WO2022140979A1 - 激光接收电路和激光雷达 - Google Patents

激光接收电路和激光雷达 Download PDF

Info

Publication number
WO2022140979A1
WO2022140979A1 PCT/CN2020/140375 CN2020140375W WO2022140979A1 WO 2022140979 A1 WO2022140979 A1 WO 2022140979A1 CN 2020140375 W CN2020140375 W CN 2020140375W WO 2022140979 A1 WO2022140979 A1 WO 2022140979A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
diode
terminal
switch
Prior art date
Application number
PCT/CN2020/140375
Other languages
English (en)
French (fr)
Inventor
周小军
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN202080005492.7A priority Critical patent/CN114982133A/zh
Priority to PCT/CN2020/140375 priority patent/WO2022140979A1/zh
Priority to EP20967330.0A priority patent/EP4254802A4/en
Publication of WO2022140979A1 publication Critical patent/WO2022140979A1/zh
Priority to US18/212,169 priority patent/US20230333223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out

Definitions

  • the present application relates to the field of laser radar, and in particular, to a laser receiving circuit and a laser radar.
  • the gain of the receiving circuit is usually set relatively large to improve the signal-to-noise ratio and ranging ability, but this will cause a problem, the short distance is high.
  • the echoes generated by objects with reflectivity will enter deep saturation, resulting in waveform distortion and nonlinear distortion, resulting in inaccurate ranging and point cloud problems such as high anti-expansion, bending, and transition drag points, which seriously affect the performance of lidar.
  • the laser receiving circuit and the laser radar provided by the embodiments of the present application can improve the dynamic range required by the laser radar and quickly adjust the gain of the receiving sensor.
  • an embodiment of the present application provides a laser receiving circuit, including:
  • a controller a voltage switching circuit, n voltage sources and receiving sensors; wherein, n is an integer greater than 1, the voltage switching circuit is provided with a control terminal, n power input terminals and power output terminals, the n voltage sources Each generates reverse bias signals with different voltage values;
  • the n voltage sources are connected to the n power input terminals in a one-to-one manner, the controller is connected to the control terminal of the voltage switching circuit, and the power output terminal is connected to the cathode of the receiving sensor ;
  • the controller is configured to send a voltage switching signal to the voltage switching circuit through the control terminal;
  • the voltage switching circuit is configured to select one power supply input terminal from the n power supply input terminals to turn on in response to the voltage switching signal, so that the corresponding voltage source passes through the selected power supply input terminal and the power supply output terminal A reverse bias signal is applied to the receiving sensor.
  • the corresponding voltage source is the voltage source connected to the selected power input terminal. Except for the selected power input terminal, other power input terminals are in a closed state, that is, only one voltage source will generate a reverse bias voltage at any time. The signal is loaded onto the receiving sensor.
  • an embodiment of the present application provides a laser radar, including the above-mentioned laser receiving circuit.
  • the problem of slow adjustment response speed in obtaining reverse bias signals of different voltage values through voltage conversion in the related art is solved.
  • a number of voltage sources with different voltage values are preset in advance.
  • the response time of its adjustment is mainly the time when the corresponding power input port is turned on. Compared with the voltage conversion, it has a faster response speed when adjusting the gain of the receiving sensor.
  • FIG. 1 is a schematic diagram of a circuit structure of a related art laser radar provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a laser receiving circuit provided by an embodiment of the present application.
  • FIG. 3 is another schematic structural diagram of a laser receiving circuit provided by an embodiment of the present application.
  • FIG. 4 is another schematic structural diagram of a laser receiving circuit provided by an embodiment of the present application.
  • FIG. 5 is another schematic structural diagram of a laser receiving circuit provided by an embodiment of the present application.
  • FIG. 6 is another schematic structural diagram of a laser receiving circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a voltage switching circuit provided by an embodiment of the present application.
  • FIG. 8 is another schematic structural diagram of a voltage switching circuit according to an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of the circuit structure of the laser radar.
  • the laser radar includes a laser transmitting circuit and a laser receiving circuit.
  • the laser transmitting circuit includes: a controller, a laser driver chip and a laser transmitter;
  • the laser receiving circuit includes: a controller, an analog-to-digital conversion circuit Amplifier, amplifier circuit, transimpedance amplifier, receiving sensor and reverse bias adjustment circuit.
  • the laser transmitting circuit and the laser receiving circuit may share a controller, or a separate controller may be provided, which is not limited in the embodiment of the present application.
  • the controller plays the control function and processing function in the lidar.
  • the controller can use digital signal processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), Programmable Logic Array (Programmable Logic Array) Array, PLA) in at least one hardware form.
  • Laser transmitters generally include GaN gallium nitride MOS transistors and laser diodes LD.
  • the receiving sensor is generally APD (avalanche photon diode, avalanche photodiode) or SIPM (silicon photomultiplier, silicon photomultiplier), and the receiving sensor has a cathode and an anode.
  • lidar is generally used to measure the flight time between the laser signal and the target object, and then use the flight time to calculate the distance between the lidar and the target object.
  • the working process of the lidar in this application includes:
  • the controller controls the laser driving circuit, so that the GaN MOS tube generates a high-power pulse current signal, excites the laser diode to emit a laser signal, and records the time stamp of the emitted laser signal.
  • the laser signal is reflected on the target object, the receiving sensor receives the emitted echo laser signal, the receiving sensor converts the echo laser signal into a current signal, the transimpedance amplifier converts the current signal into a voltage signal, and the amplifying circuit performs the voltage signal.
  • Amplification processing, and then the analog-to-digital converter converts the amplified voltage signal to obtain a digital signal, and transmits the digital signal to the controller.
  • the controller determines the time stamp of the received echo laser signal and the amplitude of the digital signal according to the digital signal.
  • the reverse bias adjustment circuit needs to apply a reverse bias signal to the receiving sensor, and the magnitude of the reverse bias signal is adjustable, which is used to compensate the temperature change for the receiving sensor. gain effect.
  • the number of channels is generally 16, 32, 64 or 128, and the refresh rate of the point cloud is generally about 20KHz.
  • the receiving sensors of each channel generally share a reverse bias voltage.
  • the magnitude of the reverse bias signal required by the receiving sensors of each channel may be different.
  • the power supply of each channel is realized by DC voltage conversion.
  • the response time of this method is milliseconds (usually 10ms), while the lidar requires the adjustment of the reverse bias voltage within 300ns, so the existing laser receiving circuit cannot meet the Fast adjustment of the reverse bias signal.
  • the present application provides a laser receiving circuit, as shown in FIG. 2 , in the embodiment of the present application, the laser receiving circuit includes: a controller 11 , n voltage sources, a voltage switching circuit 12 and a receiving sensor 13 .
  • n is an integer greater than 1
  • the voltage switching circuit 12 is provided with n power input terminals, control terminals and power output terminals, and the n voltage sources generate reverse bias signals with different voltage values.
  • the n voltage sources and the n power input terminals set on the voltage switching circuit are connected in a one-to-one manner, that is, one voltage source is connected with one power input terminal, voltage source 1 is connected with power input terminal 1, and voltage source 2 is connected with power input terminal 1.
  • the voltage source n is connected to the power input terminal n.
  • the controller 11 is connected to the control terminal of the voltage switching circuit 12 , and the power output terminal of the voltage switching circuit 12 is connected to the cathode of the receiving sensor 13 to provide the receiving sensor 13 with a reverse voltage signal (reverse bias signal).
  • the number of control terminals provided on the voltage switching circuit 12 is related to the number n of power input terminals.
  • Embodiment a The number of control terminals is equal to the number of power input terminals, that is, the voltage switching circuit is provided with n control terminals and n power input terminals, and the n control terminals and n power input terminals are in a one-to-one mapping relationship.
  • the controller sends a voltage switching signal to the voltage switching circuit through n control terminals.
  • the voltage switching signal is represented by n bits.
  • the value of the bit is 0 or 1. 0 means that the control terminal is a low-level signal, and 1 means that the control terminal is on the It is a high-level signal, and only one of the n bits has a value of 1.
  • the voltage switching circuit determines that the level value of the voltage switching signal is 0100, and according to the mapping relationship in Table 1, it is determined that the power input terminal with serial number 2 needs to be turned on. Realize that the reverse bias signal of the voltage source corresponding to the power input terminal 2 is loaded onto the receiving sensor.
  • the voltage switching circuit 12 detects that the voltage switching signal has a level value of "00", and the voltage switching circuit 12 controls the first power input terminal to be in an on state; when the controller 11 outputs a low-level signal on the first control terminal and a high-level signal on the second control terminal, the voltage switching circuit 12 detects the voltage switching signal The level value is "01”, the voltage switching circuit 12 controls the second power input terminal to be in an open state; the controller 11 outputs a high level signal on the first control terminal and a low level signal on the second control terminal.
  • the voltage switching circuit 12 detects that the level value of the voltage switching signal is "10”, and the voltage switching circuit 12 controls the third power input terminal to be in an open state; the controller 11 controls the first control terminal and the second control terminal.
  • the voltage switching circuit 12 detects that the level value of the voltage switching signal is "11”, and the voltage switching circuit 12 controls the fourth power input terminal to be in an on state.
  • Embodiment c The number of control terminals on the voltage switching circuit 12 is one, and the controller 11 can send the voltage switching signal as in Embodiment a in a serial manner.
  • the ordering is the same as the ordering of the n power supply input terminals, so that the voltage switching circuit 12 can determine the power supply input terminal to be turned on according to the level of each level signal among the n level signals.
  • the controller 11 sends the voltage switching signal as in Embodiment b in a serial manner, sending m level signals each time, and determining the power input terminal to be turned on according to the level of the m level signals.
  • the dynamic adjustment of the reverse bias signal is realized by setting only one control terminal, which can reduce the hardware complexity of the circuit.
  • the working principle of the laser receiving circuit in this embodiment is as follows: the controller 11 sends a voltage switching signal to the voltage switching circuit 12 through the control terminal.
  • the type of the voltage switching signal can be a digital signal or an analog signal, and the voltage switching circuit 12 receives the voltage switching signal.
  • the reverse bias signal is loaded on the receiving sensor through the selected power input terminal and power output terminal; among them, at any time, only one power input terminal of the n power input terminals is in an on state, that is, n voltage sources A voltage source other than the one selected in , will not output its reverse bias signal to the receiving sensor.
  • the response time for adjusting the reverse bias signal in this embodiment is mainly the time when the power input terminal is turned on. On the sensor, the dynamic adjustment of the reverse bias signal is realized, and the turn-on time of the power input terminal is far less than the time of voltage conversion, so the present application can reduce the response time of adjusting the reverse bias signal.
  • the voltage switching circuit 12 receives the voltage switching signal from the controller 11, and selects the power input terminal to be turned on among the n power input terminals according to the voltage switching signal, assuming that the power input terminal to be turned on is the power input terminal 2, the voltage switching The circuit 12 controls the power input terminal 2 to be on, and the other power input terminals are off, so that the voltage source 2 loads the reverse bias signal to the receiving sensor 13 through the power input terminal 2 and the power output terminal of the voltage switching circuit.
  • n 2
  • the n voltage sources are the first voltage source and the second voltage source
  • the control terminals set by the voltage switching circuit are the first control terminal and the second control terminal.
