WO2021042326A1 - 激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达 - Google Patents
激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达 Download PDFInfo
- Publication number
- WO2021042326A1 WO2021042326A1 PCT/CN2019/104530 CN2019104530W WO2021042326A1 WO 2021042326 A1 WO2021042326 A1 WO 2021042326A1 CN 2019104530 W CN2019104530 W CN 2019104530W WO 2021042326 A1 WO2021042326 A1 WO 2021042326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- gain
- circuit
- control
- voltage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4816—Constructional features, e.g. arrangements of optical elements of receivers alone
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
Definitions
- the present invention relates to the technical field of laser radar, in particular to a laser radar signal receiving circuit, a laser radar signal gain control method and a laser radar.
- Lidar due to its advantages of high resolution and little interference from environmental factors, has important applications in unmanned driving, robotics and other fields; it is generally used to measure the distance of the target, and it can also be used to detect the reflectivity of the target. Wait for reflection information.
- the energy of the echo optical signal may fluctuate from nW to mW, with a very high dynamic range; therefore, the echo optical signal is being converted into an electrical signal After zooming in, it is more common for the electric signal to appear saturated.
- the electrical signal is saturated, since the electronic devices work in the non-linear region, signal distortion is prone to occur, and this distortion will cause many problems such as inaccuracy of the ranging distance and reflection information.
- a laser radar signal receiving circuit includes:
- the optical signal processing circuit is used to receive the echo optical signal and convert the echo optical signal into an analog voltage signal
- a gain control circuit connected to the optical signal processing circuit, for controlling the gain of the optical signal processing circuit
- An analog-to-digital conversion circuit connected to the optical signal processing circuit, for converting the analog voltage signal into a digital voltage signal;
- a digital processing circuit respectively connected to the analog-to-digital conversion circuit and the gain control circuit, is used to detect whether the digital voltage signal is saturated, and to control the gain control circuit when the digital voltage signal is saturated Reduce the gain of the optical signal processing circuit, or detect whether the digital voltage signal is under-compensated, and control the gain control circuit to increase the optical signal processing circuit when the digital voltage signal is under-compensated The gain.
- a method for controlling the gain of a lidar signal includes:
- the gain control circuit is controlled to increase the gain of the optical signal processing circuit.
- a lidar in a third aspect, includes a lidar signal transmitting circuit and the lidar signal receiving circuit according to any one of the first aspect; the digital processing circuit in the lidar signal receiving circuit and the lidar The signal transmitting circuit is connected and used for controlling the laser radar signal transmitting circuit to transmit the laser radar signal.
- the data processing circuit when the digital processing circuit detects that the digital voltage signal is saturated, the data processing circuit can control the gain control circuit to reduce the gain of the optical signal processing circuit to achieve automatic reduction The effect of gain; it is understandable that after reducing the gain, if the digital voltage signal is detected to be still saturated, the data processing circuit can control the gain control circuit to continue to reduce the gain of the optical signal processing circuit until the digital voltage signal is detected It is not saturated, so it solves many problems such as inaccuracy of measuring distance and reflection information caused by signal saturation, and improves the accuracy of measuring distance and reflection information.
- the data processing circuit can control the gain control circuit to increase the gain of the optical signal processing circuit to achieve the effect of automatically increasing the gain; it is understandable that after the gain is increased, If it is detected that the digital voltage signal is still under-compensated, the data processing circuit can control the gain control circuit to continue to increase the gain of the optical signal processing circuit until it detects that the digital voltage signal is no longer under-compensated, thus solving the problem of signal under-compensation. Many problems such as too short ranging distance and low sensitivity have improved the ranging distance and sensitivity.
- Figure 1a is a schematic diagram of a laser radar signal receiving circuit in an embodiment
- Figure 1b is one of the schematic diagrams of the gain effect of the lidar signal receiving circuit in an embodiment
- Fig. 1c is the second schematic diagram of the gain effect of the lidar signal receiving circuit in an embodiment
- FIG. 2 is a schematic diagram of the structure of a laser radar signal receiving circuit in an embodiment
- FIG. 3 is a schematic diagram of the structure of a laser radar signal receiving circuit in an embodiment
- Figure 4a is a schematic structural diagram of a transimpedance amplifier in an embodiment
- 4b is a schematic diagram of the structure of an analog-to-digital conversion circuit in an embodiment
- Figure 5a is a schematic structural diagram of a lidar signal receiving circuit with a second structure in an embodiment
- 5b is a specific example diagram of a laser radar signal receiving circuit of the second structure in an embodiment
- Fig. 6a is a schematic structural diagram of a laser radar signal receiving circuit with a second structure in an embodiment
- 6b is a specific example diagram of a laser radar signal receiving circuit of the second structure in an embodiment
- Fig. 7a is a schematic structural diagram of a lidar signal receiving circuit with a third structure in an embodiment
- FIG. 7b is a specific example diagram of a laser radar signal receiving circuit with a third structure in an embodiment
- FIG. 7c is a specific example diagram of a laser radar signal receiving circuit with a third structure in an embodiment
- Figure 8 is a schematic diagram of the structure of a lidar in an embodiment
- Fig. 9 is a schematic flowchart of a method for controlling the gain of a lidar signal in an embodiment.
- a laser radar signal receiving circuit shown in FIG. 1a it includes a light sensor, a transimpedance amplifier circuit, an analog-to-digital conversion circuit, and a digital processing circuit connected in sequence.
- the energy of the echo light signal may fluctuate between nW and mW; accordingly, when the light sensor at the front stage of the lidar signal receiving circuit is working under a constant bias voltage, the light sensor
- the output photocurrent signal may fluctuate between uA level and mA level.
- the transimpedance amplifier circuit, analog-to-digital conversion circuit and other post-stage devices at the rear stage of the laser radar signal receiving circuit have a very high dynamic range; Due to issues such as cost and device supply, none of the latter devices can meet this dynamic range. In this case, only the system dynamic range of the entire lidar signal receiving circuit can be reduced.
- the system gain of the entire radar lidar signal receiving circuit can be set to a certain fixed value. As shown in Figure 1b, the system gain It can be ensured that when the echo optical signal is weak (for example, when the photocurrent signal of the optical sensor may be ⁇ A), the echo optical signal can still be detected and recognized by the digital processing circuit after the entire radar lidar signal gain.
- the echo light signal when the echo signal is too weak, the echo light signal may still be too weak to be detected and recognized by the digital processing circuit after the entire radar lidar signal gains (for example, the signal is so weak that it cannot distinguish between the echo light signal and the noise Signal), that is, the signal is under-compensated, which leads to problems such as too short ranging distance and low sensitivity.
- FIG. 2 shows the structure of a laser radar signal receiving circuit of this embodiment, including: an optical signal processing circuit 10, a gain control circuit 20, an analog-to-digital conversion circuit 30, and a digital processing circuit 40;
- the signal processing circuit is used to receive the echo optical signal and convert the echo optical signal into an analog voltage signal;
- the gain control circuit which is connected to the optical signal processing circuit, is used to control the gain of the optical signal processing circuit;
- the analog-to-digital conversion circuit It is connected with the optical signal processing circuit to convert the analog voltage signal into a digital voltage signal;
- the digital processing circuit is connected to the analog-to-digital conversion circuit and the gain control circuit respectively to detect whether the digital voltage signal is saturated, And when the digital voltage signal is saturated, the gain control circuit is controlled to reduce the gain of the optical signal processing circuit, or used to detect whether the digital voltage signal is under-compensated, and when the digital voltage signal is under-compensated, the gain control circuit is controlled to increase the light.
- the gain of the signal processing circuit can simultaneously detect whether the laser radar
- the way for the digital processing circuit to determine whether the voltage signal is saturated may be: determining whether the maximum amplitude of the voltage signal is higher than the upper limit of the preset voltage amplitude, and determining whether the voltage signal is relative to the time during the time period when the echo optical signal is detected.
- the integrated area is higher than the preset upper limit of the integrated area threshold; this embodiment does not limit this.
- the way for the digital processing circuit to judge whether the voltage signal is under-compensated may be: judging whether the maximum amplitude of the voltage signal is lower than the lower limit of the preset voltage amplitude, and judging whether the voltage signal affects the time during the time period when the echo optical signal is detected Whether the integrated area is lower than the preset lower limit of the integrated area threshold and other methods.
- the parameters such as the upper limit of the preset voltage amplitude and the lower limit of the preset voltage amplitude depend on the electrical performance of each component in the laser radar signal receiving circuit, and can be obtained through testing.
- the gain control circuit and the optical signal processing circuit are corresponding.
- the gain control circuit may include a gain control structure associated with at least one gain structure in the M-level gain structure, and the gain control structure may control the gain of the associated gain structure;
- M is an integer greater than zero.
- the gain control circuit may include the gain control structure associated with each gain structure in the M-level gain structure, that is, the corresponding M gain control structures, which can control the gain of each gain structure to achieve a large range Flexible control of the gain.
- the gain control structure may only control part of the gain structure; for example, the gain control circuit may include a gain control structure associated with a certain gain structure in the M-level gain structure.
- the optical signal processing circuit may include: a light sensor and a transimpedance circuit; wherein the light sensor is used to generate a photocurrent signal in response to the echo optical signal; the transimpedance circuit is connected to the light sensor , Used to convert the photocurrent signal into an analog voltage signal.
- the gain control circuit may include at least one of the following: a bias voltage control circuit and a resistance control circuit; wherein the bias voltage control circuit is connected to the light sensor and is used to control the bias voltage of the light sensor; and the resistance; The control circuit, connected with the transimpedance circuit, is used to control the resistance of the transimpedance circuit.
