CN111198380A - 激光雷达测距系统 - Google Patents

激光雷达测距系统 Download PDF

Info

Publication number
CN111198380A
CN111198380A CN201811376619.7A CN201811376619A CN111198380A CN 111198380 A CN111198380 A CN 111198380A CN 201811376619 A CN201811376619 A CN 201811376619A CN 111198380 A CN111198380 A CN 111198380A
Authority
CN
China
Prior art keywords
analog
converter
distance
variable gain
gain amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811376619.7A
Other languages
English (en)
Inventor
邱纯鑫
刘乐天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suteng Innovation Technology Co Ltd
Original Assignee
Suteng Innovation Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suteng Innovation Technology Co Ltd filed Critical Suteng Innovation Technology Co Ltd
Priority to CN201811376619.7A priority Critical patent/CN111198380A/zh
Priority to US16/758,848 priority patent/US11703590B2/en
Priority to EP19886421.7A priority patent/EP3884300B1/en
Priority to PCT/CN2019/119263 priority patent/WO2020103805A1/en
Publication of CN111198380A publication Critical patent/CN111198380A/zh
Priority to US18/207,648 priority patent/US20230333248A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明涉及一种激光雷达测距系统。该系统包括:可变增益放大器、转换器和控制器,可变增益放大器与转换器连接,转换器与控制器连接;其中,控制器用于根据转换器的输出信号,确定目标物体与光接收器之间的测距距离,并根据测距距离调整可变增益放大器的增益。控制器在近距离时调整可变增益放大器减小增益,远距离时调整可变增益放大器增大增益,增强了远距离检测时激光雷达检测到的光信号的幅度,提升了激光雷达检测信号的动态范围,进而提高了测距性能和测距能力。