  • the voltage switching circuit 12 is provided with a power input terminal 1 and a power input terminal 2, the voltage source 1 is connected to the voltage switching circuit 12 through the power input terminal 1, and the voltage source 2 is connected through the power input terminal 1.
  • the power input terminal 2 is connected to the voltage switching circuit 12 .
  • the voltage switching circuit 12 is also provided with a first control terminal 3 and a second control terminal 4.
  • the first pin of the controller 11 is connected to the voltage switching circuit 12 through the first control terminal 3, and the second pin of the controller 11 is connected to the voltage switching circuit 12 through the first control terminal 3.
  • the second control terminal 4 is connected to the voltage switching circuit 12 .
  • the voltage output terminal of the voltage switching circuit 12 is connected to the cathode of the receiving sensor 13 .
  • the working principle of the laser receiving circuit in this embodiment includes: the controller 11 sends a voltage switching signal through the first control terminal 3 and the second control terminal 4, the voltage switching signal is a level signal, and the voltage switching circuit 12 detects the voltage switching signal According to the mapping relationship between the level value and the power input terminal, determine the corresponding power input terminal, then turn on the power input terminal, and control other power input terminals to keep the off state, so that the power input terminal corresponds to the power input terminal.
  • the reverse bias signal of the voltage source is loaded on the receiving sensor to realize the dynamic adjustment of the reverse bias signal.
  • mapping relationship between the level value and the power input terminal is shown in Table 1:
  • the voltage switching circuit 12 detects that the level value is 10, and determines that the power input terminal needs to be turned on according to Table 3 1. At the same time, control the power input terminal 2 to keep the off state.
  • the reverse bias signal generated by the voltage source 1 will be loaded on the receiving sensor 13 to realize the rapid adjustment of the reverse bias signal.
  • the voltage switching circuit 12 includes a driving circuit 121 , a switching circuit SW1 , a driving circuit 122 and a switching circuit SW2 .
  • the drive circuit 121 is connected to the first control terminal of the controller 11 , the drive circuit 121 is connected to the switch circuit SW1 , and the switch circuit SW1 is connected to the voltage source 1 and the receiving sensor 13 .
  • the drive circuit 122 is connected to the second control terminal of the controller 11 , and the switch circuit SW2 is connected to the voltage source 2 and the receiving sensor 13 .
  • the driving circuit 121 is used to control the on state or the off state of the switch circuit SW1 according to the instruction of the controller 11
  • the driving circuit 122 is used to control the on state or the off state of the switch circuit SW2 according to the instruction of the controller 11 .
  • the switch circuit SW1 and the switch circuit SW2 in this embodiment may include one or more switch tubes, the type of the switch tubes may be MOS tubes or triode tubes, and the MOS tubes may be NMOS tubes or PMOS tubes.
  • the specific structures of the switch circuit SW1 and the switch circuit SW2 can be referred to the descriptions of FIGS. 5 to 7 .
  • FIG. 5 it is another schematic structural diagram of the voltage switching circuit according to the embodiment of the application.
  • the circuit 12 is provided with a first control terminal 3 and a second control terminal 4 , and the n voltage sources are voltage source 1 and voltage source 2 .
  • the voltage switching circuit 12 includes: a first driving circuit 121, a second driving circuit 122, a first MOS transistor Q1, a second MOS transistor Q2, a third MOS transistor Q3, a fourth MOS transistor Q4, a first diode D1, a Two diodes D2, a third diode D3 and a fourth diode D4;
  • the first drive circuit 121 is provided with a first end, a second end, a third end and an auxiliary power supply end
  • the second drive circuit 122 is provided with The first terminal, the second terminal, the third terminal and the auxiliary power supply terminal, the auxiliary power supply terminals of the first driving circuit 121 and the second driving circuit 122 are used for inputting high-voltage working signals;
  • the auxiliary power terminal of the first driving circuit 121 is connected to the high-voltage power supply, the first terminal of the first driving circuit 121 is connected to the first control terminal, and the second terminal of the first driving circuit 121 is connected to the gate of the first MOS transistor Q1
  • the third end of the first driving circuit 121 is connected to the gate of the second MOS transistor Q2; the drain 1 of the first MOS transistor Q1 is connected to the voltage source 1, and the source 2 of the first MOS transistor Q1 is connected to the second MOS transistor Q2.
  • the source 1 of the tube Q2 is connected, the cathode of the first diode D1 is connected to the drain 1 of the first MOS tube of Q1, and the anode of the first diode D1 is connected to the source 2 of the first MOS tube Q1;
  • the second The drain 2 of the MOS transistor Q2 is connected to the drain 1 of the third MOS transistor Q3 and is connected to the cathode of the receiving sensor 13;
  • the anode of the second diode D2 is connected to the source 1 of the second MOS transistor Q2, and the second diode D2 is connected to the source 1 of the second MOS transistor Q2.
  • the cathode of the diode D2 is connected to the drain 2 of the second MOS transistor Q2;
  • the auxiliary power supply terminal of the second driving circuit 122 is connected to the high voltage power supply, the first terminal of the second driving circuit 122 is connected to the second control terminal, the second terminal of the second driving circuit 122 is connected to the gate of the third MOS transistor Q3,
  • the third end of the second driving circuit 122 is connected to the gate of the fourth MOS transistor Q4; the source 2 of the third MOS transistor Q3 is connected to the source 1 of the fourth MOS transistor Q4, and the cathode of the third diode D3 is connected to
  • the drain 1 of the third MOS transistor Q3 is connected to the drain 1, the anode of the third diode D3 is connected to the source 2 of the third MOS transistor Q3; the drain 2 of the fourth MOS transistor Q4 is connected to the voltage source 2, and the fourth diode
  • the anode of the transistor D4 is connected to the source 1 of the fourth MOS transistor Q4, and the cathode of the fourth diode D4 is connected to the drain 2 of the fourth MOS transistor Q4.
  • the driving circuit 121 and the driving circuit 122 are used to drive the MOS transistor to be in an on state or an off state.
  • the driving circuit 121 is provided with an auxiliary power supply terminal, and the high-voltage power supply supplies power to the driving circuit 121 through the auxiliary power supply terminal.
  • the power supply mode can be single-phase power supply , then the driving circuit 121 only needs to set one auxiliary power supply terminal. If the power supply mode of the driving circuit 121 is two-phase power supply, then the driving circuit 121 can set two voltage power supply terminals, and one auxiliary power supply terminal provides the driving circuit 121 with a negative voltage signal , and the other auxiliary power supply terminal provides a positive voltage signal for the drive circuit 121; for example, the drive circuit 121 shown in FIG. 5 sets an auxiliary power supply terminal VPP and an auxiliary power supply terminal VNN, the auxiliary power supply terminal VPP is used to input a positive voltage signal, and the auxiliary power supply terminal VNN is used to input negative voltage signal.
  • the controller 11 sends the first level signal to the driving circuit 121 through the first control terminal 3 , and sends the first level signal to the driving circuit 122 through the second control terminal 4 . Only one of the first level signal and the second level signal is a high level signal at any time.
  • the driving circuit 121 controls the first MOS transistor Q1 and the second MOS transistor Q2 to be in a conducting state, so that the reverse bias signal on the voltage source 1 will be loaded on the receiving sensor 13 .
  • the driving circuit 122 controls the third MOS transistor Q3 and the fourth MOS transistor Q4 to be in an off state, and the reverse bias signal of the voltage source 2 will not be output.
  • the driving circuit 122 controls the third MOS transistor Q3 and the fourth MOS transistor Q4 to be in a conducting state, so that the voltage source 2 generates the The reverse bias signal is applied to the receiving sensor 13 .
  • the driving circuit 121 controls the first MOS transistor Q1 and the second MOS transistor Q2 to be in an off state, and the reverse bias signal of the voltage source 1 will not be output.
  • the reverse voltage loaded on the receiving sensor 13 can be rapidly switched between the voltage source 1 and the voltage source 2 .
  • the above working process is only a specific description and does not limit the scope of the application.
  • the high-level signal corresponds to the on state
  • the low-level signal corresponds to the off state. In the specific implementation, it can also be high.
  • the level signal corresponds to the off state
  • the low level signal corresponds to the on state.
  • the first diode D1 is the internal parasitic diode of the first MOS transistor Q1
  • the second diode D2 is the internal parasitic diode of the second MOS transistor Q2
  • the third diode D3 is the internal parasitic diode of the third MOS transistor Q3 Parasitic diode
  • the fourth diode D4 is an internal parasitic diode of the fourth MOS transistor Q4.
  • FIG. 6 is another schematic structural diagram of a voltage conversion circuit provided in an embodiment of the present application
  • the voltage switching circuit 12 is provided with a first control terminal 3 and a second control terminal 4
  • the n voltage sources are voltage source 1 and voltage source 2 .
  • the voltage switching circuit 12 includes: a first drive circuit 121, a second drive circuit 122, a first transistor Q1 and a second transistor Q2; the first drive circuit 121 is provided with a first terminal, a second terminal and an auxiliary power supply terminal , the second driving circuit 122 is provided with a first terminal, a second terminal and an auxiliary power supply terminal, and the auxiliary power supply terminals of the first driving circuit 121 and the second driving circuit 122 are used for inputting high-voltage working signals;
  • the auxiliary power terminal of the first driving circuit 121 is connected to the high-voltage power supply, the first terminal of the first driving circuit 121 is connected to the first control terminal of the controller 11, and the second terminal of the first driving circuit 121 is connected to the first three-pole
  • the base of the transistor Q1 is connected to the base, the emitter of the first transistor Q1 is connected to the voltage source 1 , and the collector of the first transistor Q1 is connected to the cathode of the receiving sensor 13 .
  • the auxiliary power supply terminal of the second driving circuit 122 is connected to the high voltage power supply, the first terminal of the second driving circuit 122 is connected to the second control terminal of the controller 11 , and the second terminal of the second driving circuit 122 is connected to the second transistor Q2
  • the base of the second triode Q2 is connected to the cathode of the receiving sensor 13 , the emitter of the second triode Q2 is connected to the voltage source 2 .
  • the drive circuit 121 and the drive circuit 122 are used to drive the first transistor Q1 and the second transistor Q2 to be in an on state or an off state.
  • the drive circuit 121 is provided with an auxiliary power supply terminal, and the high-voltage power supply is driven by the auxiliary power supply terminal.
  • the circuit 121 supplies power, and the power supply mode can be single-phase power supply, then the drive circuit 121 only needs to set one auxiliary power supply terminal.
  • the auxiliary power supply terminal provides a negative voltage signal for the driving circuit 121, and the other auxiliary power supply terminal provides a positive voltage signal for the driving circuit 121; for example, the driving circuit 121 shown in FIG. 6 sets the auxiliary power supply terminal VPP and the auxiliary power supply terminal VNN, and the auxiliary power supply terminal VPP is used for inputting a positive voltage signal, and the auxiliary power terminal VNN is used for inputting a negative voltage signal.
  • the controller 11 sends the first level signal to the driving circuit 121 through the first control terminal, and sends the second level signal to the driving circuit 122 through the second control terminal. Only one of the first level signal and the second level signal is a high level signal at any time.
  • the driving circuit 121 turns the first transistor Q1 into a conducting state, so that the reverse bias signal on the voltage source 1 will be loaded on the receiving sensor 13 .
  • the driving circuit 122 controls the second transistor Q3 to be in an off state, and the reverse bias signal of the voltage source 2 will not be output.
  • the driving circuit 122 controls the second transistor Q2 to be in a conducting state, so that the reverse bias signal generated by the voltage source 2 will be loaded on the receiving sensor 13.
  • the driving circuit 121 will control the first transistor Q1 to be in an off state, and the reverse bias signal of the voltage source 1 will not be output.
  • the reverse voltage loaded on the receiving sensor 13 can be rapidly switched between the voltage source 1 and the voltage source 2 .
  • the above working process is only a specific description and does not limit the scope of the application.
  • the high-level signal corresponds to the on state
  • the low-level signal corresponds to the off state. In the specific implementation, it can also be high.
  • the level signal corresponds to the off state
  • the low level signal corresponds to the on state.
  • the voltage conversion circuit 12 includes:
  • the voltage switching circuit 12 includes: a first driving circuit 121, a second driving circuit 122, a first MOS transistor Q1, a second MOS transistor Q2, a first diode D1, a second diode D2, and a third diode D3 and the fourth diode D4;
  • the first drive circuit 121 is provided with a first end, a second end and an auxiliary power supply end
  • the second drive circuit 122 is provided with a first end, a second end and an auxiliary power supply end
  • the first drive circuit 121 and the auxiliary power supply terminals of the second drive circuit 122 are used to input high-voltage working signals;
  • the auxiliary power terminal of the first driving circuit 121 is connected to the high-voltage power supply, the first terminal of the first driving circuit 121 is connected to the first control terminal of the controller 11, and the second terminal of the first driving circuit 121 is connected to the first MOS transistor
  • the gate of Q1 is connected to the gate, the source of the first MOS transistor Q1 is connected to the anode of the first diode D1, the cathode of the first diode D1 is connected to the voltage source 1, and the anode of the second diode D2 is connected to the first diode D1.
  • the source of the MOS transistor Q1 is connected to the source, the cathode of the second diode D2 is connected to the drain of the first MOS transistor Q1 , and the drain of the first MOS transistor Q1 is connected to the cathode of the receiving sensor 13 .
  • the auxiliary power supply terminal of the second driving circuit 122 is connected to the high-voltage power supply, the first terminal of the second driving circuit 122 is connected to the second control terminal of the controller 11, and the second terminal of the second driving circuit 122 is connected to the second control terminal of the second MOS transistor Q2.
  • the gate is connected to the gate, the source of the second MOS transistor Q2 is connected to the anode of the fourth diode D4, the cathode of the fourth diode D4 is connected to the voltage source 2, and the anode of the third diode D3 is connected to the second MOS transistor
  • the source of Q2 is connected to the source, the cathode of the third diode D3 is connected to the drain of the second MOS transistor Q2 , and the drain of the second MOS transistor Q2 is connected to the cathode of the receiving sensor 13 .
  • the driving circuit 121 and the driving circuit 122 are used to drive the first MOS transistor Q1 and the second MOS transistor Q2 to be in an on state or an off state, the driving circuit 121 is provided with an auxiliary power supply terminal, and the high-voltage power supply is used for the driving circuit 121 through the auxiliary power supply terminal.
  • the power supply mode can be single-phase power supply, then the driving circuit 121 only needs to set one auxiliary power supply terminal, if the power supply mode of the driving circuit 121 is two-phase power supply, then the driving circuit 121 can set two voltage power supply terminals, one auxiliary power supply terminal
  • the auxiliary power supply terminal provides a negative voltage signal for the driving circuit 121
  • the other auxiliary power supply terminal provides a positive voltage signal for the driving circuit 121; for example, the driving circuit 121 shown in FIG.
  • the auxiliary power supply terminal VNN is used for inputting a negative voltage signal.
  • the controller 11 sends the first level signal to the driving circuit 121 through the first control terminal, and sends the second level signal to the driving circuit 122 through the second control terminal. Only one of the first level signal and the second level signal is a high level signal at any time.
  • the driving circuit 121 turns the first MOS transistor Q1 into a conducting state, so that the reverse bias signal on the voltage source 1 will be loaded on the receiving sensor 13 .
  • the driving circuit 122 controls the second MOS transistor Q3 to be in an off state, and the reverse bias signal of the voltage source 2 will not be output.
  • the driving circuit 122 controls the second MOS transistor Q2 to be in a conducting state, so that the reverse bias signal generated by the voltage source 2 will Loaded on the receiving sensor 13 .
  • the driving circuit 121 will control the first MOS transistor Q1 to be in an off state, and the reverse bias signal of the voltage source 1 will not be output.
  • the reverse voltage loaded on the receiving sensor 13 can be rapidly switched between the voltage source 1 and the voltage source 2 .
  • the above working process is only a specific description and does not limit the scope of the application.
  • the high-level signal corresponds to the on state
  • the low-level signal corresponds to the off state. In the specific implementation, it can also be high.
  • the level signal corresponds to the off state
  • the low level signal corresponds to the on state.
  • the voltage switching circuit includes a driving chip U1 , a first coupling capacitor C1 , The second coupling capacitor C3, the first switch circuit and the second switch circuit, the first filter capacitor C2 and the second filter capacitor C4.
  • the first IO pin INA of the driver chip U1 is connected to the controller, the second IO pin INB of the driver chip U1 is connected to the controller, and the third IO pin OUTA of the driver chip U1 is connected to the third IO pin of the first coupling capacitor C1
  • One end is connected, the second end of the first coupling capacitor C1 is connected to the first end of the first switch circuit, the second end of the first switch circuit is connected to the cathode of the first diode D1, and the anode of the first diode D1 It is connected to the cathode of the receiving sensor HV_N_APD, and the second end of the first switch circuit is grounded through the first filter capacitor C2 and connected to the first voltage source HV1_N.
  • the fourth IO pin OUTB of the driver chip U1 is connected to the first end of the second coupling capacitor C3, the second end of the second coupling capacitor C3 is connected to the first end of the second switch circuit, and the second end of the second switch circuit is connected to the first end of the second switch circuit.
  • the cathode of the second diode D2 is connected to the cathode, and the anode of the second diode D2 is connected to the cathode of the receiving sensor HV_N_APD; the second end of the second switch circuit is grounded through the second filter capacitor C4 and connected to the second voltage source HV2_N .
  • the working process of the voltage switching circuit in this embodiment includes: the controller sends a level signal to the driver chip U1 through the first IO pin INA and the second IO pin INB, and the driver chip U1 sends the level signal to the driver chip U1 through the first IO pin INA and the second IO pin INB.
  • the IO pin INB receives the voltage switching signal from the controller;
  • a first turn-on voltage signal is sent to the first switch circuit through the third IO pin OUTA; wherein, the first turn-on voltage signal is used to control the first switch circuit to be in a conducting state, so that the first voltage source HV1_N outputs
  • the reverse bias signal of HV_N_APD is loaded on the receiving sensor.
  • the driver chip U1 when a high-level signal is input on the third IO pin INA, and a low-level signal is input on the fourth IO pin INB, the driver chip U1 sends the first voltage turn-on signal to the first switch circuit; or Based on the voltage switching signal, a second turn-on voltage signal is sent to the second switch circuit of OUTB through the fourth IO pin; wherein, the second turn-on voltage signal is used to control the second switch circuit to be in a conducting state, so that the second switch circuit is turned on.
  • the reverse bias signal output by the voltage source HV2_N is applied to the receiving sensor HV_N_APD.
  • the driver chip U1 when a low-level signal is input on the third IO pin INA and a high-level signal is input on the fourth IO pin INB, the driver chip U1 sends a second voltage turn-on signal to the second switch circuit.
  • the states of the first switch circuit and the second switch circuit are directly controlled by the driver chip, and no external high-voltage power supply is required, so high-cost high-voltage devices can be saved and hardware costs can be reduced.
  • the first switch circuit includes a first voltage regulator tube Z1, a first inductor L1 and a first switch tube Q1
  • the second switch circuit includes a second voltage regulator tube Z2, a second inductor L2 and a second switch tube Q2;
  • a switch Q1 is an NMOS transistor or a PMOS transistor
  • the second switch Q2 is an NMOS transistor or a PMOS transistor
  • the gate is the control terminal of the switch
  • the drain is the first switch terminal of the switch
  • the source is the second switch terminal of the switch .
  • the cathode of the first voltage regulator Z1 is connected to the second end of the first coupling capacitor C1, the cathode of the first voltage regulator Z1 is connected to the first end of the first inductor L1, and the cathode of the first voltage regulator Z1 is connected to the first terminal of the first inductor L1.
  • the control terminal of the first switch tube Q1 is connected; the anode of the first regulator tube Z1 is connected to the second terminal of the first inductor L1, and the anode of the first regulator tube Z1 is connected to the second switch terminal of the first switch tube Q1,
  • the first switch terminal of the first switch tube Q1 is connected to the cathode of the first diode D1;
  • the cathode of the second voltage regulator Z2 is connected to the second terminal of the second coupling capacitor C3, the cathode of the second voltage regulator Z2 is connected to the second terminal of the second inductor L2, and the cathode of the second voltage regulator Z2 is connected to the second terminal of the second voltage regulator Z2.
  • the control terminal of the switch tube Q2 is connected; the anode of the second voltage regulator tube Z2 is connected to the second terminal of the second inductor L2, and the anode of the second voltage regulator tube Z2 is connected to the second switch terminal of the second switch tube Q2;
  • the first switch terminal of the switch tube Q2 is connected to the cathode of the second diode D2.
  • the driver chip U1 includes: a first AND gate U11 and a second AND gate U12;
  • the first input end of the first AND gate U11 is connected with the enable pin PE of the driving chip U1; the second input end of the first AND gate U11 is connected with the first IO pin INA of the driving chip U1; The output end of the gate U11 is connected to the third IO pin OUTA of the driver chip;
  • the first input terminal of the second AND gate U12 is connected to the enable pin of the driver chip U1; the second input terminal of the second AND gate U12 is connected to the second IO pin INB of the driver chip U1, and the second AND gate U12 The output end is connected to the fourth IO pin OUTB of the driving chip U1.
  • the working principle of this embodiment includes: the PE pin of the driver chip maintains a high-level signal (for example, a 3.3V high-level signal), and when a high-level signal is input to the INA pin and a low-level signal is input to the INB pin , according to the operation rules of the AND gate, the OUTA pin outputs a high-level signal, and the OUTB pin outputs a low-level signal. Then, the first switch tube Q1 in the first switch circuit will be in a conducting state, and the reverse bias signal on the first voltage source will be loaded on the receiving sensor.
  • a high-level signal for example, a 3.3V high-level signal
  • the second switch circuit When a low-level signal is input to the INA pin and a high-level signal is input to the INB pin, according to the operation rules of the AND gate, the OUTA pin outputs a low-level signal, and the OUTB pin outputs a high-level signal, then the second switch circuit The second switch tube Q2 in the circuit will be in a conducting state, and the reverse bias signal on the second voltage source will be loaded on the receiving sensor. In this way, reverse bias signals of different voltage values can be quickly switched, so as to achieve the purpose of quickly adjusting the gain of the receiving sensor.
  • the driver chip U1 is also provided with a plurality of power pins and peripheral devices to provide operating voltage signals for the driver chip U1.
  • the specific settings of the power pins and the connection method of the peripheral devices can be referred to as shown in FIG. 8, which will not be repeated here. .
  • Embodiments of the present application further provide a laser radar, including the above-mentioned laser receiving circuit.
  • the above-mentioned laser receiving circuit can be applied to a laser radar.
  • the laser radar can also include specific structures such as power supply, processing equipment, optical receiving equipment, rotating body, base, housing, and human-computer interaction equipment.
  • the laser radar can be a single-channel laser radar, including one of the above-mentioned laser receiving circuits, and the laser radar can also be a multi-channel laser radar, including multiple channels of the above-mentioned laser receiving circuits and corresponding control systems. The quantity can be determined according to actual needs.
  • the above lidar by pre-setting a number of voltage sources with different voltage values, when the voltage value of the reverse bias signal of the receiving sensor needs to be adjusted, it is only necessary to turn on the corresponding power input interface to realize the reverse of the specified voltage value.
  • the bias signal is loaded on the receiving sensor, and the response time of its adjustment is mainly the time when the corresponding power input port is turned on. Compared with the voltage conversion, it has a faster response speed.
  • the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium. During execution, the processes of the embodiments of the above-mentioned methods may be included.
  • the storage medium can be a magnetic disk, an optical disk, a read-only storage memory, or a random storage memory, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electronic Switches (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光接收电路和激光雷达,属于激光雷达领域。通过预先设置多个不同电压值的电压源(1,2,…,n),在需要调节接收传感器(13)的反向偏压信号的电压值时,开启相应的电源输入接口就能实现将制定电压值的反向偏压信号加载到接收传感器(13)上,其调节的响应时间主要为开启对应电源输入端口的时间,相对于通过电压转换时间,具有更快的响应速度。