- the transimpedance circuit includes multiple optional resistors
- the resistance control circuit includes an analog switch
- the digital signal processing circuit can control the analog switch to switch multiple optional resistors
- the transimpedance circuit includes a dynamically adjustable resistor
- the digital signal The processing circuit can adjust the resistance value of the resistor through the resistance control circuit; it can be understood that the resistance value of the resistance in the transimpedance circuit is positively related to the gain of the transimpedance circuit.
- the optical signal processing circuit may include: a light sensor and a transimpedance amplifying circuit; wherein, the transimpedance amplifying circuit is connected to the light sensor for amplifying and converting the photocurrent signal into an analog type Voltage signal.
- the gain control circuit includes at least one of the following: a bias voltage control circuit and a primary amplifying control circuit; wherein the primary amplifying control circuit is connected to the transimpedance amplifying circuit for controlling the gain of the transimpedance amplifying circuit .
- the optical signal processing circuit may include: a light sensor 11, a transimpedance amplifying circuit 12, and a secondary amplifying circuit 13; wherein, the secondary amplifying circuit 13 is connected to The transimpedance amplifier circuit 12 and the analog-to-digital conversion circuit 30 are used to amplify the analog voltage signal to obtain the amplified voltage signal.
- the gain control circuit may include at least one of the following: a bias voltage control circuit 21, a primary amplification control circuit 22, and a secondary amplification control circuit 23; wherein the bias voltage control circuit 21 is connected to the light sensor 11 , Used to control the bias voltage of the light sensor 11; the primary amplifying control circuit 22, connected with the transimpedance amplifying circuit 12, used to control the gain of the transimpedance amplifying circuit 12; the secondary amplifying control circuit 23, and the secondary amplifying circuit 13 connection, used to control the amplification gain of the secondary amplifying circuit 13.
- the data processing circuit 40 can use different control strategies to control different gain control circuits.
- the optical signal processing circuit includes: a light sensor, a transimpedance circuit, and a secondary amplifier circuit.
- the gain control circuit includes at least one of the following: a bias voltage control circuit, a resistance control circuit, and a secondary amplification control circuit.
- the light sensor may be the following devices, or an array composed of at least one of the following types of devices: APD (Avalanche Photo Diode, avalanche photodiode), SIPM (Silicon photomultiplier, silicon photomultiplier), SPAD (Single Photon Avalanche Diode, Single photon avalanche diode), MPPC (silicon photomultiplier tube), PMT (photomultiplier tube, photomultiplier tube), etc.
- the light sensor may be a single-photon array sensor composed of multiple single-photon avalanche diodes, with a gain of up to 106 or more, and can detect extremely low-power optical signals, which is suitable for application in laser ranging radars.
- the gain G of a single-photon avalanche diode refers to the ratio of the charge generated after the working unit is excited to the electronic charge.
- the calculation formula is as follows:
- Ccell is the equivalent capacitance of the single-photon avalanche diode
- Vov is the overvoltage
- Vbr is the breakdown voltage
- Vbias is the bias voltage
- q is the unit charge; considering the stable working environment temperature, the breakdown voltage remains stable,
- the gain of a single photon array sensor is positively related to the bias voltage.
- the transimpedance amplifier circuit may be a transimpedance amplifier, and the transimpedance amplifier may include an operational amplifier device and a transimpedance amplifying resistor, and the two may be independent devices or integrated together.
- the transimpedance amplifier may include an operational amplifier device U1 and a transimpedance amplifying resistor RT; where the inverted triangle represents grounding, and Vs is the supply voltage of U1; the transimpedance amplifier may input the photocurrent signal at the input end Iop is converted and amplified into a voltage signal.
- the analog-to-digital conversion circuit may include an analog-to-digital converter driving circuit and an analog-to-digital converter.
- the analog-to-digital converter driver circuit 31 can be a single-ended signal-to-differential signal circuit, which can include U2 and R1 to R5, where U2 is a fully differential amplifier; Converted into a differential signal, and adjusted to the input range of the analog-to-digital converter 32, while driving the analog-to-digital converter 32 for analog-to-digital conversion; the analog-to-digital converter 32 may include analog-to-digital conversion devices U3 and R6, R7, C1, C2 , C3, where the front ends R6, R7, C1, C2, and C3 of the analog-to-digital converter 32 constitute an anti-aliasing filter, which can perform analog-to-digital conversion on the differential signal output by the previous stage and output a digital signal.
- the digital processing circuit may be FPGA chip (Field-Programmable Gate Array), CPLD chip (Complex Programmable Logic Device, complex programmable logic device), ASIC chip (Application Specific Integrated Circuit, dedicated Integrated circuits), etc., where the ASIC chip may be a DSP chip (Digital Signal Processing, digital signal processing); the present invention is not limited to this.
- the data processing circuit when the digital processing circuit detects that the digital voltage signal is saturated, the data processing circuit can control the gain control circuit to reduce the gain of the optical signal processing circuit to achieve the effect of automatically reducing the gain; it is understandable that After gain, if it is detected that the digital voltage signal is still saturated, the data processing circuit can control the gain control circuit to continue to reduce the gain of the optical signal processing circuit until it detects that the digital voltage signal is not saturated, thus solving the measurement caused by signal saturation. Many problems such as inaccurate measurement of distance and reflection information have improved the accuracy of distance measurement and reflection information measurement.
- the data processing circuit can control the gain control circuit to increase the gain of the optical signal processing circuit to achieve the effect of automatically increasing the gain; it is understandable that after the gain is increased, If it is detected that the digital voltage signal is still under-compensated, the data processing circuit can control the gain control circuit to continue to increase the gain of the optical signal processing circuit until it detects that the digital voltage signal is no longer under-compensated, thus solving the problem of signal under-compensation.
- Many problems such as too short ranging distance and low sensitivity have improved the ranging distance and sensitivity. In short, the effect of automatically adjusting the gain can be realized, and intelligent control can be realized.
- the optical signal processing circuit may include: a light sensor 11 and a transimpedance amplifier circuit 12; accordingly, the gain control circuit may include: a bias voltage control circuit 21, which is connected to the light sensor 11 and is used to control the bias of the light sensor 11. Voltage.
- the digital processing circuit is used to determine the target bias voltage of the light sensor according to the current bias voltage of the light sensor, and generate and output a bias voltage control signal according to the target bias voltage;
- the bias voltage control signal is used to indicate the bias voltage Set the voltage control circuit to control the bias voltage of the light sensor as the target bias voltage; among them, when the digital voltage signal is saturated, the target bias voltage is less than the current bias voltage; when the digital voltage signal is under-compensated, the target bias The set voltage is greater than the current bias voltage.
- the bias voltage control circuit may include a bias voltage control line for transmitting the bias voltage control signal to the light sensor, and the bias voltage control signal may be directly used as the bias voltage to achieve small-range control of the bias voltage.
- the digital processing circuit can transmit the bias voltage control signal to the power supply through the bias voltage control line, control the output voltage of the power supply, and realize the bias voltage control. Large-scale control.
- the digital processing circuit may use the product value between the current bias voltage and the bias voltage adjustment ratio as the target bias voltage; for example, the bias voltage adjustment ratio may be 5%, 8%, 20%, etc.
- the digital processing circuit may use the difference between the current bias voltage and the bias voltage adjustment step length as the target bias voltage; wherein the bias voltage adjustment step length may be fixed or dynamically changed of.
- the fixed bias voltage adjustment step size can be 1V, 2V, 5V, and so on.
- the dynamically changing bias voltage adjustment step size may be a preset ratio of the current bias voltage, such as 5%, 8%, 20%, and so on.
- the digital processing circuit can calculate the saturation of the digital voltage signal according to the amplitude of the digital voltage signal and the preset saturation threshold, and according to the positive correlation between the preset saturation and the gain step size, The current gain step size corresponding to the digital voltage signal is determined, and the gain control circuit is controlled to reduce the gain of the optical signal processing circuit with the current gain step size.
- the digital processing circuit may calculate the saturation of the digital voltage signal when the digital voltage signal is saturated, and determine the offset according to the saturation and the corresponding relationship between the preset saturation and the bias voltage adjustment ratio. The voltage adjustment ratio, or, according to the saturation degree and the corresponding relationship between the preset saturation degree and the bias voltage adjustment step length, the bias voltage adjustment step length is determined.
- saturation can represent the degree to which the maximum amplitude of the voltage signal exceeds the upper limit of the preset voltage amplitude. Therefore, the difference between the maximum amplitude of the voltage signal and the upper limit of the preset voltage amplitude can be used as the saturation, or the The ratio of the difference to the upper limit of the preset voltage amplitude is taken as the saturation, and the difference between the voltage signal's integrated area with respect to time and the preset upper limit of the integrated area threshold during the time period when the echo optical signal is detected can also be used as the saturation. The ratio is used as saturation. It can be understood that there is a negative correlation between saturation and the bias voltage adjustment ratio, and a positive correlation between saturation and the bias voltage adjustment step.
- the digital processing circuit can calculate the under-compensation degree of the digital voltage signal according to the amplitude of the digital voltage signal and the preset under-compensation threshold, and then calculate the under-compensation degree of the digital voltage signal according to the preset
- the positive correlation between the degree of under-compensation and the gain step size is to determine the current gain step size corresponding to the digital voltage signal, and control the gain control circuit to increase the gain of the optical signal processing circuit with the current gain step size.
- the degree of undercompensation can represent the degree to which the maximum amplitude of the voltage signal is lower than the lower limit of the preset voltage amplitude.
