第一运算放大器U1的正输入端连接第一参考电源,输出端连接所述采样电路;所述第三电阻R4一端连接所述第一运算放大器U1的负输入端,另一端连接所述第一运算放大器U1的输入端。
可选地,所述自检电路2还包括:
耦合电路25,用于对所述光电转换电路21和所述放大电路24解耦。
可选地,所述耦合电路25包括:
第二电容C1,所述第二电容C1一端接收来自光电转换电路21的电信号,另一端连接所述RC滤波电路,以及第二参考电源。
可选地,所述光电转换电路21包括:
第七电阻R1,所述第七电阻R1一端连接所述光电二极管的正极,另一端接地;
所述光电二极管的负极接工作电源VCC。
继续参见图30,图30所示的自检电路的工作原理如下:
首先,光电转换电路21的光电二极管接收激光发射器中激光二极管发射的光脉冲信号后,光电二极管导通;所述光电二极管与电阻R1的连接点产生电信号,即所述光电转换电路将光脉冲信号转换为该电信号;
接着,经过包括电阻R2和电容C2的一阶RC滤波电路,将所述电信号展宽得到了近似直流或者低频信号,波形如图31所示;其中,经过RC滤波电路展宽的波形取决于RC滤波电路的时间常数τ=R2*C2,时间常数τ取值越小,脉宽展开越小;
接着,所述滤波后的电信号经过比例放大器进行放大,其中比例放大器中电阻R3、R4的比值可以用来调整放大倍数,具体的放大倍数取决于设计需要和实际情况,放大后的电信号(即进行采样的电信号)如图32所示;
最后,对经过所述比例放大器的电信号进行采样。
实际应用中,激光常用高频窄脉冲的驱动方式,因此如果直接用ADC采样获取激光发射功率的话,ADC采样率非常高,从而成本昂贵。而本发明采用RC滤波的方式将高频窄脉冲展宽为低频甚至近乎直流的信号,经过放大器放大后再采用低采样率的ADC进行采样,从而大幅降低功率检测的成本。
此外,考虑到激光脉冲的占空比非常小,因此直接经过RC滤波后得到的直流或者低频信号电压非常小,难以直接通过一般的放大器进行信号放大,因此,还可以选择将光电转换电路所输出的电信号通过耦合电路25中的电容C1进行交流耦合到第二参考电源上,再经过放大器放大,从而实现低速的ADC采样信号值,同时电容C1也起 到隔离前后电路的作用。需要说明的是,耦合电路可以根据需要选择设置或不设置。
本发明另一实施例中,所述自检电路包括:
光电转换电路,用于接收所述发射电路发射的激光脉冲信号的部分,并将所述部分激光脉冲信号转换为电脉冲信号;
峰值保持电路,用于保持所述电脉冲信号的峰值;
采样电路,用于对所述峰值保持电路的所保持的电脉冲信号的峰值进行采样。
本实施例中的自检电路与图30中所述的自检电路区别在于采样峰值保持电路代替图30中所述的脉冲展宽电路。
图33是本发明实施例提供的一种峰值保持电路的第一接线示意图。如图33所示,所述峰值保持电路包括:
第一二极管D1,第四电阻R5和第一储能电路C3,其中,所述第一二极管的D1一端接收来自光电转换电路的电信号,所述第一二极管D1的另一端连接所述第四电阻R5的一端;所述第四电阻R5的另一端连接所述第一储能电路C3的一端,以及向所述采样电路输出信号;所述第一储能电路C3的另一端接第三参考电源。
图34是本发明实施例提供的一种峰值保持电路的第二接线示意图。如图34所示,所述峰值保持电路包括:
第二二极管D3,第五电阻R7和第二储能电路C4,其中,所述第二二极管D3的一端接收来自光电转换电路的电信号,所述第二二极管D3的另一端与所述第五电阻R7的一端,以及向所述采样电路输出信号;所述第五电阻R7的另一端连接所述第二储能电路C4的一端,所述第二储能电路C4的另一端连接第四参考电源。
可选地,所述自检电路还包括:
第一解耦电路,位于所述光电转换电路和所述峰值保持电路之间,用于对所述光电转换电路和所述峰值保持电路进行解耦。
可选地,所述第一解耦电路包括:
第二运算放大器U2,所述第二运算放大器U2的正输入端接收来自光电转换电路的电信号,所述第二运算放大器U2的负输入端连接 所述第二运算放大器的输出端,所述第二运算放大器U2的输出端连接所述峰值保持电路。
可选地,所述第一解耦电路包括:
第三运算放大器U4,所述第三运算放大器U4的正输入端接收所述光电转换电路的电信号,所述第三运算放大器U4的负输入端连接所述第二二极管与所述第五电阻连接的一端,所述第三运算放大器U4的输出端连接所述第二二极管的另一端。
可选地,所述峰值保持电路还包括:
所述第三运算放大器U4的正输入端还连接第五参考电源。
可选地,所述自检电路包括:
第二解耦电路,连接于所述采样电路和所述峰值保持电路之间,或所述采样电路之后,用于对所述第二解耦电路前后的电路进行解耦。
可选地,所述第二解耦电路包括:
第四运算放大器U3,第六电阻R6和第三二极管D2,其中,所述第四运算放大器U3的正输入端连接所述峰值保持电路或所述采样电路;所述第四运算放大器U3的负输入端连接所述第六电阻R6的一端,以及所述第三二极管D2的一端;所述第六电阻的另一端连接第六参考电源,所述第三二极管的另一端连接所述第四运算放大器U3的输出端;或
第五运算放大器U5,所述第五运算放大器U5的正输入端连接所述峰值保持电路或所述采样电路;所述第五运算放大器U5的负输入端连接所述第五运算放大器U5的输出端。
继续参见图33,图33所示的峰值保持电路的工作原理如下:
首先,光电转换电路的输出信号Singal_in输入运算放大器U2的正输入端,运算放大器U2的负输入端与运算放大器U2的输出端连接,形成电压跟随,以对所述光电转换电路和所述峰值保持电路进行解耦,运算放大器U2的输出端输出的信号与所述光电转换电路的输出信号Singal_in相同;
然后所述运算放大器U2的输出端输出的信号,当该信号上升或下降,使得二极管两端的电压超过二极管D1的阈值电压,则二极管 D1导通,运算放大器U2的输出信号经过二极管D1和电阻R5对电容C3进行充电,此时电容C3的电压波形随着运算放大器U2的输出信号变化,经过峰值后下降或上升,当二极管两端的电压小于过二极管D1的阈值电压时,二极管D1关断,不再对电容C3继续充电;在这一过程中,通过电容C3的电压波形即检测并保持所述运算放大器U2的输出信号的峰值。
然后,电容C3的电信号输出至运算放大器U3的正输入端,所述运算放大器U3的负输入端连接电阻R6的一端,以及二极管D2的一端,电阻R6的另一端连接第六参考电源,二极管D2的另一端连接运算放大器U3的输出端,所述运算放大器U3、电阻R6和二极管D2构成第二解耦电路,即另一个电压跟随器,以对所述峰值保持电路及其他电路之间解耦。可以理解,该位于峰值保持电路之后的第二解耦电路还可以位于采样电路之后。
图33中的二极管D2位于运算放大器U1的反馈路径之外,电容C1保持的峰值相对Signal_in存在一个压降,而为了这个压降消除,那么必须保证二极管D2的电压与二极管D1的压降相同,即二极管D2和D1必须相同才能保证Signal_out保持的峰值与Signal_in一致。在精度要求满足的情况下,上述峰值保持电路没有问题,但是在精度要求非常高的时候,但实际上电子元器件存在个体差异性,基本不可能保证二极管D2和D1上的电压完全相等。
因此,本发明实施例提供了另一中峰值检测电路,参见图34,图34所示的峰值检测电路的工作原理如下:
首先,光电转换电路的输出信号Singal_In输入运算放大器U4的正输入端,运算放大器U4的负输入端与二极管D3的一端连接,二极管D3的另一端与运算放大器U2的输出端连接,以对所述光电转换电路和所述峰值保持电路进行解耦;
然后,同理,二极管D3导通,运算放大器U4的输出信号经过二极管D3和电阻R7对电容C4进行充电,此时电容C4的电压波形随着运算放大器U4的输出信号变化,经过峰值后下降或上升,当二极管两端的电压小于过二极管D3的阈值电压时,二极管D3关断, 不再对电容C4继续充电;在这一过程中,通过电容C4的电压波形即检测并保持所述运算放大器U2的输出信号的峰值;
其中,二极管D3放在运算放大器U4的反馈回路中,那么运算放大器U5的正输入端与运算放大器U4的负输入端电压一致,从而保证运算放大器U5的输出端信号Signal_Out保持的峰值与所述光电转换电路的输出信号Signal_In的峰值一致,改进了上一实施例中峰值保持电路的二极管不匹配的问题,所以在峰值保持电路之后的第二解耦电路中即可不需要二极管或要与前面的第一解耦电路中的二极管相同。
然后,二极管D3和电阻R7的连接端输出信号至第二解耦电路,所述第二解耦电路可以采用上一实施例中第一或第二解耦电路的电路结构,在此不再赘述。可以理解,所述该位于峰值保持电路之后的第二解耦电路还可以位于采样电路之后。
需要说明的是,本发明的实施例中,所述第一解耦电路、峰值检测电路和第二解耦电路均包括至少一种形式,可以理解,三者之间可以根据设计需要和实际应用情况选择使用或不使用,以及互相配合设置,因此,除了本发明图中所述的电路设置,上述三者的相互之间配合设置的其它变化也均属于本发明的范围。
此外,在现有的峰值保持电路中,只在保持电容两端增加开关信号进行电荷的释放,但是当出现意外情况,例如当电荷释放的时候,由于运算放大器U4的正输入端电压值为Vref,负输入端还没恢复到Vref电压时,此时,如图35所示运算放大器U4的正、负输入端的信号波形,如果正输入端有微弱的干扰信号输入的话,运算放大器U4会进入深度饱和的状态,则电路无法响应,导致系统无法正常工作。因此,本发明在运算放大器U4正输入端加入开关S1,以防止其它信号的干扰。
可选地,所述自检电路还包括:复位电路,用于将所述峰值保持电路复位。
可选地,所述复位电路包括:
第一开关,第二开关和反相器,其中,所述开关一端接收所述光 电转换电路的电信号,所述第一开关另一端连接于所述峰值保持电路或所述第一解耦电路;所述第二开关连接在所述第一储能电路或第二储能电路所述的两端;第一开关控制信号控制所述第一开关的通断,并经过反相器后生成第二开关控制信号控制所述第二开关的通断,使所述第一开关和第二开关的通断状态相反。
继续参见图34,所述复位电路包括开关S1、S2,和反相器;开关S2串联于输入信号与运算放大器U4的正输入端之间,开关S2并联与电容C4两端,以开关信号控制开关S1,且经过反相器后控制开关S2,这样即可保证开关S1和S2开闭的状态相反;当S2闭合时,电容C4进行电荷泄放,此时S1打开,从而保证微弱干扰信号无法进入U1的同相输入端,当整个放大器系统进入新的稳态后,S2打开,S1闭合,此时系统可以正常响应输入的脉冲信号。
可选地,所述控制电路13用于根据所述自检电路的检测结果调整所述发射电路的发射功率,使得所述发射电路的发射的激光脉冲信号的功率保持在预置范围内。
可选地,所述控制电路13用于根据所述采样电路的采样电压值调整所述发射电路的发射功率或关闭所述发射电路。
可选地,当所述采样电压值超过预置电压上限时,控制电路减小所述发射电路的增益;和/或,
当所述采样电压值低于预置电压下限时,控制电路增大所述发射电路的增益;和/或,
当所述采样电压值为0或几乎为0时,关闭所述发射电路。
可选地,所述激光发射装置内存储有所述发射电路的发射功率与所述采样电路的采样值的对应关系,所述控制电路用于根据所述对应关系调整所述发射电路的发射功率。
可以理解,存储的发射电路的发射功率与所述采样电路的采样值的对应关系可以是发射电路的电压和采样值的对应关系,或者是增益和采样值的对应关系,或者是其他对其调整时可以影响发射电路的发射功率的参数与采样值的对应关系。
具体来说,在实际应用场景中,激光发射频率在某一时间内处于 恒定值。此时展宽脉冲的峰值与窄脉冲的峰值成一一对应关系;如果展宽电路直接把脉宽展宽为直流信号,那么直流信号的幅值与窄脉冲的能量值成一一对应关系。
因此,对于不同的发射功率,如果以相同的倍数放大,得到的直流信号幅值或者展宽脉冲峰值不一样;发射功率越大,ADC采样电压值越大,从而根据数据拟合,可以得到发射功率与ADC采样值的映射关系。那么可以根据ADC采样电压值反推发射功率,例如环境温度上升,发射功率相应下降,当功率检测电路发现功率下降时,反馈给系统从而提高发射电压,最终保持发射功率的稳定性。
还需要说明的是,本发明各个实施例中,第一参考电源至第六参考电源用于区分参考电源,其中第一参考电源至第六参考电源的电平可以相同,也可以不同。
还需要说明的是,本发明各个实施例中,第一电阻至第七电阻包括至少一个电阻及其串并联形式,第一电容至第第二储能电路包括至少一个电容及其串并联形式。
还需要说明的是,本发明各个实施例中,第一二极管至第三二极管的极性连接根据激光的正脉冲信号或负脉冲信号进行设置。
相较于现有技术,本发明提供的激光发射装置可以通过自检电路检测发射的激光脉冲信号的功率,及时反馈功率的相对变化或者激光发射的失效,并根据反馈的所述检测结果确定调整或关闭所述激光脉冲信号,从而保证在不同场景下激光波发射功率保持恒定,以及实现系统的失效自检的功能。
本发明各个实施例提供的各种电路可以应用于测距装置,该测距装置可以是激光雷达、激光测距设备等电子设备。。在一种实施方式中,本发明各个实施例提供测距装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反射强度信息、速度信息等。一种实现方式中,测距装置可以通过测量测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距 装置的距离。或者,测距装置也可以通过其他技术来探测探测物到测距装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图13所示的测距装置100对测距的工作流程进行举例描述。
测距装置100可以包括发射电路、接收电路、采样电路(TDC)和运算电路。其中,所述发射电路为上述实施例中所述发射电路,所述采样电路包括上述实施例中所述的放大电路等。
发射电路可以发射光脉冲序列(例如激光脉冲序列)。接收电路可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路。采样电路可以对电信号进行采样,以获取采样结果。运算电路可以基于采样电路的采样结果,以确定测距装置100与被探测物之间的距离。
可选地,该测距装置100还可以包括控制电路,该控制电路可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图1示出的测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个。
一些实现方式中,除了图1所示的电路,测距装置100还可以包括扫描模块,用于将发射电路出射的激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路、接收电路、采样电路和运算电路的模块,或者,包括发射电路、接收电路、采样电路、运算电路和控制电路的模块称为测距模块,该测距模块可以独立于其他模块,例如,扫描模块。
测距装置中可以采用同轴光路,也即测距装置出射的光束和经反 射回来的光束在测距装置内共用至少部分光路。或者,测距装置也可以采用异轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内分别沿不同的光路传输。
测距装置100包括光收发装置,光收发装置包括光源103(包括上述的发射电路)、准直元件104、探测器105(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件106。光收发装置121用于发射光束,且接收回光,将回光转换为电信号。光源103用于发射光束。在一个实施例中,光源103可发射激光束。可选的,光源103发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件104设置于光源的出射光路上,用于准直从光源103发出的光束,将光源103发出的光束准直为平行光。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件104可以是准直透镜或者是其他能够准直光束的元件。
如图13所示,通过光路改变元件106来将测距装置内的发射光路和接收光路在准直元件104之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以光源103和探测器105分别使用各自的准直元件,将光路改变元件106设置在准直元件之后。
在图13所示实施例中,由于光源103出射的光束的光束发散角较小,测距装置所接收到的回光的光束发散角较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射光源103的出射光,反射镜用于将回光反射至探测器105。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡的情况。
在图13所示实施例中,光路改变元件偏离了准直元件104的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件104的光轴上。
测距装置100还包括扫描模块102。扫描模块102放置于光收发装置121的出射光路上,扫描模块102用于改变经准直元件104出射的准直光束119的传输方向并投射至外界环境,并将回光投射至准直元件104。回光经准直元件104汇聚到探测器105上。
在一个实施例中,扫描模块102可以包括一个或多个光学元件,例如,透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。在一些实施例中,扫描模块102的多个光学元件可以绕共同的轴109旋转,每个旋转的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块102的多个光学元件可以以不同的转速旋转。在另一个实施例中,扫描模块102的多个光学元件可以以基本相同的转速旋转。
在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块102包括第一光学元件114和与第一光学元件114连接的驱动器116,驱动器116用于驱动第一光学元件114绕转动轴109转动,使第一光学元件114改变准直光束119的方向。第一光学元件114将准直光束119投射至不同的方向。在一个实施例中,准直光束119经第一光学元件改变后的方向与转动轴109的夹角随着第一光学元件114的转动而变化。在一个实施例中,第一光学元件114包括相对的非平行的一对表面,准直光束119穿过该对表面。在一个实施例中,第一光学元件114包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件114包括楔角棱镜,对准直光束119进行折射。在一个实施例中,第一光学元件114上镀有增透膜,增透膜的厚度与光源103发射出的光束的波长相等,能够增加透射光束的强度。
在一个实施例中,扫描模块102还包括第二光学元件115,第二 光学元件115绕转动轴109转动,第二光学元件115的转动速度与第一光学元件114的转动速度不同。第二光学元件115用于改变第一光学元件114投射的光束的方向。在一个实施例中,第二光学元件115与另一驱动器117连接,驱动器117驱动第二光学元件115转动。第一光学元件114和第二光学元件115可以由不同的驱动器驱动,使第一光学元件114和第二光学元件115的转速不同,从而将准直光束119投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器118控制驱动器116和117,分别驱动第一光学元件114和第二光学元件115。第一光学元件114和第二光学元件115的转速可以根据实际应用中预期扫描的区域和样式确定。驱动器116和117可以包括电机或其他驱动装置。
在一个实施例中,第二光学元件115包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件115包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件115包括楔角棱镜。在一个实施例中,第二光学元件115上镀有增透膜,能够增加透射光束的强度。
扫描模块102旋转可以将光投射至不同的方向,例如方向111和113,如此对测距装置100周围的空间进行扫描。当扫描模块102投射出的光111打到探测物101时,一部分光被探测物101沿与投射的光111相反的方向反射至测距装置100。扫描模块102接收探测物101反射的回光112,将回光112投射至准直元件104。
准直元件104会聚探测物101反射的回光112的至少一部分。在一个实施例中,准直元件104上镀有增透膜,能够增加透射光束的强度。探测器105与光源103放置于准直元件104的同一侧,探测器105用于将穿过准直元件104的至少部分回光转换为电信号。
在一些实施例中,光源103可以包括激光二极管,通过激光二极管发射纳秒级别的激光。例如,光源103发射的激光脉冲持续10ns。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲 的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置100可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物101到测距装置100的距离。
测距装置100探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
在一种实施方式中,本发明实施方式的测距装置可应用于移动平台,测距装置可安装在移动平台的平台本体。具有测距装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应用于相机时,平台本体为相机本身。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修 改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。
Claims (138)
- 一种测距装置,其特征在于,至少包括环境光传感器、比较电路和运算电路,在所述比较电路中并行设置有多个预设阈值;所述比较电路,用于接收经光信号处理得到的电信号,提取所述电信号所触发的预设阈值的时间信息;所述环境光传感器,用于获取所述时间信息所在时段内的环境光信号的强度;所述运算电路用于根据所述环境光信号的强度,从所述触发的预设阈值的时间信息中,挑选出至少部分触发的预设阈值的时间信息,以及根据所述挑选出的所述时间信息进行运算。
- 如权利要求1所述的测距装置,其特征在于,所述运算电路具体用于比较所述比较电路提取的时间信息的数目以及与所述环境光信号的强度所能触发的阈值的数目;若所述比较电路提取的时间信息的数目不大于所述环境光信号产生的时间信息的数目,则该光信号为噪声信号;和/或,若所述比较电路提取的时间信息的数目大于所述环境光信号产生的时间信息的数目,则该光信号包括有效光脉冲信号。
- 如权利要求1所述的测距装置,其特征在于,所述运算电路具体用于比较所述电信号所触发的最大预设阈值与所述环境光信号的强度对应的最大预设阈值的大小;若所述电信号所触发的最大预设阈值不大于所述环境光信号的强度对应的最大预设阈值,则确定所述光信号为噪声信号;和/或,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则确定所述光信号包括有效光脉冲信号。
- 如权利要求3所述的测距装置,其特征在于,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则所述运算电路用于至少挑选比所述环境光信号的强度对应的 最大预设阈值大的预设阈值被触发的时间信息。
- 如权利要求4所述的测距装置,其特征在于,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则所述运算电路用于将比所述环境光信号的强度对应的最大预设阈值小的预设阈值被触发的时间信息丢弃。
- 如权利要求1至5任一项所述的测距装置,其特征在于,所述测距装置还包括光电转换电路,所述光电转换电路,用于接收光脉冲信号,以及将所述光脉冲信号转换为电信号、将所述电信号输出;所述比较电路用于接收来自所述光电转换电路的电信号。
- 如权利要求6所述的测距装置,其特征在于,所述测距装置还包括控制电路,用于根据所述环境光传感器输出的环境光信号的强度将较小的部分预设阈值关闭;和/或用于调整所述光电转换电路的增益,或调整比较电路的预设阈值,以使得噪声信号低于所述预设阈值。
- 如权利要求1至5任一项所述的测距装置,其特征在于,所述比较电路包括多个比较器,所述比较器的第一输入端用于接收所述电信号,所述比较器的第二输入端用于接收所述预设阈值,所述比较器的输出端用于输出比较的结果,其中,所述比较的结果中包含与所述电信号对应的时间信息。
- 如权利要求8所述的激光雷达,其特征在于,所述比较电路还包括时间数字转换器,所述时间数字转换器与所述比较器的输出端电连接,用于根据所述比较器输出的比较的结果,提取与所述电信号对应的时间信息。
- 如权利要求9所述的激光雷达,其特征在于,所述比较电路包括多个比较器以及多个时间数字转换器,所述比较器与所述时间数字转换器一一对应连接,所述多个比较器的输出端分别与所述多个比较器一一对应的时间数字转换器电连接。
- 如权利要求1至10任一项所述的测距装置,其特征在于,所述测距装置还包括发射电路;所述发射电路用于发射光脉冲信号;所述比较电路所接收的电信号,来自所述发射电路发射的光脉冲信号经物体反射回的至少部分信号经处理后得到的电信号。
- 如权利要求11所述的测距装置,其特征在于,所述测距装置还包括光电转换电路和放大电路;所述光电转换电路用于接收所述发射电路发射的光脉冲信号经物体反射回的至少部分信号,以及将所述至少部分信号转换为电脉冲信号输出;所述放大电路用于对所述电脉冲信号进行放大处理;其中,所述比较电路所接收的电信号来自所述放大电路放大处理后的电信号;所述运算电路用于根据所述比较电路输出的时间信息确定所述物体与所述测距装置之间的距离。
- 一种测距装置,其特征在于,至少包括光敏传感器、控制器和比较电路,所述光敏传感器,用于接收光脉冲信号,以及将所述光脉冲信号转换为电信号输出;所述比较电路,用于将输入的电信号与预设阈值进行比较,提取与所述电信号对应的时间信息;控制器,用于获取当前温度值,以及根据所述当前温度值调整所述光敏传感器的增益。
- 如权利要求13所述的测距装置,其特征在于,所述测距装置还包括放大电路;所述放大电路用于,将从光敏传感器输入的电信号放大运算,并将放大运算后的电信号输出到比较电路;其中,输入所述比较电路的电信号来自所述放大电路输出的电信号。
- 如权利要求14所述的测距装置,其特征在于,所述比较电路包括至少一个比较器,所述比较器的第一输入端用于接收所述从放大电路输入的电信号,所述比较器的第二输入端用于接收所述预设阈值,所述比较器的输出端用于输出比较的结果,其中,所述比较的结果中包含与所述电信号对应的时间信息。
- 如权利要求15所述的测距装置,其特征在于,所述比较电路还至少包括时间数字转换器,每个所述时间数字转换器与对应的所述比较器的输出端电连接,用于根据所述比较器输出的比较的结果,提取与所述电信号对应的时间信息。
- 如权利要求14所述的测距装置,其特征在于,控制器还用于:根据噪声信号的强度确定预设阈值,使得所述预设阈值高于所述噪声信号且所述预设阈值与所述噪声信号的最大值之差不大于预设值。
- 如权利要求1至17任一项所述的测距装置,其特征在于,所述测距装置还包括数模转换器,所述控制器通过所述数模转换器与所述比较器的第二输入端连接,并通过控制所述数模转换器的输出电压的大小来调整所述比较电路的预设阈值。
- 如权利要求1至17任一项所述的测距装置,其特征在于,所述测距装置还包括比较阈值调整电路,所述比较阈值调整电路包括多个电阻,所述多个电阻的一端共同连接至所述比较器的第二输入端,多个电压信号输入到所述多个电阻的另一端,用于通过所述多个电阻向所述比较器的第二输入端提供所述预设阈值,通过调整所述多个电阻的组成结构,调整输入到所述比较电路的第二输入端的所述预设阈值。
- 如权利要求1至17任一项所述的测距装置,其特征在于,所述测距装置还包括电源管理电路,所述电源管理电路与所述控制器及所述光敏传感器电连接,所述电源管理电路用于为所述光敏传感器提供工作电压,所述控制器通过控制所述电源管理电路改变所述工作 电压来调整所述光敏传感器的增益。
- 如权利要求20所述的测距装置,其特征在于,所述光敏传感器包括雪崩光电二极管,所述雪崩光电二极管的阴极与所述电源管理电路电连接,用于从所述电源管理电路获取工作电压,所述雪崩光电二极管的阳极与所述放大电路的输入端连接,所述雪崩光电二极管用于接收光脉冲信号,以及将所述光脉冲信号转换为电信号,并将所述电信号输出给所述放大电路。
- 如前述任一项权利要求所述的测距装置,其特征在于,所述光信号包括噪声信号,所述噪声信号包括光噪声信号和电子噪声信号,控制器还用于获取并比较所述光噪声信号的强度和所述电子噪声信号的强度,并在所述光噪声信号的强度小于所述电子噪声信号的强度时,调整所述比较电路的预设阈值,以使得所述噪声信号低于所述预设阈值。
- 如前述任一项权利要求所述的测距装置,其特征在于,所述控制器还用于获取所述噪声信号的强度,在所述噪声信号的强度小于预设噪声阈值时,调整所述比较电路的预设阈值,以使得所述噪声信号低于所述预设阈值。
- 如前述任一项权利要求所述的测距装置,其特征在于,所述光信号包括噪声信号,所述噪声信号包括光噪声信号和电子噪声信号,控制器还用于获取并比较所述光噪声信号的强度和所述电子噪声信号的强度,并在所述光噪声信号的强度大于所述电子噪声信号的强度时,调整所述光敏传感器的增益,以使得所述噪声信号低于所述预设阈值。
- 如前述任一项权利要求所述的测距装置,其特征在于,控制器还用于获取所述噪声信号的强度,在所述噪声信号的强度大于预设噪声阈值时,调整所述光敏传感器的增益,以使得所述噪声信号低于所述预设阈值。
- 如前述任一项所述的测距装置,其特征在于,控制器还用于 判断所述噪声信号是否高于所述预设阈值。
- 如权利要求26所述的测距装置,其特征在于,所述控制器还用于:获取所述测距装置生成的初始图像中的随机噪点数,并判断所述随机噪点数是否高于预设噪点数阈值;所述初始图像为所述控制器根据所述从放大电路输入的电信号和调整前的预设阈值生成初始图像;若所述随机噪点数高于预设噪点数阈值,则判断所述噪声信号高于所述预设阈值。
- 如权利要求26所述的测距装置,其特征在于,所述测距装置还包括均方根检波器,所述控制器通过所述均方根检波器与所述放大电路电连接,用于检测所述噪声信号在预设频率范围内的功率信息,并将所述功率信息输出给所述控制器,所述控制器还用于:判断所述均方根检波器输入的功率信息是否超过预设功率阈值;若所述功率信息超过所述预设功率阈值,则判断所述噪声信号高于所述预设阈值。
- 如权利要求26所述的测距装置,其特征在于,所述比较电路包括多个比较器以及多个时间数字转换器(Time-to-Digital Converter,TDC),所述比较器与所述时间数字转换器一一对应连接,所述多个比较器的第一输入端用于接收所述从放大电路输入的电信号,所述多个比较器的第二输入端与所述控制器电连接,分别用于接收阈值;所述多个比较器的输出端分别通过与所述多个比较器一一对应连接的时间数字转换器与所述控制器电连接,所述比较器向所述时间数字转换器输出比较结果,所述时间数字转换器根据所述比较结果测量时间信息以及向所述控制器输出所述时间信息;所述控制器还用于:计算并比较所述多个比较器中第一阈值的比较器对应的第一时间信息与第二阈值的比较器对应的第二时间信息;其中,所述第一阈值小于所述第二阈值;若所述第一时间信息与所述第二时间信息之差为随机值,且所述第一时间信息与所述第二时间信息之差大于预设时间阈值,则判断所述噪声信号高于所述第一阈值。
- 如权利要求29所述的测距装置,其特征在于,所述控制器还用于:选定高于所述噪声信号的阈值中最小的阈值作为所述预设阈值。
- 如权利要求29所述的测距装置,其特征在于,所述控制器还用于:根据多个时间数字转换器测得的时间信息拟合输入所述比较器的电信号的波形,根据该拟合的波形计算该电信号对应的时间信息。
- 如权利要求13至31任一项所述的测距装置,其特征在于,所述控制器内预存有在不同温度下所述光敏传感器的电压与增益的对应关系;所述控制器用于根据所述当前温度值确定所述光敏传感器的电压与增益的对应关系,以及根据所述对应关系调整所述光敏传感器的电压。
- 如权利要求13至31任一项所述的测距装置,其特征在于,所述测距装置还包括发射电路;所述发射电路用于发射光脉冲信号;所述光敏传感器所接收的光脉冲信号,来自所述发射电路发射的光脉冲信号经物体反射回的至少部分信号。
- 如权利要求33所述的测距装置,其特征在于,所述测距装置还包括运算电路,用于根据所述比较电路输出的时间信息确定所述物体与所述测距装置之间的距离。
- 一种基于测距装置的时间测量方法,特征在于,包括:在所述测距装置中并行设置有多个预设阈值;接收经光信号处理得到的电信号,提取所述电信号所触发的预设阈值的时间信息;获取所述时间信息所在时段内的环境光信号的强度;根据所述环境光信号的强度,从所述触发的预设阈值的时间信息中,挑选出至少部分触发的预设阈值的时间信息,以及根据所述挑选出的所述时间信息进行运算。
- 如权利要求35所述的方法,其特征在于,所述方法包括:比较所述比较电路提取的时间信息的数目以及与所述环境光信号的强度所能触发的阈值的数目;若提取的时间信息的数目不大于所述环境光信号产生的时间信息的数目,则该光信号为噪声信号;和/或,若提取的时间信息的数目大于所述环境光信号产生的时间信息的数目,则该光信号包括有效光脉冲信号。
- 如权利要求35所述的方法,其特征在于,所述方法包括:比较所述电信号所触发的最大预设阈值与所述环境光信号的强度对应的最大预设阈值的大小;若所述电信号所触发的最大预设阈值不大于所述环境光信号的强度对应的最大预设阈值,则该光信号为噪声信号;和/或,若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则该光信号包括有效光脉冲信号。
- 如权利要求37所述的方法,其特征在于,所述方法包括:若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则至少将比所述环境光信号的强度对应的最大预设阈值大的预设阈值与所述电信号进行比较,提取相应时间信息。
- 如权利要求38所述的方法,其特征在于,所述方法包括:若所述电信号所触发的最大预设阈值大于所述环境光信号的强度对应的最大预设阈值,则将比所述环境光信号的强度对应的最大预设阈值小的预设阈值丢弃,不再与所述电信号进行比较。
- 一种基于测距装置的时间测量方法,特征在于,包括:接收光脉冲信号,以及将所述光脉冲信号转换为电信号输出;将输入的电信号与预设阈值进行比较,提取与所述电信号对应的 时间信息;获取当前温度值,以及根据所述当前温度值调整所述光敏传感器的增益。
- 如权利要求35至40任一项所述的方法,其特征在于,所述方法包括:将所述电信号进行放大运算;调整所述光敏传感器的增益,或调整比较的预设阈值,以使得噪声信号低于所述预设阈值;所述噪声信号为放大运算后的电信号中包含的噪声信号;将所述放大运算后的电信号与所述预设阈值进行比较,并提取与所述电信号对应的时间信息。
- 如权利要求41所述的方法,其特征在于,所述调整比较的预设阈值包括:根据噪声信号的强度确定预设阈值,使得所述预设阈值高于所述噪声信号且所述预设阈值与所述噪声信号的最大值之差不大于预设值。
- 如权利要求41或42所述的方法,其特征在于,所述噪声信号包括光噪声信号和电子噪声信号;所述调整所述光敏传感器的增益,或调整比较的预设阈值,以使得噪声信号低于所述预设阈值包括:获取并比较所述光噪声信号的强度和所述电子噪声信号的强度;在所述光噪声信号的强度小于所述电子噪声信号的强度时,调整所述比较的预设阈值,以使得所述噪声信号低于所述预设阈值;在所述光噪声信号的强度大于所述电子噪声信号的强度时,调整所述光敏传感器的增益,以使得所述噪声信号低于所述预设阈值。
- 如权利要求41或42所述的方法,其特征在于,所述调整所述光敏传感器的增益,或调整比较的预设阈值,以使得噪声信号低于所述预设阈值包括:获取放大运算后的电信号中噪声信号的强度;在所述噪声信号的强度小于预设噪声阈值时,调整所述比较的预 设阈值,以使得所述噪声信号低于所述预设阈值;在所述噪声信号的强度大于预设噪声阈值时,调整所述光敏传感器的增益,以使得所述噪声信号低于所述预设阈值。
- 如权利要求41或42所述的方法,其特征在于,所述将所述电信号进行放大运算之后,所述调整所述光敏传感器的增益,或调整比较的预设阈值之前;所述方法还包括:判断所述噪声信号是否高于所述预设阈值;在所述噪声信号高于所述预设阈值时,执行所述调整所述光敏传感器的增益,或调整比较的预设阈值的步骤。
- 如权利要求45所述的方法,其特征在于,所述判断所述噪声信号是否高于所述预设阈值包括:获取测距装置生成的初始图像中的随机噪点数,并判断所述随机噪点数是否高于预设噪点数阈值;所述初始图像为所述测距装置根据所述放大运算后的电信号以及调整之前的预设阈值生成的;若所述随机噪点数高于预设噪点数阈值,则判断所述噪声信号高于所述预设阈值。
- 如权利要求45所述的方法,其特征在于,所述判断所述噪声信号是否高于所述预设阈值包括:检测所述噪声信号在预设频率范围内的功率信息;若所述功率信息超过所述预设功率阈值,则判断所述噪声信号高于所述预设阈值。
- 如权利要求45所述的方法,其特征在于,测距装置包括多个比较器以及多个时间数字转换器,所述比较器与所述时间数字转换器一一对应连接,所述判断所述噪声信号是否高于所述预设阈值包括:将所述放大运算后的电信号与所述多个比较器的阈值进行比较,并通过所述多个时间数字转换器测量与所述多个比较器对应的时间信息;计算并比较预设阈值的比较器对应的第一时间信息与第一阈值 的比较器对应的第二时间信息;其中,所述预设阈值小于所述第一阈值;若所述第一时间信息与所述第二时间信息之差为随机值,且所述第一时间信息与所述第二时间信息之差大于预设时间阈值,则判断所述噪声信号高于所述预设阈值。
- 如权利要求48所述的方法,其特征在于,判断所述噪声信号是否高于所述预设阈值之后,所述调整比较的预设阈值之前,所述方法还包括:选定高于所述噪声信号的阈值中最小的阈值作为所述预设阈值。
- 如权利要求48所述的方法,其特征在于,所述将所述放大运算后的电信号与所述预设阈值进行比较,并提取与所述电信号对应的时间信息包括:将所述放大运算后的电信号与所述多个比较器的阈值分别进行比较,并通过所述多个时间数字转换器测量所述多个比较器对应的时间信息;根据所述多个时间数字转换器测得的时间信息拟合所述放大运算后的电信号的波形,根据拟合的波形计算所述电信号对应的时间信息。
- 一种光发射装置,其特征在于,包括:电源、光源、储能电路和控制电路,所述储能电路分别与所述电源和所述光源连接;所述控制电路用于在第一时段导通所述电源和所述储能电路,使得所述电源对所述储能电路进行充电;所述控制电路还用于在第二时段导通所述光源和所述储能电路,使得所述储能电路对所述光源供电,以使所述光源出射光脉冲信号。
- 如权利要求51所述的光发射装置,其特征在于,所述光发射装置还包括升压电路,所述升压电路用于对输入电压进行升压以适应不同所述光源的需求。
- 根据权利要求51所述的光发射装置,其特征在于,所述储 能电路所存储的能量具有预设上限值。
- 根据权利要求51所述的光发射装置,其特征在于,所述控制电路包括与所述光源连接的开关电路,以及与所述开关电路连接的驱动电路;所述驱动电路用于在所述第二时段内接收第二驱动信号,以及根据所述第二驱动信号控制所述开关电路导通所述光源和所述储能电路。
- 根据权利要求54所述的光发射装置,其特征在于,所述驱动电路还用于在接收所述第一时段内接收第一驱动信号,以及根据所述第一驱动信号控制所述开关电路导通所述电源和所述储能电路。
- 根据权利要求51所述的光发射装置,其特征在于,所述光发射装置出射激光脉冲信号。
- 根据权利要求53或54所述的光发射装置,其特征在于,所述光源包括激光二极管;所述激光二极管的第一端与所述储能电路连接,所述激光二极管的第二端与所述开关电路的第一端连接;所述驱动电路与所述开关电路的第二端连接,其中所述驱动电路对所述开关电路进行控制;所述开关电路的第三端接地连接。
- 根据权利要求51至57任一项所述的光发射装置,其特征在于,所述储能电路包括蓄能电路以及用于连接所述蓄能电路和所述电源的充电电路,所述电源在所述第一时段通过所述充电电路对所述蓄能电路进行充电。
- 根据权利要求58所述的光发射装置,其特征在于,所述充电电路还包括至少一个电阻,所述至少一个电阻的一端连接于所述三极管的第三端,另一端连接于所述蓄能电路。
- 根据权利要求58所述的光发射装置,其特征在于,所述充电电路包括至少两个电阻,所述至少两个电阻的一端连接于所述三极 管的第三端,另一端连接于所述蓄能电路。
- 根据权利要求58所述的光发射装置,其特征在于,所述蓄能电路包括电容或电感,所述电容或电感用于控制储能电路的能量值,所述蓄能电路的一端连接于所述电压校准源和所述充电电路,另一端连接于所述电源。
- 根据权利要求58所述的光发射装置,其特征在于,还包括限压电路,用于对所述储能电路两端的电压进行限定,以防止储能电路两端的电压超出预定值。
- 根据权利要求62所述的光发射装置,其特征在于,所述限压电路包括二极管,所述限压电路中的二极管的一端连接于所述电源,另一端连接于所述蓄能电路的接地端。
- 根据权利要求58所述的光发射装置,其特征在于,所述充电电路进一步包括限流电路,所述限流电路用于保护所述充电电路以防止所述充电电路上的电流超过其额定值。
- 根据所述权利要求64的光发射装置,其特征在于,所述限流电路包括电阻,电压校准源和三极管。
- 如权利要求65所述的光发射装置,其特征在于,所述限流电路中的电阻的一端连接于升压电路的输出端,另一端连接于电压校准源。
- 如权利要求65所述的光发射装置,其特征在于,所述三极管第一端连接于升压电路的输出端,第二端连接于所述限流电路的电阻的另一端,第三端连接于所述蓄能电路的一端。
- 如权利要求65所述的光发射装置,其特征在于,所述电压校准源的第一端连接于所述限流电路中的电阻和所述三极管的第二端,第二端连接于所述光源的输入端,第三端连接于所述三极管的第三端。
- 如权利要求51所述的光发射装置,其特征在于,所述电源包括两个电源,分别为所述光源和所述储能电路提供能量。
- 一种测距装置,其特征在于,包括:如权利要求5至69任一项所述的光发射装置;接收电路,用于接收所述光发射装置出射的光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号;采样电路,用于对来自所述接收电路的电信号进行采样,获得采样结果;运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
- 根据权利要求70所述的测距装置,其特征在于,所述光发射装置的数量为至少2个;每个所述光电转换电路用于接收来自对应的光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号。
- 根据权利要求70或71所述的测距装置,其特征在于,所述激光测距装置还包括扫描模块;所述扫描模块用于改变所述激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述光电转换电路。
- 根据权利要求72所述的测距装置,其特征在于,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
- 根据权利要求73所述的测距装置,其特征在于,所述扫描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
- 一种移动平台,其特征在于,包括:权利要求51至69任一项所述的光发射装置;和平台本体,所述光发射装置安装在所述平台本体。
- 根据权利要求75所述的移动平台,其特征在于,所述移动 平台包括无人飞行器、汽车和遥控车中的至少一种。
- 一种激光发射装置,其特征在于,包括发射电路、自检电路和控制电路:所述发射电路包括激光发射器和驱动器,所述激光发射器用于在所述驱动器的驱动下发射激光脉冲信号;所述自检电路,用于检测所述发射电路发射的激光脉冲信号的发射能量或发射功率;所述控制电路用于根据所述自检电路的检测结果调整所述发射电路的发射功率;或者,所述控制电路用于根据所述自检电路的检测结果确定是否关闭所述发射电路。
- 如权利要求77所述的激光发射装置,其特征在于,所述自检电路包括:光电转换电路,用于接收所述发射电路发射的激光脉冲信号的部分,并将所述部分激光脉冲信号转换为电脉冲信号;脉冲展宽电路,用于将所述电脉冲信号进行展宽处理;采样电路,用于对经过所述展宽处理后的电信号进行采样。79、如权利要求78所述的激光发射装置,其特征在于,所述展宽处理后的电信号为电脉冲信号,且所述展宽处理后的电脉冲信号的占空比大于所述展宽处理前的电脉冲信号的占空比的至少3倍。
- 如权利要求78所述的激光发射装置,其特征在于,所述展宽处理后的电信号为电平信号。
- 如权利要求78至80中任一项所述的激光发射装置,其特征在于,所述脉冲展宽电路包括RC滤波电路。
- 如权利要求81所述的激光发射装置,其特征在于,所述RC滤波电路包括:一阶RC滤波电路,包括第一电阻和第一储能电路,所述第一电阻一端接收来自光电转换电路的电信号,另一端连接所述第一储能电路的一端,所述第一储能电路的另一端接地。
- 如权利要求81所述的激光发射装置,其特征在于,所述RC滤波电路包括高阶滤波电路。
- 如权利要求81所述的激光发射装置,其特征在于,所述自检电路还包括:放大电路,用于对所述RC滤波电路输出的信号进行放大。
- 如权利要求84所述的激光发射装置,其特征在于,所述放大电路包括:比例放大电路,包括第一运算放大器及第二电阻、第三电阻;所述第二电阻一端连接所述滤波电路,另一端连接所述第一运算放大器的负输入端;所述第一运算放大器的正输入端连接第一参考电源,输出端连接所述采样电路;所述第三电阻一端连接所述第一运算放大器的负输入端,另一端连接所述第一运算放大器的输入端。
- 如权利要求84所述的激光发射装置,其特征在于,所述自检电路还包括:耦合电路,用于对所述光电转换电路和所述放大电路解耦。
- 如权利要求86所述的激光发射装置,其特征在于,所述耦合电路包括:第二储能电路,所述第二储能电路一端接收来自光电转换电路的电信号,另一端连接所述RC滤波电路,以及第二参考电源。
- 如权利要求77所述的激光发射装置,其特征在于,所述自检电路包括:光电转换电路,用于接收所述发射电路发射的激光脉冲信号的部分,并将所述部分激光脉冲信号转换为电脉冲信号;峰值保持电路,用于保持所述电脉冲信号的峰值;采样电路,用于对所述峰值保持电路的所保持的电脉冲信号的峰值进行采样。
- 如权利要求88所述的激光发射装置,其特征在于,所述峰值保持电路包括:第一二极管,第四电阻和第三储能电路,其中,所述第一二极管的一端接收来自光电转换电路的电信号,所述第一二极管的另一端连接所述第四电阻的一端;所述第四电阻的另一端连接所述第三储能电路的一端,以及向所述采样电路输出信号;所述第三储能电路的另一 端接第三参考电源;或第二二极管,第五电阻和第四储能电路,其中,所述第二二极管的一端接收来自光电转换电路的电信号,所述第二二极管的另一端与所述第五电阻的一端,以及向所述采样电路输出信号;所述第五电阻的另一端连接所述第四储能电路的一端,所述第四储能电路的另一端连接第四参考电源。
- 如权利要求89所述的激光发射装置,其特征在于,所述自检电路还包括:第一解耦电路,位于所述光电转换电路和所述峰值保持电路之间,用于对所述光电转换电路和所述峰值保持电路进行解耦。
- 如权利要求90所述的激光发射装置,其特征在于,所述第一解耦电路包括:第二运算放大器,所述第二运算放大器的正输入端接收来自光电转换电路的电信号,所述第二运算放大器的负输入端连接所述第二运算放大器的输出端,所述第二运算放大器的输出端连接所述峰值保持电路。
- 如权利要求90所述的激光发射装置,其特征在于,所述第一解耦电路包括:第三运算放大器,所述第三运算放大器的正输入端接收所述光电转换电路的电信号,所述第三运算放大器的负输入端连接所述第二二极管与所述第五电阻连接的一端,所述第三运算放大器的输出端连接所述第二二极管的另一端。
- 如权利要求92所述的激光发射装置,其特征在于,所述峰值保持电路还包括:所述第三运算放大器的正输入端还连接第五参考电源。
- 如权利要求88-93中任一项所述的激光发射装置,其特征在于,所述自检电路包括:第二解耦电路,连接于所述采样电路和所述峰值保持电路之间,或所述采样电路之后,用于对所述第二解耦电路前后的电路进行解耦。
- 如权利要求94所述的激光发射装置,其特征在于,所述第二解耦电路包括:第四运算放大器,第六电阻和第三二极管,其中,所述第四运算放大器的正输入端连接所述峰值保持电路或所述采样电路;所述第四运算放大器的负输入端连接所述第六电阻的一端,以及所述第三二极管的正极;所述第六电阻的另一端连接第六参考电源,所述第三二极管的负极连接所述第四运算放大器的输出端;或第五运算放大器,所述第五运算放大器的正输入端连接所述峰值保持电路或所述采样电路;所述第五运算放大器的负输入端连接所述第五运算放大器的输出端。
- 如权利要求88-93种任一项所述的激光发射装置,其特征在于,所述自检电路还包括:复位电路,用于将所述峰值保持电路复位。
- 如权利要求96中所述的激光发射装置,其特征在于,所述复位电路包括:第一开关,第二开关和反相器,其中,所述开关一端接收所述光电转换电路的电信号,所述第一开关另一端连接于所述峰值保持电路或所述第一解耦电路;所述第二开关连接在所述第三储能电路或第四储能电路所述的两端;第一开关控制信号控制所述第一开关的通断,并经过反相器后生成第二开关控制信号控制所述第二开关的通断,使所述第一开关和第二开关的通断状态相反。
- 如权利要求78-97中任一项所述的激光发射装置,其特征在于,所述光电转换电路还包括:第七电阻,所述第七电阻一端连接所述光电二极管的正极,另一端接地;所述光电二极管的负极接工作电源VCC。
- 如权利要求78-97任一项所述的激光发射装置,其特征在于,所述采样电路包括:低速ADC采样电路。
- 如权利要求77-98任一项所述的激光发射装置,其特征在于,所述控制电路用于根据所述采样电路的采样电压值调整所述发射电路的发射功率或关闭所述发射电路。
- 如权利要求1至100任一项所述的激光发射装置,其特征在于,所述控制电路用于根据所述自检电路的检测结果调整所述发射电路的发射功率,使得所述发射电路的发射的激光脉冲信号的功率保持在预置范围内。
- 如权利要求1至101任一项所述的激光发射装置,其特征在于,当所述采样电压值超过预置电压上限时,所述控制电路用于减小所述发射电路的增益;和/或,当所述采样电压值低于预置电压下限时,所述控制电路用于增大所述发射电路的增益;和/或,当所述采样电压值为0或几乎为0时,所述控制电路用于关闭所述发射电路。
- 如权利要求1至102任一项所述的激光发射装置,其特征在于,所述激光发射装置内存储有所述发射电路的发射功率与所述采样电路的采样值的对应关系,所述控制电路用于根据所述对应关系调整所述发射电路的发射功率。
- 一种峰值保持电路,其特征在于,包括:第一二极管,第四电阻和第三储能电路,其中,所述第一二极管的一端接收来自光电转换电路的电信号,所述第一二极管的另一端连接所述第四电阻的一端;所述第四电阻的另一端连接所述第三储能电路的一端,以及向所述采样电路输出信号;所述第三储能电路的另一端接地;或第二二极管,第五电阻和第四储能电路,其中,所述第二二极管的一端接收来自光电转换电路的电信号,所述第二二极管的另一端与所述第五电阻的一端,以及向所述采样电路输出信号;所述第五电阻的另一端连接所述第四储能电路的一端,所述第四储能电路的另一端连接第四参考电源。
- 如权利要求104中所述的峰值保持电路,其特征在于,所述峰值保持电路还包括:第一解耦电路,位于所述峰值保持电路之前,用于对所述峰值保 持电路与所述峰值保持电路之前的电路进行解耦。
- 如权利要求105所述的峰值保持电路,其特征在于,所述第一解耦电路包括:第二运算放大器,所述第二运算放大器的正输入端接收输入信号,所述第二运算放大器的负输入端连接所述第二运算放大器的输出端,所述第二运算放大器的输出端连接所述第一二极管的一端或第二二极管的一端。
- 如权利要求105所述的峰值保持电路,其特征在于,所述第一解耦电路包括:第三运算放大器,所述第三运算放大器的正输入端接收输入信号,所述第三运算放大器的负输入端连接所述第二二极管与所述第五电阻的一端,所述第三运算放大器的输出端连接所述第二二极管的另一端。
- 如权利要求107所述的峰值保持电路,其特征在于,所述峰值保持电路还包括:所述第三运算放大器的正输入端还连接第五参考电源。
- 如权利要求104-107中任一项所述的峰值保持电路,其特征在于,所述峰值保持电路包括:第二解耦电路,连接于所述峰值保持电路之后,用于对所述峰值保持电路及其之后的电路进行解耦。
- 如权利要求109所述的峰值保持电路,其特征在于,所述第二解耦电路包括:第四运算放大器,第六电阻和第三二极管,其中,所述第四运算放大器的正输入端连接所述峰值保持电路;所述第四运算放大器的负输入端连接所述第六电阻的一端,以及所述第三二极管的正极;所述第六电阻的另一端连接第六参考电源,所述第三二极管的负极连接所述第四运算放大器的输出端;或第五运算放大器,所述第五运算放大器的正输入端连接所述峰值保持电路;所述第五运算放大器的负输入端连接所述第五运算放大器的输出端。
- 一种激光测距装置,其特征在于,包括:激光发射装置,用于依次出射激光脉冲信号;接收电路,用于接收所述光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号;采样电路,用于对来自所述接收电路的电信号进行采样,获得采样结果;运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离;其中,所述激光发射装置包括如权利要求1至26任一项所述的激光发射装置;和/或,所述接收电路包括如权利要求27至34任一项所述的峰值保持电路。
- 根据权利要求111所述的测距装置,其特征在于,所述接收电路包括光电转换电路,用于将接收到的光信号转换成电信号;所述光发射装置的数量和所述光电转换电路的数量分别为至少2个;每个所述光电转换电路用于接收来自对应的光发射装置出射的激光脉冲信号经物体反射回的至少部分光信号,以及将接收到的光信号转成电信号。
- 根据权利要求111或112所述的测距装置,其特征在于,所述激光测距装置还包括扫描模块;所述扫描模块用于改变所述激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述光电转换电路。
- 根据权利要求113所述的测距装置,其特征在于,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
- 根据权利要求113所述的测距装置,其特征在于,所述扫描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
- 根据权利要求111所述的测距装置,其特征在于,所述接收电路包括如权利要求103至110任一项所述的峰值保持电路,用于保持所述电脉冲信号的峰值;所述采样电路具体用于对所述峰值保持电路的所保持的电脉冲信号的峰值进行采样。
- 一种放大电路,其特征在于,包括:运算放大器电路和钳位电路;所述钳位电路分别与所述运算放大器的输入端和输出端连接,用于对所述放大电路的输入信号进行钳位,使得所述放大电路的输入信号经过钳位后,其大小在一定范围内波动以防止所述运算放大器电路饱和输出。
- 如权利要求117所述的放大电路,其特征在于,所述钳位电路包括二极管。
- 如权利要求118所述的放大电路,其特征在于,所述二极管是齐纳管或TVS管。
- 如权利要求118所述的放大电路,其特征在于,所述钳位电路还包括分压电阻。
- 如权利要求118所述的放大电路,其特征在于,所述钳位电路的二极管的一端连接于所述输入信号,另一端连接于所述运算放大器的输出端。
- 如权利要求120或121所述的放大电路,其特征在于,所述分压电阻的一端连接于参考电压,另一端连接于所述运算放大器电路的输出端。
- 如权利要求122所述的放大电路,其特征在于,所述钳位电路的二极管的一端连接于所述输入信号,另一端通过所述分压电阻 中的至少一个电阻连接于所述运算放大器的输出端。
- 如权利要求120所述的放大电路,其特征在于,所述分压电阻包括至少两个电阻。
- 如权利要求8所述的放大电路,其特征在于,所述分压电阻中的两个电阻串联,所述两个电阻的相连端与所述二极管的一端相连,所述两个电阻中的其中一个电阻的另一端连接于参考电压,所述两个电阻中的另一个电阻的另一端连接至所述运算放大器的输出端。
- 如权利要求117至124任一项所述的放大电路,其特征在于,所述运算放大器电路为反相放大器电路或正向放大器电路。
- 如权利要求117所述的放大电路,其特征在于,所述放大电路还包括反馈电路,所述反馈电路用于对所述运算放大器电路的放大倍数进行调整。
- 如权利要求127所述的放大电路,其特征在于,所述反馈电路包括电阻、二极管、电容中的至少一项。
- 如权利要求128所述的放大电路,其特征在于,所述反馈电路的任一个二极管或任一个电容与所述反馈电路的若干个电阻并联连接。
- 如权利要求128或129所述的放大电路,其特征在于,所述反馈电路中的若干个电阻之间串联连接,以减小所述反馈电路中电阻上的寄生参数,从而实现高带宽。
- 如权利要求130所述的放大电路,其特征在于,所述反馈电路中包括三个电阻,所述三个电阻串联连接,其中,所述三个电阻中的第一个电阻与电容并联连接,所述三个电阻中的第二个电阻与二极管并联连接,所述三个电阻中的第三个电阻与二极管并联连接。
- 一种测距装置,其特征在于,包括:发射电路,用于出射光脉冲序列;光电转换电路,用于依次接收所述发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号,以及将所述接收的多个光脉冲信号依次转换成电脉冲信号;如权利要求117至131任一项所述的测距装置,用于依次接收来自所述光电转换电路的多个电脉冲信号;其中,所述钳位电路用于对所述多个电脉冲信号进行依次钳位,所述多个电脉冲信号经过钳位后依次输入至所述运算放大器电路进行放大,其中,所述钳位电路用于使得所述多个电脉冲信号的大小位于一定范围内,以防止所述运算放大器电路饱和输出。
- 根据权利要求132所述的测距装置,其特征在于,所述测距装置还包括:采样电路,用于对来自所述放大电路的电脉冲信号进行采样,获得采样结果;运算电路,用于根据所述采样结果计算所述物体与所述测距装置之间的距离。
- 根据权利要求132所述的测距装置,其特征在于,所述发射电路、光电转换电路和所述放大电路中,每个电路的数量为至少2个;所述至少2个发射电路和所述至少2个光电转换电路一一对应,每个光电转换电路用于依次接收对应的发射电路出射的光脉冲序列中的多个光脉冲分别经物体反射回的光脉冲信号;所述至少2个光电转换电路和所述至少2个放大电路一一对应,每个放大电路用于依次接收来自对应的光电转换电路的电脉冲信号。
- 根据权利要求132所述的测距装置,其特征在于,所述测距装置还包括扫描模块;所述扫描模块用于改变所述激光脉冲信号的传输方向后出射,经物体反射回的激光脉冲信号经过所述扫描模块后入射至所述光电转换电路。
- 根据权利要求135所述的测距装置,其特征在于,所述扫描模块包括驱动器和厚度不均匀的棱镜,所述驱动器用于带动所述棱镜转动,以将经过所述棱镜的激光脉冲信号改变至不同方向出射。
- 根据权利要求135所述的测距装置,其特征在于,所述扫 描模块包括两个驱动器,以及两个并列设置的、厚度不均匀的棱镜,所述两个驱动器分别用于驱动所述两个棱镜以相反的方向转动;来自所述激光发射装置的激光脉冲信号依次经过所述两个棱镜后改变传输方向出射。
- 一种移动平台,其特征在于,包括:权利要求117-137任一项所述的测距装置;和平台本体,所述测距装置安装在所述平台本体。
- 根据权利要求138所述的移动平台,其特征在于,所述移动平台包括无人飞行器、汽车和机器人中的至少一种。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880011266.2A CN111316130B (zh) | 2018-09-27 | 2018-09-27 | 一种测距装置以及基于测距装置的时间测量方法 |
PCT/CN2018/108149 WO2020061967A1 (zh) | 2018-09-27 | 2018-09-27 | 一种测距装置以及基于测距装置的时间测量方法 |
US17/214,709 US20210286051A1 (en) | 2018-09-27 | 2021-03-26 | Distance measuring device, and time measurement method based on distance measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/108149 WO2020061967A1 (zh) | 2018-09-27 | 2018-09-27 | 一种测距装置以及基于测距装置的时间测量方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/214,709 Continuation US20210286051A1 (en) | 2018-09-27 | 2021-03-26 | Distance measuring device, and time measurement method based on distance measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020061967A1 true WO2020061967A1 (zh) | 2020-04-02 |
Family
ID=69950935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/108149 WO2020061967A1 (zh) | 2018-09-27 | 2018-09-27 | 一种测距装置以及基于测距装置的时间测量方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210286051A1 (zh) |
CN (1) | CN111316130B (zh) |
WO (1) | WO2020061967A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113699223A (zh) * | 2021-10-29 | 2021-11-26 | 成都齐碳科技有限公司 | 纳米孔测序电路、测序方法及装置 |
WO2022212641A1 (en) * | 2021-04-02 | 2022-10-06 | Luminar, Llc | Reconstruction of pulsed signals |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200191957A1 (en) * | 2018-12-18 | 2020-06-18 | Didi Research America, Llc | Transmitter having beam-shaping component for light detection and ranging (lidar) |
CN111830523B (zh) * | 2020-07-24 | 2023-07-04 | 中国电子科技集团公司第四十四研究所 | 一种光电探测器飞行时间校正系统及方法 |
US20220035035A1 (en) * | 2020-07-31 | 2022-02-03 | Beijing Voyager Technology Co., Ltd. | Low cost range estimation techniques for saturation in lidar |
CN112083436B (zh) * | 2020-09-04 | 2024-06-18 | 深圳市迈测科技股份有限公司 | 修正蓄光测距误差的方法、装置、设备和激光测距仪 |
CN112711010A (zh) * | 2021-01-26 | 2021-04-27 | 上海思岚科技有限公司 | 激光测距信号处理装置、激光测距设备及其对应的方法 |
CN115144863A (zh) * | 2021-03-31 | 2022-10-04 | 上海禾赛科技有限公司 | 确定噪声水平的方法、激光雷达以及测距方法 |
CN114594493B (zh) * | 2022-01-13 | 2023-03-21 | 杭州宏景智驾科技有限公司 | 激光雷达系统及其环境光感知方法 |
CN114859324B (zh) * | 2022-07-05 | 2022-10-14 | 天津光电集团有限公司 | 一种利用tvs的激光雷达发射及检测电路 |
CN115436693B (zh) * | 2022-08-22 | 2023-12-05 | 中国科学院合肥物质科学研究院 | 一种判断输入端高电压是否超出预设值的电压检测装置及方法 |
CN116979662B (zh) * | 2023-09-22 | 2023-12-19 | 山东领傲电子科技有限公司 | 一种充电机充电异常检测系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0735858A (ja) * | 1993-07-16 | 1995-02-07 | Omron Corp | 距離計測装置 |
CN102621555A (zh) * | 2012-01-20 | 2012-08-01 | 南京理工大学 | 一种双阈值时刻鉴别电路 |
CN103698770A (zh) * | 2013-12-11 | 2014-04-02 | 中国科学院长春光学精密机械与物理研究所 | 基于fpga芯片的多通道激光回波时间测量系统 |
CN106093958A (zh) * | 2016-08-24 | 2016-11-09 | 武汉万集信息技术有限公司 | 基于双apd的激光测距方法及装置 |
US20180123611A1 (en) * | 2016-11-02 | 2018-05-03 | Stmicroelectronics (Research & Development) Limited | Light communications receiver and decoder with time to digital converters |
CN108401444A (zh) * | 2017-03-29 | 2018-08-14 | 深圳市大疆创新科技有限公司 | 一种激光雷达以及基于激光雷达的时间测量方法 |
CN108513618A (zh) * | 2017-03-29 | 2018-09-07 | 深圳市大疆创新科技有限公司 | 脉冲信息测量方法及相关装置、移动平台 |
US20180259625A1 (en) * | 2017-03-10 | 2018-09-13 | Sensl Technologies Ltd. | LiDAR Readout Circuit |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09318736A (ja) * | 1996-05-30 | 1997-12-12 | Denso Corp | 距離測定装置 |
CN106019300A (zh) * | 2016-08-05 | 2016-10-12 | 上海思岚科技有限公司 | 一种激光测距装置及其激光测距方法 |
CN106054205A (zh) * | 2016-08-05 | 2016-10-26 | 上海思岚科技有限公司 | 一种激光测距装置及其激光测距方法 |
WO2018053292A1 (en) * | 2016-09-16 | 2018-03-22 | Analog Devices, Inc. | Interference handling in time-of-flight depth sensing |
-
2018
- 2018-09-27 CN CN201880011266.2A patent/CN111316130B/zh active Active
- 2018-09-27 WO PCT/CN2018/108149 patent/WO2020061967A1/zh active Application Filing
-
2021
- 2021-03-26 US US17/214,709 patent/US20210286051A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0735858A (ja) * | 1993-07-16 | 1995-02-07 | Omron Corp | 距離計測装置 |
CN102621555A (zh) * | 2012-01-20 | 2012-08-01 | 南京理工大学 | 一种双阈值时刻鉴别电路 |
CN103698770A (zh) * | 2013-12-11 | 2014-04-02 | 中国科学院长春光学精密机械与物理研究所 | 基于fpga芯片的多通道激光回波时间测量系统 |
CN106093958A (zh) * | 2016-08-24 | 2016-11-09 | 武汉万集信息技术有限公司 | 基于双apd的激光测距方法及装置 |
US20180123611A1 (en) * | 2016-11-02 | 2018-05-03 | Stmicroelectronics (Research & Development) Limited | Light communications receiver and decoder with time to digital converters |
US20180259625A1 (en) * | 2017-03-10 | 2018-09-13 | Sensl Technologies Ltd. | LiDAR Readout Circuit |
CN108401444A (zh) * | 2017-03-29 | 2018-08-14 | 深圳市大疆创新科技有限公司 | 一种激光雷达以及基于激光雷达的时间测量方法 |
CN108513618A (zh) * | 2017-03-29 | 2018-09-07 | 深圳市大疆创新科技有限公司 | 脉冲信息测量方法及相关装置、移动平台 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022212641A1 (en) * | 2021-04-02 | 2022-10-06 | Luminar, Llc | Reconstruction of pulsed signals |
CN113699223A (zh) * | 2021-10-29 | 2021-11-26 | 成都齐碳科技有限公司 | 纳米孔测序电路、测序方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111316130A (zh) | 2020-06-19 |
CN111316130B (zh) | 2024-03-08 |
US20210286051A1 (en) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020061967A1 (zh) | 一种测距装置以及基于测距装置的时间测量方法 | |
CN108781116B (zh) | 一种功率调整方法及激光测量装置 | |
WO2018176288A1 (zh) | 一种激光雷达以及基于激光雷达的时间测量方法 | |
JP5889152B2 (ja) | 受光回路、レーザレーダ | |
CN210142193U (zh) | 一种测距装置、移动平台 | |
US10132926B2 (en) | Range finder, mobile object and range-finding method | |
WO2020061968A1 (zh) | 一种光发射装置及测距装置、移动平台 | |
CN211505895U (zh) | 激光发射装置、峰值保持电路、测距装置和移动平台 | |
JPH09189768A (ja) | レーザ距離測定器受信機 | |
EP3540468B1 (en) | Object detector, mobile object, and object detection method | |
CN111656220B (zh) | 用于接收光信号的接收装置 | |
EP3418765B1 (en) | Distance-measuring device and method thereof | |
US20220057493A1 (en) | Device for operating a light source for the optical time-of-flight measurement | |
CN109696787A (zh) | 自适应发射光控制 | |
CN111492261B (zh) | 一种激光接收电路及测距装置、移动平台 | |
US20200386889A1 (en) | Light detection device and electronic apparatus | |
WO2023024492A1 (zh) | 激光雷达和使用激光雷达进行三维探测的方法 | |
CN114019482A (zh) | 光电接收电路及具有该电路的激光测距装置 | |
CN219456506U (zh) | 激光雷达系统及其接收装置 | |
WO2020113564A1 (zh) | 一种激光接收电路及测距装置、移动平台 | |
CN116400380A (zh) | 激光雷达系统及激光信号强度确定方法 | |
US20200233065A1 (en) | Optical detector with dc compensation | |
CN113820689A (zh) | 接收器、激光测距设备及点云图像生成方法 | |
WO2020061970A1 (zh) | 一种测距装置及移动平台 | |
CN221553263U (zh) | 无线通信电路、激光雷达 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18935003 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18935003 Country of ref document: EP Kind code of ref document: A1 |