Description

激光雷达测距系统
技术领域
本发明涉及激光雷达领域,特别是涉及一种激光雷达测距系统。
背景技术
激光雷达是以发射激光束来探测目标的位置、速度等特征量的雷达系统。激光雷达以激光作为信号源,由激光器向地面的树木、道路、桥梁和建筑物等目标物体发射出脉冲激光,脉冲激光打到目标物体上,引起散射,一部分光波会发射到激光雷达的接收器上,根据目标物体反射回来的信号,可以获得目标物体的相关信息,如目标距离、方位、高度、速度和物体的形状等参数。
目前,利用激光雷达测距主要是通过测得激光在目标物体与激光雷达间的飞行时间,根据飞行时间和光速,得到测距距离,对于远距离的目标物体通过增大发射功率,提高检测到的光信号的强度。
但是,传统的测距方法,对近距离目标物体检测时,激光雷达检测到的光信号过大导致接收系统的信号幅度过于饱和,测距距离越远,激光雷达检测到的光信号越弱,甚至在测试距离超过一定距离时,检测到的激光信号会被接收系统本身底噪淹没,因此,难以准确地测到远距离的光信号,测距距离受限。
发明内容
基于此,有必要针对传统的测距方法存在难以准确地测到远距离的光信号,测距距离受限的问题,提供一种激光雷达测距系统。
一种激光雷达测距系统,包括:可变增益放大器、转换器和控制器,所述可变增益放大器与所述转换器连接,所述转换器与所述控制器连接;其中,
所述控制器用于根据所述转换器的输出信号,确定目标物体与所述光接收器之间的测距距离,并根据所述测距距离调整所述可变增益放大器的增益。
在其中一个实施例中,所述可变增益放大器为模拟控制可变增益放大器。
在其中一个实施例中,所述转换器包括模数转换器和数模转换器;
所述模数转换器的输入端与所述模拟控制可变增益放大器的输出端连接,所述模数转换器的输出端与所述控制器的输入端连接;
所述数模转换器的输入端与所述控制器的输出端连接,所述数模转换器的输出端与所述模拟控制可变增益放大器的控制端连接。
在其中一个实施例中,所述可变增益放大器为数字控制可变增益放大器。
在其中一个实施例中,所述转换器包括模数转换器;
所述模数转换器的输入端与所述数字控制可变增益放大器的输出端连接,所述模数转换器的输出端与所述控制器的输入端连接。
在其中一个实施例中,所述控制器具体用于根据距离与增益值之间的映射关系,确定所述测距距离对应的目标增益值,并根据所述目标增益值调整所述可变增益放大器的增益;
其中,所述距离越大,则所述增益值越大;所述距离越小,则所述增益值越小。
在其中一个实施例中,所述映射关系为距离-增益曲线。
在其中一个实施例中,所述距离-增益曲线为线性补偿曲线或非线性补偿曲线。
在其中一个实施例中,所述光接收器包括光学镜头和透镜。
在其中一个实施例中,所述光电检测器为二极管、二极管阵列、硅光电倍增管和硅光电倍增管阵列中的任意一个。
本实施例提供的激光雷达测距系统包括可变增益放大器、转换器和控制器,可变增益放大器与转换器连接,转换器与控制器连接;控制器根据转换器的输出信号,确定目标物体与光接收器之间的测距距离,并根据测距距离调整可变增益放大器的增益,控制器在近距离时调整可变增益放大器减小增益,减小了近距离检测时激光雷达检测到的光信号的幅度,远距离时调整可变增益放大器增大增益,增强了远距离检测时激光雷达检测到的光信号的幅度,提升了激光雷达检测信号的动态范围,进而提高了测距性能和测距能力。
附图说明
图1为激光雷达测距工作原理图;
图2(a)为传统的激光雷达测距中距离-增益曲线示意图;
图2(b)为传统的激光雷达测距中距离-信号振幅示意图;
图3为一个实施例提供的激光雷达测距系统的应用环境图;
图4为一个实施例提供的激光雷达测距系统示意图;
图5为一个实施例提供的激光雷达测距系统示意图;
图6为一个实施例提供的激光雷达测距系统示意图;
图7(a)为一个实施例提供的距离-增益曲线示意图;
图7(b)为一个实施例提供的距离-信号振幅示意图。
附图标记说明:
激光雷达测距系统10;激光雷达20;激光发射器21;
激光接收器22;发射端光学系统23;接收端光学系统24;
可变增益放大器100;模拟控制可变增益放大器100a;
数字控制可变增益放大器100b;转换器200;
模数转换器201;数模转换器202;控制器300。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在介绍具体的实施例之前,这里对本发明实施例中涉及的专业术语或者概念进行解释说明:
增益:简而言之就是放大倍数,通常为一个系统的信号输出与信号输入的比率,放大器增益是放大器输出功率与输入功率比值的对数,用以表示功率放大的程度,亦指电压或电流的放大倍数。