- the difference between the lower limit of the preset voltage amplitude and the maximum amplitude of the voltage signal can be used as the degree of undercompensation.
- the ratio of the difference to the lower limit of the preset voltage amplitude can also be used as the degree of undercompensation, and the integral area of the voltage signal with respect to time during the time period when the echo optical signal is detected can also be set between the preset lower limit of the integral area threshold.
- the difference or ratio of is used as the degree of undercompensation.
- the bias voltage control circuit 21 may include: a first digital-to-analog converter (refer to the digital-to-analog converter 211 in FIG. 5b), The first amplifying and conditioning circuit (refer to the amplifying and conditioning circuit 212 in FIG. 5b) and an output driver (refer to the output driver 213 in FIG. 5b).
- the first digital-to-analog converter is used to convert the digital bias voltage control signal into an analog bias voltage control signal; the first amplifying and conditioning circuit is used to perform the analog bias voltage control signal Amplify and adjust to obtain the target bias voltage signal; the output driver is used to output the target bias voltage signal to the light sensor to provide the target bias voltage to the light sensor.
- the digital processing circuit sends a digital bias voltage control signal to the first digital-to-analog converter, and outputs an analog bias voltage control signal; the bias voltage control signal is amplified and adjusted by the first amplifying and conditioning circuit After reaching the appropriate range, it is transmitted to the output driver; the output driver provides the target bias voltage to power the light sensor; realizes wide-range control of the bias voltage of the light sensor.
- the data processing circuit when the digital processing circuit detects that the digital voltage signal is saturated, the data processing circuit reduces the bias voltage applied to the light sensor through the bias voltage control circuit, thereby reducing the gain of the light sensor to achieve automatic reduction
- the data processing circuit increases the bias voltage applied to the light sensor through the bias voltage control circuit, thereby increasing the gain of the light sensor and achieving automatic gain Effect:
- the data processing circuit can achieve continuous and fine adjustment of the gain with a very high dynamic range; at the same time, because the light sensor is the signal source, the amplitude of the output signal can be limited from the signal source to ensure No saturation or under-compensation occurs in the subsequent links of the laser radar signal receiving circuit, realizing efficient anti-saturation gain control and anti-under-compensation gain control; in addition, it does not affect the signal-to-noise ratio and bandwidth, and the signal quality can be guaranteed.
- the bias voltage control circuit can be replaced with a primary amplifying control circuit 22, which is connected to the transimpedance amplifying circuit 12 for controlling the transimpedance The amplification gain of the amplifying circuit 12.
- the digital processing circuit is used to determine the target transimpedance amplification resistance of the transimpedance amplification circuit according to the current transimpedance amplification resistance of the transimpedance amplification circuit, and generate and output the transimpedance amplification resistance control signal according to the target transimpedance amplification resistance;
- the resistance amplification resistance control signal is used to instruct the primary amplification control circuit to control the transimpedance amplification resistance of the transimpedance amplification circuit as the target transimpedance amplification resistance; among them, when the digital voltage signal is saturated, the target transimpedance amplification resistance is less than the current transimpedance amplification Resistance: When the digital voltage signal is under-compensated, the target transimpedance amplification resistance is greater than the current transimpedance amplification resistance.
- transimpedance amplification resistance of the transimpedance amplification circuit there is a positive correlation between the transimpedance amplification resistance of the transimpedance amplification circuit and the gain of the transimpedance amplification circuit, so after adjusting the current transimpedance amplification resistance to the target transimpedance amplification resistance, the transimpedance amplification is realized Gain control of the circuit.
- the transimpedance amplification resistance of the transimpedance amplification circuit may be a dynamically adjustable resistor
- the digital signal processing circuit may adjust the resistance value of the resistance through the primary amplification control circuit
- the primary amplification control circuit may be a signal line.
- the transimpedance amplifying circuit 12 may include a plurality of optional transimpedance amplifying resistors RT1, RT2, RT3; the primary amplifying control circuit may include
- the analog switch 221 is used to switch multiple optional transimpedance amplification resistors.
- the digital processing circuit 40 is used to determine the target transimpedance amplification resistance of the transimpedance amplification circuit according to the current transimpedance amplification resistance corresponding to the analog switch 221 (U4 in FIG.
- the primary amplifying control circuit may also include an analog switch control line 222, which is used to connect the digital processing circuit and the analog switch to transmit the transimpedance amplifying resistance control signal.
- the digital signal processing circuit stores a sorting relationship between the resistance values of the selectable transimpedance amplification resistors from large to small, and amplifies the next transimpedance in the sorting relationship relative to the current transimpedance amplification resistance
- the resistance serves as the target transimpedance amplification resistance.
- RT1>RT2>RT3 the current transimpedance amplification resistance is RT2
- the target transimpedance amplification resistance is RT3.
- the data processing circuit when the digital processing circuit detects the saturation of the digital voltage signal, the data processing circuit reduces the transimpedance amplifying resistance of the transimpedance amplifying circuit through the primary amplifying control circuit, thereby reducing the gain of the transimpedance amplifying circuit to achieve automatic The effect of reducing the gain; when the digital voltage signal under-compensation is detected, the data processing circuit increases the transimpedance amplifying resistance of the transimpedance amplifying circuit through the primary amplifying control circuit, thereby increasing the gain of the transimpedance amplifying circuit, and achieving automatic gain increase effect.
- the optical signal processing circuit may include: a light sensor 11, a transimpedance amplifying circuit 12, and a secondary amplifying circuit 13 connected in sequence;
- the gain control circuit may include: a secondary amplifying control circuit 23 connected to the secondary amplifying circuit 13 for use To control the amplification gain of the secondary amplifying circuit 13.
- the digital processing circuit 40 is used to determine the target gain of the secondary amplifying circuit 13 according to the current gain of the secondary amplifying circuit 13, and generate and output a gain control signal according to the target gain; the gain control signal is used to instruct the secondary amplifying control
- the circuit 23 controls the amplification gain of the secondary amplifying circuit 13 to be the target gain; wherein, when the digital voltage signal is saturated, the target gain is smaller than the current gain; when the digital voltage signal is under-compensated, the target gain is greater than the current gain.
- the secondary amplifier circuit 13 may include a programmable amplifier (U5 in FIG. 7b); the programmable amplifier has multiple gain levels. Among them, for the programmable gain amplifier, the gain switching of different gears can be realized through program-controlled programming.
- the digital processing circuit 40 can determine the target gain gear of the programmable amplifier according to the current gain gear of the programmable amplifier, and generate and output a gain gear control signal according to the target gain gear; the gain gear control signal is used to instruct the program control The amplifier switches to the target gain gear; among them, when the digital voltage signal is saturated, the gain corresponding to the target gain gear is less than the gain corresponding to the current gain gear; when the digital voltage signal is under-compensated, the target gain gear corresponds to The gain of is greater than the gain corresponding to the current gain gear; the secondary amplification control circuit may include a control signal line 231 (program-controlled gain amplifier control line in FIG. 7b) for transmitting the gain gear control signal of the programmable amplifier to the programmable amplifier.
- the gain gear control signal is used to instruct the program control
- the amplifier switches to the target gain gear; among them, when the digital voltage signal is saturated, the gain corresponding to the target gain gear is less than the gain corresponding to the current gain gear; when the digital voltage signal is under-
- the secondary amplifying circuit 13 may include a voltage-controlled amplifier (U6 in FIG. 7c).
- the gain can be adjusted by setting the gain control voltage of the voltage-controlled gain amplifier.
- the digital processing circuit 40 can determine the target gain control voltage of the voltage control amplifier according to the current gain control voltage of the voltage control amplifier, and generate and output a gain control voltage control signal according to the target gain control voltage; the gain control voltage control signal is used for Instruct the voltage control amplifier to control the gain control voltage as the target gain control voltage; among them, when the digital voltage signal is saturated, the target gain control voltage is less than the current gain control voltage; when the digital voltage signal is under-compensated, the target gain control voltage is greater than The current gain control voltage.
- the secondary amplifier control circuit may include a gain control voltage control line for transmitting the gain control voltage control signal to the voltage control amplifier, and the gain control voltage control signal can be directly used as the gain control voltage to achieve small-range control of the gain control voltage. .
- the digital processing circuit can transmit the gain control voltage control signal to the power supply according to the gain control voltage control line, control the output voltage of the power supply, and realize the gain control voltage Wide-range control.
- the secondary amplification control circuit may include: a second digital-to-analog converter (refer to the digital-to-analog converter 232 in FIG. 7c), a second amplification and conditioning circuit (refer to the amplification in FIG. 7c). And conditioning circuit 233).
- the second digital-to-analog converter is used to convert the digital gain control voltage control signal into an analog gain control voltage control signal;
- the second amplifying and conditioning circuit is used to perform the analog gain control voltage control signal Amplify and adjust to obtain the target gain control voltage signal, and output the target gain control voltage signal to the voltage-controlled amplifier to provide the target gain control voltage to the voltage-controlled amplifier; realize wide-range control of the gain control voltage of the voltage-controlled amplifier.
- the data processing circuit when the digital processing circuit detects that the digital voltage signal is saturated, the data processing circuit reduces the gain of the secondary amplifier circuit through the secondary amplifier control circuit to achieve the effect of automatically reducing the gain; when the digital signal is detected When the voltage signal is under-compensated, the data processing circuit increases the gain of the secondary amplifier circuit through the secondary amplifier control circuit to achieve the effect of automatically increasing the gain.
