WO2019104679A1 - 一种功率调整方法及激光测量装置 - Google Patents

一种功率调整方法及激光测量装置 Download PDF

Info

Publication number
WO2019104679A1
WO2019104679A1 PCT/CN2017/114033 CN2017114033W WO2019104679A1 WO 2019104679 A1 WO2019104679 A1 WO 2019104679A1 CN 2017114033 W CN2017114033 W CN 2017114033W WO 2019104679 A1 WO2019104679 A1 WO 2019104679A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
power
light emitted
emitting circuit
circuit
Prior art date
Application number
PCT/CN2017/114033
Other languages
English (en)
French (fr)
Inventor
刘祥
洪小平
何欢
陈江波
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/114033 priority Critical patent/WO2019104679A1/zh
Priority to CN201780017610.4A priority patent/CN108781116B/zh
Publication of WO2019104679A1 publication Critical patent/WO2019104679A1/zh
Priority to US16/727,578 priority patent/US20200150231A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4873Extracting wanted echo signals, e.g. pulse detection by deriving and controlling a threshold value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a power adjustment method and a laser measuring device.
  • a laser measuring device for example, a laser radar
  • a laser radar is a sensing system for the outside world, and can acquire stereoscopic three-dimensional information of the outside world, and is no longer limited to a plane sensing manner to the outside world such as a camera.
  • the principle of the laser measuring device can be that the laser pulse signal is actively emitted externally, and the reflected pulse signal is detected, and the distance of the measured object is judged according to the time difference between the transmission and the receiving; and the information of the emission angle of the optical pulse can be used to reconstruct and know. 3D depth information.
  • the power of the laser emitted by the laser measuring device cannot exceed the threshold power. In the actual production process, it is often used to adjust the relevant parameters according to the power statistics of the laser measuring device emitted by the laser measuring device before leaving the factory to ensure that the power of the laser emitted by all individuals does not exceed the threshold power.
  • the power between different laser measuring devices in mass production will be different. If the relevant parameters are adjusted according to the power statistics of the product, then there are some The laser measuring device has a small output power and poor performance.
  • the embodiment of the invention discloses a power adjustment method and a laser measuring device, which can intelligently adjust the power of the laser light emitted by the laser measuring device to improve the performance of the laser measuring device.
  • a first aspect of the embodiments of the present invention discloses a power adjustment method, which is applied to a laser measuring device, where the laser measuring device is configured with a laser transmitting circuit and a power detecting circuit, including:
  • a second aspect of the embodiments of the present invention discloses a laser measuring apparatus, including: a laser transmitting circuit, a power detecting circuit, a processor, and a memory;
  • the laser emitting circuit is configured to emit laser light
  • the laser emitting circuit is configured to detect a power of the laser light emitted by the laser emitting circuit
  • the memory is configured to store program instructions
  • the processor is configured to execute the program instructions stored by the memory, when the program instructions are executed, for:
  • the power detecting circuit is controlled by the laser measuring device to detect the power of the laser light emitted by the laser emitting circuit, and the power of the laser light emitted by the laser emitting circuit is adjusted according to the threshold power, and the laser measuring device can be emitted in real time.
  • the power of the laser is adjusted to improve the performance of the laser measuring device.
  • FIG. 1 is a schematic structural diagram of a laser sensing system according to an embodiment of the present invention.
  • FIG. 2 is a schematic overall structural diagram of a laser measuring device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a laser measuring device according to an embodiment of the present invention.
  • 3a is a schematic structural diagram of a peak hold circuit according to an embodiment of the present invention.
  • FIG. 3b is a schematic structural diagram of another peak hold circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another laser measuring device according to an embodiment of the present invention.
  • 4a is a schematic structural diagram of a stretched circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a power adjustment method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a method for configuring a control parameter according to an embodiment of the present invention
  • FIG. 6b is a schematic flowchart of another method for configuring a control parameter according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of still another laser measuring device according to an embodiment of the present invention.
  • the laser measuring device for example, a laser radar or a laser range finder, is a sensing system for the outside world, and can obtain stereoscopic three-dimensional information of the outside world, and is no longer limited to a plane sensing manner of the camera or the like.
  • the principle of the laser measuring device may be that the laser pulse signal is actively emitted externally, and the reflected laser pulse signal is detected. According to the time difference between the transmission and the receiving, the distance of the measured object is determined, and then the information of the emission angle of the optical pulse is combined. Reconstruction knows the 3D depth information.
  • the measurement distance that the laser measuring device can reach is related to the power of the laser emitted by the measuring device.
  • the power of the laser measuring device is usually set with a threshold power. If the threshold power is exceeded, the laser measuring device may be damaged or even cause a safety accident, or the threshold power corresponding to the laser measuring device is a preset safety specification. The power specified in the standard. Therefore, the power of the laser light emitted by the laser measuring device cannot exceed the threshold power.
  • the present application provides a power adjusting method and a laser measuring device.
  • FIG. 1 shows a schematic diagram 100 of a laser sensing system provided by the present application.
  • a laser sensing system (Sensor System) 110 is used to detect the distance between the laser sensing system 100 and the object 104 to be measured.
  • the laser sensing system 110 can be a laser measuring device such as a laser radar, a laser range finder, etc.
  • the working principle can be the time when the measuring light propagates between the laser sensing system 100 and the measured object 104 ( That is, the time of flight TOF) is used to detect the distance between the object 104 to be measured and the laser sensing system 100.
  • the laser sensing system 100 can be implemented based on different protocols.
  • the laser sensing system can be a coaxial based solution, in which case the exit beam 111 and the return beam 112 can share at least a portion of the optical path.
  • the exit beam 111 and the return beam 112 can be along The same light path travels.
  • the laser sensing system 100 can also be based on other schemes, such as an off-axis scheme, in which case the exit beam 111 and the return beam 112 can be configured to travel along different optical paths.
  • laser sensing system 110 can include a light source 101 that is capable of generating laser light.
  • the laser can be a single laser pulse or a series of laser pulses, which can produce collimated light.
  • collimated light refers to light having parallel rays that may not spread outward or have a smaller angle of diffusion when propagating.
  • the light produced by the point source can be collimated.
  • the lens 102 can be used to collimate the light generated by the light source 101.
  • a mirror such as a spherical mirror and/or a parabolic mirror can be used to collimate the light produced by the point source.
  • collimated light can be directed to beam steering/scanning device 103, which can cause deflection of incident light.
  • the beam steering/scanning device 103 can manipulate the laser to scan the environment surrounding the laser sensing system 110.
  • beam steering device 103 can include various optical components such as prisms, mirrors, gratings, optical phased arrays (eg, liquid crystal control gratings), or any combination thereof.
  • each of these different optical elements can be rotated about a substantially common axis 109 (hereinafter referred to as a common axis) to divert light into different directions. That is, the angles between the axes of rotation of the different optical elements may be the same or slightly different.
  • the angle between the axes of rotation of the different optical elements can be at 0.01 degrees, 0.1 degrees, 1 degree, 2 degrees, 5 degrees, and the like.
  • the retroreflective portion of the light can be returned to the laser sensing system 110 in the exact opposite direction.
  • the field of view (FOV) transmitted (or transmitted) by the laser sensing system 100 is always consistent with the received FOV. Therefore, there is almost no dead zone even at a distance close to the laser sensing system 110.
  • the coaxial system can be implemented using different structures.
  • beam splitter 108 can be disposed between light source 101 (along with lens 102) and beam steering/scanning device 103.
  • collimated light can pass through beam splitter 108 and impinge on beam steering/scanning device 103. Subsequently, the beam steering/scanning device 103 can be controlled to divert light to different directions, such as directions 111 and 111'. Additionally, beam splitter 108 can be configured to redirect the return beam that reaches beam splitter 108 to detector 105, for example, beam splitter 108 can include a mirror having an opening. The opening of beam splitter 108 may allow collimated light from source 101 to pass (and toward beam steering/scanning device 103), while the mirror portion of beam splitter 108 may direct return beam 112 toward receiving lens 106, which may return The beams are concentrated and focused on the detector 105.
  • the detector 105 can receive the returned beam and turn the returned beam Change to electrical signal.
  • detector 105 can utilize a receiving device that is a highly sensitive semiconductor electronic device, such as an avalanche photodiode (APD), which can convert light into electricity using photocurrent effects.
  • APD avalanche photodiode
  • a measurement circuit such as time of flight (TOF) unit 107 can be used to measure the TOF to detect the distance of the object 104 under test.
  • the system 100 goes to the round trip of the object and returns to the laser sensing system.
  • the laser sensing system 110 can measure the distance to the object 104 under test based on the time difference between the generation of the light pulse 111 by the light source 101 and the return of the return beam 112 by the detector 105.
  • light emission can be produced by a nanosecond (ns) level laser diode.
  • light source 101 can generate a laser pulse having a duration of approximately 10 ns
  • detector 105 can detect a return signal of a laser pulse of similar duration.
  • the receiving process can determine the time of receipt of the laser pulse, for example, by detecting the rising edge of the electrical pulse, which in one embodiment can utilize a multi-stage amplification process.
  • the laser sensing system 110 can use the pulse reception time information and the pulse transmission time information to calculate the time of flight information to determine the distance of the measured object.
  • the laser measuring device may be the laser sensing system 110 of FIG. 2 is a laser measuring device according to an embodiment of the present invention.
  • the laser measuring device shown in FIG. 2 may include: a laser emitting circuit 201 and a power detecting circuit 202. The straight line with an arrow shown in FIG. 2 is used. The laser light emitted from the laser emitting circuit 201 is indicated.
  • the laser emitting circuit of FIG. 2 may be the light source 101 of FIG.
  • the laser emitting circuit 201 may include a signal driver, a laser tube, a power source, a diode, and the like, which are not limited in this embodiment of the present invention.
  • the signal driver can generate a drive signal whose wider the pulse width of the drive signal, the longer the laser tube can be turned on and the greater the power of the laser.
  • the power detection circuit 202 can be used to detect the power of the emitted laser light.
  • the laser light emitted by the laser emitting circuit 201 has a low power at the edge of the angle, which is discarded in some designs.
  • the power detection circuit 202 can utilize this partially discarded laser to perform power measurements of the laser to reduce occlusion of the exiting laser light from the laser emitting circuit 201 due to power measurements.
  • a portion of the laser light emitted from the laser emitting circuit 201 may be separated by an optical structure to be incident on the power detecting circuit 202 located outside the exiting optical path of the laser emitting circuit 201 to perform power measurement.
  • the overall structure of the laser measuring device involved in the present application may also be as shown in FIG. 3.
  • the laser measuring device shown in FIG. 3 includes a laser emitting circuit 301 and a power detecting circuit 302.
  • the power detecting circuit 302 may include a photo-electric device 3021, a peak hold circuit 3022, and a first analog-to-digital conversion circuit ADC3023.
  • the laser emitting circuit 301 can emit laser light for a predetermined exit direction, and the photoelectric device 3023 can detect the laser light emitted from the laser emitting circuit and convert the optical signal into an electrical signal.
  • the converted electrical signal may be weak, and the optoelectronic device 3023 may input the electrical signal into the peak hold circuit 3022 for processing.
  • the exiting laser light may be separated by a portion of the optical structure into the optoelectronic device 3023, which detects the optical signal of a portion of the laser light exiting the laser emitting circuit, and thus the converted electrical signal may be weak.
  • the electrical signal can be a laser pulse signal obtained by the photoelectric device.
  • the first analog-to-digital conversion circuit ADC 3023 can obtain a sample value according to the pulse amplitude, and the correspondence between the sample value and the power of the laser light emitted by the laser light emitting circuit can be obtained according to actual calibration.