Description

激光接收电路和激光雷达 技术领域
本申请涉及激光雷达领域,尤其涉及一种激光接收电路和激光雷达。
背景技术
用于无人驾驶的激光雷达,由于要满足较远探测距离要求,通常会将接收电路的增益设置比较大,以提升信噪比和测距能力,但是这样做会产生一个问题,近距离高反射率的物体产生的回波会进入深度饱和,产生波形畸变和非线性失真,造成测距不准和高反膨胀、弯曲、过渡拖点等点云问题,严重影响激光雷达性能。
因此为了既满足激光雷达对于探测距离的要求,又满足探测准确度的要求,如何提高激光雷达需求的动态范围,快速调节接收传感器的增益是目前亟待解决的问题。
发明内容
本申请实施例提供的激光接收电路及激光雷达,可以提高激光雷达需求的动态范围,快速调节接收传感器的增益。
所述技术方案如下:
第一方面,本申请实施例提供了一种激光接收电路,包括:
控制器、电压切换电路、n个电压源和接收传感器;其中,n为大于1的整数,所述电压切换电路设置有控制端、n个电源输入端和电源输出端,所述n个电压源各自产生不同电压值的反向偏压信号;
所述n个电压源与所述n个电源输入端以一对一的方式连接,所述控制器与所述电压切换电路的控制端连接,所述电源输出端与所述接收传感器的阴极相连;
其中,所述控制器,用于通过所述控制端向所述电压切换电路发送电压切换信号;
所述电压切换电路,用于响应于所述电压切换信号从所述n个电源输入端 中选择一个电源输入端进行开启,以使对应的电压源通过选择的电源输入端和所述电源输出端将反向偏压信号加载到所述接收传感器上。对应的电压源即为选择的电源输入端所连接的电压源,除选择的电源输入端之外,其他电源输入端处于关闭状态,即任意时刻仅有1个电压源将生成的反向偏压信号加载到接收传感器上。
第二方面,本申请实施例提供了一种激光雷达,包括上述的激光接收电路。
本申请一些实施例提供的技术方案带来的有益效果至少包括:
通过切换不同的电压源为接收传感器提供不同电压值反向偏压信号,解决相关技术中通过电压转换的方式得到不同电压值的反向偏压信号存在的调节响应速度慢的问题,本申请通过预先设置多个不同电压值的电压源,在需要调节接收传感器的反向偏压信号的电压值时,只需要开启相应的电源输入接口就能实现将制定电压值的反向偏压信号加载到接收传感器上,其调节的响应时间主要为开启对应电源输入端口的时间,相对于通过电压转换,调节接收传感器的增益时具有更快的响应速度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种相关技术的激光雷达的电路结构示意图;
图2是本申请实施例提供的激光接收电路的结构示意图;
图3是本申请实施例提供的激光接收电路的另一结构示意图;
图4是本申请实施例提供的激光接收电路的另一结构示意图;
图5是本申请实施例提供的激光接收电路的另一结构示意图;
图6是本申请实施例提供的激光接收电路的另一结构示意图;
图7是本申请实施例提供的电压切换电路的结构示意图;
图8是本申请实施例的电压切换电路的另一结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例方式作进一步地详细描述。
图1示出了激光雷达的电路结构示意图,激光雷达包括激光发射电路和激光接收电路,激光发射电路包括:控制器、激光驱动芯片和激光发射器;激光接收电路包括:控制器、模数转换器、放大电路、互阻放大器、接收传感器和反向偏压调节电路。其中激光发射电路和激光接收电路可以共用一个控制器,也可以单独设置一个控制器,本申请实施例不作限制。控制器在激光雷达中起控制功能和处理功能,控制器可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。激光发射器一般包括GaN氮化镓MOS管和激光二极管LD。接收传感器一般为APD(avalanche photon diode,雪崩光电二极管)或SIPM(silicon photomultiplier,硅光电倍增管),接收传感器具有阴极和阳极。
其中,激光雷达一般用于测量激光信号到目标物体之间的飞行时间,然后利用飞行时间计算激光雷达到目标物体之间的距离。本申请中激光雷达的工作过程包括:
控制器控制激光驱动电路,使GaN MOS管产生大功率脉冲电流信号,激发激光二极管发出激光信号,并记录发射激光信号的时间戳。激光信号达到目标物体上反射回来,接收传感器接收发射的回波激光信号,接收传感器将回波激光信号转换为电流信号,互阻放大器将该电流信号转换为电压信号,放大电路将该电压信号进行放大处理,然后模数转换器将放大后的电压信号进行模数转换得到数字信号,将数字信号传输给控制器,控制器根据数字信号确定接收回波激光信号的时间戳和数字信号的幅度,然后根据发射激光信号的时间戳和接收回波激光信号的时间戳计算飞行时间,由此根据飞行时间计算激光雷达到目标物体之间的距离,以及根据数字信号的幅度计算目标物体的反射率。
其中,接收传感器为了实现一定的增益,反向偏压调节电路需要为接收传感器施加一个反向偏压信号,且该反向偏压信号的大小是可调的,用于补偿温 度变化对接收传感器增益的影响。
在多通道的激光雷达中,通道数一般为16、32、64或128,点云刷新率一般为20KHz左右。以16通道的激光雷达来说,单通道的测距时间约为50μs/16=3.125μs。为了简化激光雷达的硬件设计,各个通道接收传感器一般共用一个反向偏压,然而各个通道接收传感器需要的反向偏压信号的大小可能不一样,各个通道的电源采用直流电压转换的方式来实现反向偏压信号大小的调节,该方式的响应时间为毫秒级(一般为10ms),而激光雷达要求在300ns的时间内完成反向偏压大小的调节,因此现有的激光接收电路无法满足反向偏压信号的快速调节。
为解决上述问题,本申请提供了一种激光接收电路,如图2所示,在本申请实施例中,激光接收电路包括:控制器11、n个电压源、电压切换电路12和接收传感器13。n为大于1的整数,电压切换电路12设置有n个电源输入端、控制端和电源输出端,n个电压源生成不同电压值的反向偏压信号。n个电压源和电压切换电路上设置的n个电源输入端以一对一的方式连接,即1个电压源和1个电源输入端相连,电压源1与电源输入端1相连,电压源2与电源输入端2相连,…,电压源n与电源输入端n相连。控制器11与电压切换电路12的控制端相连,电压切换电路12的电源输出端与接收传感器13的阴极相连,以便为接收传感器13提供反向的电压信号(反向偏压信号)。
其中,电压切换电路12上设置的控制端的数量和电源输入端的数量n有关。
实施例a:控制端的数量等于电源输入端的数量,即电压切换电路设置有n个控制端和n个电源输入端,n个控制端和n个电源输入端为一一映射的关系。控制器通过n个控制端向电压切换电路发送电压切换信号,电压切换信号用n个位来表示,位的值为0或1,0表示控制端上为低电平信号,1表示控制端上为高电平信号,n个位中仅有1个位的值为1,根据n个位的值和电源输入端的序号之间具有一定的映射关系,电压切换信号根据该映射关系确定需要开启的电源输入端。
例如:n=4,电压切换信号的电平值和电源输入端的序号之间的映射关系如表1所示:
电压切换信号的电平值 电源输入端
1000 1
0100 2
0010 3
0001 4
表1
假设控制器通过4个控制端向电压切换电路发送电压切换信号,电压切换电路确定电压切换信号的电平值为0100,根据表1的映射关系确定需要开启序号为2的电源输入端,由此实现将电源输入端2对应的电压源的反向偏压信号加载到接收传感器上。
实施例b:n=2 m,m为控制端的数量,n为电源输入端的数量,控制器11在m个控制端上输出高电平信号或低电平信号,这样m个控制端一共有n种不同的电平值,每个电平值对应一个电源输入端,电平值和电源输入端的序号之间具有一定的映射关系。
例如:n=4,m=2,电平值和电源输入端的序号之间的映射关系如表2所示:
电压切换信号的电平值 电源输入端的序号
00 1
01 2
10 3
11 4
表2
其中,控制器11在第1个控制端输出低电平信号和第2个控制端输出低电平信号时,电压切换电路12检测到电压切换信号为电平值为“00”,电压切换电路12控制第1个电源输入端处于开启状态;控制器11在第1个控制端上输出低电平信号和在第2个控制端输出高电平信号时,电压切换电路12检测到电压切换信号的电平值为“01”,电压切换电路12控制第2个电源输入端处于开启状态;控制器11在第1个控制端上输出高电平信号和在第2个控 制端输出低电平信号时,电压切换电路12检测到电压切换信号的电平值为“10”,电压切换电路12控制第3个电源输入端处于开启状态;控制器11在第1个控制端和第2个控制端均输出高电平信号时,电压切换电路12检测到电压切换信号的电平值为“11”,电压切换电路12控制第4个电源输入端处于开启状态。
实施例c:电压切换电路12上控制端的数量为1个,控制器11可以通过串行的方式发送如实施例a的电压切换信号,每次发送n个电平信号,n个电平信号的排序和n个电源输入端的排序相同,这样电压切换电路12可以根据n个电平信号中各个电平信号的高低确定需要开启的电源输入端。或者,控制器11通过串行的方式发送如实施例b的电压切换信号,每次发送m个电平信号,根据m个电平信号的电平高低确定需要开启的电源输入端。本实施例通过仅设置一个控制端就实现反向偏压信号的动态调节,可以降低电路的硬件复杂度。
本实施例的激光接收电路的工作原理为:控制器11通过控制端向电压切换电路12发送电压切换信号,电压切换信号的类型可以为数字信号或模拟信号,电压切换电路12接收该电压切换信号,基于该电压切换信号从n个电压源输入端中选择一个电源输入端,响应于所述电压切换信号从所述n个电源输入端中选择一个电源输入端进行开启,以使对应的电压源通过选择的电源输入端和电源输出端将反向偏压信号加载到接收传感器上;其中,在任意时刻,n个电源输入端中仅有1个电源输入端处于开启状态,即n个电压源中除选择的电压源之外的其他电压源不会向接收传感器输出其反向偏压信号。由此可知,本实施例中调节反向偏压信号的响应时间主要为开启电源输入端的时间,通过开启不同的电源输入端实现将不同电压值的电压源产生的反向偏压信号加载到接收传感器上,实现了反向偏压信号的动态调节,电源输入端的开启时间会远远小于电压转换的时间,因此本申请可以减少调节反向偏压信号的响应时间。
例如:电压切换电路12接收来自控制器11的电压切换信号,根据电压切换信号在n个电源输入端中选择需要开启的电源输入端,假设需要开启的电源输入端为电源输入端2,电压切换电路12控制电源输入端2为开启状态,其 他电源输入端为关闭状态,这样电压源2将反向偏压信号通过电压切换电路的电源输入端2和电源输出端加载到接收传感器13上。
在一个或多个实施例中,n=2,n个电压源为第一电压源和第二电压源,电压切换电路设置的控制端为第一控制端和第二控制端。
例如:参见图3所示的激光接收电路的结构示意图,电压切换电路12设置有电源输入端1和电源输入端2,电压源1通过电源输入端1与电压切换电路12相连,电压源2通过电源输入端2与电压切换电路12相连。
电压切换电路12上还设置有第一控制端3和第二控制端4,控制器11的第一引脚通过第一控制端3与电压切换电路12相连,控制器11的第二引脚通过第二控制端4与电压切换电路12相连。电压切换电路12的电压输出端与接收传感器13的阴极相连。
其中,本实施例的激光接收电路的工作原理包括:控制器11通过第一控制端3和第二控制端4发送电压切换信号,电压切换信号为电平信号,电压切换电路12检测电压切换信号的电平值,根据电平值和电源输入端之间的映射关系,确定对应的电源输入端,然后开启该电源输入端,同时控制其他电源输入端保持关闭状态,以使该电源输入端对应的电压源的反向偏压信号加载到接收传感器上,实现反向偏压信号的动态调节。
例如:电平值和电源输入端之间的映射关系如表1所示:
电平值 电源输入端
10 1
01 2
表3
假设控制器在第一控制端3上发送高电平信号以及在第二控制端4上发送低电平信号,电压切换电路12检测到电平值为10,根据表3确定需要开启电源输入端1,同时控制电源输入端2保持关闭状态,在电源输入端1为开启状态时,电压源1生成的反向偏压信号会加载到接收传感器13上,实现反向偏压信号的快速调节。
参见图4,为本申请实施例提供的电压切换电路的另一结构示意图,在本 实施例中,n=2,电压切换电路12包括驱动电路121、开关电路SW1、驱动电路122和开关电路SW2。
其中,驱动电路121与控制器11的第一控制端相连,驱动电路121与开关电路SW1相连,开关电路SW1与电压源1和接收传感器13相连。驱动电路122与控制器11的第二控制端相连,开关电路SW2与电压源2和接收传感器13相连。驱动电路121用于根据控制器11的指示控制开关电路SW1的导通状态或截止状态,驱动电路122用于根据控制器11的指示控制开关电路SW2的导通状态或截止状态。在任意时刻,开关电路SW1和开关电路SW2仅有一个处于导通状态;在开关电路SW1处于导通状态时,电压源1输出的反向偏压信号加载到接收传感器13上;在开关电路SW2处于导通状态时,电压源2输出的反向偏压信号加载到接收传感器13上,由此实现接收传感器13上不同电压值的反向偏压信号的快速切换。
其中,本实施例的开关电路SW1和开关电路SW2可以包括一个或多个开关管,开关管的类型可以为MOS管或三极管,MOS管可以为NMOS管或PMOS管。开关电路SW1和开关电路SW2的具体结构可参照图5~图7的描述。
在一种可能的实施方式中,参见图5,为本申请实施例的的电压切换电路的另一结构示意图,在本实施例中,开关电路SW1和SW2为MOS管,n=2,电压切换电路12上设置有第一控制端3和第二控制端4,n个电压源为电压源1和电压源2。
电压切换电路12包括:第一驱动电路121、第二驱动电路122、第一MOS管Q1、第二MOS管Q2、第三MOS管Q3、第四MOS管Q4、第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4;第一驱动电路121设置有第一端、第二端、第三端和辅助电源端,第二驱动电路122设置有第一端、第二端、第三端和辅助电源端,第一驱动电路121和第二驱动电路122的辅助电源端用于输入高压工作信号;
其中,第一驱动电路121的辅助电源端与高压电源相连,第一驱动电路121的第一端与第一控制端相连,第一驱动电路121的第二端与第一MOS管Q1的栅极相连,第一驱动电路121的第三端与第二MOS管Q2的栅极相连; 第一MOS管Q1的漏极1与电压源1相连,第一MOS管Q1的源极2与第二MOS管Q2的源极1相连,第一二极管D1的阴极与Q1第一MOS管的漏极1相连,第一二极管D1的阳极与第一MOS管Q1的源极2相连;第二MOS管Q2的漏极2与第三MOS管Q3的漏极1相连,且与接收传感器13的阴极相连;第二二极管D2的阳极与第二MOS管Q2的源极1相连,第二二极管D2的阴极与第二MOS管Q2的漏极2相连;
第二驱动电路122的辅助电源端与高压电源相连,第二驱动电路122的第一端与第二控制端相连,第二驱动电路122的第二端与第三MOS管Q3的栅极相连,第二驱动电路122的第三端与第四MOS管Q4的栅极相连;第三MOS管Q3的源极2与第四MOS管Q4的源极1相连,第三二极管D3的阴极与第三MOS管Q3的漏极1相连,第三二极管D3的阳极与第三MOS管Q3的源极2相连;第四MOS管Q4的漏极2与电压源2相连,第四二极管D4的阳极与第四MOS管Q4的源极1相连,第四二极管D4的阴极与第四MOS管Q4的漏极2相连。
其中,驱动电路121和驱动电路122用于驱动MOS管处于导通状态或截止状态,驱动电路121设置有辅助电源端,高压电源通过辅助电源端为驱动电路121供电,供电方式可以是单相供电,那么驱动电路121只需设置1个辅助电源端,如果驱动电路121的供电方式为双相供电,那么驱动电路121可以设置2个电压电源端,一个辅助电源端为驱动电路121提供负电压信号,另一个辅助电源端为驱动电路121提供正电压信号;例如:图5所示的驱动电路121设置辅助电源端VPP和辅助电源端VNN,辅助电源端VPP用于输入正电压信号,辅助电源端VNN用于输入负电压信号。
其中,本实施例中的电压切换电路的工作原理为:
控制器11通过第一控制端3向驱动电路121发送第一电平信号,以及通过第二控制端4向驱动电路122发送第一电平信号。第一电平信号和第二电平信号在任意时刻仅有1个为高电平信号,在第一电平信号为高电平信号且第二电平信号为低电平信号时,驱动电路121将第一MOS管Q1和第二MOS管Q2控制为导通状态,这样电压源1上的反向偏压信号会加载到接收传感器13上。驱动电路122控制第三MOS管Q3和第四MOS管Q4处于截止状态,电 压源2的反向偏压信号不会进行输出。
在第一电平信号为低电平信号且第二电平信号为高电平信号时,驱动电路122控制第三MOS管Q3和第四MOS管Q4处于导通状态,这样电压源2生成的反向偏压信号会加载到接收传感器13上。而驱动电路121会控制第一MOS管Q1和第二MOS管Q2处于截止状态,电压源1的反向偏压信号不会输出。
根据上述的调节过程,可以实现接收传感器13上的加载的反向电压在电压源1和电压源2之间快速进行切换。需要说明的是,上述的工作过程仅为具体说明,并非对本申请的范围进行限定,上述的例子中高电平信号对应导通状态,低电平信号对应截止状态,在具体实现时也可以是高电平信号对应截止状态,低电平信号对应导通状态。
其中,第一二极管D1为第一MOS管Q1的内部寄生二极管,第二二极管D2为第二MOS管Q2的内部寄生二极管,第三二极管D3为第三MOS管Q3的内部寄生二极管,第四二极管D4为第四MOS管Q4的内部寄生二极管。
在另一种可能的实施方式中,参见图6,为本申请实施例提供的一种电压转换电路的另一结构示意图,在本实施例中,开关电路SW1和SW2中包括的开关管为三极管,n=2,电压切换电路12上设置有第一控制端3和第二控制端4,n个电压源为电压源1和电压源2。
电压切换电路12包括:第一驱动电路121、第二驱动电路122、第一三极管Q1和第二三极管Q2;第一驱动电路121设置有第一端、第二端和辅助电源端,第二驱动电路122设置有第一端、第二端和辅助电源端,第一驱动电路121和第二驱动电路122的辅助电源端用于输入高压工作信号;
其中,第一驱动电路121的辅助电源端与高压电源相连,第一驱动电路121的第一端与控制器11的第一控制端相连,第一驱动电路121的第二端与第一三极管Q1的基极相连,第一三极管Q1的发射极与电压源1相连,第一三极管Q1的集电极与接收传感器13的阴极相连。第二驱动电路122的辅助电源端与高压电源相连,第二驱动电路122的第一端与控制器11的第二控制端相连,第二驱动电路122的第二端与第二三极管Q2的基极相连,第二三极管Q2的集电极与接收传感器13的阴极相连,第二三极管Q2的发射极与电压 源2相连。
其中,驱动电路121和驱动电路122用于驱动第一三极管Q1和第二三极管Q2处于导通状态或截止状态,驱动电路121设置有辅助电源端,高压电源通过辅助电源端为驱动电路121供电,供电方式可以是单相供电,那么驱动电路121只需设置1个辅助电源端,如果驱动电路121的供电方式为双相供电,那么驱动电路121可以设置2个电压电源端,一个辅助电源端为驱动电路121提供负电压信号,另一个辅助电源端为驱动电路121提供正电压信号;例如:图6所示的驱动电路121设置辅助电源端VPP和辅助电源端VNN,辅助电源端VPP用于输入正电压信号,辅助电源端VNN用于输入负电压信号。
其中,本实施例中的电压切换电路的工作原理为:
控制器11通过第一控制端向驱动电路121发送第一电平信号,以及通过第二控制端向驱动电路122发送第二电平信号。第一电平信号和第二电平信号在任意时刻仅有1个为高电平信号,在第一电平信号为高电平信号且第二电平信号为低电平信号时,驱动电路121将第一三极管Q1为导通状态,这样电压源1上的反向偏压信号会加载到接收传感器13上。驱动电路122控制第二三极管Q3处于截止状态,电压源2的反向偏压信号不会进行输出。
在第一电平信号为低电平信号且第二电平信号为高电平信号时,驱动电路122控制第二三极管Q2处于导通状态,这样电压源2生成的反向偏压信号会加载到接收传感器13上。而驱动电路121会控制第一三极管Q1处于截止状态,电压源1的反向偏压信号不会输出。
根据上述的调节过程,可以实现接收传感器13上的加载的反向电压在电压源1和电压源2之间快速进行切换。需要说明的是,上述的工作过程仅为具体说明,并非对本申请的范围进行限定,上述的例子中高电平信号对应导通状态,低电平信号对应截止状态,在具体实现时也可以是高电平信号对应截止状态,低电平信号对应导通状态。
在另一种可能的实施方式中,参见图7,为本申请实施例提供的一种电压转换电路的另一结构示意图,电压转换电路12包括:
在本实施例中,开关电路SW1和SW2中包括的开关管为MOS管,n=2,电压切换电路12上设置有第一控制端3和第二控制端4,n个电压源为电压源 1和电压源2。
电压切换电路12包括:第一驱动电路121、第二驱动电路122、第一MOS管Q1、第二MOS管Q2、第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4;第一驱动电路121设置有第一端、第二端和辅助电源端,第二驱动电路122设置有第一端、第二端和辅助电源端,第一驱动电路121和第二驱动电路122的辅助电源端用于输入高压工作信号;
其中,第一驱动电路121的辅助电源端与高压电源相连,第一驱动电路121的第一端与控制器11的第一控制端相连,第一驱动电路121的第二端与第一MOS管Q1的栅极相连,第一MOS管Q1的源极与第一二极管D1的阳极相连,第一二极管D1的阴极与电压源1相连,第二二极管D2的阳极与第一MOS管Q1的源极相连,第二二极管D2的阴极与第一MOS管Q1的漏极相连,第一MOS管Q1的漏极与接收传感器13的阴极相连。
第二驱动电路122的辅助电源端与高压电源相连,第二驱动电路122的第一端与控制器11的第二控制端相连,第二驱动电路122的第二端与第二MOS管Q2的栅极相连,第二MOS管Q2的源极与第四二极管D4的阳极相连,第四二极管D4的阴极与电压源2相连,第三二极管D3的阳极与第二MOS管Q2的源极相连,第三二极管D3的阴极与第二MOS管Q2的漏极相连,第二MOS管Q2的漏极与接收传感器13的阴极相连。
其中,驱动电路121和驱动电路122用于驱动第一MOS管Q1和第二MOS管Q2处于导通状态或截止状态,驱动电路121设置有辅助电源端,高压电源通过辅助电源端为驱动电路121供电,供电方式可以是单相供电,那么驱动电路121只需设置1个辅助电源端,如果驱动电路121的供电方式为双相供电,那么驱动电路121可以设置2个电压电源端,一个辅助电源端为驱动电路121提供负电压信号,另一个辅助电源端为驱动电路121提供正电压信号;例如:图7所示的驱动电路121设置辅助电源端VPP和辅助电源端VNN,辅助电源端VPP用于输入正电压信号,辅助电源端VNN用于输入负电压信号。
其中,本实施例中的电压切换电路的工作原理为:
控制器11通过第一控制端向驱动电路121发送第一电平信号,以及通过第二控制端向驱动电路122发送第二电平信号。第一电平信号和第二电平信号 在任意时刻仅有1个为高电平信号,在第一电平信号为高电平信号且第二电平信号为低电平信号时,驱动电路121将第一MOS管Q1为导通状态,这样电压源1上的反向偏压信号会加载到接收传感器13上。驱动电路122控制第二MOS管Q3处于截止状态,电压源2的反向偏压信号不会进行输出。
在第一电平信号为低电平信号且第二电平信号为高电平信号时,驱动电路122控制第二MOS管Q2处于导通状态,这样电压源2生成的反向偏压信号会加载到接收传感器13上。而驱动电路121会控制第一MOS管Q1处于截止状态,电压源1的反向偏压信号不会输出。
根据上述的调节过程,可以实现接收传感器13上的加载的反向电压在电压源1和电压源2之间快速进行切换。需要说明的是,上述的工作过程仅为具体说明,并非对本申请的范围进行限定,上述的例子中高电平信号对应导通状态,低电平信号对应截止状态,在具体实现时也可以是高电平信号对应截止状态,低电平信号对应导通状态。
在另一种可能的实施方式中,参见图8所示,为本申请提供的电压切换电路的另一结构示意图,在本实施例中,电压转换电路包括驱动芯片U1、第一耦合电容C1、第二耦合电容C3、第一开关电路和第二开关电路、第一滤波电容C2和第二滤波电容C4。
其中,驱动芯片U1的第一IO引脚INA与控制器相连,驱动芯片U1的第二IO引脚INB与控制器相连,驱动芯片U1的第三IO引脚OUTA与第一耦合电容C1的第一端相连,第一耦合电容C1的第二端与第一开关电路的第一端相连,第一开关电路第二端与第一二极管D1的阴极相连,第一二极管D1的阳极与接收传感器HV_N_APD的阴极相连,第一开关电路的第二端通过第一滤波电容C2接地,且与第一电压源HV1_N相连。
驱动芯片U1第四IO引脚OUTB与第二耦合电容C3的第一端相连,第二耦合电容C3的第二端与第二开关电路的第一端相连,第二开关电路的第二端与第二二极管D2的阴极相连,第二二极管D2的阳极与接收传感器HV_N_APD的阴极相连;第二开关电路的第二端通过第二滤波电容C4接地,且与第二电压源HV2_N相连。
本实施例的电压切换电路的工作过程包括:控制器通过第一IO引脚INA 和第二IO引脚INB向驱动芯片U1发送电平信号,驱动芯片U1通过第一IO引脚INA和第二IO引脚INB接收来自控制器的电压切换信号;
基于电压切换信号通过第三IO引脚OUTA向第一开关电路发送第一开启电压信号;其中,第一开启电压信号用于控制第一开关电路处于导通状态,以使第一电压源HV1_N输出的反向偏压信号加载到接收传感器上HV_N_APD。例如:在第三IO引脚INA上输入的是高电平信号,第四IO引脚INB上输入的是低电平信号时,驱动芯片U1向第一开关电路发送第一电压开启信号;或基于电压切换信号通过第四IO引脚向OUTB第二开关电路发送第二开启电压信号;其中,第二开启电压信号用于控制所述第二开关电路处于导通状态,以使所述第二电压源HV2_N输出的反向偏压信号加载到接收传感器HV_N_APD上。例如:在第三IO引脚INA上输入的是低电平信号,第四IO引脚INB上输入的是高电平信号时,驱动芯片U1向第二开关电路发送第二电压开启信号。本实施例通过驱动芯片直接控制第一开关电路和第二开关电路的状态,不需要外接高压电源,因此可以节省高成本的高压器件,降低硬件成本。
进一步的,第一开关电路包括第一稳压管Z1、第一电感L1和第一开关管Q1,第二开关电路包括第二稳压管Z2、第二电感L2和第二开关管Q2;第一开关管Q1为NMOS管或PMOS管,第二开关管Q2为NMOS管或PMOS管,栅极为开关管的控制端,漏极为开关管的第一开关端,源极为开关管的第二开关端。
其中,第一稳压管Z1的阴极与第一耦合电容C1的第二端相连,第一稳压管Z1的阴极与第一电感L1的第一端相连,第一稳压管Z1的阴极与第一开关管Q1的控制端相连;第一稳压管Z1的阳极与第一电感L1的第二端相连,第一稳压管Z1的阳极与第一开关管Q1的第二开关端相连,第一开关管Q1的第一开关端与第一二极管D1的阴极相连;
第二稳压管Z2的阴极与第二耦合电容C3的第二端相连,第二稳压管Z2的阴极与第二电感L2的第二端相连,第二稳压管Z2的阴极与第二开关管Q2的控制端相连;第二稳压管Z2的阳极与第二电感L2的第二端相连,第二稳压管Z2的阳极与第二开关管Q2的第二开关端相连;第二开关管Q2的第一开关端与所述第二二极管D2的阴极相连。
进一步的,驱动芯片U1包括:第一与门U11和第二与门U12;
其中,第一与门U11的第一输入端与驱动芯片U1的使能引脚PE相连;第一与门U11的第二输入端与驱动芯片U1的第一IO引脚INA相连;第一与门U11的输出端与驱动芯片的第三IO引脚OUTA相连;
第二与门U12的第一输入端与驱动芯片U1的使能引脚相连;第二与门U12的第二输入端与驱动芯片U1的第二IO引脚INB相连,第二与门U12的输出端与驱动芯片U1的第四IO引脚OUTB相连。
本实施例的工作原理包括:驱动芯片的PE引脚保持高电平信号(例如:3.3V的高电平信号),在INA引脚输入高电平信号,INB引脚输入低电平信号时,根据与门的运算规则,OUTA引脚输出高电平信号,OUTB引脚输出低电平信号。那么第一开关电路中的第一开关管Q1会处于导通状态,第一电压源上的反向偏压信号会加载到接收传感器上。在INA引脚输入低电平信号,INB引脚输入高电平信号时,根据与门的运算规则,OUTA引脚输出低电平信号,OUTB引脚输出高电平信号,那么第二开关电路中的第二开关管Q2会处于导通状态,第二电压源上的反向偏压信号会加载到接收传感器上。由此可以快速切换不同电压值的反向偏压信号,从而达到快速调节接收传感器的增益的目的。
其中,驱动芯片U1还设置有多个电源引脚和外围器件,为驱动芯片U1提供工作电压信号,具体电源引脚的设置和外围器件的连接方式可参照图8所示,此处不再赘述。
本申请实施例还提供了一种激光雷达,包括上述的激光接收电路。
具体地,上述激光接收电路可以应用在激光雷达中,激光雷达中除了激光接收电路外,还可以包括电源、处理设备、光学接收设备、旋转体、底座、外壳以及人机交互设备等具体结构。可以理解的是,激光雷达可以为单路激光雷达,包括有一路上述激光接收电路,激光雷达也可以为多路激光雷达,包括多路上述激光接收电路以及相应的控制系统,其中多路的具体数量可以根据实际需求确定。
上述激光雷达,通过预先设置多个不同电压值的电压源,在需要调节接收传感器的反向偏压信号的电压值时,只需要开启相应的电源输入接口就能实现 将制定电压值的反向偏压信号加载到接收传感器上,其调节的响应时间主要为开启对应电源输入端口的时间,相对于通过电压转换,具有更快的响应速度。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体或随机存储记忆体等。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (13)

  1. 一种激光接收电路,其特征在于,包括:
    控制器、电压切换电路、n个电压源和接收传感器;其中,n为大于1的整数,所述电压切换电路设置有控制端、n个电源输入端和电源输出端,所述n个电压源各自产生不同电压值的反向偏压信号;
    所述n个电压源与所述n个电源输入端以一对一的方式连接,所述控制器与所述电压切换电路的控制端连接,所述电源输出端与所述接收传感器的阴极相连;
    其中,所述控制器,用于通过所述控制端向所述电压切换电路发送电压切换信号;
    所述电压切换电路,用于响应于所述电压切换信号从所述n个电源输入端中选择一个电源输入端进行开启,以使对应的电压源通过选择的输入端和所述电源输出端将反向偏压信号加载到所述接收传感器上。
  2. 根据权利要求1所述的激光接收电路,其特征在于,所述电压切换电路上设置的控制端的数量与n有关。
  3. 根据权利要求1所述的激光接收电路,其特征在于,n=2,n个电压源为第一电压源和第二电压源,所述电压切换电路设置的控制端包括第一控制端和第二控制端。
  4. 根据权利要求3所述的激光接收电路,其特征在于,电压切换电路包括:第一驱动电路、第一开关电路、第二驱动电路和第二开关电路,所述第一开关电路和所述第二开关电路包括一个或多个开关管,开关管为三极管或MOS管;所述第一驱动电路和所述第二驱动电路设置有辅助电源端,所述第一驱动电路和所述第二驱动电路的辅助电源端用于输入高压工作信号;
    其中,所述第一驱动电路与所述控制器的第一控制端相连,所述第一驱动电路与所述第一开关电路相连,所述第一开关电路与所述第一电压源和所述接 收传感器的阴极相连;所述第二驱动电路与所述控制器的第二控制端相连,所述第二驱动电路与所述第二开关电路相连,所述第二开关电路与所述第二电压源和所述接收传感器的阴极相连。
  5. 根据权利要求4所述的激光接收电路,所述第一开关电路包括第一MOS管、第二MOS管、第一二极管和第二二极管;所述第二开关电路包括第三MOS管、第四MOS管、第三二极管和第四二极管;
    所述第一驱动电路还设置有第一端、第二端和第三端,所述第二驱动电路还设置有第一端、第二端和第三端;
    其中,所述第一驱动电路的辅助电源端与高压电源相连,所述第一驱动电路的第一端与所述第一控制端相连,所述第一驱动电路的第二端与所述第一MOS管的栅极相连,所述第一驱动电路的第三端与所述第二MOS管的栅极相连;所述第一MOS管的漏极与所述第一电压源相连,所述第一MOS管的源极与所述第二MOS管的源极相连,所述第一二极管的阴极与所述第一MOS管的漏极相连,所述第一二极管的阳极与所述第一MOS管的源极相连;所述第二MOS管的漏极与所述第三MOS管的漏极相连,且与所述接收传感器的阴极相连;所述第二二极管的阳极与所述第二MOS管的源极相连,所述第二二极管的阴极与所述第二MOS管的漏极相连;
    所述第二驱动电路的辅助电源端与所述高压电源相连,所述第二驱动电路的第一端与所述第二控制端相连,所述第二驱动电路的第二端与所述第三MOS管的上级相连,所述第二驱动电路的第三端与所述第四MOS管的栅极相连;所述第三MOS管的源极与所述第四MOS管的源极相连,所述第三二极管的阴极与所述第三MOS管的漏极相连,所述第三二极管的阳极与所述第三MOS管的源极相连;所述第四MOS管的漏极与所述第二电压源相连,所述第四二极管的阳极与所述第四MOS管的源极相连,所述第四二极管的阴极与所述第四MOS管的漏极相连。
  6. 根据权利要求5所述的激光接收电路,其特征在于,所述第一二极管为所述第一开关管的内部寄生二极管,所述第二二极管为所述第二开关管的内 部寄生二极管,所述第三二极管为所述第三开关管的内部寄生二极管,所述第四二极管为所述第四开关管的内部寄生二极管。
  7. 根据权利要求4所述的激光接收电路,其特征在于,所述第一开关电路包括第一三极管,所述第二开关电路包括第二三极管;
    其中,所述第一三极管的基极与所述第一驱动电路相连,所述第一三极管的射极与所述第一电压源相连,所述第一三极管的集电极与所述接收传感器的阴极相连;
    所述第二三极管的基极与所述第二驱动电路相连,所述第二三极管的射极与所述第二电压源相连,所述第二三极管的集电极与所述接收传感器的阴极相连。
  8. 根据权利要求4所述的激光接收电路,其特征在于,所述第一开关电路包括第一MOS管、第一二极管和第二二极管,所述第二开关电路包括第二MOS管、第三二极管和第四二极管;
    其中,第一二极管的阴极与所述第一电压源相连,所述第一二极管的阳极与所述第一MOS管的源极相连且与所述第二二极管的阳极相连,所述第一MOS管的栅极与所述第一驱动电路相连,所述第一MOS管的漏极与所述第二二极管的阴极相连且与所述接收传感器的阴极相连;
    所述第二二极管的阴极与所述第二电压源相连,所述第二二极管的阳极与所述第二MOS管的源极相连且与所述第三二极管的阳极相连,所述第二MOS管的栅极与所述第二驱动电路相连,所述第二MOS管的漏极与所述第三二极管的阴极相连且与所述接收传感器的阴极相连。
  9. 根据权利要求4所述的激光接收电路,其特征在于,所述第一驱动电路的辅助电源端包括用于输入正电压信号的正辅助电源端和用于输入负电压信号的负辅助电源端;所述第二驱动电路的辅助电源端包括用于输入正电压信号的正辅助电源端和用于输入负电压信号的负辅助电源端。
  10. 根据权利要求3所述的激光接收电路,其特征在于,所述电压转换电路包括驱动芯片、第一耦合电容、第二耦合电容、第一开关电路和第二开关电路、第一滤波电容和第二滤波电容;
    其中,所述驱动芯片的第一IO引脚与所述控制器相连,所述驱动芯片的第二IO引脚与所述控制器相连,所述驱动芯片的第三IO引脚与所述第一耦合电容的第一端相连,所述第一耦合电容的第二端与所述第一开关电路的第一端相连,所述第一开关电路第二端与所述第一二极管的阴极相连,所述第一二极管的阳极与所述接收传感器的阴极相连,所述第一开关电路的第二端通过所述第一滤波电容接地,且与所述第一电压源相连;
    所述驱动芯片的第四IO引脚与所述第二耦合电容的第一端相连,所述第二耦合电容的第二端与所述第二开关电路的第一端相连,所述第二开关电路的第二端与所述第二二极管的阴极相连,所述第二二极管的阳极与所述接收传感器的阴极相连;所述第二开关电路的第二端通过所述第二滤波电容接地,且与所述第二电压源相连;
    所述驱动芯片,用于通过所述第一IO引脚和所述第二IO引脚接收来自所述控制器的电压切换信号;
    基于所述电压切换信号通过第三IO引脚向所述第一开关电路发送第一开启电压信号;其中,所述第一开启电压信号用于控制所述第一开关电路处于导通状态,以使所述第一电压源输出的反向偏压信号加载到所述接收传感器上;或
    基于所述电压切换信号通过所述第四IO引脚向所述第二开关电路发送第二开启电压信号;其中,所述第二开启电压信号用于控制所述第二开关电路处于导通状态,以使所述第二电压源输出的反向偏压信号加载到所述接收传感器上。
  11. 根据权利要求10所述的激光接收电路,其特征在于,所述第一开关电路包括第一稳压管、第一电感和第一开关管,所述第二开关电路包括第二稳压管、第二电感和第二开关管;
    其中,所述第一稳压管的阴极与所述第一耦合电容的第二端相连,所述第 一稳压管的阴极与所述第一电感的第一端相连,所述第一稳压管的阴极与所述第一开关管的控制端相连;所述第一稳压管的阳极与所述第一电感的第二端相连,所述第一稳压管的阳极与所述第一开关管的第二开关端相连,所述第一开关管的第一开关端与所述第一二极管的阴极相连;
    所述第二稳压管的阴极与所述第二耦合电容的第二端相连,所述第二稳压管的阴极与所述第二电感的第二端相连,所述第二稳压管的阴极与所述第二开关管的控制端相连;所述第二稳压管的阳极与所述第二电感的第二端相连,所述第二稳压管的阳极与所述第二开关管的第二开关端相连;所述第二开关管的第一开关端与所述第二二极管的阴极相连。
  12. 根据权利要求10所述的激光接收电路,其特征在于,所述驱动芯片包括:第一与门和第二与门;
    其中,所述第一与门的第一输入端与所述驱动芯片的使能引脚相连;所述第一与门的第二输入端与所述驱动芯片的第一IO引脚相连;所述第一与门的输出端与所述驱动芯片的第三IO引脚相连;
    所述第二与门的第一输入端与所述驱动芯片的使能引脚相连;
    所述第二与门的第二输入端与所述驱动芯片的第二IO引脚相连,所述第二与门的输出端与所述驱动芯片的第四IO引脚相连。
  13. 一种激光雷达,其特征在于,包括:如权利要求1至12任意一项所述的激光接收电路。
PCT/CN2020/140375 2020-12-28 2020-12-28 激光接收电路和激光雷达 WO2022140979A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080005492.7A CN114982133A (zh) 2020-12-28 2020-12-28 激光接收电路和激光雷达
PCT/CN2020/140375 WO2022140979A1 (zh) 2020-12-28 2020-12-28 激光接收电路和激光雷达
EP20967330.0A EP4254802A4 (en) 2020-12-28 2020-12-28 LASER RECEPTION CIRCUIT AND LASER RADAR
US18/212,169 US20230333223A1 (en) 2020-12-28 2023-06-20 Laser receiving circuit and lidar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140375 WO2022140979A1 (zh) 2020-12-28 2020-12-28 激光接收电路和激光雷达

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/212,169 Continuation US20230333223A1 (en) 2020-12-28 2023-06-20 Laser receiving circuit and lidar

Publications (1)

Publication Number Publication Date
WO2022140979A1 true WO2022140979A1 (zh) 2022-07-07

Family

ID=82259839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140375 WO2022140979A1 (zh) 2020-12-28 2020-12-28 激光接收电路和激光雷达

Country Status (4)

Country Link
US (1) US20230333223A1 (zh)
EP (1) EP4254802A4 (zh)
CN (1) CN114982133A (zh)
WO (1) WO2022140979A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116578176A (zh) * 2023-04-27 2023-08-11 珠海妙存科技有限公司 供电电路及其实现方法、实现装置、存储介质
CN117406200A (zh) * 2023-12-07 2024-01-16 苏州旭创科技有限公司 激光雷达接收端电路及激光雷达设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1368789A (zh) * 1999-11-09 2002-09-11 凹凸科技国际股份有限公司 高效率可适型直流/交流转换器
CN1404046A (zh) * 2001-09-04 2003-03-19 夏普公司 半导体激光器驱动电路和半导体激光器驱动方法
KR100744327B1 (ko) * 2006-06-19 2007-07-30 삼성전자주식회사 광원 구동 회로 및 방법
CN102158216A (zh) * 2010-01-14 2011-08-17 瑞萨电子株式会社 接收电路
CN102739233A (zh) * 2011-04-11 2012-10-17 株式会社东芝 接收电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595847A (en) * 1983-10-20 1986-06-17 Telmos, Inc. Bi-directional high voltage analog switch having source to source connected field effect transistors
EP1079525B1 (fr) * 1999-08-20 2008-09-10 EM Microelectronic-Marin SA Système de commande d'un interrupteur bidirectionnel à deux transistors
JP3979221B2 (ja) * 2002-08-19 2007-09-19 富士電機システムズ株式会社 電力変換装置
JP4958434B2 (ja) * 2005-12-22 2012-06-20 オンセミコンダクター・トレーディング・リミテッド 電圧選択回路
JP4689530B2 (ja) * 2006-05-17 2011-05-25 三菱電機株式会社 三相インバータ回路
CN102006042B (zh) * 2010-09-15 2012-08-08 天宝电子(惠州)有限公司 一种可控交流开关电路
JP2013013044A (ja) * 2011-05-31 2013-01-17 Sanken Electric Co Ltd ゲートドライブ回路
US9299731B1 (en) * 2013-09-30 2016-03-29 Google Inc. Systems and methods for selectable photodiode circuits
CN107342741B (zh) * 2016-04-29 2020-08-25 苏州旭创科技有限公司 Apd偏压控制电路、光电接收电路以及偏压控制方法
JP2018019333A (ja) * 2016-07-29 2018-02-01 株式会社日立情報通信エンジニアリング 半導体スイッチング回路
EP3339887B1 (de) * 2016-12-22 2019-04-03 Sick AG Lichtempfänger mit einer vielzahl von lawinenphotodioden und verfahren zum erfassen von licht
CN209117866U (zh) * 2018-09-11 2019-07-16 余姚舜宇智能光学技术有限公司 一种基于雪崩二极管的大动态范围光接收电路
US11510297B2 (en) * 2018-12-24 2022-11-22 Beijing Voyager Technology Co., Ltd. Adaptive power control for pulsed laser diodes
CN112000163B (zh) * 2020-08-17 2022-03-29 湖北三江航天万峰科技发展有限公司 一种光电探测器的偏压供电电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1368789A (zh) * 1999-11-09 2002-09-11 凹凸科技国际股份有限公司 高效率可适型直流/交流转换器
CN1404046A (zh) * 2001-09-04 2003-03-19 夏普公司 半导体激光器驱动电路和半导体激光器驱动方法
KR100744327B1 (ko) * 2006-06-19 2007-07-30 삼성전자주식회사 광원 구동 회로 및 방법
CN102158216A (zh) * 2010-01-14 2011-08-17 瑞萨电子株式会社 接收电路
CN102739233A (zh) * 2011-04-11 2012-10-17 株式会社东芝 接收电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254802A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116578176A (zh) * 2023-04-27 2023-08-11 珠海妙存科技有限公司 供电电路及其实现方法、实现装置、存储介质
CN116578176B (zh) * 2023-04-27 2023-11-14 珠海妙存科技有限公司 供电电路及其实现方法、实现装置、存储介质
CN117406200A (zh) * 2023-12-07 2024-01-16 苏州旭创科技有限公司 激光雷达接收端电路及激光雷达设备

Also Published As

Publication number Publication date
EP4254802A4 (en) 2024-01-17
CN114982133A (zh) 2022-08-30
EP4254802A1 (en) 2023-10-04
US20230333223A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US20230333223A1 (en) Laser receiving circuit and lidar
US11703590B2 (en) Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same
CN100505528C (zh) 保持rf功率放大器的线性的方法和电路
US6980780B2 (en) Power controller
KR20090103952A (ko) 선형 및 포화 모드에서의 동작을 위한 멀티모드 증폭기
JP2017028342A (ja) 電力増幅モジュール
US11177772B2 (en) Power control circuit and power amplification circuit
CN110737189A (zh) 脉冲激光间隔测量电路
CN108429541B (zh) 用于对放大器的线性度进行补偿的前置补偿器
CN112771408A (zh) 飞行时间的测量方法、装置、存储介质和激光雷达
EP3312632A1 (en) Calibration method based on single-wavelength and double-laser-tube phase measurement, and device thereof
US4236120A (en) High speed, high efficiency amplifier circuit
Lasser et al. Discrete-level envelope tracking for broadband noise-like signals
CN112099034A (zh) 一种脉冲信号测量电路及激光雷达系统
KR102375808B1 (ko) 펄스 레이저 드라이버
CN109981080B (zh) 同一脉冲触发信号下功放过冲抑制效率提升方法、电路及功放
US9385675B2 (en) Power amplifier circuit capable of adjusting gain dynamically
CN113867238B (zh) 带有幅度和脉冲调制功能的捷变alc系统及其控制方法
WO2018176289A1 (zh) 一种放大电路及激光测量装置、移动平台
JP2005151442A (ja) パルス電力増幅器
CN113258887A (zh) 一种提高放大效率的功率单元结构
WO2023116916A1 (zh) 激光雷达接收装置、系统、杂散光消除方法及存储介质
WO2021081989A1 (zh) 分时检测控制电路、无线收发系统及其分时检测控制方法
US7355475B2 (en) Output circuit of vacuum-tube amplifier
CN113093202B (zh) 一种数字化全波形激光雷达系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020967330

Country of ref document: EP

Effective date: 20230626

NENP Non-entry into the national phase

Ref country code: DE