- the present invention also shows a laser radar, including a laser radar signal transmitting circuit 50 and the above-mentioned laser radar signal receiving circuit; the digital processing circuit 40 in the laser radar signal receiving circuit can be combined with the laser radar signal transmitting circuit
- the circuit 50 is connected to control the laser radar signal transmitting circuit 50 to transmit the laser radar signal.
- the laser radar signal transmitting circuit may include laser transmitters, collimator mirrors, galvanometers and other devices arranged in sequence on the transmitting optical path. Among them, the laser transmitter can transmit the laser radar signal, and the collimator mirror can transmit the laser radar signal.
- the collimation is processed into a parallel lidar signal
- the galvanometer can deflect the parallel lidar signal and emit the parallel laser signal to the target position to realize the scanning of the target position.
- the digital processing circuit can perform distance measurement of the target position according to the transmission time of the lidar signal and the reception time of the received echo optical signal, and calculate the reflection characteristic of the target position according to the digital voltage signal corresponding to the echo optical signal.
- FIGS. 1a to 8 are only block diagrams of part of the structure related to the solution of the present invention, and do not constitute a lidar signal receiving circuit or laser to which the solution of the present invention is applied.
- the limitation of radar, a specific lidar signal receiving circuit or lidar may include more or fewer components than shown in the figure, or combine certain components, or have a different component arrangement.
- the present invention also shows a method for controlling laser radar signal gain, including:
- S902 Receive the echo optical signal, and convert the echo optical signal into an analog voltage signal through the optical signal processing circuit;
- S906 Detect whether the digital voltage signal is saturated, and reduce the gain of the optical signal processing circuit when the digital voltage signal is saturated, or detect whether the digital voltage signal is under-compensated, and control when the digital voltage signal is under-compensated
- the gain control circuit increases the gain of the optical signal processing circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达,其中,激光雷达信号接收电路包括:光信号处理电路(10),用于接收回波光信号,并将回波光信号转换为模拟式的电压信号;增益控制电路(20),与光信号处理电路连接,用于控制光信号处理电路的增益;模数转换电路(30),用于将模拟式的电压信号转换为数字式的电压信号;数字处理电路(40),与模数转换电路(30)和增益控制电路(20)分别连接,用于检测数字式的电压信号是否饱和,并在数字式的电压信号饱和时控制增益控制电路(20)降低光信号处理电路的增益,或用于检测数字式的电压信号是否欠补偿,并在数字式的电压信号欠补偿时控制增益控制电路(20)提高光信号处理电路的增益。激光雷达信号接收电路能够解决信号饱和或欠补偿导致的诸多问题。
Description
本发明涉及激光雷达技术领域,特别是涉及一种激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达。
激光雷达,由于具有分辨率高、受环境因素干扰小等优点,在无人驾驶、机器人等领域有着重要的应用;一般是用于对目标进行测距,同时还可以用于检测目标的反射率等反射信息。
在激光雷达探测范围内,由于目标的反射率和距离的不同,回波光信号的能量可能在nW级别到mW级别之间波动,具备非常高的动态范围;因此,回波光信号在转换为电信号并进行放大后,电信号出现饱和的场景较为常见。在这种电信号饱和的场景下,由于电子器件工作在非线性区,容易产生信号畸变,该畸变会导致测距距离和反射信息不准确等诸多问题。
发明内容
基于此,有必要针对上述技术问题,提供一种能够解决信号饱和导致的测距距离和反射信息测量不准确等诸多问题的激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达。
基于此,有必要针对上述技术问题,提供一种能够解决信号饱和导致的测距距离和反射信息测量不准确等诸多问题的激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达。
第一方面,一种激光雷达信号接收电路,包括:
光信号处理电路,用于接收回波光信号,并将所述回波光信号转换为模拟式的电压信号;
增益控制电路,与所述光信号处理电路连接,用于控制所述光信号处理电路的增益;
模数转换电路,与所述光信号处理电路连接,用于将所述模拟式的电压信号转换为数字式的电压信号;
数字处理电路,与所述模数转换电路和所述增益控制电路分别连接,用于检测所述数字式的电压信号是否饱和,并在所述数字式的电压信号饱和时控制所述增益控制电路降低所述光信号处理电路的增益,或用于检测所述数字式的电压信号是否欠补偿,并在所述数字式的电压信号欠补偿时控制所述增益控制电路提高所述光信号处理电路的增益。
第二方面,一种激光雷达信号增益控制方法,包括:
接收回波光信号,并通过光信号处理电路将所述回波光信号转换为模拟式的电压信号;
将所述模拟式的电压信号转换为数字式的电压信号;
检测所述数字式的电压信号是否饱和,并在所述数字式的电压信号饱和时降低所述光信号处理电路的增益,或检测所述数字式的电压信号是否欠补偿,并在所述数字式的电压信号欠补偿时控制所述增益控制电路提高所述光信号处理电路的增益。
第三方面,一种激光雷达,包括激光雷达信号发射电路和如第一方面中任一项所述的激光雷达信号接收电路;所述激光雷达信号接收电路中的数字处理电路与所述激光雷达信号发射电路连接,用于控制所述激光雷达信号发射电路发射激光雷达信号。
上述激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达,在数字处理电路检测到数字式的电压信号饱和时,数据处理电路可以控制增益控制电路降低光信号处理电路的增益,达到自动降低增益的效果;可以理解的是,在降低增益后,若检测到数字式的电压信号仍然饱和,数据处理电路可以控制增益控制电路继续降低光信号处理电路的增益,直至检测到数字式的电压信号不饱和,因此解决了信号饱和导致的测距距离和反射信息测量不准确等诸多问题,提高了测距距离和反射信息测量的准确性。此外,在数字处理电路检测到数字式的电压信号欠补偿时,数据处理电路可以控制增益控制电路提高光信号处理电路的增益,达到自动提高增益的效果;可以理解的是,在提高增益后,若检测到数字式的电压信号仍然欠补偿,数据处理电路可以控制增益控制电路继续提高光信号处理电路的增益,直至检测到数字式的电压信号不再欠补偿,因此解决了信号欠补偿导致的测距距离过短、灵敏度过低等诸多问题,提高了测距距离和灵敏度。
图1a为一个实施例中激光雷达信号接收电路的示意图;
图1b为一个实施例中激光雷达信号接收电路的增益效果示意图之一;
图1c为一个实施例中激光雷达信号接收电路的增益效果示意图之二;
图2为一个实施例中激光雷达信号接收电路的结构示意图;
图3为一个实施例中激光雷达信号接收电路的结构示意图;
图4a为一个实施例中跨阻放大器的结构示意图;
图4b为一个实施例中模数转换电路的结构示意图;
图5a为一个实施例中第二种结构的激光雷达信号接收电路的结构示意图;
图5b为一个实施例中第二种结构的激光雷达信号接收电路的具体示例图;
图6a为一个实施例中第二种结构的激光雷达信号接收电路的结构示意图;