  • the implementation calibration may be: measuring the actual output power of the laser by using an optical power meter at the exit port of the laser transmitting circuit, and obtaining a proportional relationship between the actual outgoing power and the sampled value measured by the power detecting circuit, according to the proportional relationship and the sampling.
  • the power of the laser light emitted by the laser emitting circuit is obtained by numerical calculation.
  • the structure of the peak hold circuit can be as shown in Figure 3a.
  • the peak hold circuit 3022 shown in FIG. 3a includes a first diode D1 and a holding capacitor C1, and the first end of the first diode D1 is used for inputting a laser pulse signal, and the first diode D1 The second end and the holding electricity The first end of the capacitor C1 is connected to the output of the peak hold circuit 3022, and the second end of the holding capacitor C1 is used to input the reference level Vref1.
  • the output of the peak hold circuit 3022 is used to connect a first analog-to-digital converter ADC, and the first analog-to-digital converter ADC is configured to acquire a peak value of the laser pulse signal, thereby acquiring a pulse amplitude of the laser pulse signal. .
  • the peak hold circuit 3022 further includes a first operational amplifier U31, the first operational amplifier U31 includes a first input terminal +IN, a second input terminal -IN, an output terminal OUT, and a positive power terminal.
  • V+ and the negative power supply terminal V-, the positive and negative power terminals V+, V- of the first operational amplifier U31 are respectively used to connect the positive and negative power sources VCC+, VCC-, and the first input terminal of the first operational amplifier U31 +IN is used to input a laser pulse signal
  • the second input terminal -IN of the first operational amplifier U31 is electrically connected to the output terminal OUT of the first operational amplifier U31 and the first end of the first diode D1
  • the first operational amplifier U31 is configured to amplify the laser pulse signal, and output the amplified laser pulse signal to the first end of the first diode D1.
  • the peak hold circuit 3022 may further include a second resistor R2 electrically connected to the second end of the first diode D1 and the first end of the holding capacitor
  • the peak hold circuit 3022 further includes a second operational amplifier U32 and a first resistor R1.
  • the second operational amplifier U32 includes a first input terminal +IN and a second input terminal. -IN, the output terminal OUT, the positive power supply terminal V+ and the negative power supply terminal V-, the positive and negative power supply terminals V+, V- of the second operational amplifier U32 are respectively used for connecting the positive and negative power sources VCC+, VCC-,
  • the first input terminal +IN of the second operational amplifier U32 is electrically connected to the first end of the holding capacitor C1, and the second input terminal -IN of the second operational amplifier U32 and the first end of the first resistor R1
  • the output terminal OUT of the second operational amplifier U32 is electrically connected, and the second end of the first resistor R1 is used for inputting the reference level Vref2.
  • the second operational amplifier U32 is used to improve the load driving capability of the subsequent circuit.
  • the reference level Vref1 may be the same as the reference level Vref2.
  • the peak hold circuit 3022 further includes a second diode D2, and the first end of the second diode D2 and the second input terminal of the second operational amplifier U32 are -IN Connecting, the second end of the second diode D2 is electrically connected to the output terminal OUT of the second operational amplifier U32, and the polarity of the second diode D2 is opposite to that of the first diode D1 The opposite polarity. It can be understood that there is an error in the peak value outputted by the peak hold circuit 3022 due to the turn-on voltage drop of the first diode D1, and the magnitude of the error is equal to the turn-on voltage drop of the first diode D1. By setting up The second diode D2 is described such that the polarity of the second diode D2 is opposite to the polarity of the first diode D1, thereby compensating for the error.
  • the peak hold circuit 3022 is configured to acquire the peak value of the negative pulse of the laser pulse signal
  • the first end of the first diode D1 is a negative pole
  • the first diode D2 is The second end is a positive electrode
  • the first end of the second diode D2 is a positive electrode
  • the second end of the second diode D2 is a negative electrode.
  • the peak hold circuit 3022 is configured to acquire a peak value of a positive pulse of the laser pulse signal
  • the first end of the first diode D1 is a positive pole
  • the second end of the first diode D1 is In the negative electrode
  • the first end of the second diode D2 is a negative electrode
  • the second end of the second diode D2 is a positive electrode.
  • the peak hold circuit 3022 further includes a controllable switch Q that is coupled in parallel with the hold capacitor C1 for releasing the peak after the analog to digital converter ADC completes peak acquisition.
  • the charge stored by the holding capacitor C1 is described.
  • the controllable switch Q can include a control signal input terminal Ctrl for receiving a control signal, and is turned on or off according to the control signal, and is used to release the hold when the controllable switch Q is turned on. The charge stored by capacitor C1.
  • the overall structure of the laser measuring device involved in the present application may also be as shown in FIG. 4 .
  • the laser measuring device shown in FIG. 4 includes a laser emitting circuit 401 and a power detecting circuit 402.
  • the power detecting circuit 402 can include a photo device 4021, a stretch circuit 4022, and a second analog-to-digital conversion circuit ADC4023.
  • the laser transmitting circuit 401 can refer to the related description of the laser emitting circuit 301 in FIG. 3, and details are not described herein.
  • the optoelectronic device 4021 can refer to the related description of the optoelectronic device 3021 in FIG. 3, and details are not described herein.
  • the laser emitting circuit 301 can emit laser light for a predetermined exit direction, and the photoelectric device 3023 can detect the laser light emitted from the laser emitting circuit and convert the optical signal into an electrical signal.
  • the converted electrical signal may be weak, and the optoelectronic device 3023 may input the electrical signal into the stretch circuit 4022 for processing.
  • the second analog-to-digital converter ADC4023 can digitally sample the stretched laser pulse signal at a lower sampling frequency, and calculate the pulse energy according to the result of the digital sampling process.
  • the second analog to digital conversion circuit ADC 4023 can obtain a sample value according to the result of the digital sampling process, and the power of the sampled value and the laser light emitted by the laser emitting circuit can be obtained according to actual calibration.
  • the stretch circuit 4022 can be a circuit structure as shown in FIG. 4a for widening and amplifying the laser pulse signal.
  • the stretch circuit 4022 can include a stretched operational amplifier U23, a second input resistor R231, a feedback resistor R232, and a second feedback capacitor C23.
  • the first input terminal +IN of the operational amplifier U23 is used for inputting the reference level Vref3
  • the second input terminal -IN of the operational amplifier U23 is connected to one end of the second input resistor R231, and the other end of the second input resistor R231 is used.
  • the second input terminal -IN of the operational amplifier U23 is also connected to the output terminal OUT of the operational amplifier U23 via a feedback resistor R232 and a second feedback capacitor C23 connected in parallel with each other.
  • the positive and negative power terminals V+ and V- of the operational amplifier U23 are used to connect the positive and negative power sources VCC+ and VCC-, respectively.
  • the present application further provides a laser measuring device for sensing external environmental information, such as distance information of an environmental target, angle information, reflection intensity information, speed information, and the like.
  • the laser measuring device can be a laser radar.
  • the laser measuring device of the embodiment of the present invention can be applied to a mobile platform, and the laser measuring device can be mounted on a platform body of the mobile platform.
  • a mobile platform with a laser measuring device can measure the external environment, for example, measuring the distance between the mobile platform and the obstacle for obstacle avoidance, and performing two-dimensional or three-dimensional mapping of the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, and a remote control car.
  • the platform body is the body of the unmanned aerial vehicle.
  • the platform body is the body of the car.
  • the platform body is the body of the remote control car.
  • the method embodiment shown in the present application can be applied to a laser measuring device, which is configured with a laser emitting circuit and a power detecting circuit.
  • the laser measuring device can be as shown in FIG. 1 to FIG. 4 .
  • FIG. 5 is a schematic flowchart diagram of a power adjustment method according to an embodiment of the present invention.
  • the method can be self-powered by the power measuring device, and of course, the power can be adjusted by a special processing device provided in the power measuring device or elsewhere.
  • the method of the embodiment of the present invention may include:
  • the power detecting circuit and the laser emitting circuit may be the power detecting circuit and the laser emitting circuit as shown in FIGS. 2 to 4.
  • the power of the laser light emitted by the laser emitting circuit is related to the measuring distance that the laser measuring device can reach. The greater the power of the emitted laser light, the further the maximum distance that the laser measuring device can measure. In order to ensure the safety of the use of the laser measuring device, a safety specification standard is often set, and the power emitted by the laser measuring device cannot exceed the power limit of the safety standard.
  • the threshold power of the laser measuring device is the power specified in the preset safety specification standard, and the power of the laser light emitted by the laser measuring device cannot exceed the threshold power.
  • the laser measuring device can store the threshold power in advance, and when the power of the laser light emitted by the laser emitting circuit is detected by the power detecting circuit, the stored threshold power can be obtained.
  • the laser measuring device can also obtain the threshold power from a peripheral device (such as a server, a terminal, a drone, a mobile platform, etc.). Specifically, the laser measuring device and the peripheral device maintain communication through a wireless link or a wired link, and the threshold power is acquired from the peripheral device through a communication interface of the laser measuring device.
  • a peripheral device such as a server, a terminal, a drone, a mobile platform, etc.
  • the laser measuring device adjusts the power of the laser light emitted by the laser emitting circuit to not exceed the threshold power.
  • the laser measuring device can adjust the power of the laser light emitted from the laser emitting circuit to be close to the threshold power.
  • the laser measuring device may use a power value lower than the threshold power as a maximum power value conforming to a safety specification standard, and adjust a power of the laser light emitted by the laser emitting circuit to the maximum power complying with the safety standard. value.
  • the adjusting the power of the laser light emitted by the laser emitting circuit according to the threshold power may further include: setting an adjustment range according to the threshold power, and transmitting the laser The power of the laser light emitted by the circuit is adjusted to the adjustment range.
  • the adjustment range may refer to a range of power values reached after adjusting the power of the laser light emitted by the laser emitting circuit.
  • the power of the laser light emitted by the laser emitting circuit is 50w
  • the determined adjustment range is 30w-38w.
  • the output power of the laser is within the 30w-38w.
  • the adjusting the range according to the threshold power and adjusting the power of the laser light emitted by the laser emitting circuit to the adjustment range comprises: determining the threshold power and the laser emitting circuit A margin value between the powers of the emitted laser light; an adjustment range is set according to the margin value, and the power of the laser light emitted from the laser emitting circuit is adjusted to the adjustment range.
  • the threshold power is 36 W
  • the power of the laser light emitted by the laser emitting circuit is 50 W
  • the margin between the threshold power and the power of the laser light emitted by the laser emitting circuit may be 5 W.
  • the laser measuring device The adjustment range can be set to 33w-36w to ensure that the difference between the adjustment range and the power of the laser light emitted by the laser emitting circuit is greater than or equal to the margin value.
  • the margin value is determined based on environmental parameters including: temperature and/or degree of device aging.
  • the device may refer to any one or more devices disposed in the laser measuring device.
  • the environmental parameters can affect the power of the laser light emitted by the laser emitting circuit. For example, if the temperature of the laser emitting circuit is too high, the power of the laser light emitted from the laser emitting circuit may be lowered. In order to reduce the influence of environmental parameters on the power of the laser light emitted by the laser emitting circuit, when setting the margin between the power of the laser light emitted by the laser emitting circuit and the threshold power, the remaining value may be set according to the environmental parameter. In order to make the power of the laser become larger or smaller due to environmental parameters, the power of the laser can be dynamically adjusted to meet the maximum value of the safety standard, and the influence of the environmental parameters on the power of the laser can be reduced.
  • the adjusting the power of the laser light emitted by the laser emitting circuit to the adjustment range comprises: adjusting a power adjustment of the laser light emitted by the laser emitting circuit by adjusting a driving signal pulse width or a power supply voltage. Get within the adjustment range.
  • a signal driver may be disposed in the laser transmitting circuit, and the signal driver may generate a driving signal, and the wider the pulse width of the driving signal of the driving signal, the outgoing of the laser
  • the power is larger; the narrower the pulse width of the driving signal of the driving signal, the smaller the power of the laser light is emitted. Therefore, the pulse width of the driving signal can be narrowed to reduce the power of the laser to be emitted.
  • the drive signal is pulse width widened to increase the power of the laser's exit.
  • the supply voltage of the laser measuring device if the supply voltage of the laser measuring device is higher, the power of the laser light is increased; if the power supply voltage of the laser measuring device is smaller, the power of the laser light is smaller. Therefore, the supply voltage can be reduced to reduce the power of the laser's exit, and the supply voltage will be increased to increase the power of the laser's exit.
  • the method further includes: if detecting that the power of the laser light emitted by the laser emitting circuit exceeds the threshold power, then controlling The laser emitting circuit suspends output of the laser.
  • the circuit structure of the laser measuring device After adjusting the power of the laser light emitted by the laser emitting circuit according to the threshold power, if the circuit structure of the laser measuring device has a problem that the power of the laser light emitted from the laser emitting circuit suddenly becomes sharply large, it can be reduced in real time.
  • the output power is below the threshold power, or the laser emitting circuit is controlled to suspend the output of the laser.
  • the power detecting circuit controls the power of the laser light emitted by the laser emitting circuit by the laser measuring device, and adjusts the power of the laser light emitted by the laser emitting circuit according to the threshold power, so that the power of the emitted laser light can be detected in real time. And adjusting the power of the laser light emitted by the laser measuring device, so that the power of the adjusted laser does not exceed the threshold power, and the laser measuring device can achieve the maximum power as much as possible, thereby increasing the distance measured by the laser measuring device and improving the distance. The performance of the laser measuring device.
  • FIG. 6 is a schematic flowchart of another power adjustment method according to an embodiment of the present invention.
  • the method as shown in Figure 6a can include:
  • S601 Perform separation processing on the laser light emitted from the laser emitting circuit, and obtain the laser pulse signal according to the separated laser light.
  • the laser measuring device can utilize the optical structure to emit the laser emitting circuit
  • the laser beam is split and a laser pulse signal is obtained based on a part of the laser light.
  • the optical structure may be any structure that can be used to separate the laser light, and the embodiment of the present invention does not impose any limitation.
  • the laser light exiting the laser emitting circuit has a lower power at the edge of the angle, and in some designs, the laser pulse signal can be obtained using the portion of the laser.
  • the laser pulse signal may be a physical quantity for indicating a laser light
  • the laser pulse signal is a pulse signal generated according to the laser light emitted from the laser light emitting circuit.
  • the power detection circuit can further include a photovoltaic device, the laser pulse signal being detected by the optoelectronic device.
  • the optoelectronic device may be a photovoltaic device as shown in FIG. 3 or FIG. 4, which may perform light sensing, and determine the magnitude of the power of the laser light emitted from the laser emitting circuit according to the signal size of the photovoltaic device.
  • the optoelectronic device can be used to perform the associated steps of the optoelectronic device shown in Figures 3 and 4.
  • steps S602a to S604a may be related steps of controlling the power detecting circuit to detect the power of the laser light emitted by the laser emitting circuit, as follows:
  • S602a Control the power detecting circuit to detect a peak value of the laser pulse signal.
  • the peak value of the laser pulse signal may refer to the highest value of the signal in one signal period, or the difference between the highest value and the lowest value to the average value of the signal period.
  • the laser measuring device can control the power detecting circuit to detect a portion of the laser light emitted by the laser emitting circuit to obtain a peak value of the laser pulse signal of the partial laser.
  • the laser measuring device can also control the power detecting circuit to detect the complete laser light emitted by the laser emitting circuit from the laser emitting port, and obtain the peak value of the laser pulse signal of the complete laser.
  • the power detection circuit includes a peak hold circuit and a first analog to digital converter ADC.
  • the peak hold circuit may be a peak hold circuit 3022 as shown in FIGS. 3, 3a, and 3b, and the first analog to digital converter ADC may be the first analog to digital conversion circuit ADC 3023 as shown in FIG.
  • the peak hold circuit can include a diode as well as a holding capacitor or the like.
  • the peak-holding circuit may also include other structures, which are not limited in this embodiment of the present invention.
  • the first analog to digital converter ADC is configured to acquire a peak of the pulse signal a value to thereby obtain a pulse amplitude of the laser pulse signal.
  • the peak of the laser pulse signal and the pulse amplitude are acquired by the peak hold circuit and the first analog to digital converter ADC.
  • the first analog to digital converter ADC can detect the power of the laser light emitted by the laser emitting circuit according to the pulse amplitude.
  • the sampled value calculated by the first analog-to-digital converter ADC has a corresponding relationship with the power of the laser light emitted by the laser emitting circuit, and the correspondence relationship can be known by actual calibration.
  • the actual output power of the laser can be measured by the optical power meter at the exit of the laser emitting circuit, and the proportional relationship between the actual output power and the sampled value measured by the first analog-to-digital converter ADC can be obtained, according to the proportional relationship and the The sampled value is calculated to obtain the power of the laser light emitted by the laser emitting circuit.
  • controlling the power detection circuit to detect the power of the laser light emitted by the laser emitting circuit may also include:
  • S602b Control the power detecting circuit to perform widening processing and amplification processing on the laser pulse signal.
  • the power detection circuit includes a stretch circuit; the stretch circuit is configured to perform a widening process and an amplification process on the laser pulse signal.
  • the stretched circuit may include a widened operational amplifier resistor and a feedback capacitor, etc., and the stretched circuit may be as shown in the structure of FIG. 4a, which is not limited in this embodiment of the present invention.
  • the laser pulse signal after the widening process and the amplification process is subjected to digital sampling processing, and the power of the laser light emitted by the laser emitting circuit is calculated according to the result of the digital sampling process, including: widening processing and amplifying The processed laser pulse signal is subjected to digital sampling processing to obtain a sampled value; and the calibration process is performed according to the sampled value to obtain the power of the laser light emitted by the laser emitting circuit.
  • the power measurement circuit can further include a second analog to digital converter ADC for The digital sampling process is performed.
  • the output end of the stretch circuit can also be connected to the second analog-to-digital converter ADC, and after the widening and amplifying the laser pulse signal by the stretch circuit, the second analog-to-digital converter can be further passed.
  • the ADC digitally samples the stretched pulse signal at a lower sampling rate and performs calibration processing according to the sampled value to obtain the power of the laser light emitted by the laser emitting circuit.
  • the calibration process can be the actual calibration.
  • the performing calibration processing according to the sampled value to obtain the power of the laser light emitted by the laser emitting circuit includes: obtaining a ratio relationship between the actual output power and the calculated laser power; according to the ratio relationship A calibration process is performed on the sampled values to obtain the power of the laser light emitted by the laser emitting circuit.
  • the actual output power of the laser can be measured by the optical power meter at the exit port of the laser emitting circuit, and the proportional relationship between the actual output power and the sampled value measured by the second analog-to-digital converter ADC can be obtained, according to the proportional relationship and the The sampled value is calculated to obtain the power of the laser light emitted by the laser emitting circuit.
  • a laser pulse signal is obtained by separating the laser light emitted from the laser emitting circuit, and the power of the laser light emitted by the laser emitting circuit is detected by the power detecting circuit according to the laser pulse signal, and is adjusted according to the threshold power.
  • the power of the laser light emitted by the laser emitting circuit can detect the power of the emitted laser light in real time, and adjust the power of the laser light emitted from the laser measuring device, thereby improving the performance of the laser measuring device.
  • FIG. 7 is a schematic structural diagram of still another laser measuring apparatus according to an embodiment of the present invention, including: a laser transmitting circuit 703, a power detecting circuit 704, a processor 701, and a memory 702;
  • the laser emitting circuit 703 is configured to emit laser light
  • the laser emitting circuit 703 is configured to detect the power of the laser light emitted by the laser emitting circuit 703;
  • the memory 702 is configured to store program instructions.
  • the processor 701 is configured to execute the program instructions stored by the memory 702, when the program instructions are executed, to:
  • the processor 701 when the processor 701 is configured to adjust the power of the laser light emitted by the laser emitting circuit 703 according to the threshold power, specifically, the adjusting range is set according to the threshold power, and the laser is set The power of the laser light emitted from the transmitting circuit 703 is adjusted to the adjustment range.
  • the processor 701 is configured to: when the adjustment range is set according to the threshold power, and adjust the power of the laser light emitted by the laser transmitting circuit 703 to the adjustment range, specifically: determining a margin value between the threshold power and the power of the laser light emitted by the laser emitting circuit 703; setting an adjustment range according to the margin value, and adjusting the power of the laser light emitted by the laser emitting circuit 703 to the adjustment Within the scope.
  • the margin value is determined based on environmental parameters including: temperature and/or degree of device aging.
  • the processor 701 is further configured to: if the power of the laser light emitted by the laser emitting circuit 703 is detected When the threshold power is exceeded, the laser emitting circuit 703 is controlled to suspend the output of the laser light.
  • the method is: adjusting the driving signal pulse width or the power supply voltage to adjust the The power adjustment of the laser light emitted from the laser emitting circuit 703 is obtained within the adjustment range.
  • the processor 701 when the processor 701 is configured to control the power of the laser light emitted by the laser emitting circuit 703, the processor 701 is specifically configured to: control the power detecting circuit 704 to detect the laser pulse signal.
  • the laser pulse signal is a pulse signal generated by the laser light emitted by the laser emitting circuit 703; a pulse amplitude is obtained according to a peak value of the laser pulse signal; and a laser light emitted by the laser emitting circuit 703 is detected according to the pulse amplitude power.
  • the power detection circuit 704 includes a peak hold circuit and a first analog to digital a converter ADC; a peak of the laser pulse signal and the pulse amplitude are acquired by the peak hold circuit and the first analog to digital converter ADC.
  • the processor 701 when the processor 701 is configured to control the power of the laser light emitted by the laser transmitting circuit 703, the processor 701 is specifically configured to: control the power detecting circuit 704 to the laser pulse.
  • the signal is subjected to widening processing and amplification processing; the laser pulse signal after the stretching processing and the amplification processing is subjected to digital sampling processing, and the power of the laser light emitted from the laser emitting circuit 703 is calculated based on the result of the digital sampling processing.
  • the processor 701 is configured to perform digital sampling processing on the laser pulse signal after the stretch processing and the amplification processing, and calculate the power of the laser light emitted by the laser emitting circuit 703 according to the digital sampling processing result. Specifically, the laser pulse signal after the widening process and the amplification process is subjected to digital sampling processing to obtain a sampled value; and the calibration process is performed according to the sampled value to obtain the power of the laser light emitted by the laser light emitting circuit 703.
  • the processor 701 is configured to perform calibration processing according to the sampled value, and obtain the power of the laser light emitted by the laser emitting circuit 703, specifically for: obtaining actual output power and calculated laser power.
  • the ratio relationship is obtained; the sampling value is calibrated according to the ratio relationship, and the power of the laser light emitted by the laser emitting circuit is obtained.
  • the power detection circuit 704 includes a stretched circuit and a second analog to digital converter ADC;
  • the stretch circuit is configured to perform a widening process and an amplification process on the laser pulse signal
  • the second analog-to-digital converter ADC is configured to perform the digital sampling process
  • the processor 701 is further configured to: perform separation processing on the laser light emitted by the laser emitting circuit 703, and obtain the laser pulse signal according to the separated laser.
  • the power detection circuit 704 further includes optoelectronic devices that are detected by the optoelectronic device.