图1为激光雷达测距工作原理图。图2(a)为传统的激光雷达测距中距离-增益示意图,图2(b)为传统的激光雷达测距中距离-信号振幅示意图。如图1所示,激光雷达测距系统中的发射器向目标物体发射激光束,激光打到目标物体上,引起散射,一部分光波会发射到激光雷达的接收器上,传统的激光雷达测距方法,主要是通过计时器测得激光在目标物体与激光雷达的接收器间的飞行时间(Time of Flight),根据飞行时间和光速,得到测距距离。图2(a)中横坐标表示目标物体与光接收器间的距离,纵坐标表示的是激光雷达的增益值,图2(b)中横坐标表示目标物体与光接收器间的距离,纵坐标表示信号振幅,如图所示激光雷达测距系统采用固定的增益值,测距距离越远,激光雷达检测到的光信号越弱,甚至在测试距离超过一定距离时,检测到的激光信号会被接收系统本身底噪淹没,很难准确测到远距离的光信号,测距距离受限。为此,本发明实施例提供一种激光雷达测距系统,旨在解决传统技术的如上技术问题。
下面以具体的实施例对本发明的技术方案以及本发明的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本发明的实施例进行描述。
本发明提供的激光雷达测距系统,可以应用于如图3所示的应用环境中。其中,激光雷达20包括激光发射器21、激光接收器22、发射端光学单元23以及接收端光学单元24,激光雷达测距系统10与激光雷达20的激光接收器22连接,激光雷达测距系统10在当前激光雷达的激光发射功率不变的前提下,通过调整可变增益放大器的增益值,提升了激光雷达检测信号的动态范围。具体的,激光雷达20中的激光发射器21用于发射出射激光,发射端光学单元23用于准直出射激光,接收端光学单元23用于聚焦反射激光,激光接收器22用于接收反射激光,并转化为回波信号。其中,反射激光为出射激光被反射后的激光。可选的,发射端光学单元23和接收端光学单元24可以是透镜或透镜组。可选的,激光接收器22可以为二极管、二极管阵列、硅光电倍增管和硅光电倍增管阵列中的任意一个,二极管可以是磷化铟光电二极管,也可以是雪崩击穿光电二极管。可选的,二极管阵列、硅光电倍增管阵列可以是规则阵列,例如,二极管阵列或硅光电倍增管阵列中,相邻二极管或硅光电倍增管的间距可以取为固定值0.2mm或者0.5mm等。可选的,二极管阵列、硅光电倍增管阵列可以是圆形阵列也可以是异形阵列。
图4为一个实施例提供的激光雷达测距系统示意图。如图4所示,激光雷达测距系统包括:可变增益放大器100、转换器200和控制器300,所述可变增益放大器100与所述转换器200连接,所述转换器200与所述控制器300连接;其中,所述控制器300用于根据所述转换器200的输出信号,确定目标物体与激光接收器之间的测距距离,并根据所述测距距离调整所述可变增益放大器300的增益。
具体的,可变增益放大器100,与转换器200连接,可变增益放大器100用于放大激光接收器输出的回波信号,并对回波信号进行增益补偿,为转换器200提供几乎恒定的信号幅度,另外,可变增益放大器300的增益值可以通过控制器300进行调整。可选的,可变增益放大器100可以是模拟控制可变增益放大器,也可以是数字控制可变增益放大器。
上述转换器200,与可变增益放大器100连接,转换器200用于实现模拟信号与数字信号间的转换,并将转换后的数字信号传送到控制器300。可选的,转换器200的接口可以是并口,也可以是LVDS或JESD等高速串行接口。
上述控制器300,与转换器200连接,控制器300根据转换器200的输出信号,通过对信号的飞行时间(Time of Flight)进行分析,确定目标物体与激光接收器100之间的测距距离,并根据测距距离调整可变增益放大器100的增益。其中,测距距离是根据飞行时间(Time of Flight)和光速的乘积得到的。可选的,控制器300可以是高级精简指令系统集计算机(Acorn RISC Machine,ARM)芯片,也可以是数字信号处理(Digital SignalProcessing,DSP)芯片或者现场可编程门阵列(Field-Programmable Gate Array,FPGA)芯片等。可选的,控制器300可以根据测距距离和预先设定的距离与增益补偿曲线之间的对应关系,确定可变增益放大器100需要调整的增益值。
在本实施例中,激光雷达测距系统包括可变增益放大器、转换器和控制器,控制器根据转换器的输出信号,确定目标物体与激光接收器之间的测距距离,并根据测距距离调整可变增益放大器的增益,这样可以补偿随距离增大光信号幅值的减小,从而在很长的测距范围内,接收信号幅度都基本保持不变或大于预先设定的门槛电压,解决了测距距离越远,激光雷达检测到的光信号越弱的问题,提升了激光雷达检测信号的动态范围,进而提高了测距性能和测距能力。