图6b为一个实施例中第二种结构的激光雷达信号接收电路的具体示例图;
图7a为一个实施例中第三种结构的激光雷达信号接收电路的结构示意图;
图7b为一个实施例中第三种结构的激光雷达信号接收电路的具体示例图;
图7c为一个实施例中第三种结构的激光雷达信号接收电路的具体示例图;
图8为一个实施例中激光雷达的结构示意图;
图9为一个实施例中激光雷达信号增益控制方法的流程示意图。
具体实施例方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
示例性地,参照图1a所示的一种激光雷达信号接收电路,包括依次连接的光传感器、跨阻放大电路、模数转换电路和数字处理电路。在激光雷达探测范围内,回波光信号的能量可能在nW级别到mW级别之间波动;相应地,当处于激光雷达信号接收电路前级的光传感器工作于恒定的偏置电压下时,光传感器输出的光电流信号可能在uA级别到mA级别之间波动,这要求处于激光雷达信号接收电路后级的跨阻放大电路、模数转换电路等后级器件都具备非常高的动态范围;但出于成本和器件供应等问题,后级器件都无法满足该动态范围。在这种情况下,只能降低整个激光雷达信号接收电路的系统动态范围,一般地,可以设置整个雷达激光雷达信号接收电路的系统增益为某一个固定值,参照图1b所示,该系统增益可以保证回波光信号较弱时(如光传感器的光电流信号可能为μA级别时),回波光信号经过整个雷达激光雷达信号增益后仍可以被数字处理电路检测识别。然而,相应地,参照图1c所示,当回波光信号较强时(如光传感器的光电流信号可能为mA级别时),回波光信号经过整个雷达激光雷达信号增益后会导致信号饱和,导致波形畸变,产生非线性的放大波形,直接导致信号接收时刻T2(一般为信号峰值时刻)无法准确获得,从而导致测距距离和反射信息测量不准确等诸多问题。此外,如图1b所示,当回波信号过于微弱时,回波光信号经过整个雷达激光雷达信号增益后仍然可能微弱到无法被数字处理电路检测识别(如信号微弱到无法区分回波光信号和噪声信号),即信号欠补偿,从而导致测距距离过短、灵敏度过低等问题。
参照图2所示,示出了本实施例的一种激光雷达信号接收电路的结构,包括:光信号处理电路10、增益控制电路20、模数转换电路30和数字处理电路40;其中,光信号处理电路,用于接收回波光信号,并将回波光信号转换为模拟式的电压信号;增益控制电路,与光信号处理电路连接,用于控制光信号处理电路的增益;模数转换电路,与光信号处理电路连接,用于将模拟式的电压信号转换为数字式的电压信号;数字处理电路,与模数转换电路和增益控制电路分别连接,用于检测数字式的电压信号是否饱和,并在数字式的电压信号饱和时控制增益控制电路降低光信号处理电路的增益,或用于检测数字式的电压信号是否欠补偿,并在数字式的电压信号欠补偿时控制增益控制电路提高光信号处理电路的增益。当然,本实施例的激光雷达信号接收电路可以同时检测数字式的电压信号是否饱和以及是否欠补偿,并执行相应的增益控制策略。
示例性地,数字处理电路判断电压信号是否饱和的方式可以是:判断电压信号的最大幅值是否高于预设电压幅值上限、判断在检测到回波光信号的时间段内电压信号对时间的积分面积是否高于预设的积分面积阈值上限等多种方式;本实施例对此并不限制。相应地,数字处理电路判断电压信号是否欠补偿的方式可以是:判断电压信号的最大幅值是否低于预设电压幅值下限、判断在检测到回波光信号的时间段内电压信号对时间的积分面积是否低于预设的积分面积阈值下限等多种方式。其中,预设电压幅值上限和预设电压幅值下限等参数取决于激光雷达信号接收电路中各元器件的电学性能,可以通过测试得到。
可以理解的是,增益控制电路与光信号处理电路是相应的。例如,光信号处理电路包括M级增益结构,则增益控制电路可以包括M级增益结构中至少一个增益结构所关联的增益控制结构,该增益控制结构可以对所关联的增益结构的增益进行控制;其中,M为大于0的整数。可以理解的是,增益控制电路可以包括M级增益结构中每个增益结构所关联的增益控制结构,即相应的M个增益控制结构,能够对每级增益结构的增益进行控制,实现大范围内的增益的灵活控制。但是一般限于成本等因素,增益控制结构可以仅对部分增益结构进行控制;例如,增益控制电路可以包括M级增益结构中某一个增益结构所关联的增益控制结构。
下面示例几种可能的光信号处理电路的增益结构以及相应的增益控制电路的结构,但不可理解为对本实施例的光信号处理电路和增益控制电路的限制。
在本发明示例的第一种结构中,光信号处理电路可以包括:光传感器和跨阻电路;其中,光传感器用于响应于回波光信号,生成光电流信号;跨阻电路,与光传感器连接,用于将光电流信号转换为模拟式的电压信号。相应地,增益控制电路可以包括以下内容中的至少一种:偏置电压控制电路、电阻控制电路;其中,偏置电压控制电路,与光传感器连接,用于控制光传感器的偏置电压;电阻控制电路,与跨阻电路连接,用于控制跨阻电路的电阻。示例性地,跨阻电路包括多个可选电阻,电阻控制电路包括模拟开关,数字信号处理电路可以控制模拟开关切换多个可选电阻;或者跨阻电路包括一个动态可调的电阻,数字信号处理电路可以通过电阻控制电路调整该电阻的电阻值;可以理解的是,跨阻电路中电阻的阻值与跨阻电路的增益正相关。
在本发明示例的第二种结构中,光信号处理电路可以包括:光传感器和跨阻放大电路;其中,跨阻放大电路,与光传感器连接,用于将光电流信号放大并转换为模拟式的电压信号。相应地,增益控制电路包括以下内容中的至少一种:偏置电压控制电路、初级放大控制电路;其中,初级放大控制电路,与跨阻放大电路连接,用于控制跨阻放大电路的放大增益。
在本发明示例的第三种结构中,参见图3所示,光信号处理电路可以包括:光传感器11、跨阻放大电路12和次级放大电路13;其中,次级放大电路13,连接于跨阻放大电路12和模数转换电路30之间,用于对模拟式的电压信号进行放大,得到放大后的电压信号。相应地,增益控制电路可以包括以下内容中的至少一种:偏置电压控制电路21、初级放 大控制电路22、次级放大控制电路23;其中,偏置电压控制电路21,与光传感器连接11,用于控制光传感器11的偏置电压;初级放大控制电路22,与跨阻放大电路12连接,用于控制跨阻放大电路12的放大增益;次级放大控制电路23,与次级放大电路13连接,用于控制次级放大电路13的放大增益。同时,数据处理电路40可以采用不同的控制策略对不同的增益控制电路进行控制。
在本发明示例的第四种结构中,光信号处理电路包括:光传感器、跨阻电路和次级放大电路。相应地,增益控制电路包括以下内容中的至少一种:偏置电压控制电路、电阻控制电路、次级放大控制电路。
另外,在此对本发明中涉及的光传感器、跨阻放大电路、模数转换电路、数字处理电路的结构进行示例性说明。
示例性地,光传感器可以为以下器件,或以下至少一类器件组成的阵列:APD(Avalanche Photo Diode,雪崩光电二极管)、SIPM(Silicon photomultiplier,硅光电倍增管)、SPAD(Single Photon Avalanche Diode,单光子雪崩二极管)、MPPC(硅光电倍增管)、PMT(photomultiplier tube,光电倍增管)等。示例性地,光传感器可以为单光子阵列传感器,由多个单光子雪崩二极管组成,具备高达106以上的增益,可以探测极低功率的光信号,适合应用于激光测距雷达中。单光子雪崩二极管的增益G是指工作单元被激发后产生的电荷与电子电荷的比值,计算公式如下:
其中,Ccell为单光子雪崩二极管的等效电容,Vov为过电压,Vbr为击穿电压,Vbias为偏置电压,q为单位电荷;考虑工作环境温度稳定的情况下,击穿电压保持稳定,单光子阵列传感器的增益与偏置电压正相关。
示例性地,跨阻放大电路可以为跨阻放大器,跨阻放大器可以包括运算放大器件和跨阻放大电阻,两者可以是独立的器件,也可以集成到一起。例如,参照图4a所示,跨阻放大器可以包括运算放大器件U1和跨阻放大电阻RT;其中,倒三角形表示接地,Vs为U1的供电电压;跨阻放大器可以将输入端输入的光电流信号Iop转换并放大为电压信号。
示例性地,模数转换电路可以包括模数转换器驱动电路和模数转换器。例如,参照图4b所示,模数转换器驱动器电路31可以是一个单端信号转差分信号电路,可以包括U2和R1~R5,其中U2为全差分放大器;可以将前级输出的单端信号转换为差分信号,并调理到模数转换器32的输入范围内,同时驱动模数转换器32进行模数转换;模数转换器32可以包括模数转换器件U3和R6、R7、C1、C2、C3,其中,模数转换器32的前端R6、R7、C1、C2、C3构成抗混叠滤波器,可以对前级输出的差分信号进行模数转换,输出数字信号。
示例性地,数字处理电路可以为FPGA芯片(Field-Programmable Gate Array,即现场可编程门阵列)、CPLD芯片(Complex Programmable Logic Device,复杂可编程逻辑器件)、 ASIC芯片(Application Specific Integrated Circuit,专用集成电路)等,其中,ASIC芯片可以为DSP芯片(Digital Signal Processing,数字信号处理);本发明对此并不限制。
在本实施例中,在数字处理电路检测到数字式的电压信号饱和时,数据处理电路可以控制增益控制电路降低光信号处理电路的增益,达到自动降低增益的效果;可以理解的是,在降低增益后,若检测到数字式的电压信号仍然饱和,数据处理电路可以控制增益控制电路继续降低光信号处理电路的增益,直至检测到数字式的电压信号不饱和,因此解决了信号饱和导致的测距距离和反射信息测量不准确等诸多问题,提高了测距距离和反射信息测量的准确性。此外,在数字处理电路检测到数字式的电压信号欠补偿时,数据处理电路可以控制增益控制电路提高光信号处理电路的增益,达到自动提高增益的效果;可以理解的是,在提高增益后,若检测到数字式的电压信号仍然欠补偿,数据处理电路可以控制增益控制电路继续提高光信号处理电路的增益,直至检测到数字式的电压信号不再欠补偿,因此解决了信号欠补偿导致的测距距离过短、灵敏度过低等诸多问题,提高了测距距离和灵敏度。总之,可以实现自动调整增益的效果,实现智能化控制。
参照图5a所示,以上述第二种结构为例进行详细说明。其中,光信号处理电路可以包括:光传感器11和跨阻放大电路12;相应地,增益控制电路可以包括:偏置电压控制电路21,与光传感器11连接,用于控制光传感器11的偏置电压。因此,数字处理电路用于根据光传感器的当前偏置电压,确定光传感器的目标偏置电压,并根据目标偏置电压,生成并输出偏置电压控制信号;偏置电压控制信号用于指示偏置电压控制电路控制光传感器的偏置电压为目标偏置电压;其中,在数字式的电压信号饱和时,目标偏置电压小于当前偏置电压;在数字式的电压信号欠补偿时,目标偏置电压大于当前偏置电压。例如,偏置电压控制电路可以包括偏置电压控制线,用于传输偏置电压控制信号至光传感器,可以直接将偏置电压控制信号作为偏置电压,实现对偏置电压的小范围控制。当光信号处理电路包括为光传感器提供偏置电压的电源时,数字处理电路可以通过偏置电压控制线传输偏置电压控制信号至该电源,控制该电源的输出电压,实现对偏置电压的大范围控制。
以数字式的电压信号饱和为例,可以理解的是,光传感器上的偏置电压与光传感器的增益之间存在正相关关系,因此在将当前偏置电压调整至目标偏置电压后,光传感器的增益降低。数字处理电路根据当前偏置电压确定目标偏置电压的方式存在多种。示例性地,数字处理电路可以将当前偏置电压和偏置电压调整比例之间的乘积值,作为目标偏置电压;例如,偏置电压调整比例可以是5%、8%、20%等。示例性地,数字处理电路可以将当前偏置电压和偏置电压调整步长之间的差值,作为目标偏置电压;其中,偏置电压调整步长可以为固定的,也可以是动态变化的。例如,固定的偏置电压调整步长可以为1V、2V、5V等。例如,动态变化的偏置电压调整步长可以是当前偏置电压的预设比例,例如5%、8%、20%等。
可选地,数字处理电路可以根据数字式的电压信号的幅值和预设的饱和阈值,计算数字式的电压信号的饱和度,并根据预设的饱和度与增益步长的正相关关系,确定数字式的 电压信号对应的当前增益步长,以及控制增益控制电路以当前增益步长降低光信号处理电路的增益。示例性地,数字处理电路可以在数字式的电压信号饱和时,计算数字式的电压信号的饱和度,并根据饱和度和预设的饱和度与偏置电压调整比例的对应关系,确定偏置电压调整比例,或者,根据饱和度和预设的饱和度与偏置电压调整步长的对应关系,确定偏置电压调整步长。其中,饱和度可以表征电压信号的最大幅值超出预设电压幅值上限的程度,因此可以将电压信号的最大幅值与预设电压幅值上限之间的差值作为饱和度,也可以将该差值与预设电压幅值上限的比例作为饱和度,还可以将在检测到回波光信号的时间段内电压信号对时间的积分面积与预设的积分面积阈值上限之间的差值或者比值作为饱和度。可以理解的是,饱和度与偏置电压调整比例之间为负相关关系,饱和度与偏置电压调整步长之间为正相关关系。
类似地,在数字式的电压信号欠补偿时,数字处理电路可以根据数字式的电压信号的幅值和预设的欠补偿阈值,计算数字式的电压信号的欠补偿度,并根据预设的欠补偿度与增益步长的正相关关系,确定数字式的电压信号对应的当前增益步长,以及控制增益控制电路以当前增益步长提高光信号处理电路的增益。其中,欠补偿度可以表征电压信号的最大幅值低于预设电压幅值下限的程度,因此可以将预设电压幅值下限与电压信号的最大幅值之间的差值作为欠补偿度,也可以将该差值与预设电压幅值下限的比例作为欠补偿度,还可以将在检测到回波光信号的时间段内电压信号对时间的积分面积与预设的积分面积阈值下限之间的差值或者比值作为欠补偿度。在数字式的电压信号欠补偿时,具体如何控制增益的方式,可以参照数字式的电压信号饱和时的方式,这里不再赘述。
参照图5b所示,示出了一种激光雷达信号接收电路的具体示例,其中,偏置电压控制电路21可以包括:第一数模转换器(参照图5b中的数模转换器211)、第一放大和调理电路(参照图5b中的放大和调理电路212)、输出驱动器(参照图5b中的输出驱动器213)。其中,第一数模转换器,用于将数字式的偏置电压控制信号转换为模拟式的偏置电压控制信号;第一放大和调理电路,用于对模拟式的偏置电压控制信号进行放大和调理,得到目标偏置电压信号;输出驱动器,用于输出目标偏置电压信号至光传感器,以向光传感器提供目标偏置电压。具体地,数字处理电路发送数字式的偏置电压控制信号到第一数模转换器,输出模拟式的偏置电压控制信号;该偏置电压控制信号经过第一放大和调理电路进行放大和调理到合适的范围后传输到输出驱动器;输出驱动器提供目标偏置电压,为光传感器供电;实现对光传感器的偏置电压的大范围控制。
在本实施例中,在数字处理电路检测到数字式的电压信号饱和时,数据处理电路通过偏置电压控制电路降低施加在光传感器上的偏置电压,从而降低光传感器的增益,达到自动降低增益的效果;同时,在检测到数字式的电压信号欠补偿时,数据处理电路通过偏置电压控制电路提高施加在光传感器上的偏置电压,从而提高光传感器的增益,达到自动提高增益的效果;借助于光传感器的高增益特性,数据处理电路可以实现非常高动态范围的增益的连续、精细调节;同时,由于光传感器为信号源头,因此可以从信号源头上限制输 出信号的幅度,保证激光雷达信号接收电路的后续环节均不会发生饱和或者欠补偿,实现高效的防饱和增益控制和防欠补偿增益控制;此外,不影响信噪比和带宽,可以保证信号质量。
参照图6a所示,在上述图5a所示的激光雷达信号接收电路的基础上,可以将偏置电压控制电路替换为初级放大控制电路22,与跨阻放大电路12连接,用于控制跨阻放大电路12的放大增益。因此,数字处理电路用于根据跨阻放大电路的当前跨阻放大电阻,确定跨阻放大电路的目标跨阻放大电阻,并根据目标跨阻放大电阻,生成并输出跨阻放大电阻控制信号;跨阻放大电阻控制信号用于指示初级放大控制电路控制跨阻放大电路的跨阻放大电阻为目标跨阻放大电阻;其中,在数字式的电压信号饱和时,目标跨阻放大电阻小于当前跨阻放大电阻;在数字式的电压信号欠补偿时,目标跨阻放大电阻大于当前跨阻放大电阻。可以理解的是,跨阻放大电路的跨阻放大电阻与跨阻放大电路的增益之间存在正相关关系,因此在将当前跨阻放大电阻调整至目标跨阻放大电阻后,实现对跨阻放大电路的增益控制。
示例性地,跨阻放大电路的跨阻放大电阻可以为一个动态可调的电阻,数字信号处理电路可以通过初级放大控制电路调整该电阻的电阻值,初级放大控制电路可以为信号线。数字处理电路根据当前跨阻放大电阻确定目标跨阻放大电阻的方式存在多种,可以参照上述目标偏置电压的确定方式,这里不再赘述。
参照图6b所示,示出了一种激光雷达信号接收电路的具体示例,其中,跨阻放大电路12可以包括多个可选的跨阻放大电阻RT1、RT2、RT3;初级放大控制电路可以包括模拟开关221,用于切换多个可选的跨阻放大电阻。相应地,数字处理电路40用于根据模拟开关221(图6b中U4)对应的当前跨阻放大电阻,确定跨阻放大电路的目标跨阻放大电阻,并根据目标跨阻放大电阻,生成并输出跨阻放大电阻控制信号;跨阻放大电阻控制信号用于控制模拟开关从当前跨阻放大电阻切换至目标跨阻放大电阻;可以实现不同增益等级的切换。初级放大控制电路还可以包括模拟开关控制线222,用于连接数字处理电路和模拟开关,传输跨阻放大电阻控制信号。示例性地,数字信号处理电路中存储有各可选的跨阻放大电阻的电阻值之间从大到小的排序关系,并将排序关系中相对于当期跨阻放大电阻的下一个跨阻放大电阻作为目标跨阻放大电阻。例如RT1>RT2>RT3,当期跨阻放大电阻为RT2,则目标跨阻放大电阻为RT3。
在本实施例中,在数字处理电路检测到数字式的电压信号饱和时,数据处理电路通过初级放大控制电路降低跨阻放大电路的跨阻放大电阻,从而降低跨阻放大电路的增益,达到自动降低增益的效果;在检测到数字式的电压信号欠补偿时,数据处理电路通过初级放大控制电路提高跨阻放大电路的跨阻放大电阻,从而提高跨阻放大电路的增益,达到自动提高增益的效果。
参照图7a所示,以上述第三种结构为例进行详细说明。其中,光信号处理电路可以包括:依次连接的光传感器11、跨阻放大电路12、次级放大电路13;增益控制电路可以 包括:次级放大控制电路23,与次级放大电路13连接,用于控制次级放大电路13的放大增益。因此,数字处理电路40用于根据次级放大电路13的当前增益,确定次级放大电路13的目标增益,并根据目标增益,生成并输出增益控制信号;增益控制信号用于指示次级放大控制电路23控制次级放大电路13的放大增益为目标增益;其中,在数字式的电压信号饱和时,目标增益小于当前增益;在数字式的电压信号欠补偿时,目标增益大于当前增益。
参照图7b所示,示出了一种激光雷达信号接收电路的具体示例,其中,次级放大电路13可以包括程控放大器(图7b中U5);程控放大器具有多个增益档位。其中,对于程控增益放大器,可以通过程控编程实现不同档位的增益切换。因此,数字处理电路40可以根据程控放大器的当前增益档位,确定程控放大器的目标增益档位,并根据目标增益档位,生成并输出增益档位控制信号;增益档位控制信号用于指示程控放大器切换为目标增益档位;其中,在数字式的电压信号饱和时,目标增益档位对应的增益小于当前增益档位对应的增益;在数字式的电压信号欠补偿时,目标增益档位对应的增益大于当前增益档位对应的增益;次级放大控制电路可以包括控制信号线231(图7b中程控增益放大器控制线),用于传输程控放大器的增益档位控制信号至程控放大器。
参照图7c所示,示出了一种激光雷达信号接收电路的具体示例,其中,次级放大电路13可以包括压控放大器(图7c中U6)。其中,对于压控增益放大器,可以通过给定压控增益放大器的增益控制电压来调节其增益。因此,数字处理电路40可以根据压控放大器的当前增益控制电压,确定压控放大器的目标增益控制电压,并根据目标增益控制电压,生成并输出增益控制电压控制信号;增益控制电压控制信号用于指示压控放大器控制增益控制电压为目标增益控制电压;其中,在数字式的电压信号饱和时,目标增益控制电压小于当前增益控制电压;在数字式的电压信号欠补偿时,目标增益控制电压大于当前增益控制电压。例如,次级放大控制电路可以包括增益控制电压控制线,用于传输增益控制电压控制信号至压控放大器,可以直接将增益控制电压控制信号作为增益控制电压,实现对增益控制电压的小范围控制。当次级放大电路包括为压控放大器提供增益控制电压的电源时,数字处理电路可以根据增益控制电压控制线传输增益控制电压控制信号至该电源,控制该电源的输出电压,实现对增益控制电压的大范围控制。
示例性地,参照图7c所示,次级放大控制电路可以包括:第二数模转换器(参照图7c中的数模转换器232)、第二放大和调理电路(参照图7c中的放大和调理电路233)。其中,第二数模转换器,用于将数字式的增益控制电压控制信号转换为模拟式的增益控制电压控制信号;第二放大和调理电路,用于对模拟式的增益控制电压控制信号进行放大和调理,得到目标增益控制电压信号,并输出目标增益控制电压信号至压控放大器,以向压控放大器提供目标增益控制电压;实现对压控放大器的增益控制电压的大范围控制。
在本实施例中,在数字处理电路检测到数字式的电压信号饱和时,数据处理电路通过次级放大控制电路降低次级放大电路的增益,达到自动降低增益的效果;在检测到数字式 的电压信号欠补偿时,数据处理电路通过次级放大控制电路提高次级放大电路的增益,达到自动提高增益的效果。
参照图8所示,本发明还示出了一种激光雷达,包括激光雷达信号发射电路50和上述的激光雷达信号接收电路;激光雷达信号接收电路中的数字处理电路40可以与激光雷达信号发射电路50连接,用于控制激光雷达信号发射电路50发射激光雷达信号。示例性地,激光雷达信号发射电路可以包括在发射光路上依次布置的激光发射器、准直镜、振镜等器件,其中,激光发射器可以发射激光雷达信号,准直镜可以将激光雷达信号进行准直处理为平行激光雷达信号,振镜可以对平行激光雷达信号进行偏转,将平行激光信号出射至目标位置,实现对目标位置的扫描。相应地,数字处理电路可以根据激光雷达信号的发射时刻和接收到回波光信号的接收时刻进行目标位置的测距,以及根据回波光信号对应的数字式的电压信号计算目标位置的反射特性。
本领域技术人员可以理解,图1a~图8中示出的结构,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的激光雷达信号接收电路或激光雷达的限定,具体的激光雷达信号接收电路或激光雷达可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
参照图9所示,本发明还示出了一种激光雷达信号增益控制方法,包括:
S902,接收回波光信号,并通过光信号处理电路将回波光信号转换为模拟式的电压信号;
S904,将模拟式的电压信号转换为数字式的电压信号;
S906,检测数字式的电压信号是否饱和,并在数字式的电压信号饱和时降低光信号处理电路的增益,或检测数字式的电压信号是否欠补偿,并在数字式的电压信号欠补偿时控制增益控制电路提高光信号处理电路的增益。
关于上述激光雷达信号增益控制方法的描述可以参照上述激光雷达信号接收电路的描述,这里不再赘述。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (13)
- 一种激光雷达信号接收电路,其特征在于,包括:光信号处理电路,用于接收回波光信号,并将所述回波光信号转换为模拟式的电压信号;增益控制电路,与所述光信号处理电路连接,用于控制所述光信号处理电路的增益;模数转换电路,与所述光信号处理电路连接,用于将所述模拟式的电压信号转换为数字式的电压信号;数字处理电路,与所述模数转换电路和所述增益控制电路分别连接,用于检测所述数字式的电压信号是否饱和,并在所述数字式的电压信号饱和时控制所述增益控制电路降低所述光信号处理电路的增益,或用于检测所述数字式的电压信号是否欠补偿,并在所述数字式的电压信号欠补偿时控制所述增益控制电路提高所述光信号处理电路的增益。
- 根据权利要求1所述的激光雷达信号接收电路,其特征在于,所述光信号处理电路包括:光传感器,用于响应于所述回波光信号,生成光电流信号;跨阻放大电路,与所述光传感器连接,用于将所述光电流信号放大并转换为所述模拟式的电压信号;相应地,所述增益控制电路包括以下内容中的至少一种:偏置电压控制电路、初级放大控制电路;其中,所述偏置电压控制电路,与所述光传感器连接,用于控制所述光传感器的偏置电压;所述初级放大控制电路,与所述跨阻放大电路连接,用于控制所述跨阻放大电路的放大增益。
- 根据权利要求2所述的激光雷达信号接收电路,其特征在于,所述数字处理电路用于根据所述光传感器的当前偏置电压,确定所述光传感器的目标偏置电压,并根据所述目标偏置电压,生成并输出偏置电压控制信号;所述偏置电压控制信号用于指示所述偏置电压控制电路控制所述光传感器的偏置电压为所述目标偏置电压;其中,在所述数字式的电压信号饱和时,所述目标偏置电压小于所述当前偏置电压;在所述数字式的电压信号欠补偿时,所述目标偏置电压大于所述当前偏置电压。
- 根据权利要求3所述的激光雷达信号接收电路,其特征在于,所述偏置电压控制电路包括:第一数模转换器,用于将数字式的所述偏置电压控制信号转换为模拟式的偏置电压控制信号;第一放大和调理电路,用于对所述模拟式的偏置电压控制信号进行放大和调理,得到目标偏置电压信号;输出驱动器,用于输出所述目标偏置电压信号至所述光传感器,以向所述光传感器提 供目标偏置电压。
- 根据权利要求2所述的激光雷达信号接收电路,其特征在于,所述数字处理电路用于根据所述跨阻放大电路的当前跨阻放大电阻,确定所述跨阻放大电路的目标跨阻放大电阻,并根据所述目标跨阻放大电阻,生成并输出跨阻放大电阻控制信号;所述跨阻放大电阻控制信号用于指示所述初级放大控制电路控制所述跨阻放大电路的跨阻放大电阻为所述目标跨阻放大电阻;其中,在所述数字式的电压信号饱和时,所述目标跨阻放大电阻小于所述当前跨阻放大电阻;在所述数字式的电压信号欠补偿时,所述目标跨阻放大电阻大于所述当前跨阻放大电阻。
- 根据权利要求5所述的激光雷达信号接收电路,其特征在于,所述跨阻放大电路包括多个可选的跨阻放大电阻;所述初级放大控制电路包括模拟开关,所述模拟开关用于切换所述多个可选的跨阻放大电阻;所述数字处理电路用于根据所述模拟开关对应的当前跨阻放大电阻,确定所述跨阻放大电路的目标跨阻放大电阻,并根据所述目标跨阻放大电阻,生成并输出跨阻放大电阻控制信号;所述跨阻放大电阻控制信号用于控制所述模拟开关从所述当前跨阻放大电阻切换至所述目标跨阻放大电阻。
- 根据权利要求1所述的激光雷达信号接收电路,其特征在于,所述光信号处理电路包括:光传感器,用于响应于所述回波光信号,生成光电流信号;跨阻放大电路,与所述光传感器连接,用于将所述光电流信号放大并转换为所述模拟式的电压信号;次级放大电路,连接于所述跨阻放大电路和所述模数转换电路之间,用于对所述模拟式的电压信号进行放大,得到放大后的电压信号;相应地,所述增益控制电路包括:次级放大控制电路,与所述次级放大电路连接,用于控制所述次级放大电路的放大增益;所述数字处理电路用于根据所述次级放大电路的当前增益,确定所述次级放大电路的目标增益,并根据所述目标增益,生成并输出增益控制信号;所述增益控制信号用于指示所述次级放大控制电路控制所述次级放大电路的放大增益为所述目标增益;其中,在所述数字式的电压信号饱和时,所述目标增益小于所述当前增益;在所述数字式的电压信号欠补偿时,所述目标增益大于所述当前增益。
- 根据权利要求7所述的激光雷达信号接收电路,其特征在于,所述次级放大电路包括程控放大器;所述程控放大器具有多个增益档位;所述数字处理电路用于根据所述程控放大器的当前增益档位,确定所述程控放大器的目标增益档位,并根据所述目标增益档位,生成并输出增益档位控制信号;所述增益档位 控制信号用于指示所述程控放大器切换为所述目标增益档位;其中,在所述数字式的电压信号饱和时,所述目标增益档位对应的增益小于所述当前增益档位对应的增益;在所述数字式的电压信号欠补偿时,所述目标增益档位对应的增益大于所述当前增益档位对应的增益;所述次级放大控制电路包括控制信号线,用于传输所述程控放大器的增益档位控制信号至所述程控放大器。
- 根据权利要求7所述的激光雷达信号接收电路,其特征在于,所述次级放大电路包括压控放大器;所述数字处理电路用于根据所述压控放大器的当前增益控制电压,确定所述压控放大器的目标增益控制电压,并根据所述目标增益控制电压,生成并输出增益控制电压控制信号;所述增益控制电压控制信号用于指示所述压控放大器控制增益控制电压为所述目标增益控制电压;其中,在所述数字式的电压信号饱和时,所述目标增益控制电压小于所述当前增益控制电压;在所述数字式的电压信号欠补偿时,所述目标增益控制电压大于所述当前增益控制电压。
- 根据权利要求9所述的激光雷达信号接收电路,其特征在于,所述次级放大控制电路包括:第二数模转换器,用于将数字式的所述增益控制电压控制信号转换为模拟式的增益控制电压控制信号;第二放大和调理电路,用于对所述模拟式的增益控制电压控制信号进行放大和调理,得到目标增益控制电压信号,并输出所述目标增益控制电压信号至所述压控放大器,以向所述压控放大器提供目标增益控制电压。
- 根据权利要求1-10中任一项所述的激光雷达信号接收电路,其特征在于,在所述数字式的电压信号饱和时,所述数字处理电路用于根据所述数字式的电压信号的幅值和预设的饱和阈值,计算所述数字式的电压信号的饱和度,并根据预设的饱和度与增益步长的正相关关系,确定所述数字式的电压信号对应的当前增益步长,以及控制所述增益控制电路以所述当前增益步长降低所述光信号处理电路的增益;在所述数字式的电压信号欠补偿时,所述数字处理电路用于根据所述数字式的电压信号的幅值和预设的欠补偿阈值,计算所述数字式的电压信号的欠补偿度,并根据预设的欠补偿度与增益步长的正相关关系,确定所述数字式的电压信号对应的当前增益步长,以及控制所述增益控制电路以所述当前增益步长提高所述光信号处理电路的增益。
- 一种激光雷达信号增益控制方法,其特征在于,包括:接收回波光信号,并通过光信号处理电路将所述回波光信号转换为模拟式的电压信号;将所述模拟式的电压信号转换为数字式的电压信号;检测所述数字式的电压信号是否饱和,并在所述数字式的电压信号饱和时降低所述光 信号处理电路的增益,或检测所述数字式的电压信号是否欠补偿,并在所述数字式的电压信号欠补偿时控制所述增益控制电路提高所述光信号处理电路的增益。
- 一种激光雷达,其特征在于,包括激光雷达信号发射电路和如权利要求1-11中任一项所述的激光雷达信号接收电路;所述激光雷达信号接收电路中的数字处理电路与所述激光雷达信号发射电路连接,用于控制所述激光雷达信号发射电路发射激光雷达信号。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/104530 WO2021042326A1 (zh) | 2019-09-05 | 2019-09-05 | 激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达 |
CN201980050274.2A CN112585491A (zh) | 2019-09-05 | 2019-09-05 | 激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达 |
PCT/CN2019/119263 WO2020103805A1 (en) | 2018-11-19 | 2019-11-18 | Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same |
EP19886421.7A EP3884300B1 (en) | 2018-11-19 | 2019-11-18 | Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same |
US16/758,848 US11703590B2 (en) | 2018-11-19 | 2019-11-18 | Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same |
US18/207,648 US12092736B2 (en) | 2018-11-19 | 2023-06-08 | Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/104530 WO2021042326A1 (zh) | 2019-09-05 | 2019-09-05 | 激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US202016758848A Continuation | 2018-11-19 | 2020-04-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021042326A1 true WO2021042326A1 (zh) | 2021-03-11 |
Family
ID=74852621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/104530 WO2021042326A1 (zh) | 2018-11-19 | 2019-09-05 | 激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112585491A (zh) |
WO (1) | WO2021042326A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112986951B (zh) * | 2021-04-29 | 2023-03-17 | 上海禾赛科技有限公司 | 使用激光雷达测量目标物反射率的方法及激光雷达 |
CN113625247B (zh) * | 2021-10-11 | 2022-03-04 | 北京一径科技有限公司 | 一种控制方法、装置及激光雷达 |
CN115469295A (zh) * | 2022-11-02 | 2022-12-13 | 北醒(北京)光子科技有限公司 | 激光雷达接收电路、模拟前端、激光雷达和信号处理方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160261246A1 (en) * | 2013-10-25 | 2016-09-08 | Nippon Telegraph And Telephone Corporation | Transimpedance Amplifier Circuit |
CN107276621A (zh) * | 2017-06-01 | 2017-10-20 | 博流智能科技(南京)有限公司 | 兼顾多种应用场景的接收机自动增益控制系统及方法 |
CN107861112A (zh) * | 2017-12-26 | 2018-03-30 | 成都心无界光电技术有限公司 | 一种全数字调节的激光测距系统 |
CN108663672A (zh) * | 2017-03-27 | 2018-10-16 | 亚德诺半导体集团 | 用于长距离激光雷达的高动态范围模拟前端接收器 |
CN109375194A (zh) * | 2018-10-22 | 2019-02-22 | 天津大学 | 用于激光雷达的模拟前端读出电路 |
CN109756240A (zh) * | 2019-01-25 | 2019-05-14 | 广州全盛威信息技术有限公司 | 具有增益控制装置的无线通信接收机及增益控制方法 |
CN209117866U (zh) * | 2018-09-11 | 2019-07-16 | 余姚舜宇智能光学技术有限公司 | 一种基于雪崩二极管的大动态范围光接收电路 |
CN209280923U (zh) * | 2018-10-16 | 2019-08-20 | 上海禾赛光电科技有限公司 | 一种用于激光雷达的接收端电路、接收装置及激光雷达 |
CN110196430A (zh) * | 2019-05-15 | 2019-09-03 | 深圳市速腾聚创科技有限公司 | 一种应用于单光子阵列传感器的温度补偿电路及方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07170403A (ja) * | 1993-12-15 | 1995-07-04 | Ricoh Co Ltd | 信号処理回路 |
US20040253003A1 (en) * | 2001-07-05 | 2004-12-16 | Wave 7 Optics, Inc. | Gain compensating optical receiver circuit |
CN203135890U (zh) * | 2013-01-15 | 2013-08-14 | 深圳新飞通光电子技术有限公司 | 光接收机 |
CN105379149B (zh) * | 2013-07-11 | 2018-01-05 | 日本电气株式会社 | 光学接收设备和监测信号产生方法 |
US9628195B2 (en) * | 2014-10-22 | 2017-04-18 | Source Photonics (Chengdu) Co., Ltd. | Transimpedance amplifier (TIA) having an enlarged dynamic range and optical devices using the same |
CN104393852A (zh) * | 2014-12-02 | 2015-03-04 | 中国空空导弹研究院 | 一种目标信号的自动增益调节系统及方法 |
CN107632307A (zh) * | 2017-08-23 | 2018-01-26 | 天津大学 | 自调节脉冲激光测距系统及方法 |
-
2019
- 2019-09-05 WO PCT/CN2019/104530 patent/WO2021042326A1/zh active Application Filing
- 2019-09-05 CN CN201980050274.2A patent/CN112585491A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160261246A1 (en) * | 2013-10-25 | 2016-09-08 | Nippon Telegraph And Telephone Corporation | Transimpedance Amplifier Circuit |
CN108663672A (zh) * | 2017-03-27 | 2018-10-16 | 亚德诺半导体集团 | 用于长距离激光雷达的高动态范围模拟前端接收器 |
CN107276621A (zh) * | 2017-06-01 | 2017-10-20 | 博流智能科技(南京)有限公司 | 兼顾多种应用场景的接收机自动增益控制系统及方法 |
CN107861112A (zh) * | 2017-12-26 | 2018-03-30 | 成都心无界光电技术有限公司 | 一种全数字调节的激光测距系统 |
CN209117866U (zh) * | 2018-09-11 | 2019-07-16 | 余姚舜宇智能光学技术有限公司 | 一种基于雪崩二极管的大动态范围光接收电路 |
CN209280923U (zh) * | 2018-10-16 | 2019-08-20 | 上海禾赛光电科技有限公司 | 一种用于激光雷达的接收端电路、接收装置及激光雷达 |
CN109375194A (zh) * | 2018-10-22 | 2019-02-22 | 天津大学 | 用于激光雷达的模拟前端读出电路 |
CN109756240A (zh) * | 2019-01-25 | 2019-05-14 | 广州全盛威信息技术有限公司 | 具有增益控制装置的无线通信接收机及增益控制方法 |
CN110196430A (zh) * | 2019-05-15 | 2019-09-03 | 深圳市速腾聚创科技有限公司 | 一种应用于单光子阵列传感器的温度补偿电路及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112585491A (zh) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11703590B2 (en) | Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same | |
WO2021042326A1 (zh) | 激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达 | |
CN110244311B (zh) | 激光雷达接收装置、激光雷达系统和激光测距方法 | |
WO2019104679A1 (zh) | 一种功率调整方法及激光测量装置 | |
US7859651B2 (en) | Optical range finder | |
CN108008373B (zh) | 一种基于脉冲式激光测距的回波补偿系统 | |
CN110456373A (zh) | 激光雷达的接收电路、激光雷达及激光雷达的测距方法 | |
CN201215954Y (zh) | 一种数字光接收器的光功率检测监控电路 | |
US8901475B1 (en) | Avalanche photodiode biasing system including a current mirror, voltage-to-current converter circuit, and a feedback path sensing an avalanche photodiode voltage | |
JP4223304B2 (ja) | 光受信器 | |
CN110299667A (zh) | 激光器恒功率输出的控制装置及激光加工设备 | |
CN111198380A (zh) | 激光雷达测距系统 | |
CN104020460A (zh) | 一种激光测距系统的回波信号放大电路 | |
CN111492261B (zh) | 一种激光接收电路及测距装置、移动平台 | |
CN111198381B (zh) | 激光雷达测距系统 | |
CN104777471B (zh) | 一种脉冲激光近程动态增益控制电路 | |
CN112099034A (zh) | 一种脉冲信号测量电路及激光雷达系统 | |
CN114625203A (zh) | 一种单光子雪崩二极管的高压偏置电路 | |
EP3296761B1 (en) | Distance measuring device | |
CN107576482B (zh) | 一种光学参数测量装置及其测量方法 | |
CN111835429A (zh) | 一种光模块、光模块的发送光功率校正方法及控制器 | |
CN221575157U (zh) | 一种光电探测器供电电路和激光雷达 | |
CN210864034U (zh) | 一种光接收模块及激光雷达 | |
CN219456504U (zh) | 激光接收模块和激光雷达 | |
CN221686634U (zh) | 光电接收系统及激光雷达 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19944185 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19944185 Country of ref document: EP Kind code of ref document: A1 |