Abstract

本发明实施例提供了一种功率调整方法及激光测量装置,其中方法包括:控制功率检测电路检测激光发射电路出射的激光的功率;获取所述激光测量装置对应的门限功率;根据所述门限功率调整所述激光发射电路出射的激光的功率,可以智能地对激光测量装置出射的激光的功率进行调整,提高激光测量装置的性能。

Description

一种功率调整方法及激光测量装置 技术领域
本发明涉及电子技术领域,尤其涉及一种功率调整方法及激光测量装置。
背景技术
激光测量装置(例如激光雷达)是对外界的感知系统,可以获知外界的立体三维信息,不再局限于相机等对外界的平面感知方式。激光测量装置的原理可以为主动对外发射激光脉冲信号,探测到反射回来的脉冲信号,根据发射—接收之间的时间差,判断被测物体的距离;结合光脉冲的发射角度信息,便可重建获知三维深度信息。
由于激光测量装置的出射的激光的功率不能超过门限功率。在实际生产过程中,往往采用在激光测量装置出厂前,根据本批次激光测量装置出射的功率统计规律调整相关参数,保证所有个体出射的激光的功率都不超过门限功率。
然而,考虑到电路器件、激光管、光学结构等部件的不一致性,批量生产中不同激光测量装置之间的功率会有一定的差异,若根据产品出射的功率统计规律调整相关参数,那么有部分激光测量装置的出射功率会较小,性能较差。
发明内容
本发明实施例公开了一种功率调整方法及激光测量装置,可以智能地对激光测量装置出射的激光的功率进行调整,提高激光测量装置的性能。
本发明实施例第一方面公开了一种功率调整方法,应用于激光测量装置,所述激光测量装置配置有激光发射电路和功率检测电路,包括:
控制所述功率检测电路检测所述激光发射电路出射的激光的功率;
获取所述激光测量装置对应的门限功率;
根据所述门限功率调整所述激光发射电路出射的激光的功率。
本发明实施例第二方面公开了一种激光测量装置,包括:激光发射电路、功率检测电路、处理器以及存储器;
所述激光发射电路,用于出射激光;
所述激光发射电路,用于检测所述激光发射电路出射的激光的功率;
所述存储器,用于存储程序指令;
所述处理器,用于执行所述存储器存储的程序指令,当程序指令被执行时,用于:
控制所述功率检测电路检测所述激光发射电路出射的激光的功率;
获取所述激光测量装置对应的门限功率;
根据所述门限功率调整所述激光发射电路出射的激光的功率。
本发明实施例中,通过激光测量装置控制该功率检测电路检测该激光发射电路出射的激光的功率,并根据门限功率调整该激光发射电路出射的激光的功率,可以实时地对激光测量装置出射的激光的功率进行调整,提高激光测量装置的性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种激光感测系统的结构示意图;
图2是本发明实施例提供的一种激光测量装置的整体结构示意图;
图3是本发明实施例所提供的一种激光测量装置的结构示意图;
图3a是本发明实施例所提供的一种峰值保持电路的结构示意图;
图3b是本发明实施例所提供的另一种峰值保持电路的结构示意图
图4是本发明实施例提供的另一种激光测量装置的结构示意图;
图4a是本发明实施例提供的一种展宽电路的结构示意图;
图5是本发明实施例提供的一种功率调整方法的流程示意图;
图6a是本发明实施例所提供的一种控制参数配置方法的流程示意图;
图6b是本发明实施例所提供的另一种控制参数配置方法的流程示意图;
图7是本发明实施例提供的又一种激光测量装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
激光测量装置,例如可以是激光雷达或者激光测距仪,是对外界的感知系统,可以获知外界的立体三维信息,不再局限于相机等对外界的平面感知方式。激光测量装置的原理可以为主动对外发射激光脉冲信号,探测到反射回来的激光脉冲信号,根据发射—接收之间的时间差,判断被测物体的距离,再结合光脉冲的发射角度信息,便可重建获知三维深度信息。
激光测量装置可以达到的测量距离与该测量装置出射的激光的功率有关,出射的激光的功率越大,能测量到的最大距离也就会更远。然而,该激光测量装置的功率通常设置有门限功率,如果超过该门限功率,可能会导致激光测量装置损坏,甚至会引发安全事故,或者,该激光测量装置对应的门限功率为预设的安全规范标准中规定的功率。因此,激光测量装置出射的激光的功率不能超过该门限功率。
为了使激光测量装置既不超过门限功率,又能使激光测量装置达到最大的功率,本申请提供了一种功率调整方法及激光测量装置。
首先介绍本申请涉及的系统。请参阅图1,图1示出了本申请提供的一种激光感测系统的示意图100。如图1所示,激光感测系统(Sensor System)110用于检测该激光感测系统100与被测物体104之间的距离。举例来说,该激光感测系统110可以是例如激光雷达、激光测距仪等激光测量装置,其作用原理可以是测量光在该激光感测系统100与被测物体104之间传播的时间(即飞行时间TOF),以此来检测被测物体104与该激光感测系统100之间的距离。
该激光感测系统100可以基于不同的方案来实现。例如,激光感测系统可以是基于同轴的方案,在这种情况下,出射光束111和返回光束112可以共享光路的至少一部分,在一个实施例中,该出射光束111和返回光束112可以沿着同一条光路行进。可选地,激光感测系统100也可以基于其他的方案,诸如异轴方案,在这种情况下,出射光束111和返回光束112可以被配置为沿着不同的光路行进。
如图1所示,激光感测系统110可以包括能够产生激光的光源101。例如, 激光可以是单个激光脉冲或一系列激光脉冲,其产生的激光可以是准直光。如本领域技术人员所知,准直光是指具有平行光线的光,其在传播时可能不会向外扩散或者扩散的角度较小。
在一个实施例中,可以对点源产生的光进行准直处理。例如,可以使用透镜102来对由光源101产生的光进行准直处理。或者,可以使用诸如球面镜和/或抛物面镜之类的反射镜来对由点源产生的光进行准直处理。
如图1所示,可以将准直光导向光束转向/扫描装置103,其可以引起入射光的偏折。在一个实施例中,光束转向/扫描装置103可以操纵激光来扫描激光感测系统110周围的环境。例如,光束转向装置103可以包括各种光学元件,例如棱镜,反射镜,光栅,光学相控阵列(例如液晶控制光栅)或其任何组合。而且,这些不同的光学元件中的每一个都可以围绕基本共同的轴线109旋转(在下文中被称为公共轴线),以便将光线转向不同的方向。即,不同光学元件的旋转轴线之间的角度可以相同或稍微不同。例如,不同光学元件的旋转轴之间的角度可以在0.01度,0.1度,1度,2度,5度等等。
使用如图1中所示的同轴方案,一旦出射光束111照射被测物体104,光的背向反射部分可以以完全相反的方向返回到激光感测系统110。因此,使用同轴方案,激光感测系统100传输(或传出)的视场角(FOV)总是与接收的FOV保持一致。因此,即使在离激光感测系统110很近的距离处也几乎不具有盲区。
在一个实施例中,可以使用不同的结构来实现该同轴系统。例如,可以在光源101(与透镜102一起)和光束转向/扫描装置103之间布置分束器108。
如图1所示,准直光可以通过分束器108并冲击在光束转向/扫描装置103上。随后,可以控制该光束转向/扫描装置103将光转向不同的方向,如方向111和111'。另外,分束器108可以被配置为将到达分束器108的返回光束重定向到检测器105上,例如,分束器108可以包括具有开口的反射镜。分束器108的开口可允许来自光源101的准直光通过(并朝向光束转向/扫描装置103),而分束器108的镜面部分可将返回光束112朝向接收透镜106,其可以将返回的光束聚集并聚焦在检测器105上。
在一个实施方式中,检测器105可以接收返回的光束并将该返回的光束转 换为电信号。例如,检测器105可以利用作为高度敏感的半导体电子装置的接收装置,例如雪崩光电二极管(APD),该APD可以利用光电流效应将光转换为电。
根据本申请提供的各种实施例,诸如飞行时间(TOF)单元107的测量电路可被用于测量TOF以便检测到被测物体104的距离。例如,TOF单元107可以基于公式t=2D/c来计算与TOF的距离,其中D是激光感测系统100和被测物体104之间的距离,c是光速,t是用于从激光感测系统100到物体的往返行程并返回到激光感测系统。因此,激光感测系统110可以基于由光源101产生光脉冲111与由检测器105接收返回光束112之间的时间差来测量到被测物体104的距离。
在一个实施例中,可以由纳秒(ns)级的激光二极管产生光发射。例如,光源101可以产生具有持续时间为接近10ns的激光脉冲,并且检测器105可以检测到类似持续时间的激光脉冲的返回信号。此外,该接收过程可以确定激光脉冲的接收时间,例如,通过检测电脉冲的上升沿来确定该接收时间,在一个实施例中,该检测的过程可以利用多级放大过程。因此,激光感测系统110可以使用脉冲接收时间信息和脉冲发射时间信息来计算飞行时间信息,以便确定被测物体的距离。
下面介绍本申请提供的一种激光测量装置的部分结构,在一个实施例中,该激光测量装置可以为图1中的激光感测系统110。请参阅图2,为本发明实施例提供的一种激光测量装置,图2所示的激光测量装置可以包括:激光发射电路201以及功率检测电路202,图2所示的带箭头的直线用于表示该激光发射电路201出射的激光。在一实施例中,图2中的激光发射电路可以是图1中的光源101。
在一个实施例中,该激光发射电路201可以包括信号驱动器、激光管、电源以及二极管等等,本发明实施例对此不作任何限制。
在一个实施例中,信号驱动器可以产生驱动信号,该驱动信号的驱动信号脉宽越宽,则激光管打开的时间可以越长,激光的出射的功率也就越大。
在一个实施例中,如果电源的供电电压越高,则在激光管打开时流过激光管的电流越大,出射功率也就越大。
该功率检测电路202可以用于检测出射的激光的功率。
激光发射电路201出射的激光在角度边缘处的功率较低,在一些设计中会将这部分激光舍弃。在一个实施例中,功率检测电路202可以利用这部分舍弃的激光来进行激光的功率测量,以减小由于功率测量而导致的对激光发射电路201的出射激光的遮挡。
在一个实施例中,可以利用光学结构将激光发射电路201出射的部分激光进行分离处理,以入射到位于激光发射电路201的出射光路之外的功率检测电路202中,进行功率的测量。
在一些可行的实施方式中,本申请涉及的激光测量装置的整体结构也可以如图3所示。如图3所示的激光测量装置包括:激光发射电路301以及功率检测电路302,该功率检测电路302可以包括:光电器件3021、峰值保持电路3022、第一模数转换电路ADC3023。
该激光发射电路301可以针对预设的出射方向出射激光,该光电器件3023可以检测到激光发射电路出射的激光,并将该光信号转换为电信号。在一个实施例中,转换得到的电信号可能较弱,该光电器件3023可以将该电信号输入到峰值保持电路3022中进行处理。
在一个实施例中,可以通过光学结构将出射的激光分出一部分到该光电器件3023,该光电器件3023检测到激光发射电路出射的部分激光的光信号,因此转换的电信号可能较弱。其中,该电信号可以为光电器件得到的激光脉冲信号。
在一个实施例中,该第一模数转换电路ADC3023可以根据该脉冲幅度得到采样数值,该采样数值与该激光发射电路出射的激光的功率的对应关系可以根据实际标定得出。例如,该实施标定可以是:在激光发射电路的出射口利用光功率计测量激光的实际出射功率,得到实际出射功率与功率检测电路测量得到的采样数值的比例关系,根据该比例关系以及该采样数值计算得到该激光发射电路出射的激光的功率。
在一个实施例中,该峰值保持电路的结构可以如图3a所示。如图3a所示的峰值保持电路3022包括第一二极管D1及保持电容C1,所述第一二极管D1的第一端用于输入激光脉冲信号,所述第一二极管D1的第二端与所述保持电 容C1的第一端及所述峰值保持电路3022的输出端连接,所述保持电容C1的第二端用于输入参考电平Vref1。所述峰值保持电路3022的输出端用于连接第一模数转换器ADC,所述第一模数转换器ADC用于采集所述激光脉冲信号的峰值,从而获取所述激光脉冲信号的脉冲幅度。
在一种实施方式中,所述峰值保持电路3022还包括第一运算放大器U31,所述第一运算放大器U31包括第一输入端+IN、第二输入端-IN、输出端OUT、正电源端V+和负电源端V-,所述第一运算放大器U31的正、负电源端V+、V-分别用于连接正、负电源VCC+、VCC-,所述第一运算放大器U31的第一输入端+IN用于输入激光脉冲信号,所述第一运算放大器U31的第二输入端-IN与所述第一运算放大器U31的输出端OUT及所述第一二极管D1的第一端电连接,所述第一运算放大器U31用于对所述激光脉冲信号进行放大,并将放大后的激光脉冲信号输出至所述第一二极管D1的第一端。可选地,所述峰值保持电路3022还可以包括第二电阻R2,所述第二电阻R2电连接于所述第一二极管D1的第二端和所述保持电容C1的第一端之间。
请参阅图3b,在一种实施方式中,所述峰值保持电路3022还包括第二运算放大器U32和第一电阻R1,所述第二运算放大器U32包括第一输入端+IN、第二输入端-IN、输出端OUT、正电源端V+和负电源端V-,所述第二运算放大器U32的正、负电源端V+、V-分别用于连接正、负电源VCC+、VCC-,所述第二运算放大器U32的第一输入端+IN与所述保持电容C1的第一端电连接,所述第二运算放大器U32的第二输入端-IN与所述第一电阻R1的第一端及所述第二运算放大器U32的输出端OUT电连接,所述第一电阻R1的第二端用于输入参考电平Vref2。所述第二运算放大器U32用于提高后续电路的负载驱动能力。其中,所述参考电平Vref1可以与所述参考电平Vref2相同。
在一种实施方式中,所述峰值保持电路3022还包括第二二极管D2,所述第二二极管D2的第一端与所述第二运算放大器U32的第二输入端-IN电连接,所述第二二极管D2的第二端与所述第二运算放大器U32的输出端OUT电连接,所述第二二极管D2的极性与所述第一二极管D1的极性相反。可以理解,由于所述第一二极管D1的导通压降会造成所述峰值保持电路3022输出的峰值存在误差,该误差的大小等于所述第一二极管D1的导通压降,通过设置所 述第二二极管D2,且使得所述第二二极管D2的极性与所述第一二极管D1的极性相反,从而实现对所述误差的补偿。
可以理解,若所述峰值保持电路3022用于获取所述激光脉冲信号的负脉冲的峰值,则所述第一二极管D1的第一端为负极,所述第一二极管D2的第二端为正极,所述第二二极管D2的第一端为正极,所述第二二极管D2的第二端为负极。若所述峰值保持电路3022用于获取所述激光脉冲信号的正脉冲的峰值,则所述第一二极管D1的第一端为正极,所述第一二极管D1的第二端为负极,所述第二二极管D2的第一端为负极,所述第二二极管D2的第二端为正极。
在一种实施方式中,所述峰值保持电路3022还包括可控开关Q,所述可控开关Q与所述保持电容C1并联,用于在所述模数转换器ADC完成峰值采集之后释放所述保持电容C1存储的电荷。其中,所述可控开关Q可以包括控制信号输入端Ctrl,用于接收控制信号,并根据所述控制信号导通或截止,当所述可控开关Q导通时,用于释放所述保持电容C1存储的电荷。
在一些可行的实施方式中,本申请涉及的激光测量装置的整体结构也可以如图4所示。如图4所示的激光测量装置包括:激光发射电路401以及功率检测电路402,该功率检测电路402可以包括:光电器件4021、展宽电路4022、第二模数转换电路ADC4023。
该激光发射电路401可以参考对图3中的激光发射电路301的相关介绍,在此不作赘述。
该光电器件4021可以参考对图3中的光电器件3021的相关介绍,在此不作赘述。
该激光发射电路301可以针对预设的出射方向出射激光,该光电器件3023可以检测到激光发射电路出射的激光,并将光信号转换为电信号。在一个实施例中,转换得到的电信号可能较弱,该光电器件3023可以将该电信号输入到展宽电路4022中进行处理。
该第二模数转换器ADC4023可以以较低的采样频率对展宽后的激光脉冲信号进行数字采样处理,并根据数字采样处理的结果计算出脉冲能量,得到激 光发射电路401出射的激光的功率。
在一个实施例中,该第二模数转换电路ADC4023可以根据数字采样处理的结果得到采样数值,该采样数值与该激光发射电路出射的激光的功率可以根据实际标定得出。
在一种实施方式中,所述展宽电路4022可以为如图4a所示的电路结构,用于对所述激光脉冲信号进行展宽和放大处理。所述展宽电路4022可以包括展宽运算放大器U23、第二输入电阻R231、反馈电阻R232及第二反馈电容C23。所述运算放大器U23的第一输入端+IN用于输入参考电平Vref3,所述运算放大器U23的第二输入端-IN连接第二输入电阻R231的一端,第二输入电阻R231的另一端用于输入所述激光脉冲信号,所述运算放大器U23的第二输入端-IN还通过相互并联的反馈电阻R232及第二反馈电容C23与所述运算放大器U23的输出端OUT连接。所述运算放大器U23的正、负电源端V+、V-分别用于连接正、负电源VCC+、VCC-。
在一种实施方式中,本申请还提供一种激光测量装置,用于感测外部环境信息,例如,环境目标的距离信息、角度信息、反射强度信息、速度信息等。所述激光测量装置可以为激光雷达。
具体地,本发明实施方式的激光测量装置可应用于移动平台,所述激光测量装置可安装在移动平台的平台本体。具有激光测量装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。
在某些实施方式中,移动平台包括无人飞行器、汽车和遥控车中的至少一种。当激光测量装置应用于无人飞行器时,平台本体为无人飞行器的机身。当激光测量装置应用于汽车时,平台本体为汽车的车身。当激光测量装置应用于遥控车时,平台本体为遥控车的车身。
下面介绍本申请的方法实施例。需要说明的是,本申请所示的方法实施例可应用于激光测量装置,所述激光测量装置配置有激光发射电路和功率检测电路,例如,所述激光测量装置可以为图1至图4所示的激光测量装置。
请参阅图5,为本发明实施例所提供的一种功率调整方法的流程示意图。 该方法可以由功率测量装置自行进行功率调整,当然也可以通过设置在功率测量装置或者其他地方的专用处理设备进行功率调整。如图5所示,本发明实施例的所述方法可包括:
S501、控制所述功率检测电路检测所述激光发射电路出射的激光的功率。
该功率检测电路以及该激光发射电路可以如图2至图4所示的功率检测电路以及激光发射电路。
需要说明的是,该激光发射电路出射的激光的功率与该激光测量装置可以达到的测量距离有关,出射的激光的功率越大,该激光测量装置可以测量到的最大距离也会越远。为了保证该激光测量装置的使用安全,常常设置安全规范标准,该激光测量装置出射的功率不能超过该安全规范标准的功率限制。
S502、获取所述激光测量装置对应的门限功率。
在一个实施例中,该激光测量装置对应的门限功率为预设的安全规范标准中规定的功率,该激光测量装置出射的激光的功率不能超过该门限功率。
在一个可行的实施方式中,该激光测量装置可以将该门限功率预先进行存储,在通过功率检测电路检测到激光发射电路出射的激光的功率时,便可获取存储的门限功率。
在一个可行的实施方式中,该激光测量装置也可以从外围设备(例如服务器、终端、无人机、移动平台等)获取该门限功率。具体地,该激光测量装置与外围设备通过无线链路或有线链路保持通信,并通过该激光测量装置的通信接口从外围设备获取该门限功率。
S503、根据所述门限功率调整所述激光发射电路出射的激光的功率。
需要说明的是,该激光测量装置调整该激光发射电路出射的激光的功率不超过该门限功率。
举例来说,该激光测量装置可以将该激光发射电路出射的激光的功率调整到接近该门限功率。具体地,该激光测量装置可以根据低于该门限功率的某一功率值作为符合安全规范标准的最大功率值,并将该激光发射电路出射的激光的功率调整到该符合安全规范标准的最大功率值。
在一个实施例中,所述根据所述门限功率调整所述激光发射电路出射的激光的功率,也可以包括:根据所述门限功率设置调整范围,并将所述激光发射 电路出射的激光的功率调整到所述调整范围内。
需要说明的是,该调整范围可以是指调整该激光发射电路出射的激光的功率后达到的功率值的范围。例如,该激光发射电路出射的激光的功率为50w,确定的调整范围为30w-38w,那么调整该激光发射电路出射的激光的功率之后,激光的出射功率处于该30w-38w内。
在一个实施例中,所述根据所述门限功率设置调整范围,并将所述激光发射电路出射的激光的功率调整到所述调整范围内,包括:确定所述门限功率以及所述激光发射电路出射的激光的功率之间的余量值;根据所述余量值设置调整范围,并将所述激光发射电路出射的激光的功率调整到所述调整范围内。
举例来说,该门限功率为36w,该激光发射电路出射的激光的功率为50w,那么该门限功率以及该激光发射电路出射的激光的功率之间的余量值可以为5w,该激光测量装置可以将调整范围设置为33w-36w,以保证该调整范围与该激光发射电路出射的激光的功率的差值大于或等于该余量值。
在一个实施例中,所述余量值根据环境参数确定,所述环境参数包括:温度和/或器件老化程度。
需要说明的是,器件可以是指该激光测量装置中设置的任意一个或多个器件。
还需要说明的是,该环境参数可以对激光发射电路出射的激光的功率造成影响。例如,如果该激光发射电路的温度过高,则该激光发射电路出射的激光的功率可能会降低。为了减缓环境参数对激光发射电路出射的激光的功率造成的影响,在设置激光发射电路出射的激光的功率以及门限功率之间的余量值时,可以根据该环境参数对余量值进行设置,以使激光的功率在受到环境参数影响变大或者变小时,可以根据动态调整激光的功率到满足安全规范标准的最大值,减小环境参数对激光的功率的影响。
在一个实施例中,所述将所述激光发射电路出射的激光的功率调整到所述调整范围内,包括:通过调整驱动信号脉宽或供电电压调整所述激光发射电路出射的激光的功率调整得到所述调整范围内。
在一些可行的实施方式中,该激光发射电路中可以设置信号驱动器,信号驱动器可以产生驱动信号,该驱动信号的驱动信号脉宽越宽,则激光的出射的 功率也就越大;该驱动信号的驱动信号脉宽越窄,则激光的出射的功率也就越小,因此,可以将该驱动信号脉宽调窄以减小激光的出射的功率,将该驱动信号脉宽调宽以增大激光的出射的功率。
在一个实施例中,如果激光测量装置的供电电压越高,则激光的出射的功率也就越大;如果激光测量装置的供电电压越小,则激光的出射的功率也就越小。因此,可以将供电电压减小以减小激光的出射的功率,将将供电电压增大以增大激光的出射的功率。
在一个实施例中,所述根据所述门限功率调整所述激光发射电路出射的激光的功率之后,还包括:若检测到所述激光发射电路出射的激光的功率超过所述门限功率,则控制所述激光发射电路暂停对激光的输出。
举例来说,在根据该门限功率调整所述激光发射电路出射的激光的功率之后,如果激光测量装置的电路结构出现问题导致激光发射电路出射的激光的功率突然剧烈变大时,可以实时减小出射功率到门限功率以下,或者控制该激光发射电路暂停对激光的输出。
在一个实施例中,还可以是在激光测量装置出厂前,实际测量每一个激光测量装置的激光的出射功率,并分别调整每一个激光测量装置的激光的出射功率到符合安全规范标准的最大功率值。
本发明实施例中,通过激光测量装置控制该功率检测电路检测该激光发射电路出射的激光的功率,并根据门限功率调整该激光发射电路出射的激光的功率,可以实时探测出射的激光的功率,并对激光测量装置出射的激光的功率进行调整,既使调整后的激光的功率不超过门限功率,又能使激光测量装置尽可能达到最大的功率,提高该激光测量装置测量的距离,也提高了激光测量装置的性能。
下面请参阅图6a,为本发明实施例提供的另一种功率调整方法的流程示意图。如图6a所示的方法可包括:
S601、将所述激光发射电路出射的激光进行分离处理,并根据分离处理后的激光得到所述激光脉冲信号。
在一个实施例中,该激光测量装置可以利用光学结构将该激光发射电路出 射的激光分出一部分,根据一部分激光得到该激光脉冲信号。该光学结构可以是任意可以用于分离激光的结构,本发明实施例对此不作任何限制。
在一个实施例中,激光发射电路出射的激光在角度边缘处的功率较低,在一些设计中,可以利用这部分激光得到该激光脉冲信号。
需要说明的是,该激光脉冲信号可以是用于表示激光的物理量,该激光脉冲信号为根据激光发射电路出射的激光产生的脉冲信号。
在一个实施例中,所述功率检测电路还可以包括光电器件,所述激光脉冲信号由所述光电器件检测得到。
举例来说,该光电器件可以为如图3或图4所示的光电器件,该光电器件可以进行感光,根据该光电器件的信号大小来判断激光发射电路出射的激光的功率的大小。在一些可行的实施方式中,该光电器件可以用于执行如图3以及图4所示的光电器件的相关的步骤。
下述步骤S602a至S604a可以为控制所述功率检测电路检测所述激光发射电路出射的激光的功率的相关步骤,具体如下:
S602a、控制所述功率检测电路检测激光脉冲信号的峰值。
需要说明的是,该激光脉冲信号的峰值可以是指一个信号周期内的信号最高值,或者一个信号周期内的信号最高值与最低值到平均值之间的差值。
在一个可行的实施方式中,该激光测量装置可以控制该功率检测电路检测该激光发射电路出射的激光的一部分,得到该部分激光的激光脉冲信号的峰值。
在一个可行的实施方式中,该激光测量装置也可以控制该功率检测电路检测该激光发射电路从激光发射口出射的完整激光,得到该完整激光的激光脉冲信号的峰值。
S603a、根据所述激光脉冲信号的峰值获取脉冲幅度。
在一个实施例中,所述功率检测电路包括峰值保持电路和第一模数转换器ADC。该峰值保持电路可以是如图3、图3a以及图3b中所示的峰值保持电路3022,该第一模数转换器ADC可以是如图3所示的第一模数转换电路ADC3023。
在一个实施例中,该峰值保持电路可以包括二极管以及保持电容等等。当然,该峰值保持电路还可以包括其他结构,本发明实施例对此不作任何限制。
在一个实施例中,所述第一模数转换器ADC用于采集所述脉冲信号的峰 值,从而获取所述激光脉冲信号的脉冲幅度。
在一个实施例中,所述激光脉冲信号的峰值以及所述脉冲幅度通过所述峰值保持电路以及第一模数转换器ADC获取。
S604a、根据所述脉冲幅度检测所述激光发射电路出射的激光的功率。
该第一模数转换器ADC可以根据该脉冲幅度检测该激光发射电路出射的激光的功率。
在一个实施例中,该第一模数转换器ADC计算出的采样数值与该激光发射电路出射的激光的功率具有对应关系,该对应关系可以通过实际标定得知。
举例来说,可以在激光发射电路的出射口利用光功率计测量激光的实际出射功率,得到实际出射功率与第一模数转换器ADC测量得到的采样数值的比例关系,根据该比例关系以及该采样数值计算得到该激光发射电路出射的激光的功率。
在一个实施例中,请参阅图6b,控制所述功率检测电路检测所述激光发射电路出射的激光的功率,也可以包括:
S602b、控制所述功率检测电路对所述激光脉冲信号进行展宽处理以及放大处理。
在一个实施例中,所述功率检测电路包括展宽电路;所述展宽电路用于对所述激光脉冲信号进行展宽处理以及放大处理。
在一个实施例中,所述展宽电路可以包括展宽运算放大器电阻以及反馈电容等等,该展宽电路可以如图4a的结构所示,本发明实施例对此不作任何限制。
S603b、将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,并根据数字采样处理结果计算出所述激光发射电路出射的激光的功率。
在一个实施例中,所述将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,并根据数字采样处理结果计算出所述激光发射电路出射的激光的功率,包括:将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,得到采样数值;根据所述采样数值进行校准处理,得到所述激光发射电路出射的激光的功率。
在一个实施例中,该功率测量电路还可以包括第二模数转换器ADC,用于 进行所述数字采样处理。
可以理解,所述展宽电路的输出端还可以连接第二模数转换器ADC,通过所述展宽电路对所述激光脉冲信号进行展宽和放大处理之后,可以进一步通过所述第二模数转换器ADC以较低的采样速率来对展宽的脉冲信号进行数字采样,并根据采样数值进行校准处理,得到所述激光发射电路出射的激光的功率。
在一个实施例中,该校准处理可以为实际标定的方式。
在一个实施例中,所述根据所述采样数值进行校准处理,得到所述激光发射电路出射的激光的功率,包括:获取实际出射功率与计算得到的激光功率的比值关系;根据所述比值关系对所述采样数值得到校准处理,得到所述激光发射电路出射的激光的功率。
举例来说,可以在激光发射电路的出射口利用光功率计测量激光的实际出射功率,得到实际出射功率与第二模数转换器ADC测量得到的采样数值的比例关系,根据该比例关系以及该采样数值计算得到该激光发射电路出射的激光的功率。
S605、获取所述激光测量装置对应的门限功率。
S606、根据所述门限功率调整所述激光发射电路出射的激光的功率。
需要说明的是,上述S605以及S606的具体实现过程可参考前述方法实施例中的S502以及S503中的相关描述,在此不作赘述。
可见,本发明实施例通过将激光发射电路出射的激光进行分离处理,得到激光脉冲信号,并通过功率检测电路根据该激光脉冲信号检测得到该激光发射电路出射的激光的功率,并根据门限功率调整该激光发射电路出射的激光的功率,可以实时探测出射的激光的功率,并对激光测量装置出射的激光的功率进行调整,提高了激光测量装置的性能。
本发明实施例还提供一种激光测量装置。请参阅图7,为本发明实施例提供的又一种激光测量装置的结构示意图,包括:激光发射电路703、功率检测电路704、处理器701以及存储器702;
所述激光发射电路703,用于出射激光;
所述激光发射电路703,用于检测所述激光发射电路703出射的激光的功率;
所述存储器702,用于存储程序指令;
所述处理器701,用于执行所述存储器702存储的程序指令,当程序指令被执行时,用于:
控制所述功率检测电路检测所述激光发射电路出射的激光的功率;
获取所述激光测量装置对应的门限功率;
根据所述门限功率调整所述激光发射电路出射的激光的功率。
在一个实施例中,所述处理器701用于根据所述门限功率调整所述激光发射电路703出射的激光的功率时,具体用于:根据所述门限功率设置调整范围,并将所述激光发射电路703出射的激光的功率调整到所述调整范围内。
在一个实施例中,所述处理器701用于根据所述门限功率设置调整范围,并将所述激光发射电路703出射的激光的功率调整到所述调整范围内时,具体用于:确定所述门限功率以及所述激光发射电路703出射的激光的功率之间的余量值;根据所述余量值设置调整范围,并将所述激光发射电路703出射的激光的功率调整到所述调整范围内。
在一个实施例中,所述余量值根据环境参数确定,所述环境参数包括:温度和/或器件老化程度。
在一个实施例中,所述处理器701用于根据所述门限功率调整所述激光发射电路703出射的激光的功率之后,还用于:若检测到所述激光发射电路703出射的激光的功率超过所述门限功率,则控制所述激光发射电路703暂停对激光的输出。
在一个实施例中,所述处理器701用于将所述激光发射电路703出射的激光的功率调整到所述调整范围内时,具体用于:通过调整驱动信号脉宽或供电电压调整所述激光发射电路703出射的激光的功率调整得到所述调整范围内。
在一个实施例中,所述处理器701用于控制所述功率检测电路704检测所述激光发射电路703出射的激光的功率时,具体用于:控制所述功率检测电路704检测激光脉冲信号的峰值,所述激光脉冲信号为所述激光发射电路703出射的激光产生的脉冲信号;根据所述激光脉冲信号的峰值获取脉冲幅度;根据所述脉冲幅度检测所述激光发射电路703出射的激光的功率。
在一个实施例中,所述功率检测电路704包括峰值保持电路和第一模数转 换器ADC;所述激光脉冲信号的峰值以及所述脉冲幅度通过所述峰值保持电路以及第一模数转换器ADC获取。
在一个实施例中,所述处理器701用于控制所述功率检测电路704检测所述激光发射电路703出射的激光的功率时,具体用于:控制所述功率检测电路704对所述激光脉冲信号进行展宽处理以及放大处理;将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,并根据数字采样处理结果计算出所述激光发射电路703出射的激光的功率。
在一个实施例中,所述处理器701用于将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,并根据数字采样处理结果计算出所述激光发射电路703出射的激光的功率时,具体用于:将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,得到采样数值;根据所述采样数值进行校准处理,得到所述激光发射电路703出射的激光的功率。
在一个实施例中,所述处理器701用于根据所述采样数值进行校准处理,得到所述激光发射电路703出射的激光的功率时,具体用于:获取实际出射功率与计算得到的激光功率的比值关系;根据所述比值关系对所述采样数值得到校准处理,得到所述激光发射电路出射的激光的功率。
在一个实施例中,所述功率检测电路704包括展宽电路和第二模数转换器ADC;
所述展宽电路用于对所述激光脉冲信号进行展宽处理以及放大处理,所述第二模数转换器ADC用于进行所述数字采样处理。
在一个实施例中,所述处理器701还用于:将所述激光发射电路703出射的激光进行分离处理,并根据分离处理后的激光得到所述激光脉冲信号。
在一个实施例中,所述功率检测电路704还包括光电器件,所述激光脉冲信号由所述光电器件检测得到。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应所述知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应所述知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种功率调整方法及激光测量装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (28)

  1. 一种功率调整方法,其特征在于,应用于激光测量装置,所述激光测量装置配置有激光发射电路和功率检测电路,包括:
    控制所述功率检测电路检测所述激光发射电路出射的激光的功率;
    获取所述激光测量装置对应的门限功率;
    根据所述门限功率调整所述激光发射电路出射的激光的功率。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述门限功率调整所述激光发射电路出射的激光的功率,包括:
    根据所述门限功率设置调整范围,并将所述激光发射电路出射的激光的功率调整到所述调整范围内。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述门限功率设置调整范围,并将所述激光发射电路出射的激光的功率调整到所述调整范围内,包括:
    确定所述门限功率以及所述激光发射电路出射的激光的功率之间的余量值;
    根据所述余量值设置调整范围,并将所述激光发射电路出射的激光的功率调整到所述调整范围内。
  4. 如权利要求3所述的方法,其特征在于,所述余量值根据环境参数确定,所述环境参数包括:温度和/或器件老化程度。
  5. 如权利要求1所述的方法,其特征在于,所述根据所述门限功率调整所述激光发射电路出射的激光的功率之后,还包括:
    若检测到所述激光发射电路出射的激光的功率超过所述门限功率,则控制所述激光发射电路暂停对激光的输出。
  6. 如权利要求2所述的方法,其特征在于,所述将所述激光发射电路出射的激光的功率调整到所述调整范围内,包括:
    通过调整驱动信号脉宽或供电电压调整所述激光发射电路出射的激光的功率调整得到所述调整范围内。
  7. 如权利要求1所述的方法,其特征在于,所述控制所述功率检测电路检测所述激光发射电路出射的激光的功率,包括:
    控制所述功率检测电路检测激光脉冲信号的峰值,所述激光脉冲信号为所述激光发射电路出射的激光产生的脉冲信号;
    根据所述激光脉冲信号的峰值获取脉冲幅度;
    根据所述脉冲幅度检测所述激光发射电路出射的激光的功率。
  8. 如权利要求7所述的方法,其特征在于,所述功率检测电路包括峰值保持电路和第一模数转换器ADC;
    所述激光脉冲信号的峰值以及所述脉冲幅度通过所述峰值保持电路以及第一模数转换器ADC获取。
  9. 如权利要求1所述的方法,其特征在于,所述控制所述功率检测电路检测所述激光发射电路出射的激光的功率,包括:
    控制所述功率检测电路对所述激光脉冲信号进行展宽处理以及放大处理;
    将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,并根据数字采样处理结果计算出所述激光发射电路出射的激光的功率。
  10. 如权利要求9所述的方法,其特征在于,所述将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,并根据数字采样处理结果计算出所述激光发射电路出射的激光的功率,包括:
    将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,得到采样数值;
    根据所述采样数值进行校准处理,得到所述激光发射电路出射的激光的功 率。
  11. 如权利要求10所述的方法,其特征在于,所述根据所述采样数值进行校准处理,得到所述激光发射电路出射的激光的功率,包括:
    获取实际出射功率与计算得到的激光功率的比值关系;
    根据所述比值关系对所述采样数值得到校准处理,得到所述激光发射电路出射的激光的功率。
  12. 如权利要求9-11任一项所述的方法,其特征在于,所述功率检测电路包括展宽电路和第二模数转换器ADC;
    所述展宽电路用于对所述激光脉冲信号进行展宽处理以及放大处理,所述第二模数转换器ADC用于进行所述数字采样处理。
  13. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    将所述激光发射电路出射的激光进行分离处理,并根据分离处理后的激光得到所述激光脉冲信号。
  14. 如权利要求13所述的方法,其特征在于,所述功率检测电路还包括光电器件,所述激光脉冲信号由所述光电器件检测得到。
  15. 一种激光测量装置,所述激光测量装置包括:激光发射电路、功率检测电路、处理器以及存储器;
    所述激光发射电路,用于出射激光;
    所述激光发射电路,用于检测所述激光发射电路出射的激光的功率;
    所述存储器,用于存储程序指令;
    所述处理器,用于执行所述存储器存储的程序指令,当程序指令被执行时,用于:
    控制所述功率检测电路检测所述激光发射电路出射的激光的功率;
    获取所述激光测量装置对应的门限功率;
    根据所述门限功率调整所述激光发射电路出射的激光的功率。
  16. 如权利要求15所述的装置,其特征在于,所述处理器用于根据所述门限功率调整所述激光发射电路出射的激光的功率时,具体用于:
    根据所述门限功率设置调整范围,并将所述激光发射电路出射的激光的功率调整到所述调整范围内。
  17. 如权利要求16所述的装置,其特征在于,所述处理器用于根据所述门限功率设置调整范围,并将所述激光发射电路出射的激光的功率调整到所述调整范围内时,具体用于:
    确定所述门限功率以及所述激光发射电路出射的激光的功率之间的余量值;
    根据所述余量值设置调整范围,并将所述激光发射电路出射的激光的功率调整到所述调整范围内。
  18. 如权利要求17所述的装置,其特征在于,所述余量值根据环境参数确定,所述环境参数包括:温度和/或器件老化程度。
  19. 如权利要求15所述的装置,其特征在于,所述处理器用于根据所述门限功率调整所述激光发射电路出射的激光的功率之后,还用于:
    若检测到所述激光发射电路出射的激光的功率超过所述门限功率,则控制所述激光发射电路暂停对激光的输出。
  20. 如权利要求16所述的装置,其特征在于,所述处理器用于将所述激光发射电路出射的激光的功率调整到所述调整范围内时,具体用于:
    通过调整驱动信号脉宽或供电电压调整所述激光发射电路出射的激光的功率调整得到所述调整范围内。
  21. 如权利要求15所述的装置,其特征在于,所述处理器用于控制所述功 率检测电路检测所述激光发射电路出射的激光的功率时,具体用于:
    控制所述功率检测电路检测激光脉冲信号的峰值,所述激光脉冲信号为所述激光发射电路出射的激光产生的脉冲信号;
    根据所述激光脉冲信号的峰值获取脉冲幅度;
    根据所述脉冲幅度检测所述激光发射电路出射的激光的功率。
  22. 如权利要求21所述的装置,其特征在于,所述功率检测电路包括峰值保持电路和第一模数转换器ADC;
    所述激光脉冲信号的峰值以及所述脉冲幅度通过所述峰值保持电路以及第一模数转换器ADC获取。
  23. 如权利要求15所述的装置,其特征在于,所述处理器用于控制所述功率检测电路检测所述激光发射电路出射的激光的功率时,具体用于:
    控制所述功率检测电路对所述激光脉冲信号进行展宽处理以及放大处理;
    将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,并根据数字采样处理结果计算出所述激光发射电路出射的激光的功率。
  24. 如权利要求23所述的装置,其特征在于,所述处理器用于将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,并根据数字采样处理结果计算出所述激光发射电路出射的激光的功率时,具体用于:
    将展宽处理以及放大处理之后的激光脉冲信号进行数字采样处理,得到采样数值;
    根据所述采样数值进行校准处理,得到所述激光发射电路出射的激光的功率。
  25. 如权利要求24所述的装置,其特征在于,所述处理器用于根据所述采样数值进行校准处理,得到所述激光发射电路出射的激光的功率时,具体用于:
    获取实际出射功率与计算得到的激光功率的比值关系;
    根据所述比值关系对所述采样数值得到校准处理,得到所述激光发射电路 出射的激光的功率。
  26. 如权利要求23-25任一项所述的装置,其特征在于,所述功率检测电路包括展宽电路和第二模数转换器ADC;
    所述展宽电路用于对所述激光脉冲信号进行展宽处理以及放大处理,所述第二模数转换器ADC用于进行所述数字采样处理。
  27. 如权利要求24所述的装置,其特征在于,所述处理器还用于:
    将所述激光发射电路出射的激光进行分离处理,并根据分离处理后的激光得到所述激光脉冲信号。
  28. 如权利要求27所述的装置,其特征在于,所述功率检测电路还包括光电器件,所述激光脉冲信号由所述光电器件检测得到。
PCT/CN2017/114033 2017-11-30 2017-11-30 一种功率调整方法及激光测量装置 WO2019104679A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/114033 WO2019104679A1 (zh) 2017-11-30 2017-11-30 一种功率调整方法及激光测量装置
CN201780017610.4A CN108781116B (zh) 2017-11-30 2017-11-30 一种功率调整方法及激光测量装置
US16/727,578 US20200150231A1 (en) 2017-11-30 2019-12-26 Power adjustment method and laser measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/114033 WO2019104679A1 (zh) 2017-11-30 2017-11-30 一种功率调整方法及激光测量装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/727,578 Continuation US20200150231A1 (en) 2017-11-30 2019-12-26 Power adjustment method and laser measurement device

Publications (1)

Publication Number Publication Date
WO2019104679A1 true WO2019104679A1 (zh) 2019-06-06

Family

ID=64033961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114033 WO2019104679A1 (zh) 2017-11-30 2017-11-30 一种功率调整方法及激光测量装置

Country Status (3)

Country Link
US (1) US20200150231A1 (zh)
CN (1) CN108781116B (zh)
WO (1) WO2019104679A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211505895U (zh) * 2018-09-27 2020-09-15 深圳市大疆创新科技有限公司 激光发射装置、峰值保持电路、测距装置和移动平台
CN111670378A (zh) * 2019-01-09 2020-09-15 深圳市大疆创新科技有限公司 一种光发射装置及测距装置、移动平台
WO2020147116A1 (zh) * 2019-01-18 2020-07-23 深圳市大疆创新科技有限公司 异常检测方法、报警方法、测距装置及可移动平台
US11698441B2 (en) * 2019-03-22 2023-07-11 Viavi Solutions Inc. Time of flight-based three-dimensional sensing system
CN109861757B (zh) * 2019-03-26 2021-03-09 Oppo广东移动通信有限公司 控制方法、飞行时间组件、电子装置及可读存储介质
CN112204427A (zh) * 2019-05-06 2021-01-08 深圳市大疆创新科技有限公司 一种测距装置及移动平台
CN110492929B (zh) * 2019-07-29 2021-04-27 普联技术有限公司 一种光纤通信模块、控制方法及光纤通信设备
CN110488245A (zh) * 2019-07-30 2019-11-22 炬佑智能科技(苏州)有限公司 一种脉宽调制的发光器自动功率控制方法及系统
CN111830514B (zh) * 2020-06-19 2021-03-26 深圳煜炜光学科技有限公司 一种基于硅基液晶的三维激光雷达测试系统和测试方法
JP7370947B2 (ja) * 2020-08-28 2023-10-30 古河電気工業株式会社 パルス信号検出器、パルス信号発生器、レーザ装置及びパルス信号の検出方法
CN113708196A (zh) * 2021-07-19 2021-11-26 深圳泰德激光科技有限公司 激光功率的控制方法、装置及计算机存储介质
JP2023066230A (ja) * 2021-10-28 2023-05-15 株式会社デンソー 制御装置、制御方法、制御プログラム
JP2023066229A (ja) * 2021-10-28 2023-05-15 株式会社デンソー 制御装置、制御方法、制御プログラム
CN115372940A (zh) * 2022-10-24 2022-11-22 天津光电集团有限公司 一种激光雷达发射及在线诊断系统
CN116879869B (zh) * 2023-09-06 2024-01-19 青岛镭测创芯科技有限公司 一种激光雷达控制方法、装置、电子设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946046A (zh) * 2012-11-22 2013-02-27 深圳市大族激光科技股份有限公司 激光能量控制方法和系统
CN205510059U (zh) * 2016-02-03 2016-08-24 河南辉煌科技股份有限公司 自动调节激光发射功率的系统
GB2541291A (en) * 2016-07-08 2017-02-15 Hilight Semiconductor Ltd Laser power controller

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179240B2 (ja) * 2004-07-08 2008-11-12 ソニー株式会社 レーザ駆動方法およびレーザ駆動装置
JP2006092664A (ja) * 2004-09-24 2006-04-06 Ricoh Co Ltd 光情報記録装置
JP2008209214A (ja) * 2007-02-26 2008-09-11 Advantest Corp 光サンプリング装置
US9835478B2 (en) * 2013-10-07 2017-12-05 Halliburton Energy Services, Inc. Optical power limiting method using stimulated Brillouin scattering in fiber optic waveguides
US20160204566A1 (en) * 2015-01-09 2016-07-14 Coherent, Inc. Gas-discharge laser power and energy control
US9628191B2 (en) * 2015-02-12 2017-04-18 Source Photonics (Chengdu) Co., Ltd. Methods, optical transmitter, optical module, and optical communication system for improving the monitoring and/or reporting accuracy of a laser transmitting power
CN106299993A (zh) * 2016-03-11 2017-01-04 上海瑞柯恩激光技术有限公司 激光器装置以及激光功率监测反馈方法
CN107367800A (zh) * 2016-05-12 2017-11-21 苏州旭创科技有限公司 具有背光监测的激光发射组件及光模块
CN206259607U (zh) * 2016-12-26 2017-06-16 青岛小优智能科技有限公司 一种结构光生成器的激光器反馈采样装置
CN106949961B (zh) * 2017-03-22 2018-07-31 精微视达医疗科技(武汉)有限公司 光功率实时监测与反馈方法及装置
US9985414B1 (en) * 2017-06-16 2018-05-29 Banner Engineering Corp. Open-loop laser power-regulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102946046A (zh) * 2012-11-22 2013-02-27 深圳市大族激光科技股份有限公司 激光能量控制方法和系统
CN205510059U (zh) * 2016-02-03 2016-08-24 河南辉煌科技股份有限公司 自动调节激光发射功率的系统
GB2541291A (en) * 2016-07-08 2017-02-15 Hilight Semiconductor Ltd Laser power controller

Also Published As

Publication number Publication date
CN108781116A (zh) 2018-11-09
CN108781116B (zh) 2022-04-22
US20200150231A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2019104679A1 (zh) 一种功率调整方法及激光测量装置
US11675058B2 (en) Light detection and ranging system
KR101162177B1 (ko) 광학측정장치의 아발란치 포토 다이오드 이득 보상 장치
JP2022001885A (ja) ノイズ適応ソリッドステートlidarシステム
US9170333B2 (en) Dynamic range three-dimensional image system
US20210286051A1 (en) Distance measuring device, and time measurement method based on distance measuring device
US8755037B2 (en) Distance measuring device
US11119202B2 (en) Detector assembly, detector, and laser ranging system
CN210142193U (zh) 一种测距装置、移动平台
WO2020168489A1 (zh) 一种测距装置、测距方法以及移动平台
WO2020061969A1 (zh) 一种激光发射装置和测距装置
JP2020020612A (ja) 測距装置、測距方法、プログラム、移動体
WO2020107250A1 (zh) 一种激光接收电路及测距装置、移动平台
KR20120069487A (ko) 능동형 광 레이더 장치
WO2020113564A1 (zh) 一种激光接收电路及测距装置、移动平台
US11885646B2 (en) Programmable active pixel test injection
US20220155442A1 (en) Light detection device, lidar device including the same, and method of measuring distance
KR101866764B1 (ko) 통합픽셀로 구성된 거리영상센서
WO2020142921A1 (zh) 一种光探测模组及测距装置
CN105606213B (zh) 一种激光微脉冲峰值功率测试装置
CN111684300B (zh) 一种信号放大方法及装置、测距装置
Fink et al. Full-waveform modeling for time-of-flight measurements based on arrival time of photons
CN110726983A (zh) 一种激光雷达
US11600654B2 (en) Detector array yield recovery
US20220244385A1 (en) Lidar device and method of operating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933242

Country of ref document: EP

Kind code of ref document: A1