图5为一个实施例提供的激光雷达测距系统示意图。如图5所示,激光雷达测距系统中可变增益放大器100为模拟控制可变增益放大器100a,转换器200包括模数转换器201和数模转换器202;模数转换器201的输入端与模拟控制可变增益放大器100a的输出端连接,模数转换器201的输出端与控制器300的输入端连接;数模转换器202的输入端与控制器300的输出端连接,数模转换器202的输出端与模拟控制可变增益放大器100a的控制端连接。
具体的,模拟控制可变增益放大器100a根据控制器300发送的增益控制模拟信号控制其增益的变化。由于模拟控制可变增益放大器100a发送和接收的信号为模拟信号,控制器300发送和接收的信号为数字信号,因此在该系统中,需要转换器200实现模拟信号和数字信号的转换。模数转换器201,可以将模拟控制可变增益放大器100发送的模拟信号转换为数字信号,并发送给控制器300,控制器300根据接收的数字信号的飞行时间(Time ofFlight),确定目标物体与激光接收器之间的测距距离,并根据测距距离确定调整模拟控制可变增益放大器100a的增益,并向数模转换器202发送数字控制信号;数模转换器202,将控制器300发送的数字控制信号转换为模拟控制信号,并发送给模拟控制可变增益放大器100a,模拟控制可变增益放大器100a根据接收的模拟控制信号对增益值进行调整。可选的,控制器300可以通过分析接收的数字信号的飞行时间(Time of Flight),确定目标物体与激光接收器之间的测距距离。可选的,控制器300可以根据预先设定的距离-增益曲线确定调整模拟控制可变增益放大器100a的增益值。
在本实施例中,激光雷达测距系统中的可变增益放大器为模拟控制可变增益放大器,转换器包括模数转换器和数模转换器,模数转换器将模拟控制可变增益放大器的模拟信号转换为数字信号,并发送给控制器,数模转换器将控制器发送的数字信号转换为模拟信号,并发送给模拟控制可变增益放大器,完成控制器对模拟控制可变增益放大器增益的调整,近距离时,控制器控制模拟控制可变增益放大器减小增益,远距离时,控制器控制模拟控制可变增益放大器增大增益,解决了测距距离越远,激光雷达检测到的光信号越弱的问题,提升了激光雷达检测信号的动态范围,进而提高了测距性能和测距能力。
图6为一个实施例提供的激光雷达测距系统示意图。如图6所示,激光雷达测距系统中可变增益放大器100为数字控制可变增益放大器100b,转换器200为模数转换器201;模数转换器201的输入端与数字控制可变增益放大器100b的输出端连接,模数转换器201的输出端与控制器300的输入端连接。
具体的,数字控制可变增益放大器100b的输出信号为模拟信号,控制器300可以通过数字控制可变增益放大器100b的数字接口直接控制数字控制可变增益放大器100b增益的变化,而控制器300接收和发送的信号为数字信号,因此在该系统中,需要模数转换器201实现模拟信号和数字信号的转换,模数转换器201的输入端与数字控制可变增益放大器100b的输出端连接,模数转换器201的输出端与控制器300的输入端连接,模数转换器201可以将数字控制可变增益放大器100b发送的模拟信号转换为数字信号,并发送给控制器300,控制器300根据接收的数字信号的飞行时间(Time of Flight),确定目标物体与激光接收器之间的测距距离,并根据测距距离确定调整可变增益放大器的增益,通过数字控制可变增益放大器100b的数字接口,直接控制数字控制可变增益放大器100b对增益值的调整。可选的,控制器300可以根据预先设定的距离-增益曲线确定调整模拟控制可变增益放大器的增益值。
在本实施例中,激光雷达测距系统中的可变增益放大器为数字控制可变增益放大器,转换器为模数转换器,模数转换器将数字控制可变增益放大器的模拟信号转换为数字信号,并发送给控制器,控制器通过数字控制可变增益放大器的数字接口直接控制数字控制可变增益放大器的增益,近距离时,控制器控制数字控制可变增益放大器减小增益,远距离时,控制器控制数字控制可变增益放大器增大增益,解决了测距距离越远,激光雷达检测到的光信号越弱的问题,提升了激光雷达检测信号的动态范围,进而提高了测距性能和测距能力。
在一个实施例中,控制器300具体用于根据距离与增益值之间的映射关系,确定所述测距距离对应的目标增益值,并根据所述目标增益值调整所述可变增益放大器100的增益;其中,所述距离越大,则所述增益值越大;所述距离越小,则所述增益值越小。
在本实施例中,控制器根据距离与增益值之间的映射关系,确定测距距离对应的目标增益值,并根据确定的目标增益值调整可变增益放大器的增益,近距离时,控制可变增益放大器减小增益,距离增大时,控制可变增益放大器增大增益,解决了测距距离越远,激光雷达检测到的光信号越弱的问题,提升了激光雷达检测信号的动态范围,进而提高了测距性能和测距能力。
图7(a)为一个实施例提供的距离-增益曲线示意图,图7(b)为一个实施例提供的距离-信号振幅示意图。如图7(a)所示,所述映射关系为距离-增益曲线,距离-增益曲线可以为线性补偿曲线,也可以为非线性补偿曲线。
在本实施例中,图7(a)中横坐标表示目标物体与光接收器间的距离,纵坐标表示可变增益放大器的增益值,从图中可以看出随着距离的增加,增益值也相应增加,确定距离与增益值之间的映射关系既可以根据线性补偿曲线确定,也可以根据非线性补偿曲线确定。图7(b)中横坐标表示目标物体与光接收器间的距离,纵坐标表示信号振幅,从图中可以看出,随着目标物体与光接收器间距离的增大,增大可变增益放大器的增益值后,随着目标物体与光接收器间距离的增大,信号幅度基本保持不变,提升了激光雷达检测信号的动态范围,进而提高了测距性能和测距能力。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种激光雷达测距系统,其特征在于,所述系统包括:可变增益放大器、转换器和控制器,所述可变增益放大器与所述转换器连接,所述转换器与所述控制器连接;其中,
所述控制器用于根据所述转换器的输出信号,确定目标物体与激光接收器之间的测距距离,并根据所述测距距离调整所述可变增益放大器的增益。
2.根据权利要求1所述的系统,其特征在于,所述可变增益放大器为模拟控制可变增益放大器。
3.根据权利要求2所述的系统,其特征在于,所述转换器包括模数转换器和数模转换器;
所述模数转换器的输入端与所述模拟控制可变增益放大器的输出端连接,所述模数转换器的输出端与所述控制器的输入端连接;
所述数模转换器的输入端与所述控制器的输出端连接,所述数模转换器的输出端与所述模拟控制可变增益放大器的控制端连接。
4.根据权利要求2所述的系统,其特征在于,所述可变增益放大器为数字控制可变增益放大器。
5.根据权利要求4所述的系统,其特征在于,所述转换器为模数转换器;
所述模数转换器的输入端与所述数字控制可变增益放大器的输出端连接,所述模数转换器的输出端与所述控制器的输入端连接。
6.根据权利要求1-4任一项所述的系统,其特征在于,所述控制器具体用于根据距离与增益值之间的映射关系,确定所述测距距离对应的目标增益值,并根据所述目标增益值调整所述可变增益放大器的增益;
其中,所述距离越大,则所述增益值越大;所述距离越小,则所述增益值越小。
7.根据权利要求6所述的系统,其特征在于,所述映射关系为距离-增益曲线。
8.根据权利要求7所述的系统,其特征在于,所述距离-增益曲线为线性补偿曲线或非线性补偿曲线。
9.根据权利要求1-4任一项所述的系统,其特征在于,所述光接收器包括光学镜头和透镜。
10.根据权利要求1-4任一项所述的系统,其特征在于,所述光电检测器为二极管、二极管阵列、硅光电倍增管和硅光电倍增管阵列中的任意一个。
CN201811376619.7A 2018-11-19 2018-11-19 激光雷达测距系统 Pending CN111198380A (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201811376619.7A CN111198380A (zh) 2018-11-19 2018-11-19 激光雷达测距系统
US16/758,848 US11703590B2 (en) 2018-11-19 2019-11-18 Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same
EP19886421.7A EP3884300B1 (en) 2018-11-19 2019-11-18 Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same
PCT/CN2019/119263 WO2020103805A1 (en) 2018-11-19 2019-11-18 Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same
US18/207,648 US20230333248A1 (en) 2018-11-19 2023-06-08 Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811376619.7A CN111198380A (zh) 2018-11-19 2018-11-19 激光雷达测距系统

Publications (1)

Publication Number Publication Date
CN111198380A true CN111198380A (zh) 2020-05-26

Family

ID=70745954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811376619.7A Pending CN111198380A (zh) 2018-11-19 2018-11-19 激光雷达测距系统

Country Status (1)

Country Link
CN (1) CN111198380A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093202A (zh) * 2021-03-09 2021-07-09 南京理工大学 一种数字化全波形激光雷达系统
CN113625247A (zh) * 2021-10-11 2021-11-09 北京一径科技有限公司 一种控制方法、装置及激光雷达
CN115372941A (zh) * 2022-07-14 2022-11-22 合肥芯来光电技术有限公司 一种增益自适应的激光雷达接收电路及激光雷达
CN116559896A (zh) * 2023-07-10 2023-08-08 深圳市欢创科技有限公司 调整激光雷达测距精度的方法、装置及激光雷达

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487669A (en) * 1993-03-09 1996-01-30 Kelk; George F. Mobility aid for blind persons
CN104483675A (zh) * 2014-12-18 2015-04-01 扬州天目光电科技有限公司 自适应激光测距装置及其测距方法
CN104737446A (zh) * 2012-10-24 2015-06-24 阿尔卡特朗讯公司 基于距离的自动增益控制和邻近效应补偿
CN104823072A (zh) * 2014-04-11 2015-08-05 深圳市大疆创新科技有限公司 距离传感系统及方法
CN106842223A (zh) * 2016-12-06 2017-06-13 武汉万集信息技术有限公司 激光测距装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487669A (en) * 1993-03-09 1996-01-30 Kelk; George F. Mobility aid for blind persons
CN104737446A (zh) * 2012-10-24 2015-06-24 阿尔卡特朗讯公司 基于距离的自动增益控制和邻近效应补偿
CN104823072A (zh) * 2014-04-11 2015-08-05 深圳市大疆创新科技有限公司 距离传感系统及方法
CN104483675A (zh) * 2014-12-18 2015-04-01 扬州天目光电科技有限公司 自适应激光测距装置及其测距方法
CN106842223A (zh) * 2016-12-06 2017-06-13 武汉万集信息技术有限公司 激光测距装置和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张育琪 等: "脉冲激光测距接收电路的设计", 《电子科技》 *
郭瑞鹏等: "时间增益补偿在超声相控阵检测中的应用", 《无损检测》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093202A (zh) * 2021-03-09 2021-07-09 南京理工大学 一种数字化全波形激光雷达系统
CN113093202B (zh) * 2021-03-09 2024-05-14 南京理工大学 一种数字化全波形激光雷达系统
CN113625247A (zh) * 2021-10-11 2021-11-09 北京一径科技有限公司 一种控制方法、装置及激光雷达
CN113625247B (zh) * 2021-10-11 2022-03-04 北京一径科技有限公司 一种控制方法、装置及激光雷达
CN115372941A (zh) * 2022-07-14 2022-11-22 合肥芯来光电技术有限公司 一种增益自适应的激光雷达接收电路及激光雷达
CN115372941B (zh) * 2022-07-14 2023-08-08 合肥芯来光电技术有限公司 一种增益自适应的激光雷达接收电路及激光雷达
CN116559896A (zh) * 2023-07-10 2023-08-08 深圳市欢创科技有限公司 调整激光雷达测距精度的方法、装置及激光雷达
CN116559896B (zh) * 2023-07-10 2023-10-27 深圳市欢创科技有限公司 调整激光雷达测距精度的方法、装置及激光雷达

Similar Documents

Publication Publication Date Title
CN111198380A (zh) 激光雷达测距系统
US11592553B2 (en) Distance measurement system and method using lidar waveform matching
US11703590B2 (en) Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same
CN110308456B (zh) 一种用于提高探测距离的偏压调节装置及激光雷达系统
CN110780306B (zh) 一种激光雷达抗干扰方法及激光雷达
CN108401444B (zh) 一种激光雷达以及基于激光雷达的时间测量方法
CN108415028B (zh) 脉冲参数加密的激光测距系统及方法
CN109188452B (zh) 飞行时间测距传感器及其光源调制方法
US20130135606A1 (en) Distance measuring device
KR102664396B1 (ko) 라이다 장치 및 그 동작 방법
CN111198381B (zh) 激光雷达测距系统
WO2021042326A1 (zh) 激光雷达信号接收电路、激光雷达信号增益控制方法和激光雷达
CN111366942B (zh) 激光雷达系统、用于增加激光雷达感测距离的装置和方法
CN111198361A (zh) 数据处理系统和方法
CN116400380A (zh) 激光雷达系统及激光信号强度确定方法
CN218445996U (zh) 激光雷达设备
CN115728736A (zh) 一种激光雷达系统
CN111596282B (zh) 一种脉冲激光测距回波幅度自动调整系统
CN111580121B (zh) 一种基于SiPM信号摆幅的测距方法及装置
CN213210475U (zh) 一种激光接收系统、激光雷达系统以及机器人设备
CN212433402U (zh) 一种激光回波测距装置
CN116338670A (zh) 雷达系统及雷达测距方法
CN108833010B (zh) 星地激光通信光束漂移自适应补偿方法及系统
CN113093202B (zh) 一种数字化全波形激光雷达系统
CN212872896U (zh) 一种激光测距装置及其机器人设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination