WO2018174014A1 - 有機半導体組成物、有機薄膜及び有機薄膜トランジスタ - Google Patents

有機半導体組成物、有機薄膜及び有機薄膜トランジスタ Download PDF

Info

Publication number
WO2018174014A1
WO2018174014A1 PCT/JP2018/010840 JP2018010840W WO2018174014A1 WO 2018174014 A1 WO2018174014 A1 WO 2018174014A1 JP 2018010840 W JP2018010840 W JP 2018010840W WO 2018174014 A1 WO2018174014 A1 WO 2018174014A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
compound
organic semiconductor
organic solvent
group
Prior art date
Application number
PCT/JP2018/010840
Other languages
English (en)
French (fr)
Inventor
希望 小野寺
井上 悟
雄一 貞光
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to CN201880005059.6A priority Critical patent/CN110073507B/zh
Priority to KR1020197026536A priority patent/KR20190130568A/ko
Priority to EP18772670.8A priority patent/EP3608981A4/en
Priority to KR1020237020651A priority patent/KR20230096137A/ko
Priority to JP2019507666A priority patent/JP7086488B2/ja
Priority to US16/495,914 priority patent/US11495744B2/en
Publication of WO2018174014A1 publication Critical patent/WO2018174014A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Definitions

  • the present invention relates to an organic semiconductor composition, an organic thin film obtained by applying or printing the organic semiconductor composition, and an organic thin film transistor including the organic thin film.
  • a field effect transistor generally has a structure in which a gate electrode and the like are provided on a semiconductor on a substrate via a source electrode, a drain electrode, and these electrodes and an insulator layer.
  • inorganic semiconductor materials typified by silicon are mainly used for field effect transistors.
  • a thin film transistor in which a layer made of amorphous silicon is provided on a substrate such as glass is used for an integrated circuit as a logic circuit element in a field such as a display, and is also widely used for a switching element.
  • Recently, studies on using an oxide semiconductor as a semiconductor material have been actively conducted. However, when such an inorganic semiconductor material is used, processing at a high temperature is required at the time of manufacturing a field effect transistor. Therefore, a film, plastic, or the like having poor heat resistance cannot be used for the substrate.
  • a great deal of energy is required at the time of manufacturing, so that the obtained field effect transistor becomes expensive and its application range is very limited.
  • Non-Patent Document 1 discloses a method of producing an organic thin film by a drop cast method using an organic semiconductor solution in which TIPS-pentacene and polystyrene are mixed, and the organic semiconductor device having the organic thin film has a mobility. In addition, it is described that variation in mobility is improved. However, the method of Non-Patent Document 1 is insufficient in improving the variation in threshold value.
  • Non-Patent Document 2 Poly [2,5-bis (alkyl) pyrrolo [3,4-c] pyrrole-1,4 (2H) is added to a mixed solution obtained by adding 20% 2-chlorophenol to chlorobenzene. , 5H) -dione-alt-5,5- di (thiophen-2-yl) 22,20- (E) -2- (2- (thiophen-2-yl) vinyl)-thiophene] and polystyrene A method for forming an organic thin film by an inkjet method using an organic semiconductor solution is disclosed, and the organic semiconductor device having the organic thin film has excellent mobility and mobility variation has been improved. Are listed. However, the method of Non-Patent Document 2 is also insufficient in improving the variation in threshold value.
  • Non-Patent Document 3 discloses a method for producing an organic thin film using an organic semiconductor solution obtained by mixing poly (3-hexylthiophene-2,5-diyl) and PMMA, and an organic semiconductor device having the organic thin film Describes that the leakage current and the on / off ratio are improved. However, the method of Non-Patent Document 3 is not practical due to insufficient mobility.
  • Non-Patent Document 4 describes that in order to use a TFT in a logic circuit, it is necessary to control a threshold voltage, and a floating gate method is proposed as a specific method. However, Non-Patent Document 4 relates to an improvement in the configuration (design) of the element, does not control the threshold value by improving the organic semiconductor material or the organic semiconductor solution itself, and makes no mention of mobility.
  • Patent Document 1 an organic semiconductor solution containing an organic semiconductor compound, a polymer component, solvents A and B, which are good solvents for an organic semiconductor, and a solvent C, which is a poor solvent for an organic semiconductor, is used in an inkjet method. It has been described that a method of making a thin film has been disclosed, and that an electroluminescent device having the organic thin film showed high brightness. However, Patent Document 1 does not describe any characteristics of the organic thin film transistor having the organic thin film.
  • Patent Document 2 discloses a method for improving mobility by mixing an organic semiconductor compound and a polymer component at a specific ratio.
  • the mobility in the example of Patent Document 2 is at most 8.8 ⁇ 10 ⁇ 3 cm 2 / Vs, which is not a practical value.
  • Patent Document 3 discloses a method for producing an organic thin film using a polymer organic semiconductor material and an organic semiconductor solution composed of a good solvent A and a poor solvent B, and an electroluminescent device having the organic thin film is high. It is described that the luminance was shown. However, Patent Document 3 does not describe any characteristics of the organic thin film transistor having the organic thin film.
  • Patent Document 4 discloses a method for producing an organic thin film using an organic semiconductor composition containing an organic semiconductor compound, a liquid crystal compound, and an insulating polymer compound. It is described that it showed a high mobility of up to 2 cm 2 / Vs. However, Patent Document 4 does not describe any variation in mobility and threshold value.
  • Patent Document 5 discloses a method for producing an organic thin film using an organic semiconductor composition containing an organic semiconductor compound, a silicone compound, and an insulating polymer compound. It is described that the mobility was 1 cm 2 / Vs or more, and that the mobility variation was the smallest was less than 20%. However, Patent Document 5 does not describe anything about threshold variation.
  • Patent Document 6 discloses a method for producing an organic thin film using an organic semiconductor composition containing two types of organic semiconductor compounds, and an organic semiconductor device having the organic thin film has a thickness of 0.1 cm 2 / Vs or more. It is described that it occupied the mobility and the one with the smallest variation in mobility was less than 20%. However, Patent Document 6 does not describe anything about threshold variation.
  • Patent Document 7 discloses an organic thin film using an organic semiconductor composition containing a low molecular compound and a high molecular compound having a carrier transport property having a solubility parameter difference between 0.6 and 1.5 inclusive. Is disclosed, and it is described that an organic semiconductor device having the organic thin film showed a mobility of 2.1 cm 2 / Vs. However, Patent Document 7 does not describe any variation in mobility and threshold.
  • the present invention relates to an organic semiconductor composition capable of producing an organic thin film by a solution method, an organic thin film obtained using the organic semiconductor composition, and a mobility variation while maintaining high mobility having the organic thin film.
  • An object of the present invention is to provide a practical organic thin film transistor which is small and has a small variation in threshold value.
  • the present inventors have found that an organic semiconductor compound, an insulating compound, a good solvent for the insulating compound, a poor solvent for the insulating compound, and a boiling point higher than the good solvent.
  • the present inventors have found that the above problems can be solved by using an organic semiconductor composition containing a high poor solvent, and have completed the present invention.
  • the present invention includes (1) an organic semiconductor compound, an insulating compound, an organic solvent A which is a good solvent for the insulating compound, a poor solvent for the insulating compound, and an organic compound having a higher boiling point than the organic solvent A.
  • the organic semiconductor composition according to (1), wherein the organic semiconductor compound is a compound having an acene skeleton, a phenacene skeleton, or a heteroacene skeleton, (3)
  • the insulating compound is represented by the following formula (1) or (2)
  • R 1 to R 4 each independently represents a linear or branched alkyl group having 1 to 20 carbon atoms.
  • the insulating compound is represented by the following formula (3)
  • R 5 and R 6 represent a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms
  • the organic compound according to item (1) which is a compound having a repeating unit.
  • a semiconductor composition, (8) The organic semiconductor composition according to item (7), wherein the organic solvent A is a solvent composed of a hydrocarbon compound, and the organic solvent B is a solvent composed of a compound having an ether group, a ketone group, or an ester group.
  • an organic thin film transistor using the organic semiconductor composition of the present invention, it is possible to provide a practical organic thin film transistor that has a low mobility variation and a small threshold variation while maintaining high mobility. .
  • FIG. 1 is a schematic cross-sectional view showing some embodiments of the structure of an organic thin film transistor (element) according to the present invention
  • A is a bottom contact-bottom gate type organic thin film transistor (element);
  • C is a top contact-top gate type organic thin film transistor (element)
  • D is a top & bottom gate type organic thin film transistor (element)
  • E is an electrostatic induction transistor (element)
  • F is a bottom contact-top gate type organic thin film transistor (element).
  • the organic semiconductor composition of the present invention is an organic semiconductor compound, an insulating compound, an organic solvent A that is a good solvent for the insulating compound, and a poor solvent for the insulating compound, and has a boiling point higher than that of the organic solvent A.
  • the organic semiconductor compound contained in the organic semiconductor composition of the present invention is a vapor deposition method or a solvent method (coating a solvent solution of the compound on a substrate and then heating the compound alone or optionally mixed with other components).
  • a film obtained by forming a film by a film forming method for removing the solvent by the above means a compound exhibiting semiconductor characteristics.
  • the organic semiconductor compound is not limited to either a low molecular organic semiconductor compound or a high molecular organic semiconductor compound, but is preferably a low molecular organic semiconductor compound, and its molecular weight is usually 1500 or less and 1000 or less. It is preferable that it is 700 or less.
  • the structure of the organic semiconductor compound is not particularly limited as long as it is a known organic semiconductor compound.
  • organic semiconductor compound examples include naphthacene, pentacene (2,3,6-dibenzoanthracene), acene such as hexacene, heptacene, dibenzopentacene, tetrabenzopentacene, anthradithiophene, pyrene, benzopyrene, dibenzopyrene, chrysene, Perylene, coronene, terylene, obalene, quaterrylene, circumanthracene; a derivative in which part of the carbon atom of the compound is substituted with an atom such as nitrogen, sulfur or oxygen; at least one bonded to the carbon atom of the compound Derivatives in which a hydrogen atom is substituted with a functional group such as a carbonyl group (peroxanthenoxanthene and dioxaanthanthrene compounds including the derivatives, triphenodioxazine, triphenodithiazine,
  • organic semiconductor compound examples include metal phthalocyanine typified by copper phthalocyanine, tetrathiapentalene and derivatives thereof, naphthalene-1,4,5,8-tetracarboxylic acid diimide, N, N′— Bis (4-trifluoromethylbenzyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide, N, N ′-(1H, 1H-perifluorooctyl), N, N′-bis (1H, 1H— Perfluorobutyl), N, N′-dioctylnaphthalene-1,4,5,8-tetracarboxylic acid diimide derivatives, naphthalene-2,3,6,7-tetracarboxylic acid diimide, and the like, anthracene -2,3,6,7-tetracarboxylic acid diimide and other anthracene tetracarboxylic acid diimiimide,
  • organic semiconductor compound examples include 4,4-biphenyldithiol (BPDT), 4,4-diisocyanobiphenyl, 4,4-diisocyano-p-terphenyl, 2,5-bis ( 5'-thioacetyl-2'-thiophenyl) thiophene, 2,5-bis (thioacetoxyl-2'-thiophenyl) thiophene, 4,4'-diisocyanophenyl, benzidine (biphenyl-4,4'-diamine) , TCNQ (tetracyanoquinodimethane), tetrathiafulvalene (TIF) and its derivatives, tetrathiafulvalene (TTF) -TCNQ complex, bisethylenetetrathiafulvalene (BEDTTTTF) -perchlorate complex, BEDTTTTF-iodine complex, TCNQ Field transfer complexes represented by iodine complexes,
  • the organic semiconductor compound used in the organic semiconductor composition of the present invention is preferably a condensed polycyclic aromatic compound, more preferably a condensed polycyclic aromatic compound having a phenacene skeleton, an acene skeleton or a heteroacene skeleton, and a condensed having a heteroacene skeleton.
  • Polycyclic aromatic compounds are more preferred, condensed polycyclic aromatic compounds having a thienothiophene skeleton are particularly preferred, and compounds represented by the following formula (4) or (5) are most preferred.
  • R 7 and R 8 independently represent an aliphatic hydrocarbon group having 1 to 36 carbon atoms.
  • one of R 9 and R 10 represents an alkyl group, an aromatic hydrocarbon group having an alkyl group or a heterocyclic group having an alkyl group, and the other represents an aliphatic hydrocarbon group or an aromatic carbon group. Represents a hydrogen group or a heterocyclic group. However, the case where both R 9 and R 10 are alkyl groups is excluded.
  • the aliphatic hydrocarbon group having 1 to 36 carbon atoms represented by R 7 and R 8 in the formula (4) is saturated or unsaturated as long as it is an aliphatic hydrocarbon group having only 1 to 36 carbon atoms and hydrogen atoms. It is not limited to any of saturated, and is not limited to any of linear, branched and cyclic, but is preferably a linear or branched aliphatic hydrocarbon group, more preferably a linear aliphatic carbonization It is a hydrogen group.
  • the aliphatic hydrocarbon group preferably has 2 to 24 carbon atoms, more preferably 4 to 20 carbon atoms, and still more preferably 6 to 12 carbon atoms.
  • linear or branched saturated aliphatic hydrocarbon groups include methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, t-butyl, and n-pentyl.
  • linear or branched unsaturated aliphatic hydrocarbon group examples include vinyl group, allyl group, eicosadienyl group, 11,14-eicosadienyl group, geranyl (trans-3,7-dimethyl-2,6-octadiene) -1-yl) group, farnesyl (trans, trans-3,7,11-trimethyl-2,6,10-dodecatrien-1-yl) group, 4-pentenyl group, 1-propynyl group, 1-hexynyl group 1-octynyl group, 1-decynyl group, 1-undecynyl group, 1-dodecynyl group, 1-tetradecynyl group, 1-hexadecynyl group, 1-nonadecynyl group and the like.
  • the hydrogen atom in the aliphatic hydrocarbon group having 1 to 36 carbon atoms represented by R 7 and R 8 in Formula (4) may be substituted with a halogen atom.
  • the halogen atom that can be substituted with a hydrogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, preferably a fluorine atom, a chlorine atom, or a bromine atom, and more preferably a fluorine atom or a bromine atom.
  • halogeno-substituted aliphatic hydrocarbon group in which a hydrogen atom is substituted with a halogen atom include a chloromethyl group, a bromomethyl group, a trifluoromethyl group, a pentafluoroethyl group, an n-perfluoropropyl group, and an n-perfluorobutyl group.
  • R 7 and R 8 are each independently a linear or branched aliphatic hydrocarbon group having 2 to 24 carbon atoms, or a linear or branched halogeno-substituted fatty acid having 2 to 24 carbon atoms.
  • a compound which is an aromatic hydrocarbon group preferably a linear or branched aliphatic hydrocarbon group having 4 to 20 carbon atoms or a linear or branched halogeno-substituted aliphatic hydrocarbon group having 4 to 20 carbon atoms.
  • a certain compound is more preferable, and a compound that is a linear or branched aliphatic hydrocarbon group having 6 to 12 carbon atoms or a linear or branched halogeno-substituted aliphatic hydrocarbon group having 6 to 12 carbon atoms is further included.
  • a compound having a straight chain aliphatic hydrocarbon group having 6 to 12 carbon atoms or a straight chain halogeno-substituted aliphatic hydrocarbon group having 6 to 12 carbon atoms is more preferable.
  • R 7 and R 8 may be the same or different.
  • the alkyl group represented by R 9 or R 10 in the formula (5) is not limited to any of linear, branched and cyclic, and specific examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, n -Butyl, iso-butyl, allyl, t-butyl, n-pentyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-tridecyl, n-tetradecyl Group, n-cetyl group, n-heptadecyl group, n-butenyl group, 2-ethylhexyl group, 3-ethylheptyl group, 4-ethyloctyl group, 2-butyloctyl group, 3-butylnonyl group, 4-butyldecyl group Group, 2-hexyldec
  • linear or branched chain such as n-butyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, ethylhexyl group, ethyloctyl group, butyloctyl group and hexyldecyl group And more preferably an n-hexyl group, an n-octyl group, an n-decyl group, a 2-ethylhexyl group, a 3-ethylhexyl group, a 3-ethyloctyl group or a 3-butyloctyl group.
  • the alkyl group represented by R 9 or R 10 in Formula (5) is preferably a linear or branched alkyl group having 2 to 16 carbon atoms, more preferably a linear or branched alkyl group having 4 to 12 carbon atoms.
  • a linear alkyl group having 4 to 10 carbon atoms or a branched alkyl group having 6 to 12 carbon atoms is more preferable, and a linear or branched alkyl group having 6 to 10 carbon atoms is particularly preferable, and Ten straight chain alkyl groups are most preferred.
  • the aromatic hydrocarbon group in the aromatic hydrocarbon group having an alkyl group represented by R 9 or R 10 in the formula (5) means a residue obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • Specific examples of the group hydrocarbon group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, and a benzopyrenyl group.
  • the aromatic hydrocarbon group in the aromatic hydrocarbon group having an alkyl group represented by R 9 or R 10 in Formula (5) is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group.
  • Examples of the alkyl group in the aromatic hydrocarbon group having an alkyl group represented by R 9 or R 10 in formula (5) include the same alkyl groups as those represented by R 9 or R 10 in formula (5), and carbon atoms. It is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably a linear or branched alkyl group having 1 to 6 carbon atoms, and a linear alkyl group having 1 to 6 carbon atoms. More preferably, it is a group.
  • substitution position of the alkyl group on the aromatic hydrocarbon group in the aromatic hydrocarbon group having an alkyl group represented by R 9 or R 10 in Formula (5) is not particularly limited, for example, the aromatic hydrocarbon group is a phenyl group In this case, the substitution position of the alkyl group is preferably the 4-position.
  • the heterocyclic group in the heterocyclic group having an alkyl group represented by R 9 or R 10 in the formula (5) means a residue obtained by removing one hydrogen atom from the heterocyclic ring.
  • Specific examples of the heterocyclic group include Is a pyridyl group, pyrazyl group, pyrimidyl group, quinolyl group, isoquinolyl group, pyrrolyl group, indolenyl group, imidazolyl group, carbazolyl group, thienyl group, furyl group, pyranyl group, pyridonyl group, benzoquinolyl group, anthraquinolyl group, benzothienyl group , A benzofuryl group, a thienothienyl group, and the like.
  • the heterocyclic group in the heterocyclic group having an alkyl group represented by R 9 or R 10 in Formula (5) is preferably a pyridyl group, a thienyl group, a benzothienyl group or a thienothienyl group, more preferably a thienyl group or a benzothienyl group.
  • a thienyl group is more preferable.
  • Examples of the alkyl group in the heterocyclic group having an alkyl group represented by R 9 or R 10 in the formula (5) include the same alkyl groups as those represented by R 9 or R 10 in the formula (5). It is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, more preferably a linear or branched alkyl group having 4 to 8 carbon atoms, and a linear alkyl group having 4 to 8 carbon atoms. More preferably.
  • the aliphatic hydrocarbon group represented by R 9 or R 10 in formula (5) (the aliphatic hydrocarbon group represented by the other) is the same as the aliphatic hydrocarbon group represented by R 7 and R 8 in formula (4).
  • the aliphatic hydrocarbon group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 4 to 16 carbon atoms.
  • saturated groups such as n-butyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, ethylhexyl group, ethyloctyl group, butyloctyl group and hexyldecyl group.
  • a linear or branched alkyl group is preferable, and an n-hexyl group, n-octyl group, n-decyl group, 2-ethylhexyl group, 3-ethylhexyl group or 3-ethyloctyl group is more preferable.
  • an aromatic hydrocarbon having an alkyl group represented by R 9 or R 10 in the formula (5) examples thereof include the same aromatic hydrocarbon groups as described in the group section, preferably a phenyl group, a naphthyl group or a pyridyl group, more preferably a phenyl group or a naphthyl group, and still more preferably a phenyl group.
  • the heterocyclic group represented by R 9 or R 10 in formula (5) (the heterocyclic group represented by the other) is described in the section of the heterocyclic group having an alkyl group represented by R 9 or R 10 in formula (5).
  • the thing similar to a heterocyclic group is mentioned, A pyridyl group, a thienyl group, or a benzothienyl group is preferable, and a thienyl group or a benzothienyl group is more preferable.
  • the aromatic hydrocarbon group represented by R 9 or R 10 in Formula (5) (the aromatic hydrocarbon group represented by the other) and the heterocyclic group (the heterocyclic group represented by the other) may have a substituent.
  • substituents which may be present include those similar to the alkyl group represented by R 9 or R 10 in Formula (5), preferably a linear or branched alkyl group having 1 to 6 carbon atoms, A straight-chain alkyl group having 1 to 6 carbon atoms is more preferable.
  • R 9 and R 10 are a phenyl group having a linear or branched alkyl group having 1 to 10 carbon atoms or a linear or branched alkyl group having 1 to 16 carbon atoms, and the other Is preferably a phenyl group, pyridyl group, thienyl group or benzothienyl group optionally having a linear or branched alkyl group having 1 to 6 carbon atoms, one of which is a linear chain having 4 to 16 carbon atoms.
  • a compound that is a branched alkyl group and the other is a phenyl group, a thienyl group, or a benzothienyl group, which may have a linear or branched alkyl group having 1 to 6 carbon atoms, is more preferable.
  • a linear or branched alkyl group having 4 to 12 carbon atoms the other of which may have a linear or branched alkyl group having 1 to 6 carbon atoms
  • the compound is an aryl group, one of which is a linear alkyl group having 4 to 10 carbon atoms or a branched alkyl group having 6 to 12 carbon atoms, and the other is a linear or branched group having 1 to 6 carbon atoms.
  • a compound that is a phenyl group optionally having a chain alkyl group is particularly preferable, and a compound in which one is a linear alkyl group having 6 to 10 carbon atoms and the other is a phenyl group is most preferable.
  • the content of the organic semiconductor compound in the organic semiconductor composition of the present invention is preferably in the range of 0.1 to 20% by mass, more preferably 0.2 to 15% by mass, and still more preferably 0.3 to 10% by mass. is there.
  • “%” means “mass%” and “parts” means “parts by mass” unless otherwise specified.
  • the insulating compound contained in the organic semiconductor composition of the present invention means a compound other than a compound having conductivity and a compound having semiconductor characteristics, and its structure and molecular weight are not particularly limited.
  • a polymer compound can be preferably used.
  • the insulating organic polymer compound include polyvinyl carboxylate, polyvinyl acetal, polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, cellulose, polyethylene, polypropylene, and these.
  • the insulating compound is preferably a compound having a repeating unit represented by the following formula (1) and / or (2).
  • R 1 to R 4 represent a linear or branched alkyl group having 1 to 20 carbon atoms.
  • R 1 and R 2 in the formula (1) are preferably a linear or branched alkyl group having 1 to 8 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 6 carbon atoms.
  • a linear alkyl group having 2 to 4 carbon atoms is more preferable, and a methyl group is particularly preferable.
  • R 3 and R 4 in the formula (2) are preferably a linear or branched alkyl group having 1 to 17 carbon atoms, and more preferably a linear alkyl group having 5 to 17 carbon atoms.
  • a compound having a repeating unit represented by the following formula (3) is also preferable.
  • R 5 and R 6 represent a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
  • R 5 and R 6 in Formula (3) are preferably a linear or branched alkyl group having 1 to 8 carbon atoms or a hydrogen atom, and a linear or branched alkyl group having 1 to 6 carbon atoms or hydrogen. It is more preferably an atom, more preferably a linear alkyl group having 2 to 4 carbon atoms or a hydrogen atom, and particularly preferably a hydrogen atom.
  • the molecular weight of the insulating compound is not particularly limited, but is preferably an insulating organic polymer compound, and the insulating organic polymer compound has at least one repeating unit of the above formulas (1) to (3). More preferably.
  • the molecular weight of the insulating organic polymer compound is preferably 1,000 to 2,000,000, more preferably 5,000 to 1,500,000, and even more preferably 10,000 to 1,200,000 in weight average molecular weight.
  • the weight average molecular weight in this specification means the value computed in polystyrene conversion based on the measurement result of GPC.
  • the content of the insulating compound in the organic semiconductor composition of the present invention is preferably 1 to 80% by mass, more preferably 1 to 15% by mass with respect to the total of the organic semiconductor compound and the insulating compound. is there.
  • the mass ratio of the organic semiconductor compound to the insulating compound is preferably in an amount of 99: 1 to 20:80, and in an amount of 99: 1 to 60:40. It is more preferable that the amount is 99: 1 to 90:10.
  • the organic solvent A contained in the organic semiconductor composition of the present invention is a good solvent for the insulating compound contained in the organic semiconductor composition of the present invention
  • the organic solvent B is a poor solvent for the insulating compound, and is organic.
  • the solvent A has a lower boiling point than the organic solvent B.
  • “good solvent for insulating compound” means a solvent in which 0.1 part or more of the insulating compound is dissolved in 100 parts of solvent
  • “poor solvent for insulating compound” means solvent. It means a solvent in which the insulating compound is dissolved in less than 0.1 part in 100 parts.
  • Organic solvent A is a good solvent for insulating compounds, and its solubility is preferably 0.1% or more, more preferably 0.3% or more, and even more preferably 0.5% or more.
  • the organic solvent B is a poor solvent for the insulating compound, and its solubility is preferably less than 0.1% and 0.01% or more, and more preferably 0.05% or less and 0.01% or more. Moreover, it is preferable that both the organic solvent A and the organic solvent B are good solvents for the organic semiconductor compound, and the solubility thereof is preferably 0.05% or more, more preferably 0.1% or more, and 0.2% or more. Further preferred.
  • the boiling point of the organic solvent A and the organic solvent B is not particularly limited as long as the boiling point of the organic solvent A is lower than the boiling point of the organic solvent B. However, when an actual coating printing process is assumed, the safety, storage, and production of the solvent It is necessary to consider composition stability under conditions, and it is preferable that the boiling point of at least one kind of solvent is 140 ° C. or higher, and more preferable that the boiling point of at least one kind of solvent is 170 ° C. or higher.
  • the difference in boiling point between the organic solvent A and the organic solvent B is preferably 5 ° C. or more, more preferably 10 ° C. or more, further preferably 10 ° C. or more and 130 ° C. or less, and 10 ° C. or more and 100 ° C. or less. It is particularly preferable that the temperature is 10 ° C. or more and 60 ° C. or less.
  • the organic solvent A is a solvent comprising a compound having an ether group, a ketone group or an ester group.
  • the solvent B is preferably a solvent composed of a hydrocarbon-based compound, more preferably a solvent composed of an aromatic-hydrocarbon compound, and further preferably tetralin, cyclohexylbenzene or trimethylbenzene. preferable. It is also a preferred embodiment that both the organic solvent A and the organic solvent B are solvents made of aromatic compounds.
  • the organic solvent A is preferably a solvent composed of a hydrocarbon compound, and is composed of an aromatic hydrocarbon compound.
  • a solvent is more preferable, and o-xylene, trimethylbenzene, diethylbenzene or tetralin is still more preferable.
  • the organic solvent B is preferably a solvent composed of a compound having an ether group, a ketone group or an ester group, more preferably a solvent composed of an aromatic compound having an ether group, a ketone group or an ester group.
  • Anisole solvents such as methylanisole, dimethylanisole, trichloroanisole, dichloroanisole, bromoanisole and fluoroanisole, and ester solvents such as ethyl benzoate, butyl benzoate, methyl benzoate, benzyl benzoate, phenyl acetate and benzyl acetate Or a ketone solvent such as acetophenone is more preferable. It is also a preferred embodiment that both the organic solvent A and the organic solvent B are solvents made of aromatic compounds.
  • the difference in the hydrogen bond term in the solubility parameter HSP value of Hansen between the organic solvent A and the insulating compound is 3.0 cal / cm 3 or less, and the organic solvent B and the insulating compound
  • the difference in hydrogen bond term in the solubility parameter of Hansen is preferably 2.0 cal / cm 3 or more, and the difference in hydrogen bond term in the solubility parameter of Hansen between the organic solvent A and the insulating compound is 2.5 cal / cm 3.
  • the difference in hydrogen bond in the Hansen solubility parameters of the organic solvent B and the insulating compound is 2.0cal / cm 3 or more, Hansen and organic solvent a insulating compound Han difference hydrogen bond in solubility parameter is at 2.0cal / cm 3 or less, and the organic solvent B and insulating compound It is more preferable that the difference of the hydrogen bond in the down solubility parameter is less than 2.0cal / cm 3 or more 5.0cal / cm 3.
  • HSP value means a Hansen solubility parameter: A User's Handbook, Second Edition, C.I. M.M. Means the value of the solubility parameter calculated using “HSPiP 3rd edition” (software version 3.1.16) based on the formula explained in Hansen (2007), Taylor and Francis Group, LLC (HsPiP Manual) To do.
  • ⁇ D is a dispersion term
  • ⁇ P is a polar term
  • ⁇ H is a hydrogen bond term.
  • organic solvent A and the organic solvent B contained in the organic semiconductor composition of the present invention are shown in the following Tables 1 to 5 together with HSP values and boiling points.
  • organic solvent A and the organic solvent B are not limited to those of the above-described preferred specific examples, and an appropriate solvent may be selected depending on the types of the organic semiconductor compound and the insulating compound within a range satisfying the various conditions described above.
  • the content ratio a: b (organic solvent A: organic solvent B) of the organic solvent A and the organic solvent B in the organic semiconductor composition of the present invention is preferably 1: 8 to 8: 1, and 1: 6 to 6 Is more preferably 1: 5 to 5: 1, still more preferably 1: 5 to 2: 1 and most preferably 1: 1.
  • the method for producing the organic semiconductor composition of the present invention is not particularly limited, and a known method can be adopted.
  • a desired composition can be obtained by sequentially adding a predetermined amount of an organic semiconductor compound and an insulating compound into a mixed solvent of an organic solvent A and an organic solvent B, and appropriately performing a stirring treatment.
  • the organic thin film (organic semiconductor film) of the present invention is formed by forming an organic semiconductor composition layer by coating or printing the organic semiconductor composition of the present invention on a substrate and then heat-treating the composition layer. can get.
  • a conventionally known method can be employed for coating or printing without any particular limitation.
  • the heat treatment method and conditions are not particularly limited as long as the organic solvents A and B can be evaporated, but it is preferable to perform the heat treatment under reduced pressure in order to lower the drying temperature.
  • the organic thin film transistor of the present invention has two electrodes (source electrode and drain electrode) in contact with the organic semiconductor film of the present invention, and the current flowing between the electrodes is a voltage applied to another electrode called a gate electrode. It is something to control.
  • An organic thin film transistor device generally has a structure in which a gate electrode is insulated by an insulating film (Metal-Insulator-Semiconductor MIS structure).
  • a structure in which a metal oxide film is used as an insulating film is called a MOS structure, and a structure in which a gate electrode is formed through a Schottky barrier (that is, an MES structure) is also known.
  • the MIS structure is often used.
  • 1, 1 represents a source electrode
  • 2 represents an organic thin film (semiconductor layer)
  • 3 represents a drain electrode
  • 4 represents an insulator layer
  • 5 represents a gate electrode
  • 6 represents a substrate.
  • positioning of each layer and an electrode can be suitably selected according to the use of a device.
  • a current flows through A to D and F in a direction parallel to the substrate, and thus is called a lateral transistor.
  • A is called a bottom contact bottom gate structure
  • B is called a top contact bottom gate structure.
  • C has a source and drain electrode and an insulator layer on a semiconductor, and further has a gate electrode formed thereon, which is called a top contact top gate structure.
  • D has a structure called a top & bottom contact bottom gate type transistor.
  • E is a bottom contact top gate structure.
  • E is a schematic diagram of a transistor having a vertical structure, that is, a static induction transistor (SIT).
  • SIT static induction transistor
  • a large amount of carriers can move at a time because the current flow spreads in a plane.
  • the source electrode and the drain electrode are arranged vertically, the distance between the electrodes can be reduced, so that the response is fast. Therefore, it can be preferably applied to uses such as flowing a large current or performing high-speed switching.
  • FIG. 1E does not show a substrate, but in the normal case, a substrate is provided outside the source or drain electrode represented by 1 and 3 in FIG. 1E.
  • the substrate 6 needs to be able to hold each layer formed thereon without peeling off.
  • an insulating material such as a resin plate, film, paper, glass, quartz, ceramic, etc .; a material in which an insulating layer is formed on a conductive substrate such as a metal or alloy by coating; a material composed of various combinations such as a resin and an inorganic material; Etc.
  • the resin film that can be used include polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyamide, polyimide, polycarbonate, cellulose triacetate, polyetherimide, and the like.
  • the thickness of the substrate is usually 1 ⁇ m to 10 mm, preferably 5 ⁇ m to 5 mm.
  • a conductive material is used for the source electrode 1, the drain electrode 3, and the gate electrode 5.
  • conductive oxides such as InO 2 , ZnO 2 , SnO 2 , ITO
  • conductive polymer compounds such as polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene vinylene, polydiacetylene
  • silicon, germanium Semiconductors such as gallium arsenide
  • carbon materials such as carbon black, fullerene, carbon nanotubes, graphite, graphene, etc. can be used.
  • the conductive polymer compound or the semiconductor may be doped.
  • the dopant examples include inorganic acids such as hydrochloric acid and sulfuric acid; organic acids having an acidic functional group such as sulfonic acid; Lewis acids such as PF 5 , AsF 5 and FeCl 3 ; halogen atoms such as iodine; lithium, sodium and potassium And the like, and the like. Boron, phosphorus, arsenic and the like are also frequently used as dopants for inorganic semiconductors such as silicon.
  • a conductive composite material in which carbon black or metal particles are dispersed in the above dopant is also used.
  • the source electrode 1 and the drain electrode 3 that are in direct contact with the semiconductor it is important to select an appropriate work function or to treat the surface in order to reduce the contact resistance.
  • the distance (channel length) between the source electrode and the drain electrode is an important factor that determines the characteristics of the device, and an appropriate channel length is necessary. If the channel length is short, the amount of current that can be extracted increases, but short channel effects such as the influence of contact resistance may occur, and semiconductor characteristics may be degraded.
  • the channel length is usually 0.01 to 300 ⁇ m, preferably 0.1 to 100 ⁇ m.
  • the width (channel width) between the source and drain electrodes is usually 10 to 5000 ⁇ m, preferably 40 to 2000 ⁇ m. In addition, this channel width can be made longer by making the electrode structure a comb type structure, etc., and it is necessary to make it an appropriate length depending on the required amount of current and the structure of the device. is there.
  • the structure (shape) of each of the source electrode and the drain electrode will be described.
  • the structures of the source electrode and the drain electrode may be the same or different.
  • each electrode In the case of a bottom contact structure, it is generally preferable to produce each electrode using a lithography method and to form each electrode in a rectangular parallelepiped. Recently, printing accuracy by various printing methods has been improved, and it has become possible to produce electrodes with high accuracy using techniques such as inkjet printing, gravure printing, or screen printing. In the case of a top contact structure having an electrode on a semiconductor, it can be deposited using a shadow mask or the like. It has also become possible to directly print and form electrode patterns using a technique such as inkjet.
  • the length of the electrode is the same as the channel width.
  • the width of the electrode is not particularly specified, but is preferably shorter in order to reduce the area of the device within a range where the electrical characteristics can be stabilized.
  • the width of the electrode is usually 0.1 to 1000 ⁇ m, preferably 0.5 to 100 ⁇ m.
  • the thickness of the electrode is usually 0.1 to 1000 nm, preferably 1 to 500 nm, more preferably 5 to 200 nm.
  • a wiring is connected to each of the electrodes 1, 3, and 5, and the wiring is also made of the same material as the electrode.
  • An insulating material is used for the insulator layer 4.
  • this insulator layer one having high electrical insulation characteristics can be preferably used in order to reduce leakage current. As a result, the film thickness can be reduced, the insulation capacity can be increased, and the current that can be extracted increases.
  • the surface energy of the insulator layer is reduced and the film is smooth without any unevenness.
  • a self-assembled monolayer or two insulating layers may be formed.
  • the film thickness of the insulator layer 4 varies depending on the material, but is usually 0.1 nm to 100 ⁇ m, preferably 0.5 nm to 50 ⁇ m, more preferably 1 nm to 10 ⁇ m.
  • the organic semiconductor composition of the present invention is used as the material for the semiconductor layer 2.
  • the semiconductor layer 2 can be formed by forming an organic semiconductor film by a method according to the method for forming an organic semiconductor film described above.
  • a plurality of layers may be formed for the semiconductor layer (organic thin film), but a single layer structure is more preferable.
  • the thickness of the semiconductor layer 2 is preferably as thin as possible without losing necessary functions. In lateral organic transistors as shown in A, B and D, the device characteristics do not depend on the film thickness if the film thickness exceeds a predetermined value, but the leakage current often increases as the film thickness increases. Because.
  • the film thickness of the semiconductor layer for exhibiting a necessary function is usually 1 nm to 1 ⁇ m, preferably 5 nm to 500 nm, more preferably 10 nm to 300 nm.
  • the organic thin film transistor for example, other layers can be provided as necessary between the substrate layer and the insulating film layer, between the insulating film layer and the semiconductor layer, or on the outer surface of the device.
  • the protective layer is formed directly on the organic thin film or via another layer, the influence of outside air such as humidity can be reduced.
  • the electrical characteristics can be stabilized, such as the ON / OFF ratio of the organic transistor device can be increased.
  • the material of the protective layer is not particularly limited.
  • films made of various resins such as acrylic resin such as epoxy resin and polymethyl methacrylate, polyurethane, polyimide, polyvinyl alcohol, fluororesin, and polyolefin; silicon oxide, aluminum oxide, nitriding
  • An inorganic oxide film such as silicon; and a film made of a dielectric material such as a nitride film are preferably used.
  • a resin (polymer) having a low oxygen or moisture permeability and a low water absorption rate is preferable.
  • Gas barrier protective materials developed for organic EL displays can also be used.
  • the film thickness of a protective layer can select arbitrary film thickness according to the objective, Usually, it is 100 nm thru
  • the characteristics as an organic transistor device by performing surface modification or surface treatment in advance on a substrate or an insulator layer on which an organic thin film is laminated. For example, by adjusting the degree of hydrophilicity / hydrophobicity of the substrate surface, the film quality and film formability of the film formed thereon can be improved.
  • the characteristics of organic semiconductor materials can vary greatly depending on the state of the film, such as molecular orientation. Therefore, the surface treatment on the substrate, the insulator layer, etc. can control the molecular orientation at the interface with the organic thin film to be formed later, or reduce the trap sites on the substrate or the insulator layer. It is considered that characteristics such as carrier mobility are improved.
  • the trap site refers to a functional group such as a hydroxyl group present in an untreated substrate.
  • a functional group such as a hydroxyl group present in an untreated substrate.
  • electrons are attracted to the functional group, and as a result, carrier mobility is lowered. . Therefore, reducing trap sites is often effective for improving characteristics such as carrier mobility.
  • Examples of the surface treatment for improving the properties as described above include, for example, self-assembled monolayer treatment with hexamethyldisilazane, octyltrichlorosilane, octadecyltrichlorosilane, etc., surface treatment with polymers, hydrochloric acid, sulfuric acid, acetic acid, etc.
  • the above-described vacuum process and solution process can be appropriately employed as a method of providing each layer such as a substrate layer and an insulating film layer or an insulating film layer and an organic thin film.
  • the organic transistor of the present invention is produced by providing various layers and electrodes necessary on the substrate 6 (see FIG. 2 (1)).
  • the substrate those described above can be used. It is also possible to perform the above-described surface treatment or the like on this substrate.
  • the thickness of the substrate 6 is preferably thin as long as necessary functions are not hindered. Although it varies depending on the material, it is usually 1 ⁇ m to 10 mm, preferably 5 ⁇ m to 5 mm. Further, if necessary, the substrate can have an electrode function.
  • a gate electrode 5 is formed on the substrate 6 (see FIG. 2B).
  • the electrode material described above is used as the electrode material.
  • various methods can be used. For example, a vacuum deposition method, a sputtering method, a coating method, a thermal transfer method, a printing method, a sol-gel method, and the like are employed. It is preferable to perform patterning as necessary so as to obtain a desired shape during or after film formation.
  • Various methods can be used as the patterning method, and examples thereof include a photolithography method in which patterning and etching of a photoresist are combined.
  • the film thickness of the gate electrode 5 varies depending on the material, it is usually 0.1 nm to 10 ⁇ m, preferably 0.5 nm to 5 ⁇ m, and more preferably 1 nm to 3 ⁇ m. In the case where the gate electrode serves as the substrate, the thickness may be larger than the above thickness.
  • An insulator layer 4 is formed over the gate electrode 5 (see FIG. 2 (3)).
  • the material described above is used as the insulator material.
  • Various methods can be used to form the insulator layer 4. For example, spin coating, spray coating, dip coating, casting, bar coating, blade coating and other coating methods, screen printing, offset printing, inkjet printing methods, vacuum deposition, molecular beam epitaxial growth, ion cluster beam method, ion plating Examples thereof include dry process methods such as a coating method, a sputtering method, an atmospheric pressure plasma method, and a CVD method.
  • a method of forming an oxide film on a metal by a thermal oxidation method such as a sol-gel method, alumite on aluminum, or silicon oxide on silicon is employed.
  • a predetermined surface treatment can be performed on the insulator layer in order to satisfactorily orient the molecules of the compound constituting the semiconductor at the interface between the two layers.
  • the surface treatment method the same surface treatment as that of the substrate can be used.
  • the film thickness of the insulator layer 4 is preferably as thin as possible because the amount of electricity taken out can be increased by increasing its electric capacity. If the film is thin at this time, the leakage current increases. Therefore, it is preferable that the film is thin as long as the function is not impaired.
  • it is 0.1 nm to 100 ⁇ m, preferably 0.5 nm to 50 ⁇ m, and more preferably 5 nm to 10 ⁇ m.
  • organic thin film In forming the organic thin film (organic semiconductor layer), various methods such as coating and printing can be used. Specifically, forming method by solution process such as dip coating method, die coater method, roll coater method, bar coater method, spin coating method, etc., ink jet method, screen printing method, offset printing method, micro contact printing method, etc. Is mentioned.
  • a method for obtaining an organic thin film by forming a film by a solution process will be described.
  • the organic semiconductor composition is applied to a substrate (exposed portions of the insulator layer, the source electrode, and the drain electrode).
  • Coating methods include spin coating, drop casting, dip coating, spraying, flexographic printing, relief printing such as resin relief printing, flat printing such as offset printing, dry offset printing, pad printing, etc.
  • Intaglio printing methods such as gravure printing methods, silk screen printing methods, stencil printing methods, stencil printing methods such as lingraph printing methods, ink jet printing methods, micro contact printing methods, etc., and a combination of these methods It is done.
  • the Langmuir project method in which a monomolecular film of an organic thin film prepared by dropping the above composition on a water surface is transferred to a substrate and laminated, and two materials in a liquid crystal or melt state are used.
  • a method of sandwiching between substrates and introducing them between the substrates by capillary action can also be adopted.
  • the environment such as the temperature of the substrate and the composition at the time of film formation is also important, and the characteristics of the transistor may vary depending on the temperature of the substrate and the composition.
  • the substrate temperature is usually 0 to 200 ° C., preferably 10 to 120 ° C., more preferably 15 to 100 ° C. Care must be taken because it largely depends on the solvent in the composition to be used.
  • the film thickness of the organic thin film produced by this method is preferably thin as long as the function is not impaired. There is a concern that the leakage current increases as the film thickness increases.
  • the film thickness of the organic thin film is usually 1 nm to 1 ⁇ m, preferably 5 nm to 500 nm, more preferably 10 nm to 300 nm.
  • the characteristics of the organic thin film thus formed can be further improved by post-processing.
  • the heat treatment reduces the strain in the film generated during film formation, reduces pinholes, etc., and can control the alignment and orientation in the film. Can be achieved.
  • it is effective to perform this heat treatment when producing the organic transistor of the present invention.
  • the heat treatment is performed by heating the substrate after forming the organic thin film.
  • the temperature of the heat treatment is not particularly limited, but is usually from room temperature to about 180 ° C., preferably 40 to 160 ° C., more preferably 45 to 150 ° C.
  • the heat treatment time at this time is not particularly limited, but is usually from 10 seconds to 24 hours, preferably from 30 seconds to 3 hours.
  • the atmosphere at that time may be air, but may be an inert atmosphere such as nitrogen or argon.
  • the film shape can be controlled by solvent vapor.
  • an oxidizing or reducing gas such as oxygen or hydrogen, or an oxidizing or reducing liquid
  • a property change caused by oxidation or reduction is induced. You can also. This can be used for the purpose of increasing or decreasing the carrier density in the film, for example.
  • the characteristics of the organic thin film can be changed by adding a trace amount of elements, atomic groups, molecules, and polymers to the organic thin film.
  • acids such as oxygen, hydrogen, hydrochloric acid, sulfuric acid and sulfonic acid; Lewis acids such as PF 5 , AsF 5 and FeCl 3 ; halogen atoms such as iodine; metal atoms such as sodium and potassium; tetrathiafulvalene (TTF)
  • a donor compound such as phthalocyanine can be doped. This can be achieved by bringing these gases into contact with the organic thin film, immersing them in a solution, or performing an electrochemical doping treatment.
  • dopings can be added at the time of synthesizing the organic semiconductor compound, added to the organic semiconductor composition, or added in the process of forming the organic thin film, even after the organic thin film is not formed.
  • the material used for doping is added to the material that forms the organic thin film at the time of vapor deposition and co-evaporated, or the organic thin film is mixed in the surrounding atmosphere when the organic thin film is produced (the organic thin film is formed in an environment in which the doping material is present). It is also possible to dope by accelerating ions in vacuum and colliding with the film.
  • These doping effects include changes in electrical conductivity due to increase or decrease in carrier density, changes in carrier polarity (p-type and n-type), changes in Fermi level, and the like.
  • the source electrode 1 and the drain electrode 3 can be formed in accordance with the case of the gate electrode 5 (see FIG. 2 (5)).
  • Various additives can be used to reduce the contact resistance with the organic thin film.
  • the protective layer 7 When the protective layer 7 is formed on the organic thin film, there is an advantage that the influence of outside air can be minimized and the electrical characteristics of the organic transistor can be stabilized (see FIG. 2 (6)).
  • the materials described above are used as the material for the protective layer.
  • the protective layer 7 may have any film thickness depending on the purpose, but is usually 100 nm to 1 mm.
  • the protective layer is made of a resin, for example, a method of applying a resin solution and then drying to form a resin film; applying or vapor-depositing a resin monomer And then a method of polymerizing. Cross-linking treatment may be performed after film formation.
  • a formation method in a vacuum process such as a sputtering method or a vapor deposition method, or a formation method in a solution process such as a sol-gel method can be used.
  • a protective layer can be provided between the layers as necessary. These layers may help to stabilize the electrical characteristics of the organic transistor.
  • an organic semiconductor compound is used as an organic semiconductor composition
  • an organic thin film transistor can be produced by a relatively low temperature process. Accordingly, flexible materials such as plastic plates and plastic films that could not be used under conditions exposed to high temperatures can be used as the substrate. As a result, it is possible to manufacture a light and flexible device that is not easily broken and can be used as a switching device for an active matrix of a display.
  • Organic thin film transistors can also be used as digital devices and analog devices such as memory circuit devices, signal driver circuit devices, and signal processing circuit devices. Further, by combining these, it is possible to produce a display, an IC card, an IC tag, and the like. Furthermore, since the characteristics of the organic transistor can be changed by an external stimulus such as a chemical substance, it can be used as a sensor.
  • OSC-1 (9-octyl-3-phenylnaphtho [2 ′, 3 ′: 4,5] thieno [3,2-b] [1] benzoate represented by the following formula (6) is used.
  • Thiophene 6,13-bis (triisopropylsilylethynyl) pentacene) represented by the following formula (7)
  • OSC-3 (2,7-dioctyl [1] represented by the following formula (8) Benzothieno [3,2-b] [1] benzothiophene
  • Benzothieno [3,2-b] [1] benzothiophene was used as the organic semiconductor compound.
  • Example 2 (Preparation of the organic thin film transistor element of the present invention) Au was vacuum-deposited on an n-doped silicon wafer with a Si thermal oxide film using a shadow mask to produce a source electrode and a drain electrode having a channel length of 20 ⁇ m and a channel width of 100 ⁇ m, respectively.
  • the organic semiconductor composition 1 obtained in Example 1 was applied on this substrate by spin coating, and then hot plate The organic solvent was dried under conditions of 140 ° C. ⁇ 10 minutes to form an organic thin film (organic semiconductor layer), and the bottom contact type organic thin film transistor element 1 (FIG. 1A) of the present invention was produced.
  • the thermal oxide film in the n-doped silicon wafer with the thermal oxide film has a function of an insulating layer
  • the n-doped silicon wafer has the functions of a substrate and a gate electrode.
  • organic thin film transistor elements 1 were produced on a single substrate according to Example 2, and the change in drain current was measured when the gate voltage was swept from +30 V to -40 V under the condition of drain voltage -1 V. Hole mobility was calculated from the equation (a) is 1.42cm 2 / Vs, the standard deviation of the mobility 0.18 cm 2 / Vs, the threshold voltage is -0.37V, the standard deviation of the threshold potential is 0.21V there were.
  • the organic thin film transistor element 1 obtained by using the organic semiconductor composition of the present invention was an organic thin film transistor element having high mobility and small variations in mobility and threshold.
  • Example 3 (Preparation of the organic semiconductor composition 2 of the present invention) An organic semiconductor composition 2 was prepared in the same manner as in Example 1 except that the OSC-1 concentration was changed to OSC-2, the OSC-2 concentration to 0.5%, and the PMMA concentration to 0.026%.
  • Table 11 shows the concentration of OSC-2, the concentration of PMMA, the type and boiling point of solvent A, the type and boiling point of organic semiconductor B, the difference between the boiling points of organic solvent A and organic solvent B, and organic solvent A Content ratio of organic solvent B (a: b), difference in hydrogen bond between the solubility parameters of organic solvent A and PMMA ( ⁇ P A ).
  • the difference ( ⁇ P B ) in hydrogen bonding between the solubility parameters of organic solvent B and PMMA was shown.
  • Example 4 (Preparation of the organic semiconductor composition 3 of the present invention) OSC-1 was changed to OSC-3, OSC-3 concentration 1.0%, PMMA concentration 0.053%, and the ratio of organic solvent A to organic solvent B changed from 1: 1 to 8: 1.
  • An organic semiconductor composition 3 was prepared according to Example 1.
  • Table 11 shows the concentration of OSC-3, the concentration of PMMA, the type and boiling point of solvent A, the type and boiling point of organic semiconductor B, the difference between the boiling points of organic solvent A and organic solvent B, and organic solvent A Content ratio of organic solvent B (a: b), difference in hydrogen bond between the solubility parameters of organic solvent A and PMMA ( ⁇ P A ).
  • the difference ( ⁇ P B ) in hydrogen bonding between the solubility parameters of organic solvent B and PMMA was shown.
  • Examples 5 and 6 (Production and characteristic evaluation of organic thin film transistor elements 2 to 3 of the present invention) According to Example 2, except that the organic semiconductor composition 1 was changed to the organic semiconductor compositions 2 and 3 obtained in Examples 3 and 4, respectively, the organic thin film transistor elements 2 and 3 of the present invention were respectively produced.
  • the semiconductor characteristics were evaluated under the same conditions as the characteristics evaluation of the thin film transistor element 1.
  • Table 12 shows the evaluation results of the characteristics of the organic thin film transistor elements 1 to 3.
  • Examples 7 to 9 (Preparation of organic semiconductor compositions 4 to 6 of the present invention) Organic semiconductor compositions 4 to 6 were prepared in the same manner as in Example 1 except that the organic solvent A was changed from the anisole used in Example 1 to the solvents shown in Table 13.
  • Table 13 shows the concentration of OSC-1 in organic semiconductor compositions 4 to 6, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, the difference between the boiling points of organic solvent A and organic solvent B, organic The difference of the hydrogen bond term ( ⁇ P A ) between the solubility parameters of solvent A and PMMA and the difference of the hydrogen bond term ( ⁇ P B ) between the solubility parameters of organic solvent B and PMMA are shown.
  • Example 10 (Preparation of the organic semiconductor composition 7 of the present invention) Organic semiconductor composition 7 was prepared according to Example 1 except that organic solvent B was changed from tetralin to cyclohexylbenzene, and the mass ratio of organic solvent A and organic solvent B was changed from 1: 1 to 7: 1.
  • Table 13 shows the concentration of OSC-1 in organic semiconductor 7, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, the difference between the boiling points of organic solvent A and organic solvent B, and organic solvent A and PMMA.
  • the difference of the hydrogen bond term ( ⁇ P A ) of the solubility parameter of the organic solvent B and the difference of the hydrogen bond term ( ⁇ P B ) of the solubility parameter of the organic solvent B and PMMA are shown.
  • Examples 11 to 14 (Production and characteristic evaluation of organic thin film transistor elements 4 to 7 of the present invention) According to Example 2, except that the organic semiconductor composition 1 was changed to the organic semiconductor compositions 4 to 7 obtained in Examples 7 to 10, respectively, the organic thin film transistor elements 4 to 7 of the present invention were respectively produced. The semiconductor characteristics were evaluated under the same conditions as the characteristics evaluation of the thin film transistor element 1. Table 14 shows the evaluation results of the characteristics of the organic thin film transistor elements 4 to 7.
  • the organic thin film transistor elements 2 to 7 obtained by using the organic semiconductor composition of the present invention were organic thin film transistor elements having high mobility and small variations in mobility and threshold.
  • Comparative Example 1 (Preparation of Comparative Organic Semiconductor Composition 8) A comparative organic semiconductor composition 8 was prepared according to Example 1 except that the mixed solution of anisole and tetralin was changed to only anisole.
  • Table 15 shows the OSC-1 concentration, the PMMA concentration, the type and boiling point of the organic solvent A, and the difference ( ⁇ P A ) in the hydrogen bonding terms of the solubility parameters of the organic solvent A and PMMA in the organic semiconductor composition 8.
  • Comparative Example 2 (Production and characteristic evaluation of comparative organic thin film transistor element 8) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 8 obtained in Comparative Example 1, a comparative organic thin film transistor element 8 was prepared according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1. The semiconductor characteristics were evaluated under the following conditions. Table 16 shows the evaluation results of the characteristics of the organic thin film transistor element 8.
  • the organic thin film transistor element 8 obtained using the organic semiconductor composition for comparison had a larger variation in threshold than the organic thin film transistor element of the present invention.
  • Comparative Example 3 (Preparation of comparative organic semiconductor composition 9) Dissolve by adding OSC-1 and PMMA in concentrations of 0.3% and 0.003% to a solution in which anisole (Tokyo Kasei) and tetralin (Tokyo Chemical) are mixed at a ratio of 9: 1.
  • the organic semiconductor composition 9 was prepared.
  • Table 17 shows the concentration of OSC-1 in organic semiconductor composition 9, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the mass ratio of organic solvent A and organic solvent B (a: b )showed that.
  • Comparative Example 4 (Production and characteristic evaluation of comparative organic thin film transistor element 9) Except that the organic semiconductor composition 1 was changed to the organic semiconductor composition 9 obtained in Comparative Example 3, a comparative organic thin film transistor element 9 was prepared according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1 The semiconductor characteristics were evaluated under the following conditions. Table 18 shows the evaluation results of the organic thin film transistor element 9.
  • Example 15 (Preparation of the organic semiconductor composition 10 of the present invention) An organic semiconductor composition 10 was prepared according to Example 1 except that the ratio of anisole and tetralin was changed to 8: 1.
  • Table 17 shows the concentration of OSC-1 in organic semiconductor composition 10, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the content mass ratio of organic solvent A and organic solvent B (a: b )showed that.
  • Example 16 (Production and characteristic evaluation of organic thin film transistor element 10 of the present invention) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 10 obtained in Example 15, the organic thin film transistor element 10 of the present invention was produced according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1. The semiconductor characteristics were evaluated under the following conditions. Table 18 shows the evaluation results of the organic thin film transistor element 10.
  • Example 17 (Preparation of the organic semiconductor composition 11 of the present invention) Organic semiconductor composition 11 was prepared according to Example 1 except that the ratio of anisole to tetralin was changed to 1: 5 and the concentration of PMMA was changed to 0.003%. Table 17 shows the concentration of OSC-1 in organic semiconductor composition 11, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the mass ratio of organic solvent A and organic solvent B (a: b )showed that.
  • Example 18 (Production and characteristic evaluation of organic thin film transistor 11 of the present invention) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 11 obtained in Example 17, the organic thin film transistor element 11 of the present invention was produced according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1 The semiconductor characteristics were evaluated under the following conditions. Table 18 shows the evaluation results of the organic thin film transistor element 11.
  • Example 19 (Preparation of the organic semiconductor composition 12 of the present invention) An organic semiconductor composition 12 was prepared according to Example 1 except that the ratio of anisole and tetralin was changed to 1: 8.
  • Table 17 shows the concentration of OSC-1 in organic semiconductor composition 12, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the mass ratio of organic solvent A and organic solvent B (a: b )showed that.
  • Example 20 (Production and characteristic evaluation of organic thin film transistor 12 of the present invention) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 12 obtained in Example 19, the organic thin film transistor element 12 of the present invention was produced according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1 The semiconductor characteristics were evaluated under the following conditions. Table 18 shows the evaluation results of the organic thin film transistor element 12.
  • Comparative Example 5 (Preparation of Comparative Organic Semiconductor Composition 13) A comparative organic semiconductor composition 13 was prepared according to Comparative Example 3 except that the ratio of anisole to tetralin was changed to 1: 9.
  • Table 17 shows the concentration of OSC-1 in organic semiconductor composition 13, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the mass ratio of organic solvent A and organic solvent B (a: b )showed that.
  • Comparative Example 6 (Production and characteristic evaluation of comparative organic thin film transistor element 13) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 13 obtained in Comparative Example 5, the organic thin film transistor element 13 of the present invention was produced according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1. The semiconductor characteristics were evaluated under the following conditions. Table 18 shows the evaluation results of the organic thin film transistor element 13.
  • the organic thin film transistor element obtained by using the organic semiconductor composition of the present invention was an organic thin film transistor element having high mobility and small variations in mobility and threshold.
  • the organic thin-film transistor element obtained by using the method had a large variation in threshold value.
  • Example 21 (Preparation of the organic semiconductor composition 14 of the present invention) Organic semiconductor composition 14 was prepared in the same manner as in Example 1 except that PMMA dissolved in the mixed solution was changed to an amount such that the concentration was 0.003%.
  • Table 19 shows the concentration of OSC-1 in organic semiconductor composition 14, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the content mass ratio of organic solvent A and organic solvent B (a: b )showed that.
  • Example 22 (Production and characteristic evaluation of organic thin film transistor element 14 of the present invention) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 14 obtained in Example 21, the organic thin film transistor element 14 of the present invention was produced according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1. The semiconductor characteristics were evaluated under the following conditions. Table 20 shows the evaluation results of the organic thin film transistor element 14.
  • Example 23 (Preparation of the organic semiconductor composition 15 of the present invention) An organic semiconductor composition 15 was prepared in the same manner as in Example 1 except that PMMA dissolved in the mixed solution was changed to an amount such that the concentration became 0.05%.
  • Table 19 shows the concentration of OSC-1 in organic semiconductor composition 15, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the mass ratio of organic solvent A and organic solvent B (a: b )showed that.
  • Example 24 (Production and characteristic evaluation of organic thin film transistor element 15 of the present invention) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 15 obtained in Example 23, the organic thin film transistor element 15 of the present invention was produced according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1 The semiconductor characteristics were evaluated under the following conditions. Table 20 shows the evaluation results of the organic thin film transistor element 15.
  • Example 25 (Preparation of the organic semiconductor composition 16 of the present invention) An organic semiconductor composition 16 was prepared in the same manner as in Example 1 except that PMMA dissolved in the mixed solution was changed to an amount that gave a concentration of 0.2%.
  • Table 19 shows the concentration of OSC-1 in organic semiconductor composition 16, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the mass ratio of organic solvent A and organic solvent B (a: b )showed that.
  • Example 26 (Production and characteristic evaluation of organic thin film transistor element 16 of the present invention) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 16 obtained in Example 25, the organic thin film transistor element 16 of the present invention was prepared according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1 The semiconductor characteristics were evaluated under the following conditions. Table 20 shows the evaluation results of the organic thin film transistor element 16.
  • the organic thin film transistor element obtained by using the organic semiconductor composition of the present invention has small variations in mobility and threshold and is excellent in uniformity.
  • Example 27 Preparation of the organic semiconductor composition 17 of the present invention
  • o-xylene manufactured by Kanto Chemical
  • 1-phenoxy-2-propanol manufactured by Tokyo Chemical Industry
  • An amount of OSC-1 and PS were added and dissolved to prepare an organic semiconductor composition 17.
  • the difference between the solubility parameters of o-xylene and 1-phenoxy-2-propanol is 0.20 cal / cm 3
  • the difference between the solubility parameters of 1-phenoxy-2-propanol and PS is 11.0 cal / cm 3 . 3 .
  • Table 21 shows the concentration of OSC-1, the concentration of PS, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, the difference in boiling point between organic solvent A and organic solvent B, the inclusion of organic solvent A and organic solvent B
  • the mass ratio (a: b) the difference in the hydrogen bond term between the solubility parameters of the organic solvents A and PS ( ⁇ P A ), and the difference in the hydrogen bond term between the solubility parameters of the organic solvent B and PS ( ⁇ P B ) are shown.
  • Example 28 (Production and characteristic evaluation of organic thin film transistor element 17 of the present invention) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 17 obtained in Example 27, the organic thin film transistor element 17 of the present invention was prepared according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1. The semiconductor characteristics were evaluated under the following conditions. Table 22 shows the evaluation results of the organic thin film transistor element 17.
  • the organic thin film transistor element obtained by using the organic semiconductor composition of the present invention has small variations in mobility and threshold and is excellent in uniformity.
  • Example 29 (Preparation of the organic semiconductor composition 18 of the present invention) An organic semiconductor composition 18 was prepared according to Example 1 except that the molecular weight of PMMA dissolved in the mixed solution was changed to 15,000. Table 23 shows the concentration of OSC-1, the molecular weight of PMMA, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, the difference between the boiling points of organic solvent A and organic solvent B, and organic solvent A and organic solvent. The content mass ratio (a: b) of the solvent B was shown.
  • Example 30 (Production and characteristic evaluation of organic thin film transistor element 18 of the present invention) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 18 obtained in Example 29, the organic thin film transistor element 18 of the present invention was prepared according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1. The semiconductor characteristics were evaluated under the following conditions. Table 24 shows the evaluation results of the organic thin film transistor element 18.
  • Example 31 (Preparation of the organic semiconductor composition 19 of the present invention) An organic semiconductor composition 19 was prepared according to Example 1 except that the molecular weight of PMMA dissolved in the mixed solution was changed to 350,000.
  • Table 23 shows the concentration of OSC-1, the molecular weight of PMMA, the concentration of PMMA, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, the difference between the boiling points of organic solvent A and organic solvent B, and organic solvent A and organic solvent.
  • the content mass ratio (a: b) of the solvent B was shown.
  • Example 32 (Production and Characteristic Evaluation of Organic Thin Film Transistor Element 19 of the Present Invention) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 19 obtained in Example 31, the organic thin film transistor element 19 of the present invention was prepared according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1 The semiconductor characteristics were evaluated under the following conditions. Table 24 shows the evaluation results of the organic thin film transistor element 19.
  • the organic thin film transistor element obtained by using the organic semiconductor composition of the present invention has small variations in mobility and threshold and is excellent in uniformity.
  • Comparative Example 7 (Preparation of Comparative Organic Semiconductor Composition 20) Without adding PMMA, the organic solvent to be used is the composition described in Patent Document 1, that is, the solvents A and B that are good solvents for the organic semiconductor shown as Comparative Example 7 in Table 25, and the solvent that is a poor solvent for the organic semiconductor A comparative organic semiconductor composition 20 was prepared in the same manner as in Example 1 except for changing to C.
  • Comparative Example 7 in Table 25 includes the concentration of OSC-1 in the organic semiconductor composition 20 used in Comparative Example 7, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the type and boiling point of organic solvent C. , And the content mass ratio (a: b: c) of the organic solvent A, the organic solvent B, and the organic solvent C are shown.
  • Comparative Example 8 (Attempt to produce a comparative organic thin film transistor element) An attempt was made to produce a comparative organic thin film transistor element according to Example 2 except that the organic semiconductor composition 1 was changed to the organic semiconductor composition 20 obtained in Comparative Example 7; A film could not be formed on top. Therefore, evaluation of semiconductor characteristics was not performed (see Table 26).
  • Comparative Example 9 (Preparation of Comparative Organic Semiconductor Composition 21) Similar to Comparative Example 7, a comparative organic semiconductor composition 21 was prepared according to Example 1 except that PMMA was not added and the composition was changed to that described in Patent Document 1. Comparative Example 9 in Table 25 shows the concentration of OSC-1 in the organic semiconductor composition 20 used in Comparative Example 9, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the type and boiling point of organic solvent C. And the content mass ratio (a: b: c) of the organic solvent A, the organic solvent B, and the organic solvent C are shown.
  • Comparative Example 10 (Preparation of Comparative Organic Thin Film Transistor Element 20) Except for changing the organic semiconductor composition 1 to the organic semiconductor composition 21 obtained in Comparative Example 9, a comparative organic thin film transistor element 20 was produced according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1 The semiconductor characteristics were evaluated under the following conditions. Table 26 shows the evaluation results of the organic thin film transistor element 20.
  • Comparative Example 11 (Preparation of Comparative Organic Semiconductor Composition 22) According to Example 1, except that the organic solvent to be used was changed to the composition described in Patent Document 3, that is, organic solvent good solvent A and poor solvent B shown as Comparative Example 11 in Table 27 without adding PMMA.
  • a comparative organic semiconductor composition 22 was prepared. Table 27 shows the concentration of OSC-1 in the organic semiconductor composition 22, the type and boiling point of the organic solvent A, the type and boiling point of the organic solvent B, and the mass ratio (a: b) of the organic solvent A to the organic solvent B. It was.
  • Comparative Example 12 (Preparation of Comparative Organic Thin Film Transistor Element 21) Except that the organic semiconductor composition 1 was changed to the organic semiconductor composition 22 obtained in Comparative Example 11, a comparative organic thin film transistor element 21 was prepared according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1 The semiconductor characteristics were evaluated under the following conditions. Table 28 shows the evaluation results of the organic thin film transistor element 21.
  • Comparative Example 13 (Preparation of Comparative Organic Semiconductor Composition 23) Similar to Comparative Example 11, a comparative organic semiconductor composition 23 was prepared according to Example 1 except that PMMA was not added and the composition was changed to that described in Patent Document 3. Comparative Example 13 in Table 27 includes the concentration of OSC-1 in the organic semiconductor composition 20 used in Comparative Example 13, the type and boiling point of organic solvent A, the type and boiling point of organic solvent B, and the organic solvent A and organic solvent. The content ratio (a: b) of B was shown.
  • Comparative Example 14 (Preparation of Comparative Organic Thin Film Transistor Element 22) Except that the organic semiconductor composition 1 was changed to the organic semiconductor composition 23 obtained in Comparative Example 13, a comparative organic thin film transistor element 22 was prepared according to Example 2 and was the same as the characteristic evaluation of the organic thin film transistor element 1 The semiconductor characteristics were evaluated under the following conditions. Table 28 shows the evaluation results of the organic thin film transistor element 22.
  • the organic thin film transistor elements 20 to 22 obtained by using the comparative organic semiconductor compositions had larger mobility and threshold variations than the organic thin film transistor elements of the present invention. From this, it has been found that only the solvent composition described in Patent Documents 1 and 3 cannot produce a practical organic thin film transistor that maintains a high mobility, has a small mobility variation, and a small threshold variation. Therefore, it can be said from Patent Documents 1 and 3 that the effect of the present invention cannot be easily estimated.
  • Source electrode 2 Organic thin film (organic semiconductor layer) 3 Drain electrode 4 Insulator layer 5 Gate electrode 6 Substrate 7 Protective layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

溶液法により有機薄膜を作製し得る有機半導体組成物、該有機半導体組成物を用いて得られる有機薄膜、及び該有機薄膜を有する高い移動度を保持しつつそのバラつきが小さく、さらに閾値のバラつきも小さい実用的な電界効果トランジスタを提供することを目的とする。すなわち、本明細書には、有機半導体化合物、絶縁性化合物、該絶縁性化合物の良溶媒である有機溶媒A及び該絶縁性化合物の貧溶媒であり、かつ該有機溶媒Aよりも沸点の高い有機溶媒Bを含む有機半導体組成物であって、該有機溶媒Aと該有機溶媒Bの含有質量比率a:bが1:8乃至8:1である有機半導体組成物が開示される。

Description

有機半導体組成物、有機薄膜及び有機薄膜トランジスタ
 本発明は、有機半導体組成物、該有機半導体組成物を塗布又は印刷して得られる有機薄膜、及び該有機薄膜を含む有機薄膜トランジスタに関する。
 電界効果トランジスタは、一般に、基板上の半導体に、ソース電極、ドレイン電極及びこれらの電極と絶縁体層を介してゲート電極等を設けた構造からなる。現在、電界効果トランジスタには、シリコンを代表とする無機系の半導体材料が主に用いられている。特にアモルファスシリコンからなる層をガラスなどの基板上に設けた薄膜トランジスタは、ディスプレイ等の分野で論理回路素子として集積回路に利用されるほか、スイッチング素子にも幅広く利用されている。また最近は、半導体材料に酸化物半導体を用いる検討が盛んに行われている。しかし、このような無機系の半導体材料を用いた場合、電界効果トランジスタの製造時に高温での処理が必要であるため、その基板には耐熱性に劣るフィルムやプラスチック等を用いることが出来ない。更には、製造設備が高額であるのに加え、製造時に多大なエネルギーを要するため、得られる電界効果トランジスタが高価なものとなり、その応用範囲は非常に制限されてしまう。
 一方、電界効果トランジスタの製造時に高温処理を必要としない有機半導体材料を用いた電界効果トランジスタの開発が行われている。有機半導体材料を用いることが出来れば、低温プロセスでの製造が可能になり、使用可能な基板材料の範囲が拡大される。その結果、アモルファスシリコン等の無機半導体を用いた場合よりもフレキシブルで、軽量で、かつ壊れにくい薄膜トランジスタ、(有機薄膜トランジスタ)の作製が可能になる。またその作製方法として、有機半導体材料を含有する溶液の塗布や、インクジェット等による印刷等を適用できるため、大面積の電界効果トランジスタを安価に製造できる可能性がある。
 しかしながら、従来、有機半導体材料に用いられてきた多くの有機化合物は、有機溶媒に難溶であり、塗布や印刷等の安価な手法を用いることができず、真空蒸着等の高価な方法で基板上に有機薄膜を形成させることが一般的であった。
 近年、有機化合物の有機溶媒に対する溶解性を改善することにより、塗布法による比較的高いキャリア移動度を発現する有機薄膜トランジスタが得られるようになった。しかしながら、有機半導体材料からなるデバイスを実用化するためには、量産化した場合に移動度や閾値のバラつきが小さいことが必要であり、現在も塗布法による有機薄膜トランジスタの作製の検討が盛んに行われている。
 非特許文献1には、TIPS-ペンタセンとポリスチレンを混合した有機半導体溶液を使用して、ドロップキャスト法で有機薄膜を作製する方法が開示されており、該有機薄膜を有する有機半導体デバイスは移動度に優れ、かつ移動度のバラつきが改善されたことが記載されている。しかし、非特許文献1の方法では閾値のバラつきの改善が不十分である。
 非特許文献2には、クロロベンゼンに対して20%の2-クロロフェノールを添加した混合液に、Poly[2,5-bis(alkyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-5,5- di(thiophen-2-yl)22,20-(E)-2-(2-(thiophen-2-yl)vinyl)- thiophene]とポリスチレンを溶解させた有機半導体溶液を使用して、インクジェット法で有機薄膜を成膜する方法が開示されており、該有機薄膜を有する有機半導体デバイスは移動度に優れ、かつ移動度のばらつきが改善されたことが記載されている。しかし、非特許文献2の方法も閾値のバラつきの改善が不十分である。
 非特許文献3には、poly(3-hexylthiophene-2,5-diyl)とPMMAを混合した有機半導体溶液を用いて有機薄膜を作製する方法が開示されており、該有機薄膜を有する有機半導体デバイスはリーク電流とon/off比が改善されたことが記載されている。しかし、非特許文献3の方法は移動度が不十分で実用的ではない。
 非特許文献4には、論理回路にTFTを用いるためには閾値電圧の制御が必要なことが記載されており、その具体的な方法としてフローティングゲート法が提案されている。しかしながら、非特許文献4は、素子の構成(設計)の改良に関するもので、有機半導体材料や有機半導体溶液自体の改良により閾値を制御するものではなく、しかも移動度については何ら言及していない。
 特許文献1には、有機半導体化合物、ポリマー成分、有機半導体の良溶媒である溶媒AとB、及び有機半導体の貧溶媒である溶媒Cを含有する有機半導体溶液を使用して、インクジェット法で有機薄膜を作製する方法が開示されており、該有機薄膜を有するエレクトロルミネセンスデバイスが高い輝度を示したことは記載されている。しかし、特許文献1には、該有機薄膜を有する有機薄膜トランジスタの特性については何ら記載されていない。
 特許文献2には、有機半導体化合物とポリマー成分とを特定の比率で混合することにより移動度を向上させる方法が開示されている。しかしながら、特許文献2の実施例における移動度は最高でも8.8×10-3cm/Vsであり、実用的な値とは言えない。
 特許文献3には、ポリマー有機半導体材料とその良溶媒Aと貧溶媒Bからなる有機半導体溶液を用いて有機薄膜を作製する方法が開示されており、該有機薄膜を有するエレクトロルミネセンスデバイスが高い輝度を示したことは記載されている。しかし、特許文献3には、該有機薄膜を有する有機薄膜トランジスタの特性については何ら記載されていない。
 特許文献4には、有機半導体化合物と液晶性化合物と絶縁性高分子化合物を含む有機半導体組成物を用いて有機薄膜を作製する方法が開示されており、該有機薄膜を有する有機半導体デバイスが1乃至2cm/Vsの高い移動度を示したことが記載されている。しかし、特許文献4には、移動度と閾値のバラつきについては何ら記載されていない。
 特許文献5には、有機半導体化合物とシリコーン化合物と絶縁性高分子化合物を含む有機半導体組成物を用いて有機薄膜を作製する方法が開示されており、該有機薄膜を有する有機半導体デバイスが0.1cm/Vs以上の移動度を示したことや、移動度のバラつきが最も小さいものは20%未満であったことが記載されている。しかし、特許文献5には、閾値のバラつきに関しては何ら記載されていない。
 特許文献6には、2種類の有機半導体化合物を含む有機半導体組成物を用いて有機薄膜を作製する方法が開示されており、該有機薄膜を有する有機半導体デバイスが0.1cm/Vs以上の移動度を占めしたことや、移動度のバラつきが最も小さいものは20%未満であったことが記載されている。しかし、特許文献6には、閾値のバラつきに関しては何ら記載されていない。
 特許文献7には、低分子化合物と該低分子化合物との溶解度パラメータの差が0.6以上1.5以下のキャリア輸送性を有する高分子化合物とを含む有機半導体組成物を用いて有機薄膜を作製する方法が開示されており、該有機薄膜を有する有機半導体デバイスが2.1cm/Vsの移動度を示したことが記載されている。しかし、特許文献7には、移動度と閾値のバラつきについては何ら記載されていない。
特表2007-527624号公報 特表2006-514710号公報 特表2008-503870号公報 国際公開第2016/143774号 国際公開第2016/129479号 国際公開第2015/147266号 国際公開第2009/122956号
Synthetic. Met. 2016, 221, 186. Polymer Physics, 2016, 54, 1760. Appl. Mater. Interfaces. 2015, 7, 16486. Appl. Phys.Lett.2011, 98, 193302
 本発明は、溶液法により有機薄膜を作製し得る有機半導体組成物、該有機半導体組成物を用いて得られる有機薄膜、及び該有機薄膜を有する高い移動度を保持しつつ、移動度のバラつきが小さく、さらに閾値のバラつきも小さい実用的な有機薄膜トランジスタを提供することを目的とする。
 本発明者等は、上記課題を解決すべく鋭意検討の結果、有機半導体化合物、絶縁性化合物、該絶縁性化合物の良溶媒及び該絶縁性化合物の貧溶媒であって該良溶媒よりも沸点の高い貧溶媒を含む有機半導体組成物を用いることにより上記の課題が解決することを見出し、本発明を完成させるに至った。
 即ち、本発明は
(1)有機半導体化合物、絶縁性化合物、該絶縁性化合物の良溶媒である有機溶媒A及び該絶縁性化合物の貧溶媒であり、かつ該有機溶媒Aよりも沸点の高い有機溶媒Bを含む有機半導体組成物であって、該有機溶媒Aと該有機溶媒Bの含有質量比率a:bが1:8乃至8:1である有機半導体組成物、
(2)有機半導体化合物がアセン骨格、フェナセン骨格またはヘテロアセン骨格を有する化合物である前項(1)に記載の有機半導体組成物、
(3)ヘテロアセン骨格を有する化合物がチエノチオフェン骨格を有する化合物である前項(2)に記載の有機半導体組成物、
(4)絶縁性化合物が下記式(1)または(2)
Figure JPOXMLDOC01-appb-C000003
(式(1)及び(2)中、R乃至Rは独立して炭素数1乃至20の直鎖または分岐鎖のアルキル基を表す。)の繰り返し単位を有する化合物である前項(1)に記載の有機半導体組成物、
(5)有機溶媒Aがエーテル基、ケトン基またはエステル基を有する化合物からなる溶媒であり、かつ有機溶媒Bが炭化水素系の化合物からなる溶媒である前項(4)に記載の有機半導体組成物、
(6)有機溶媒A及び有機溶媒Bの両者が芳香族系の化合物からなる溶媒である前項(5)に記載の有機半導体組成物、
(7)絶縁性化合物が下記式(3)
Figure JPOXMLDOC01-appb-C000004
(式(3)中、R及びRは水素原子または炭素数1乃至8の直鎖若しくは分岐鎖のアルキル基を表す。)の繰り返し単位を有する化合物である前項(1)に記載の有機半導体組成物、
(8)有機溶媒Aが炭化水素系の化合物からなる溶媒であり、かつ有機溶媒Bがエーテル基、ケトン基、またはエステル基を有する化合物からなる溶媒である前項(7)に記載の有機半導体組成物、
(9)有機溶媒A及び有機溶媒Bの両者が芳香族系の化合物からなる溶媒である前項(8)に記載の有機半導体組成物、
(10)有機溶媒Aと有機溶媒Bの沸点の差が10℃以上である前項(1)に記載の有機半導体組成物、
(11)有機溶媒Aと有機溶媒Bの沸点の差が130℃以下である前項(10)に記載の有機半導体組成物、
(12)有機溶媒Aに対する有機半導体化合物の溶解度及び有機溶媒Bに対する有機半導体化合物の溶解度の両者が0.2質量%以上である前項(1)に記載の有機半導体組成物、
(13)有機溶媒Aに対する絶縁性化合物の溶解度が0.5質量%以上であり、かつ有機溶媒Bに対する絶縁性化合物の溶解度が0.05質量%以下である前項(1)に記載の有機半導体組成物、
(14)有機溶媒Aと絶縁性化合物とのハンセン溶解度パラメータにおける水素結合項の差が2.5cal/cm以下であり、かつ有機溶媒Bと絶縁性化合物とのハンセン溶解度パラメータにおける水素結合項の差が2.0cal/cm以上である前項(1)に記載の有機半導体組成物、
(15)有機溶媒Bと絶縁性化合物とのハンセン溶解度パラメータにおける水素結合項の差が5.0cal/cm以下である前項(14)に記載の有機半導体組成物、
(16)有機溶媒Aと有機溶媒Bの含有質量比率a:bが1:5乃至5:1である前項(1)に記載の有機半導体組成物、
(17)有機溶媒Aと有機溶媒Bの含有質量比率a:bが1:5乃至2:1である前項(16)に記載の有機半導体組成物、
(18)有機半導体化合物と絶縁性化合物の合計に対する絶縁性化合物の含有量が1乃至80質量%である前項(1)に記載の有機半導体組成物、
(19)有機半導体化合物と絶縁性化合物の合計に対する絶縁性化合物の含有量が1乃至15質量%である前項(18)に記載の有機半導体組成物、
(20)前項(1)乃至(19)のいずれか一項に記載の有機半導体組成物を用いて得られる有機薄膜、及び
(21)前項(20)に記載の有機半導体膜を有する有機薄膜トランジスタ、
に関するものである。
 本発明の有機半導体組成物を用いて有機薄膜トランジスタを作製することにより、高移動度を保持しつつ、移動度のバラつきが小さく、さらに閾値のバラつきも小さい実用的な有機薄膜トランジスタを提供することが出来る。
本発明の有機薄膜トランジスタ(素子)の構造のいくつかの態様例を示す概略断面図であり、Aはボトムコンタクト-ボトムゲート型有機薄膜トランジスタ(素子)、Bはトップコンタクト-ボトムゲート型有機薄膜トランジスタ(素子)、Cはトップコンタクト-トップゲート型有機薄膜トランジスタ(素子)、Dはトップ&ボトムゲート型有機薄膜トランジスタ(素子)、Eは静電誘導トランジスタ(素子)、Fはボトムコンタクト-トップゲート型有機薄膜トランジスタ(素子)を示す。 本発明の有機薄膜トランジスタ(素子)の一態様例としてのトップコンタクト-ボトムゲート型有機薄膜トランジスタ(素子)の製造工程を説明するための説明図であり、(1)乃至(6)は各工程を示す概略断面図である。
 本発明を詳細に説明する。
 本発明の有機半導体組成物は、有機半導体化合物、絶縁性化合物、該絶縁性化合物の良溶媒である有機溶媒A及び該絶縁性化合物の貧溶媒であって、該有機溶媒Aよりも沸点の高い有機溶媒Bを含有する。
 本発明の有機半導体組成物が含有する有機半導体化合物とは、該化合物を単独で若しくは必要により他の成分と混合して蒸着法又は溶媒法(該化合物の溶媒溶液を基材に塗布した後に加熱により溶媒を除去する製膜法)等により製膜して得られる膜が半導体特性を示す化合物を意味する。
 有機半導体化合物は、一般に言われる低分子有機半導体化合物及び高分子有機半導体化合物の何れにも限定されないが、低分子有機半導体化合物であることが好ましく、その分子量は通常1500以下であり、1000以下であることが好ましく、700以下であることがより好ましい。
 また、有機半導体化合物の構造も、有機半導体化合物として公知のものであれば特に限定されない。
 有機半導体化合物の具体例としては、ナフタセン、ペンタセン(2,3,6-ジベンゾアントラセン)、ヘキサセン、ヘプタセン、ジベンゾペンタセン、テトラベンゾペンタセン等のアセン、アントラジチオフェン、ピレン、ベンゾピレン、ジベンゾピレン、クリセン、ペリレン、コロネン、テリレン、オバレン、クオテリレン、サーカムアントラセン;前記化合物の有する炭素原子の一部を窒素、硫黄若しくは酸素等の原子で置換した誘導体;前記化合物の有する炭素原子に結合している少なくとも1つの水素原子をカルボニル基等の官能基で置換した誘導体(ペリキサンテノキサンテン及びその誘導体を含むジオキサアンタントレン系化合物、トリフェノジオキサジン、トリフェノジチアジン、ヘキサセン-6,15-キノン等);並びに、前記化合物の有する水素原子を他の官能基で置換した誘導体等の縮合多環芳香族化合物を挙げることができる。
 また、有機半導体化合物の別の具体例としては、銅フタロシアニンで代表される金属フタロシアニン、テトラチアペンタレン及びその誘導体、ナフタレン-1,4,5,8-テトラカルボン酸ジイミド、N,N’-ビス(4-トリフルオロメチルベンジル)ナフタレン-1,4,5,8-テトラカルボン酸ジイミド、N,N’-(1H,1H-ペリフルオロオクチル)、N,N’-ビス(1H,1H-ペリフルオロブチル)、N,N’-ジオクチルナフタレン-1,4,5,8-テトラカルボン酸ジイミド誘導体、ナフタレン-2,3,6,7-テトラカルボン酸ジイミド等のナフタレンテトラカルボン酸ジイミド、アントラセン-2,3,6,7-テトラカルボン酸ジイミド等のアントラセンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド等の化合物のみならず、C60、C80、C76、C84等のフラーレン及びこれらの誘導体、シングルウォールカーボンナノチューブ(SWNT)等のカーボンナノチューブ、メロシアニン色素及びヘキシアニン色素等の色素とこれらの誘導体等を挙げることができる。
 さらに、有機半導体化合物としては、ポリアントラセン、トリフェニレン及びキナクリドンを挙げることができる。
 また、有機半導体化合物の更に別の具体例としては、4,4-ビフェニルジチオール(BPDT)、4,4-ジイソシアノビフェニル、4,4-ジイソシアノ-p-テルフェニル、2,5-ビス(5’-チオアセチル-2’-チオフェニル)チオフェン、2,5-ビス(チオアセトキシル-2’-チオフェニル)チオフェン、4,4’-ジイソシアノフェニル、ベンジジン(ビフェニル-4,4’-ジアミン)、TCNQ(テトラシアノキノジメタン)、テトラチアフルバレン(TIF)及びその誘導体、テトラチアフルバレン(TTF)-TCNQ錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、BEDTTTF-ヨウ素錯体、TCNQヨウ素錯体に代表される電界移動錯体、ビフェニル-4,4’-ジカルボン酸、1,4-ジ(4-チオフェニルアセチニル)-2-エチルベンゼン、1,4-ジ(4-イソシアノフェニルアセチリニル)-2-エチルベンゼン、2,2’’-ジヒドロキシ-1,1’:4’,1’’-テルフェニル、4,4’-ビフェニルジエタナール、4,4’-ビフェニルジオール、4,4’-ビフェニルジイソシアネート、1,4-ジアセチニルベンゼン、ジエチルビフェニル-4,4’-ジカルボキシレート、ベンゾ[1,2-c;3,4-c’;5,6-c’’]トリス[1,2]ジチオール-1,4,7-トリチオン、α-セキシチオフェン、テトラチアテトラセン、テトラセレノテトラセン、テトラテルルテトラセン、ポリ(3-アルキルチオフェン)、ポリ(3-チオフェン-β-エタンスルホン酸)、ポリ(N-アルキルピロール)、ポリ(3-アルキルピロール)、ポリ(3,4-ジアルキルピロール)、ポリ(2,2’-チエニルピロール)、ポリ(ジベンゾチオフェンスルフィド)を挙げることができる。
 本発明の有機半導体組成物に用いられる有機半導体化合物としては、縮合多環芳香族化合物が好ましく、フェナセン骨格、アセン骨格またはヘテロアセン骨格を有する縮合多環芳香族化合物がより好ましく、ヘテロアセン骨格を有する縮合多環芳香族化合物が更に好ましく、チエノチオフェン骨格を有する縮合多環芳香族化合物が特に好ましく、下記式(4)又は(5)で表される化合物が最も好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(4)中、R及びRは独立して炭素数1乃至36の脂肪族炭化水素基を表す。
 式(5)中、R及びR10はいずれか一方がアルキル基、アルキル基を有する芳香族炭化水素基又はアルキル基を有する複素環基を表し、他方が脂肪族炭化水素基、芳香族炭化水素基又は複素環基を表す。但し、R及びR10の両者がアルキル基である場合を除く。
 式(4)のR及びRが表す炭素数1乃至36の脂肪族炭化水素基は、1乃至36個の炭素原子と水素原子のみからなる脂肪族炭化水素基であれば、飽和及び不飽和の何れにも限定されず、また直鎖、分岐鎖及び環状の何れにも限定されないが、好ましくは直鎖又は分岐鎖の脂肪族炭化水素基であり、より好ましくは直鎖の脂肪族炭化水素基である。また脂肪族炭化水素基の炭素数は、好ましくは2乃至24個であり、より好ましくは4乃至20個であり、更に好ましくは6乃至12個である。
 直鎖又は分岐鎖の飽和脂肪族炭化水素基の具体例としては、メチル基、エチル基、プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、t-ブチル基、n-ペンチル基、iso-ペンチル基、t-ペンチル基、sec-ペンチル基、n-ヘキシル基、iso-ヘキシル基、n-ヘプチル基、sec-ヘプチル基、n-オクチル基、n-ノニル基、sec-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基、ドコシル基、n-ペンタコシル基、n-オクタコシル基、5-(n-ペンチル)デシル基、ヘネイコシル基、トリコシル基、テトラコシル基、ヘキサコシル基、ヘプタコシル基、ノナコシル基、n-トリアコンチル基、ドトリアコンチル基及びヘキサトリアコンチル等が挙げられる。
 環状の飽和脂肪族炭化水素基の具体例としては、シクロヘキシル基、シクロペンチル基、アダマンチル基及びノルボルニル基等が挙げられる。
 直鎖又は分岐鎖の不飽和脂肪族炭化水素基の具体例としては、ビニル基、アリル基、エイコサジエニル基、11,14-エイコサジエニル基、ゲラニル(トランス-3,7-ジメチル-2,6-オクタジエン-1-イル)基、ファルネシル(トランス,トランス-3,7,11-トリメチル-2,6,10-ドデカトリエン-1-イル)基、4-ペンテニル基、1-プロピニル基、1-ヘキシニル基、1-オクチニル基、1-デシニル基、1-ウンデシニル基、1-ドデシニル基、1-テトラデシニル基、1-ヘキサデシニル基及び1-ノナデシニル基等が挙げられる。
 式(4)のR及びRが表す炭素数1乃至36の脂肪族炭化水素基中の水素原子は、ハロゲン原子で置換されていてもよい。水素原子と置換され得るハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、好ましくはフッ素原子、塩素原子又は臭素原子であり、より好ましくはフッ素原子又は臭素原子である。水素原子がハロゲン原子で置換されたハロゲノ置換脂肪族炭化水素基の具体例としては、クロロメチル基、ブロモメチル基、トリフルオロメチル基、ペンタフルオロエチル基、n-ペルフルオロプロピル基、n-ペルフルオロブチル基、n-ペルフルオロペンチル基、n-ペルフルオロオクチル基、n-ペルフルオロデシル基、n-(ドデカフルオロ)-6-ヨードヘキシル、2,2,3,3,3-ペンタフルオロプロピル基及び2,2,3,3-テトラフルオロプロピル基等が挙げられる。
 式(4)で表される化合物としては、上記したR及びRのそれぞれの好ましいものの組み合わせがより好ましく、それぞれのより好ましいものの組み合わせが更に好ましい。
 具体的には、R及びRがそれぞれ独立して炭素数2乃至24の直鎖又は分岐鎖の脂肪族炭化水素基であるか炭素数2乃至24の直鎖又は分岐鎖のハロゲノ置換脂肪族炭化水素基である化合物が好ましく、炭素数4乃至20の直鎖又は分岐鎖の脂肪族炭化水素基であるか炭素数4乃至20の直鎖又は分岐鎖のハロゲノ置換脂肪族炭化水素基である化合物がより好ましく、炭素数6乃至12の直鎖又は分岐鎖の脂肪族炭化水素基であるか炭素数6乃至12の直鎖又は分岐鎖のハロゲノ置換脂肪族炭化水素基である化合物が更に好ましく、炭素数6乃至12の直鎖の脂肪族炭化水素基であるか炭素数6乃至12の直鎖のハロゲノ置換脂肪族炭化水素基である化合物が更に好ましい。なお、RとRは同一でも異なっていてもよい。
 式(5)のR又はR10が表すアルキル基は、直鎖、分岐鎖及び環状の何れにも限定されず、その具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、アリル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-セチル基、n-ヘプタデシル基、n-ブテニル基、2-エチルへキシル基、3-エチルヘプチル基、4-エチルオクチル基、2-ブチルオクチル基、3-ブチルノニル基、4-ブチルデシル基、2-ヘキシルデシル基、3-オクチルウンデシル基、4-オクチルドデシル基、2-オクチルドデシル基、2-デシルテトラデシル基、シクロヘキシル基、シクロペンチル基、アダマンチル基及びノルボルニル基等が挙げられる。好ましくはn-ブチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、エチルへキシル基、エチルオクチル基、ブチルオクチル基及びヘキシルデシル基等の直鎖又は分岐鎖のアルキル基であり、より好ましくはn-ヘキシル基、n-オクチル基、n-デシル基、2-エチルヘキシル基、3-エチルヘキシル基、3-エチルオクチル基又は3-ブチルオクチル基である。
 式(5)のR又はR10が表すアルキル基としては、炭素数2乃至16の直鎖又は分岐鎖のアルキル基が好ましく、炭素数4乃至12の直鎖又は分岐鎖のアルキル基がより好ましく、炭素数4乃至10の直鎖アルキル基又は炭素数6乃至12の分岐鎖のアルキル基が更に好ましく、炭素数6乃至10の直鎖又は分岐鎖のアルキル基が特に好ましく、炭素数6乃至10の直鎖のアルキル基が最も好ましい。
 式(5)のR又はR10が表すアルキル基を有する芳香族炭化水素基における芳香族炭化水素基とは、芳香族炭化水素から水素原子1つを除いた残基を意味し、該芳香族炭化水素基の具体例としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基及びベンゾピレニル基等が挙げられる。
 式(5)のR又はR10が表すアルキル基を有する芳香族炭化水素基における芳香族炭化水素基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。
 式(5)のR又はR10が表すアルキル基を有する芳香族炭化水素基におけるアルキル基としては、式(5)のR又はR10が表すアルキル基と同様のものが挙げられ、炭素数1乃至10の直鎖又は分岐鎖のアルキル基であることが好ましく、炭素数1乃至6の直鎖又は分岐鎖のアルキル基であることがより好ましく、炭素数1乃至6の直鎖のアルキル基であることがより好ましい。
 式(5)のR又はR10が表すアルキル基を有する芳香族炭化水素基における芳香族炭化水素基上のアルキル基の置換位置は特に限定されないが、例えば該芳香族炭化水素基がフェニル基の場合は、アルキル基の置換位置が4位であることが好ましい態様である。
 式(5)のR又はR10が表すアルキル基を有する複素環基における複素環基とは、複素環から水素原子1つを除いた残基を意味し、該複素環基の具体例としては、ピリジル基、ピラジル基、ピリミジル基、キノリル基、イソキノリル基、ピロリル基、インドレニル基、イミダゾリル基、カルバゾリル基、チエニル基、フリル基、ピラニル基、ピリドニル基、ベンゾキノリル基、アントラキノリル基、ベンゾチエニル基、ベンゾフリル基、及びチエノチエニル基等が挙げられる。
 式(5)のR又はR10が表すアルキル基を有する複素環基における複素環基としては、ピリジル基、チエニル基、ベンゾチエニル基又はチエノチエニル基が好ましく、チエニル基又はベンゾチエニル基がより好ましく、チエニル基が更に好ましい。
 式(5)のR又はR10が表すアルキル基を有する複素環基におけるアルキル基としては、式(5)のR又はR10が表すアルキル基と同様のものが挙げられ、炭素数1乃至10の直鎖又は分岐鎖のアルキル基であることが好ましく、炭素数4乃至8の直鎖又は分岐鎖のアルキル基であることがより好ましく、炭素数4乃至8の直鎖のアルキル基であることがより好ましい。
 式(5)のR又はR10が表す脂肪族炭化水素基(他方が表す脂肪族炭化水素基)としては、式(4)のR及びRが表す脂肪族炭化水素基と同様のものが挙げられ、該脂肪族炭化水素基の炭素数は1乃至30が好ましく、1乃至20がより好ましく、4乃至16が更に好ましい。具体的には、n-ブチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、エチルへキシル基、エチルオクチル基、ブチルオクチル基及びヘキシルデシル基などの飽和の直鎖又は分岐のアルキル基が好ましく、n-ヘキシル基、n-オクチル基、n-デシル基、2-エチルヘキシル基、3-エチルヘキシル基又は3-エチルオクチル基がより好ましい。
 式(5)のR又はR10が表す芳香族炭化水素基(他方が表す芳香族炭化水素基)としては、式(5)のR又はR10が表すアルキル基を有する芳香族炭化水素基の項に記載した芳香族炭化水素基と同様のものが挙げられ、フェニル基、ナフチル基又はピリジル基が好ましく、フェニル基又はナフチル基がより好ましく、フェニル基が更に好ましい。
 式(5)のR又はR10が表す複素環基(他方が表す複素環基)としては、式(5)のR又はR10が表すアルキル基を有する複素環基の項に記載した複素環基と同様のものが挙げられ、ピリジル基、チエニル基又はベンゾチエニル基が好ましく、チエニル基又はベンゾチエニル基がより好ましい。
 式(5)のR又はR10が表す芳香族炭化水素基(他方が表す芳香族炭化水素基)及び複素環基(他方が表す複素環基)は置換基を有していてもよい。該有していてもよい置換基としては式(5)のR又はR10が表すアルキル基と同様のものが挙げられ、炭素数1乃至6の直鎖又は分岐鎖のアルキル基が好ましく、炭素数1乃至6の直鎖のアルキル基がより好ましい。
 式(5)で表される化合物としては、上記したR及びR10のそれぞれの好ましいものの組み合わせがより好ましく、それぞれのより好ましいものの組み合わせが更に好ましい。
 具体的には、R及びR10の一方が炭素数1乃至10の直鎖若しくは分岐鎖のアルキル基を有するフェニル基又は炭素数1乃至16の直鎖若しくは分岐鎖のアルキル基であり、他方が炭素数1乃至6の直鎖若しくは分岐鎖のアルキル基を有していてもよいフェニル基、ピリジル基、チエニル基又はベンゾチエニル基である化合物が好ましく、一方が炭素数4乃至16の直鎖若しくは分岐鎖のアルキル基であり、他方が炭素数1乃至6の直鎖若しくは分岐鎖のアルキル基を有していてもよいフェニル基、チエニル基又はベンゾチエニル基である化合物がより好ましく、一方が炭素数4乃至12の直鎖若しくは分岐鎖のアルキル基であって、他方が炭素数1乃至6の直鎖若しくは分岐鎖のアルキル基を有していてもよいフェニル基又はベンゾチエニル基である化合物が更に好ましく、一方が炭素数4乃至10の直鎖のアルキル基又は炭素数6乃至12の分岐鎖のアルキル基であって、他方が炭素数1乃至6の直鎖若しくは分岐鎖のアルキル基を有していてもよいフェニル基である化合物が特に好ましく、一方が炭素数6乃至10の直鎖のアルキル基であって、他方がフェニル基である化合物が最も好ましい。
 本発明の有機半導体組成物における有機半導体化合物の含有量は、好ましくは0.1乃至20質量%、より好ましくは0.2乃至15質量%、更に好ましくは0.3乃至10質量%の範囲である。なお、本明細書では特に断りのない限り「%」は「質量%」を「部」は「質量部」を意味する。
 本発明の有機半導体組成物が含有する絶縁性化合物とは、導電性を有する化合物及び半導体特性を有する化合物以外の化合物を意味し、その構造及び分子量は特に限定されないが、一般的な絶縁性有機高分子化合物を好ましく用いることができる。
 絶縁性有機高分子化合物としては、ポリカルボン酸ビニル、ポリビニルアセタール、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、セルロース、ポリエチレン、ポリプロピレン、及びこれらの共重合体、ゴム又は熱可塑性エラストマーが好ましく、ポリカルボン酸ビニル、ポリビニルアセタール、ポリスチレン、ポリメチルメタクリレート又はポリメチルアクリレートがより好ましい。
 即ち、絶縁性化合物としては、下記式(1)及び/または(2)で表される繰り返し単位を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(1)及び(2)中、R乃至Rは炭素数1乃至20の直鎖または分岐鎖のアルキル基を表す。
 式(1)におけるR及びRは炭素数1乃至8の直鎖または分岐鎖のアルキル基であることが好ましく、炭素数1乃至6の直鎖または分岐鎖のアルキル基であることがより好ましく、炭素数2乃至4の直鎖アルキル基であることがさらに好ましく、メチル基であることが特に好ましい。
 式(2)におけるR及びRは、炭素数1乃至17の直鎖または分岐鎖のアルキル基であることが好ましく、炭素数5乃至17の直鎖アルキルであることがより好ましい。
 また、絶縁性化合物としては、下記式(3)で表される繰り返し単位を有する化合物も好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(3)中、R及びRは、水素原子または炭素数1乃至8の直鎖若しくは分岐鎖のアルキル基を表す。
 式(3)におけるR及びRは炭素数1乃至8の直鎖若しくは分岐鎖のアルキル基または水素原子であることが好ましく、炭素数1乃至6の直鎖若しくは分岐鎖のアルキル基または水素原子であることがより好ましく、炭素数2乃至4の直鎖アルキル基または水素原子であることがさらに好ましく、水素原子であることが特に好ましい。
 絶縁性化合物の分子量は特に限定されないが、絶縁性有機高分子化合物であることが好ましく、該絶縁性有機高分子化合物が、上記式(1)乃至(3)の少なくとも一種類以上の繰り返し単位を有することがより好ましい。また、絶縁性有機高分子化合物の分子量は、重量平均分子量で1000乃至2000000が好ましく、5000乃至1500000がより好ましく、10000乃至1200000が更に好ましい。
 尚、本明細書における重量平均分子量は、GPCの測定結果に基づいてポリスチレン換算で算出した値を意味する。
 本発明の有機半導体組成物における絶縁性化合物の含有量は、有機半導体化合物と絶縁性化合物の合計に対する絶縁性化合物の含有量が好ましくは1乃至80質量%、より好ましくは1乃至15質量%である。また、有機半導体化合物と絶縁性化合物の含有質量比率(有機半導体化合物:絶縁性化合物)は99:1乃至20:80となる量であることが好ましく、99:1乃至60:40となる量であることがより好ましく、99:1乃至90:10となる量であることが更に好ましい。
 本発明の有機半導体組成物が含有する有機溶媒Aは、本発明の有機半導体組成物の含有する絶縁性化合物の良溶媒であり、有機溶媒Bは該絶縁性化合物の貧溶媒であり、かつ有機溶媒Aは有機溶媒Bよりも低い沸点を有するものである。
 尚、本明細書において、「絶縁性化合物の良溶媒」とは、溶媒100部に絶縁性化合物が0.1部以上溶解する溶媒を意味し、「絶縁性化合物の貧溶媒」とは、溶媒100部に絶縁性化合物が0.1部未満しか溶解しない溶媒を意味する。
 有機溶媒Aは絶縁性化合物の良溶媒であり、その溶解度は0.1%以上が好ましく、0.3%以上がより好ましく、0.5%以上が更に好ましい。
 有機溶媒Bは絶縁性化合物の貧溶媒であり、その溶解度は0.1%未満0.01%以上が好ましく、0.05%以下0.01%以上がより好ましい。
 また、有機溶媒Aと有機溶媒Bの両者が有機半導体化合物の良溶媒であることが好ましく、その溶解度は0.05%以上が好ましく、0.1%以上がより好ましく、0.2%以上が更に好ましい。
 有機溶媒Aと有機溶媒Bの沸点は、有機溶媒Aの沸点が有機溶媒Bの沸点よりも低ければ特に制限はないが、実際の塗布印刷プロセスを想定した場合、溶媒の安全性及び保管、製造条件での組成安定性を考慮する必要があり、少なくとも一種類の溶媒の沸点が140℃以上であることが好ましく、少なくとも一種類の溶媒の沸点が170℃以上であることがより好ましい。
 有機溶媒Aと有機溶媒Bの沸点の差は5℃以上あることが好ましく、10℃以上であることがより好ましく、10℃以上130℃以下であることが更に好ましく、10℃以上100℃以下であることが特に好ましく、10℃以上60℃以下であることが最も好ましい。
 絶縁性化合物として上記式(1)及び/または式(2)の繰り返し単位を有する化合物(例えばPMMA等)を使用した場合、有機溶媒Aはエーテル基、ケトン基またはエステル基を有する化合物からなる溶媒であることが好ましく、エーテル基、ケトン基またはエステル基を有する芳香族系溶媒であることがより好ましく、アニソール、メチルアニソール、ジメチルアニソール、トリクロロアニソール、ジクロロアニソール、ブロモアニソール及びフルオロアニソール等のアニソール系溶媒、安息香酸エチル、安息香酸ブチル、安息香酸メチル、安息香酸ベンジル、酢酸フェニル及び酢酸ベンジル等のエステル系溶媒、又はアセトフェノン等のケトン系溶媒であることが更に好ましい。この場合の溶媒Bは炭化水素系の化合物からなる溶媒であることが好ましく、芳香族系炭化水素系の化合物からなる溶媒であることがより好ましく、テトラリン、シクロヘキシルベンゼン又はトリメチルベンゼンであることが更に好ましい。また、有機溶媒Aと有機溶媒Bの両者が芳香族性の化合物からなる溶媒であることも好ましい態様である。
 絶縁性化合物として上記式(3)の繰り返し単位を有する化合物(例えばポリスチレン等)を使用した場合、有機溶媒Aは炭化水素系の化合物からなる溶媒が好ましく、芳香族系炭化水素系の化合物からなる溶媒がより好ましく、o-キシレン、トリメチルベンゼン、ジエチルベンゼンまたはテトラリンが更に好ましい。この場合の有機溶媒Bはエーテル基、ケトン基またはエステル基を有する化合物からなる溶媒が好ましく、エーテル基、ケトン基またはエステル基を有する芳香族系の化合物からなる溶媒であることがより好ましく、アニソール、メチルアニソール、ジメチルアニソール、トリクロロアニソール、ジクロロアニソール、ブロモアニソール及びフルオロアニソール等のアニソール系溶媒、安息香酸エチル、安息香酸ブチル、安息香酸メチル、安息香酸ベンジル、酢酸フェニル及び酢酸ベンジル等のエステル系溶媒、またはアセトフェノン等のケトン系溶媒が更に好ましい。また、有機溶媒Aと有機溶媒Bの両者が芳香族性の化合物からなる溶媒であることも好ましい態様である。
 本発明の有機半導体組成物は、有機溶媒Aと絶縁性化合物とのハンセンの溶解度パラメータHSP値における水素結合項の差が3.0cal/cm以下であり、かつ有機溶媒Bと絶縁性化合物とのハンセンの溶解度パラメータにおける水素結合項の差が2.0cal/cm以上であることが好ましく、有機溶媒Aと絶縁性化合物とのハンセンの溶解度パラメータにおける水素結合項の差が2.5cal/cm以下であり、かつ有機溶媒Bと絶縁性化合物とのハンセンの溶解度パラメータにおける水素結合項の差が2.0cal/cm以上であることがより好ましく、有機溶媒Aと絶縁性化合物とのハンセンの溶解度パラメータにおける水素結合項の差が2.0cal/cm以下であり、かつ有機溶媒Bと絶縁性化合物とのハンセンの溶解度パラメータにおける水素結合項の差が2.0cal/cm以上5.0cal/cm以下であることが更に好ましい。
 尚、本発明において「HSP値」とは、ハンセン溶解度パラメータ:A User‘s Handbook, Second Edition, C.M.Hansen(2007)、Taylor and Francis Group, LLC(HsPiPマニュアル)で解説された式に基づいて、「HSPiP 第3版」(ソフトウェアバージョン3.1.16)を用いて算出した溶解度パラメータの値を意味する。尚、δDは分散項、δPは極性項、δHは水素結合項である。
 本発明の有機半導体組成物が含有する有機溶媒A及び有機溶媒Bの好ましい具体例を、HSP値及び沸点と共に以下の表1乃至5に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 有機溶媒A及び有機溶媒Bは、前記の好ましい具体例のものに限定されず、上記した諸条件を満たす範囲内で、有機半導体化合物及び絶縁性化合物の種類によって適切な溶媒を選択すればよい。
 本発明の有機半導体組成物における有機溶媒Aと有機溶媒Bの含有質量比率a:b(有機溶媒A:有機溶媒B)は1:8乃至8:1であることが好ましく、1:6乃至6:1であることがより好ましく、1:5乃至5:1であることが更により好ましく、1:5乃至2:1であること特に好ましく、1:1であることが最も好ましい。
 本発明の有機半導体組成物の製造方法は特に制限されず、公知の方法を採用できる。例えば、有機溶媒Aと有機溶媒Bの混合溶媒中に所定量の有機半導体化合物及び絶縁性化合物を逐次添加し、適宜撹拌処理を施すことにより、所望の組成物を得ることができる。
 本発明の有機薄膜(有機半導体膜)は、本発明の有機半導体組成物を基板上に通常、塗布或いは印刷することにより有機半導体組成物層を形成した後、該組成物層を熱処理することにより得られる。塗布或いは印刷には従来公知の方法を特に限定なく採用することが出来る。また、熱処理の方法や条件も有機溶媒A及びBを蒸発させることが出来さえすれば特に限定されないが、乾燥温度を下げるために減圧下で熱処理を行うことが好ましい。
 本発明の有機薄膜トランジスタは、本発明の有機半導体膜に接して2つの電極(ソース電極及びドレイン電極)があり、その電極間に流れる電流を、ゲート電極と呼ばれるもう一つの電極に印加する電圧で制御するものである。
 有機薄膜トランジスタデバイスには、ゲート電極が絶縁膜で絶縁されている構造(Metal-InsuIator-Semiconductor MIS構造)が一般に用いられる。絶縁膜に金属酸化膜を用いたものはMOS構造と呼ばれ、これ以外にショットキー障壁を介してゲート電極が形成されている構造(すなわちMES構造)も知られているが、有機薄膜トランジスタの場合、MIS構造が用いられることが多い。
 以下、図1に示す有機トランジスタデバイスのいくつかの態様例を用いて有機トランジスタについてより詳細に説明するが、本発明はこれらの構造には限定されない。
 図1における各態様例において、1がソース電極、2が有機薄膜(半導体層)、3がドレイン電極、4が絶縁体層、5がゲート電極、6が基板をそれぞれ表す。尚、各層や電極の配置は、デバイスの用途により適宜選択できる。A乃至D及びFは基板と並行方向に電流が流れるので、横型トランジスタと呼ばれる。Aはボトムコンタクトボトムゲート構造、Bはトップコンタクトボトムゲート構造と呼ばれる。また、Cは半導体上にソース及びドレイン電極、絶縁体層を設け、さらにその上にゲート電極を形成しており、トップコンタクトトップゲート構造と呼ばれている。Dはトップ&ボトムコンタクトボトムゲート型トランジスタと呼ばれる構造である。Fはボトムコンタクトトップゲート構造である。Eは縦型の構造をもつトランジスタ、すなわち静電誘導トランジスタ(SIT)の模式図である。このSITは、電流の流れが平面状に広がるので一度に大量のキャリアが移動できる。またソース電極とドレイン電極が縦に配されているので電極間距離を小さくできるため応答が高速である。従って、大電流を流す、高速のスイッチングを行うなどの用途に好ましく適用できる。なお図1中のEには、基板を記載していないが、通常の場合、図1E中の1及び3で表されるソース又はドレイン電極の外側には基板が設けられる。
 各態様例における各構成要素について説明する。
基板6は、その上に形成される各層が剥離することなく保持できることが必要である。例えば樹脂板やフィルム、紙、ガラス、石英、セラミックなどの絶縁性材料;金属や合金などの導電性基板上にコーティング等により絶縁層を形成した物;樹脂と無機材料など各種組合せからなる材料;等が使用できる。使用できる樹脂フィルムの例としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリカーボネート、セルローストリアセテート、ポリエーテルイミドなどが挙げられる。樹脂フィルムや紙を用いると、デバイスに可撓性を持たせることができ、フレキシブルで、軽量となり、実用性が向上する。基板の厚さとしては、通常1μm乃至10mmであり、好ましくは5μm乃至5mmである。
 ソース電極1、ドレイン電極3、ゲート電極5には導電性を有する材料が用いられる。例えば、白金、金、銀、アルミニウム、クロム、タングステン、タンタル、ニッケル、コバルト、銅、鉄、鉛、錫、チタン、インジウム、パラジウム、モリブデン、マグネシウム、カルシウム、バリウム、リチウム、カリウム、ナトリウム等の金属及びそれらを含む合金;InO、ZnO、SnO、ITO等の導電性酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレンビニレン、ポリジアセチレン等の導電性高分子化合物;シリコン、ゲルマニウム、ガリウム砒素等の半導体;カーボンブラック、フラーレン、カーボンナノチューブ、グラファイト、グラフェン等の炭素材料;等が使用できる。また、導電性高分子化合物や半導体にはドーピングが行われていてもよい。ドーパントとしては、例えば、塩酸、硫酸等の無機酸;スルホン酸等の酸性官能基を有する有機酸;PF、AsF、FeCl等のルイス酸;ヨウ素等のハロゲン原子;リチウム、ナトリウム、カリウム等の金属原子;等が挙げられる。ホウ素、リン、砒素などはシリコンなどの無機半導体用のドーパントとしても多用されている。
 また、上記のドーパントにカーボンブラックや金属粒子などを分散した導電性の複合材料も用いられる。直接、半導体と接触するソース電極1およびドレイン電極3はコンタクト抵抗を低減するために適切な仕事関数を選択するか、表面処理などが重要である。
 またソース電極とドレイン電極間の距離(チャネル長)がデバイスの特性を決める重要なファクターであり、適正なチャネル長が必要である。チャネル長が短ければ取り出せる電流量は増えるが、コンタクト抵抗の影響などの短チャネル効果が生じ、半導体特性を低下させることがある。該チャネル長は、通常0.01乃至300μm、好ましくは0.1乃至100μmである。ソースとドレイン電極間の幅(チャネル幅)は通常10乃至5000μm、好ましくは40乃至2000μmとなる。またこのチャネル幅は、電極の構造をくし型構造とすることなどにより、さらに長いチャネル幅を形成することが可能で、必要な電流量やデバイスの構造などにより、適切な長さにする必要がある。
 ソース電極及びドレイン電極のそれぞれの構造(形)について説明する。ソース電極とドレイン電極の構造はそれぞれ同じであっても、異なっていてもよい。
 ボトムコンタクト構造の場合は、一般的にはリソグラフィー法を用いて各電極を作製し、また各電極は直方体に形成するのが好ましい。最近は各種印刷方法による印刷精度が向上してきており、インクジェット印刷、グラビア印刷又はスクリーン印刷などの手法を用いて精度よく電極を作製することが可能となってきている。半導体上に電極のあるトップコンタクト構造の場合はシャドウマスクなどを用いて蒸着することが出来る。インクジェットなどの手法を用いて電極パターンを直接印刷形成することも可能となってきている。電極の長さは前記のチャネル幅と同じである。電極の幅には特に規定は無いが、電気的特性を安定化できる範囲で、デバイスの面積を小さくするためには短い方が好ましい。電極の幅は、通常0.1乃至1000μmであり、好ましくは0.5乃至100μmである。電極の厚さは、通常0.1乃至1000nmであり、好ましくは1乃至500nmであり、より好ましくは5乃至200nmである。各電極1、3、5には配線が連結されているが、配線も電極とほぼ同様の材料により作製される。
 絶縁体層4としては絶縁性を有する材料が用いられる。例えば、ポリパラキシリレン、ポリアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリビニルフェノール、ポリアミド、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルホン、ポリシロキサン、フッ素樹脂、エポキシ樹脂、フェノール樹脂等のポリマー及びこれらを組み合わせた共重合体;酸化珪素、酸化アルミニウム、酸化チタン、酸化タンタル等の金属酸化物;SrTiO、BaTiO等の強誘電性金属酸化物;窒化珪素、窒化アルミニウム等の窒化物、硫化物、フッ化物などの誘電体;あるいは、これら誘電体の粒子を分散させたポリマー;等が使用しうる。この絶縁体層はリーク電流を少なくするために電気絶縁特性が高いものが好ましく使用できる。それにより膜厚を薄膜化し、絶縁容量を高くすることが出来、取り出せる電流が多くなる。また半導体の移動度を向上させるためには絶縁体層表面の表面エネルギーを低下させ、凹凸がなくスムースな膜であることが好ましい。その為に自己組織化単分子膜や、2層の絶縁体層を形成させる場合がある。絶縁体層4の膜厚は、材料によって異なるが、通常0.1nm乃至100μm、好ましくは0.5nm乃至50μm、より好ましくは1nm乃至10μmである。
 半導体層2の材料には、本発明の有機半導体組成物が用いられる。先に示した有機半導体膜の形成方法に準じた方法で有機半導体膜を形成し、半導体層2とすることができる。
 半導体層(有機薄膜)については複数の層を形成してもよいが、単層構造であることがより好ましい。半導体層2の膜厚は、必要な機能を失わない範囲で、薄いほど好ましい。A、B及びDに示すような横型の有機トランジスタにおいては、所定以上の膜厚があればデバイスの特性は膜厚に依存しないが、膜厚が厚くなると漏れ電流が増加してくることが多いためである。必要な機能を示すための半導体層の膜厚は、通常、1nm乃至1μm、好ましくは5nm乃至500nm、より好ましくは10nm乃至300nmである。
 有機薄膜トランジスタには、例えば基板層と絶縁膜層や絶縁膜層と半導体層の間やデバイスの外面に必要に応じて他の層を設けることができる。例えば、有機薄膜上に直接、又は他の層を介して、保護層を形成すると、湿度などの外気の影響を小さくすることができる。また、有機トランジスタデバイスのオン/オフ比を上げることができるなど、電気的特性を安定化できる利点もある。
 上記保護層の材料は特に限定されないが、例えば、エポキシ樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリウレタン、ポリイミド、ポリビニルアルコール、フッ素樹脂、ポリオレフィン等の各種樹脂からなる膜;酸化珪素、酸化アルミニウム、窒化珪素等の無機酸化膜;及び窒化膜等の誘電体からなる膜;等が好ましく用いられ、特に、酸素や水分の透過率や吸水率の小さな樹脂(ポリマー)が好ましい。有機ELディスプレイ用に開発されているガスバリア性保護材料も使用が可能である。保護層の膜厚は、その目的に応じて任意の膜厚を選択できるが、通常100nm乃至1mmである。
 また有機薄膜が積層される基板又は絶縁体層に予め表面改質や表面処理を行うことにより、有機トランジスタデバイスとしての特性を向上させることが可能である。例えば基板表面の親水性/疎水性の度合いを調整することにより、その上に成膜される膜の膜質や成膜性を改良することができる。特に、有機半導体材料は分子の配向など膜の状態によって特性が大きく変わることがある。そのため、基板、絶縁体層などへの表面処理によって、その後に成膜される有機薄膜との界面部分の分子配向が制御される、あるいは基板や絶縁体層上のトラップ部位が低減されることにより、キャリア移動度等の特性が改良されるものと考えられる。
 トラップ部位とは、未処理の基板に存在する例えば水酸基のような官能基をさし、このような官能基が存在すると、電子が該官能基に引き寄せられ、この結果としてキャリア移動度が低下する。従って、トラップ部位を低減することもキャリア移動度等の特性改良には有効な場合が多い。
 上記のような特性改良のための表面処理としては、例えば、ヘキサメチルジシラザン、オクチルトリクロロシラン、オクタデシルトリクロロシラン等による自己組織化単分子膜処理、ポリマーなどによる表面処理、塩酸や硫酸、酢酸等による酸処理、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等によるアルカリ処理、オゾン処理、フッ素化処理、酸素やアルゴン等のプラズマ処理、ラングミュア・ブロジェット膜の形成処理、その他の絶縁体や半導体の薄膜の形成処理、機械的処理、コロナ放電などの電気的処理、繊維等を利用したラビング処理などがあげられ、それらの組み合わせた処理も行うことができる。
 これらの態様において、例えば基板層と絶縁膜層や絶縁膜層と有機薄膜等の各層を設ける方法としては、前記した真空プロセス、溶液プロセスが適宜採用できる。
 次に、本発明の有機薄膜トランジスタデバイスの製造方法について、図1の態様例Bに示すトップコンタクトボトムゲート型有機トランジスタを例として、図2に基づき以下に説明する。この製造方法は前記した他の態様の有機トランジスタ等にも同様に適用しうるものである。
(有機トランジスタの基板及び基板処理について)
 本発明の有機トランジスタは、基板6上に必要な各種の層や電極を設けることで作製される(図2(1)参照)。基板としては上記で説明したものが使用できる。この基板上に前述の表面処理などを行うことも可能である。基板6の厚みは、必要な機能を妨げない範囲で薄い方が好ましい。材料によっても異なるが、通常1μm乃至10mmであり、好ましくは5μm乃至5mmである。また、必要により、基板に電極の機能を持たせるようにする事も出来る。
(ゲート電極の形成について)
 基板6上にゲート電極5を形成する(図2(2)参照)。電極材料としては上記で説明したものが用いられる。電極膜を成膜する方法としては、各種の方法を用いることができ、例えば真空蒸着法、スパッタ法、塗布法、熱転写法、印刷法、ゾルゲル法等が採用される。成膜時又は成膜後、所望の形状になるよう必要に応じてパターニングを行うのが好ましい。パターニングの方法としても各種の方法を用いうるが、例えばフォトレジストのパターニングとエッチングを組み合わせたフォトリソグラフィー法等が挙げられる。また、シャドウマスクを用いた蒸着法やスパッタ法やインクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法、及びこれら手法を複数組み合わせた手法を利用し、パターニングすることも可能である。ゲート電極5の膜厚は、材料によっても異なるが、通常0.1nm乃至10μmであり、好ましくは0.5nm乃至5μmであり、より好ましくは1nm乃至3μmである。また、ゲート電極と基板を兼ねるような場合は上記の膜厚より大きくてもよい。
(絶縁体層の形成について)
 ゲート電極5上に絶縁体層4を形成する(図2(3)参照)。絶縁体材料としては上記で説明した材料が用いられる。絶縁体層4を形成するにあたっては各種の方法を用いることができる。例えばスピンコーティング、スプレーコーティング、ディップコーティング、キャスト、バーコート、ブレードコーティングなどの塗布法、スクリーン印刷、オフセット印刷、インクジェット等の印刷法、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、イオンプレーティング法、スパッタリング法、大気圧プラズマ法、CVD法などのドライプロセス法が挙げられる。その他、ゾルゲル法やアルミニウム上のアルマイト、シリコン上の酸化珪素のように金属上に熱酸化法などにより酸化物膜を形成する方法等が採用される。尚、絶縁体層と半導体層が接する部分においては、両層の界面で半導体を構成する化合物の分子を良好に配向させるために、絶縁体層に所定の表面処理を行うこともできる。表面処理の手法は、基板の表面処理と同様のものを用いることができうる。絶縁体層4の膜厚は、その電気容量をあげることで取り出す電気量を増やすことが出来るため、出来るだけ薄い膜であることが好ましい。このときに薄い膜になるとリーク電流が増えるため、その機能を損なわない範囲で薄い方が好ましい。通常0.1nm乃至100μmであり、好ましくは0.5nm乃至50μmであり、より好ましくは5nm乃至10μmである。
(有機薄膜の形成について)
 有機薄膜(有機半導体層)を形成するにあたっては、塗布及び印刷による方法等の各種の方法を用いることができる。具体的にはディップコート法、ダイコーター法、ロールコーター法、バーコーター法、スピンコート法等の塗布法、インクジェット法、スクリーン印刷法、オフセット印刷法、マイクロコンタクト印刷法などの溶液プロセスによる形成方法が挙げられる。
 溶液プロセスによって成膜し有機薄膜を得る方法について説明する。有機半導体組成物を、基板(絶縁体層、ソース電極及びドレイン電極の露出部)に塗布する。塗布の方法としては、スピンコート法、ドロップキャスト法、ディップコート法、スプレー法、フレキソ印刷、樹脂凸版印刷などの凸版印刷法、オフセット印刷法、ドライオフセット印刷法、パッド印刷法などの平板印刷法、グラビア印刷法などの凹版印刷法、シルクスクリーン印刷法、謄写版印刷法、リングラフ印刷法などの孔版印刷法、インクジェット印刷法、マイクロコンタクトプリント法等、さらにはこれらの手法を複数組み合わせた方法が挙げられる。
 更に、塗布方法に類似した方法として水面上に上記の組成物を滴下することにより作製した有機薄膜の単分子膜を基板に移し積層するラングミュアプロジェクト法、液晶や融液状態の材料を2枚の基板で挟んで毛管現象で基板間に導入する方法等も採用できる。
 製膜時における基板や組成物の温度などの環境も重要で、基板や組成物の温度によってトランジスタの特性が変化する場合があるので、注意深く基板及び組成物の温度を選択するのが好ましい。基板温度は通常0乃至200℃であり、好ましくは10乃至120℃であり、より好ましくは15乃至100℃である。用いる組成物中の溶媒などに大きく依存するため、注意が必要である。
 この方法により作製される有機薄膜の膜厚は、機能を損なわない範囲で、薄い方が好ましい。膜厚が厚くなると漏れ電流が大きくなる懸念がある。有機薄膜の膜厚は、通常1nm乃至1μm、好ましくは5nm乃至500nm、より好ましくは10nm乃至300nmである。
 このように形成された有機薄膜(図2(4)参照)は、後処理によりさらに特性を改良することが可能である。例えば、熱処理により、成膜時に生じた膜中の歪みが緩和されること、ピンホール等が低減されること、膜中の配列・配向が制御できる等の理由により、有機半導体特性の向上や安定化を図ることができる。本発明の有機トランジスタの作製時にはこの熱処理を行うことが特性の向上の為には効果的である。当該熱処理は有機薄膜を形成した後に基板を加熱することによって行う。熱処理の温度は特に制限は無いが通常、室温から180℃程度で、好ましくは40乃至160℃、さらに好ましくは45乃至150℃である。この時の熱処理時間については特に制限は無いが通常10秒間から24時間、好ましくは30秒間から3時間程度である。その時の雰囲気は大気中でもよいが、窒素やアルゴンなどの不活性雰囲気下でもよい。その他、溶媒蒸気による膜形状のコントロールなどが可能である。
 またその他の有機薄膜の後処理方法として、酸素や水素等の酸化性あるいは還元性の気体や、酸化性あるいは還元性の液体などを用いて処理することにより、酸化あるいは還元による特性変化を誘起することもできる。これは例えば膜中のキャリア密度の増加あるいは減少の目的で利用することが出来る。
 また、ドーピングと呼ばれる手法において、微量の元素、原子団、分子、高分子を有機薄膜に加えることにより、有機薄膜の特性を変化させることができる。例えば、酸素、水素、塩酸、硫酸、スルホン酸等の酸;PF、AsF、FeCl等のルイス酸;ヨウ素等のハロゲン原子;ナトリウム、カリウム等の金属原子;テトラチアフルバレン(TTF)やフタロシアニン等のドナー化合物をドーピングすることができる。これは、有機薄膜に対して、これらのガスを接触させたり、溶液に浸したり、電気化学的なドーピング処理をすることにより達成できる。これらのドーピングは有機薄膜の作製後でなくても、有機半導体化合物の合成時に添加したり、有機半導体組成物に添加したり、有機薄膜を形成する工程などで添加したりすることができる。また蒸着時に有機薄膜を形成する材料にドーピングに用いる材料を添加して共蒸着したり、有機薄膜を作製する時の周囲の雰囲気に混合したり(ドーピング材料を存在させた環境下で有機薄膜を作製する)、さらにはイオンを真空中で加速して膜に衝突させてドーピングすることも可能である。
 これらのドーピングの効果としては、キャリア密度の増加あるいは減少による電気伝導度の変化、キャリアの極性の変化(p型、n型)、フェルミ準位の変化等が挙げられる。
(ソース電極及びドレイン電極の形成)
 ソース電極1及びドレイン電極3の形成方法等はゲート電極5の場合に準じて形成することができる(図2(5)参照)。また有機薄膜との接触抵抗を低減するために各種添加剤などを用いることが可能である。
(保護層について)
 有機薄膜に保護層7を形成すると、外気の影響を最小限にでき、また、有機トランジスタの電気的特性を安定化できるという利点がある(図2(6)参照)。保護層の材料としては前記のものが使用される。保護層7の膜厚は、その目的に応じて任意の膜厚を採用できるが、通常100nm乃至1mmである。
 保護層を成膜するにあたっては各種の方法を採用しうるが、保護層が樹脂からなる場合は、例えば、樹脂溶液を塗布後、乾燥させて樹脂膜とする方法;樹脂モノマーを塗布あるいは蒸着したのち重合する方法;などが挙げられる。成膜後に架橋処理を行ってもよい。保護層が無機物からなる場合は、例えば、スパッタリング法、蒸着法等の真空プロセスでの形成方法や、ゾルゲル法等の溶液プロセスでの形成方法も用いることができる。
 有機薄膜トランジスタにおいては有機薄膜上の他、各層の間にも必要に応じて保護層を設けることができる。それらの層は有機トランジスタの電気的特性の安定化に役立つ場合がある。
 有機半導体化合物を有機半導体組成物として用いているため、比較的低温プロセスで有機薄膜トランジスタを製造することができる。従って、高温にさらされる条件下では使用できなかったプラスチック板、プラスチックフィルム等フレキシブルな材質も基板として用いることができる。その結果、軽量で柔軟性に優れた壊れにくいデバイスの製造が可能になり、ディスプレイのアクティブマトリクスのスイッチングデバイス等として利用することができる。
 有機薄膜トランジスタは、メモリー回路デバイス、信号ドライバー回路デバイス、信号処理回路デバイスなどのデジタルデバイスやアナログデバイスとしても利用できる。さらにこれらを組み合わせることにより、ディスプレイ、ICカードやICタグ等の作製が可能となる。更に、有機トランジスタは化学物質等の外部刺激によりその特性に変化を起こすことができるので、センサーとしての利用も可能である。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 尚、本実施例では下記式(6)で表されるOSC-1(9-オクチル-3-フェニルナフト[2′,3′:4,5]チエノ[3,2-b][1]ベンゾチオフェン)、下記式(7)で表されるOSC-2(6,13-ビス(トリイソプロピルシリルエチニル)ペンタセン)、下記式(8)で表されるOSC-3(2,7-ジオクチル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン)を有機半導体化合物として使用した。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
参考例1(溶解度の評価)
 OSC-1の粉末約1mgに下記表6に記載の溶媒をそれぞれ加え、溶解度(OSC-1の質量/OSC-1の全量を溶解するために要した各溶液の質量×100)を算出した。尚、完全に溶解した時点の見極めは目視確認により行った。結果を表6に示した。絶縁性化合物として本実施例で用いたポリメタクリル酸メチル(以下、PMMA)、ポリスチレン(以下、PS)についても同様の方法で溶解度の評価を行った。結果を表6、表7、表8に示した。
 また、OSC-2からOSC-3についても同様の方法で溶解度の評価を行い、その結果を表8、表9に示した。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
参考例2(絶縁性化合物(PMMA及びPS)のハンセン溶解度パラメータの算出)
 明細書に記載した方法に準じてPMMA及びPSのハンセン溶解度パラメータを算出した。結果を表10に示した。
Figure JPOXMLDOC01-appb-T000020
実施例1(本発明の有機半導体組成物1の調製)
 アニソール(東京化成製)とテトラリン(東京化成製)をa:b=1:1の比率で混合した溶液に、混合溶液に対するそれぞれの濃度が0.3%及び0.016%となる量のOSC-1及びPMMA(Aldrich製、分子量120,000)を加えて溶解させ、有機半導体組成物1を調製した。尚、アニソールとPMMAの溶解度パラメータの水素結合項の差は1.8cal/cm、テトラリンとPMMAの溶解度パラメータの水素結合項の差は2.2cal/cmである。その他の物性も含め、有機半導体組成物1の特性を表11に示す。
実施例2(本発明の有機薄膜トランジスタ素子の作製)
 Si熱酸化膜付きのnドープシリコンウェハー上に、シャドウマスクを用いてAuを真空蒸着し、チャネル長20μm、チャネル幅は100μmのソース電極及びドレイン電極をそれぞれ作製した。次に前記の基板上を10mMのペンタフルオロベンゼンチオール(東京化成製)で処理した後、この基板上に実施例1で得られた有機半導体組成物1をスピンコート法により塗布した後、ホットプレートを用いて140℃×10分間の条件で有機溶媒を乾燥させて有機薄膜(有機半導体層)を形成し、本発明のボトムコンタクト型有機薄膜トランジスタ素子1(図1A)を作製した。なお、有機薄膜トランジスタ素子1においては、熱酸化膜付きのnドープシリコンウェハーにおける熱酸化膜が絶縁層の機能を有し、nドープシリコンウェハーが基板及びゲート電極の機能を兼ね備えている。
(有機薄膜トランジスタ素子1の特性評価)
 有機トランジスタ素子の性能は、ゲートに電位をかけた状態でソース電極とドレイン電極の間に電位をかけた時に流れる電流量に依存する。この電流値の測定結果を、有機薄膜に生じるキャリア種の電気特性を表現する下記式(a)に用いることにより、移動度を算出することができる。
Id = ZμCi (VG-Vth-VD/2)VD/L …(a)
 式(a)中、Idはソース・ドレイン電流値、Zはチャネル幅、Ciは絶縁体の電気容量、VGはゲート電位、Vthは閾値電位、Lはチャネル長であり、マイクロは決定する移動度(cm/Vs)である。
 一枚の基板上に実施例2に準じて12個の有機薄膜トランジスタ素子1を作製し、ドレイン電圧-1Vの条件でゲート電圧を+30Vから-40Vまで掃引した場合のドレイン電流の変化を測定した。式(a)から算出した正孔移動度は1.42cm/Vs、移動度の標準偏差は0.18cm/Vs、閾値電位は-0.37V、閾値電位の標準偏差は0.21Vであった。
 以上より本発明の有機半導体組成物を用いて得られた有機薄膜トランジスタ素子1は高移動度を保持しつつ、移動度と閾値のバラつきが小さい有機薄膜トランジスタ素子であった。
実施例3(本発明の有機半導体組成物2の調製)
 OSC-1をOSC-2、OSC-2の濃度を0.5%、PMMAの濃度を0.026%に変更した以外は実施例1に準じて、有機半導体組成物2を調製した。表11に有機半導体組成物2におけるOSC-2の濃度、PMMAの濃度、溶媒Aの種類と沸点、有機半導体Bの種類と沸点、有機溶剤Aと有機溶剤Bの沸点の差、有機溶媒Aと有機溶媒Bの含有質量比率(a:b)、有機溶媒AとPMMAの溶解度パラメータの水素結合の差(ΔP)。及び有機溶媒BとPMMAの溶解度パラメータの水素結合の差(ΔP)を示した。
実施例4(本発明の有機半導体組成物3の調製)
 OSC-1をOSC-3、OSC-3の濃度を1.0%、PMMAの濃度を0.053%、有機溶媒Aと有機溶媒Bの比率を1:1から8:1に変更した以外は実施例1に準じて有機半導体組成物3を調製した。表11に有機半導体組成物3におけるOSC-3の濃度、PMMAの濃度、溶媒Aの種類と沸点、有機半導体Bの種類と沸点、有機溶剤Aと有機溶剤Bの沸点の差、有機溶媒Aと有機溶媒Bの含有質量比率(a:b)、有機溶媒AとPMMAの溶解度パラメータの水素結合の差(ΔP)。及び有機溶媒BとPMMAの溶解度パラメータの水素結合の差(ΔP)を示した。
実施例5及び6(本発明の有機薄膜トランジスタ素子2乃至3の作製及び特性評価)
 有機半導体組成物1を実施例3及び4で得られた有機半導体組成物2及び3にそれぞれ変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子2及び3をそれぞれ作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表12に有機薄膜トランジスタ素子1乃至3の特性の評価結果を示した。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
実施例7乃至9(本発明の有機半導体組成物4乃至6の調製)
 有機溶媒Aを実施例1で用いたアニソールから表13に記載の各溶媒に変更した以外は実施例1に準じて、有機半導体組成物4乃至6を調製した。表13に有機半導体組成物4乃至6におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点、有機溶媒Aと有機溶媒Bの沸点の差、有機溶媒AとPMMAの溶解度パラメータの水素結合項の差(ΔP)、及び有機溶媒BとPMMAの溶解度パラメータの水素結合項の差(ΔP)を示した。
実施例10(本発明の有機半導体組成物7の調製)
 有機溶媒Bをテトラリンからシクロヘキシルベンゼン、有機溶媒Aと有機溶媒Bの質量比率を1:1から7:1に変更した以外は実施例1に準じて、有機半導体組成物7を調製した。表13に有機半導体7におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点、有機溶媒Aと有機溶媒Bの沸点の差、有機溶媒AとPMMAの溶解度パラメータの水素結合項の差(ΔP)、及び有機溶媒BとPMMAの溶解度パラメータの水素結合項の差(ΔP)を示した。
Figure JPOXMLDOC01-appb-T000023
実施例11乃至14(本発明の有機薄膜トランジスタ素子4乃至7の作製及び特性評価)
 有機半導体組成物1を実施例7乃至10で得られた有機半導体組成物4乃至7にそれぞれ変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子4乃至7をそれぞれ作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表14に有機薄膜トランジスタ素子4乃至7の特性の評価結果を示した。
Figure JPOXMLDOC01-appb-T000024
 以上より本発明の有機半導体組成物を用いて得られた有機薄膜トランジスタ素子2乃至7は高移動度を保持しつつ、移動度と閾値のバラつきが小さい有機薄膜トランジスタ素子であった。
比較例1(比較用の有機半導体組成物8の調製)
 アニソールとテトラリンの混合溶液をアニソールのみに変更した以外は実施例1に準じて比較用の有機半導体組成物8を調製した。表15に有機半導体組成物8におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点及び有機溶媒AとPMMAの溶解度パラメータの水素結合項の差(ΔP)を示した。
Figure JPOXMLDOC01-appb-T000025
比較例2(比較用の有機薄膜トランジスタ素子8の作製及び特性評価)
 有機半導体組成物1を比較例1で得られた有機半導体組成物8に変更した以外は実施例2に準じて、比較用の有機薄膜トランジスタ素子8を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表16に有機薄膜トランジスタ素子8の特性の評価結果を示した。
Figure JPOXMLDOC01-appb-T000026
 以上より比較用の有機半導体組成物を用いて得られた有機薄膜トランジスタ素子8は、本発明の有機薄膜トランジスタ素子よりも閾値のばらつきが大きかった。
比較例3(比較用の有機半導体組成物9の調製)
 アニソール(東京化成製)とテトラリン(東京化成製)を9:1の比率で混合した溶液にそれぞれの濃度が0.3%及び0.003%となる量のOSC-1及びPMMAを加えて溶解させ、有機半導体組成物9を調製した。表17に有機半導体組成物9におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点及び有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
比較例4(比較用の有機薄膜トランジスタ素子9の作製及び特性評価)
 有機半導体組成物1を比較例3で得られた有機半導体組成物9に変更した以外は実施例2に準じて、比較用の有機薄膜トランジスタ素子9を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表18に有機薄膜トランジスタ素子9の評価結果を示した。
実施例15(本発明の有機半導体組成物10の調製)
 アニソールとテトラリンの比率を8:1に変更した以外は実施例1に準じて、有機半導体組成物10を調製した。表17に有機半導体組成物10におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点及び有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
実施例16(本発明の有機薄膜トランジスタ素子10の作製及び特性評価)
 有機半導体組成物1を実施例15で得られた有機半導体組成物10に変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子10を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表18に有機薄膜トランジスタ素子10の評価結果を示した。
実施例17(本発明の有機半導体組成物11の調製)
 アニソールとテトラリンの比率を1:5に、PMMAの濃度を0.003%に変更した以外は実施例1に準じて、有機半導体組成物11を調製した。表17に有機半導体組成物11におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点及び有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
実施例18(本発明の有機薄膜トランジスタ11の作製及び特性評価)
 有機半導体組成物1を実施例17で得られた有機半導体組成物11に変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子11を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表18に有機薄膜トランジスタ素子11の評価結果を示した。
実施例19(本発明の有機半導体組成物12の調製)
 アニソールとテトラリンの比率を1:8に変更した以外は実施例1に準じて、有機半導体組成物12を調製した。表17に有機半導体組成物12におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点及び有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
実施例20(本発明の有機薄膜トランジスタ12の作製及び特性評価)
 有機半導体組成物1を実施例19で得られた有機半導体組成物12に変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子12を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表18に有機薄膜トランジスタ素子12の評価結果を示した。
比較例5(比較用の有機半導体組成物13の調製)
 アニソールとテトラリンの比率を1:9に変更した以外は比較例3に準じて、比較用の有機半導体組成物13を調製した。表17に有機半導体組成物13におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点及び有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
比較例6(比較用の有機薄膜トランジスタ素子13の作製及び特性評価)
 有機半導体組成物1を比較例5で得られた有機半導体組成物13に変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子13を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表18に有機薄膜トランジスタ素子13の評価結果を示した。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 以上より本発明の有機半導体組成物を用いて得られた有機薄膜トランジスタ素子は高移動度を保持しつつ、移動度と閾値のバラつきが小さい有機薄膜トランジスタ素子であったが、比較例の有機半導体組成物を用いて得られた有機薄膜トランジスタ素子は閾値のばらつきが大きかった。
実施例21(本発明の有機半導体組成物14の調製)
 混合溶液に溶解させるPMMAを、濃度が0.003%になる量に変更した以外は実施例1に準じて、有機半導体組成物14を調製した。表19に有機半導体組成物14におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点及び有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
実施例22(本発明の有機薄膜トランジスタ素子14の作製及び特性評価)
 有機半導体組成物1を実施例21で得られた有機半導体組成物14に変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子14を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表20に有機薄膜トランジスタ素子14の評価結果を示した。
実施例23(本発明の有機半導体組成物15の調製)
 混合溶液に溶解させるPMMAを、濃度が0.05%になる量に変更した以外は実施例1に準じて、有機半導体組成物15を調製した。表19に有機半導体組成物15におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点及び有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
実施例24(本発明の有機薄膜トランジスタ素子15の作製及び特性評価)
 有機半導体組成物1を実施例23で得られた有機半導体組成物15に変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子15を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表20に有機薄膜トランジスタ素子15の評価結果を示した。
実施例25(本発明の有機半導体組成物16の調製)
 混合溶液に溶解させるPMMAを、濃度が0.2%になる量に変更した以外は実施例1に準じて、有機半導体組成物16を調製した。表19に有機半導体組成物16におけるOSC-1の濃度、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点及び有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
実施例26(本発明の有機薄膜トランジスタ素子16の作製及び特性評価)
 有機半導体組成物1を実施例25で得られた有機半導体組成物16に変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子16を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表20に有機薄膜トランジスタ素子16の評価結果を示した。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 以上より本発明の有機半導体組成物を用いて得られた有機薄膜トランジスタ素子は移動度及び閾値のばらつきが小さく、均一性にも優れていた。
実施例27(本発明の有機半導体組成物17の調製)
 o-キシレン(関東化学製)と1-フェノキシ-2-プロパノール(東京化成製)を8:1の比率で混合した溶液に、混合溶液に対するそれぞれの濃度が0.3%及び0.15%となる量のOSC-1及びPS(Aldrich製、分子量1,000,000)を加えて溶解させ、有機半導体組成物17を調製した。尚、o-キシレンと1-フェノキシ-2-プロパノールの溶解度パラメータの水素結合項の差は0.20cal/cm、1-フェノキシ-2-プロパノールとPSの溶解度パラメータの差は11.0cal/cmである。表21にOSC-1の濃度、PSの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点、有機溶媒Aと有機溶媒Bの沸点の差、有機溶媒Aと有機溶媒Bの含有質量比率(a:b)、有機溶媒AとPSの溶解度パラメータの水素結合項の差(ΔP)、及び有機溶媒BとPSの溶解度パラメータの水素結合項の差(ΔP)を示した。
実施例28(本発明の有機薄膜トランジスタ素子17の作製及び特性評価)
有機半導体組成物1を実施例27で得られた有機半導体組成物17に変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子17を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表22に有機薄膜トランジスタ素子17の評価結果を示した。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
 以上より本発明の有機半導体組成物を用いて得られた有機薄膜トランジスタ素子は移動度及び閾値のばらつきが小さく、均一性にも優れていた。
実施例29(本発明の有機半導体組成物18の調製)
 混合溶液に溶解させるPMMAの分子量を15,000に変更した以外は実施例1に準じて、有機半導体組成物18を調製した。表23にOSC-1の濃度、PMMAの分子量、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点、有機溶媒Aと有機溶媒Bの沸点の差、有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
実施例30(本発明の有機薄膜トランジスタ素子18の作製及び特性評価)
有機半導体組成物1を実施例29で得られた有機半導体組成物18に変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子18を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表24に有機薄膜トランジスタ素子18の評価結果を示した。
実施例31(本発明の有機半導体組成物19の調製)
 混合溶液に溶解させるPMMAの分子量を350,000に変更した以外は実施例1に準じて、有機半導体組成物19を調製した。表23にOSC-1の濃度、PMMAの分子量、PMMAの濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点、有機溶媒Aと有機溶媒Bの沸点の差、有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
実施例32(本発明の有機薄膜トランジスタ素子19の作製及び特性評価)
有機半導体組成物1を実施例31で得られた有機半導体組成物19に変更した以外は実施例2に準じて、本発明の有機薄膜トランジスタ素子19を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表24に有機薄膜トランジスタ素子19の評価結果を示した
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 以上より本発明の有機半導体組成物を用いて得られた有機薄膜トランジスタ素子は移動度及び閾値のばらつきが小さく、均一性にも優れていた。
比較例7(比較用の有機半導体組成物20の調製)
 PMMAを添加せず、使用する有機溶媒を特許文献1に記載の組成、すなわち、表25の比較例7として示す有機半導体の良溶媒である溶媒AとB、及び有機半導体の貧溶媒である溶媒Cに変更した以外は実施例1に準じて、比較用の有機半導体組成物20を調製した。表25の比較例7には、比較例7で使用した有機半導体組成物20におけるOSC-1の濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点、有機溶媒Cの種類と沸点、及び有機溶媒Aと有機溶媒B、有機溶媒Cの含有質量比率(a:b:c)を示した。
比較例8(比較用の有機薄膜トランジスタ素子の作製の試み)
 有機半導体組成物1を比較例7で得られた有機半導体組成物20に変更した以外は実施例2に準じて、比較用の有機薄膜トランジスタ素子を作製することを試みたが、スピンコート法では基板上に膜を形成させることはできなかった。そのため、半導体特性の評価は実施しなかった(表26参照)。
比較例9(比較用の有機半導体組成物21の調製)
 比較例7と同様、PMMAを添加せず、特許文献1に記載の組成に変更した以外は実施例1に準じて、比較用の有機半導体組成物21を調製した。表25の比較例9には、比較例9で使用した有機半導体組成物20におけるOSC-1の濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点、有機溶媒Cの種類と沸点、及び有機溶媒Aと有機溶媒B、有機溶媒Cの含有質量比率(a:b:c)を示した。
比較例10(比較用の有機薄膜トランジスタ素子20の作製)
 有機半導体組成物1を比較例9で得られた有機半導体組成物21に変更した以外は実施例2に準じて、比較用の有機薄膜トランジスタ素子20を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表26に有機薄膜トランジスタ素子20の評価結果を示した。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
比較例11(比較用の有機半導体組成物22の調製)
 PMMAを添加せず、使用する有機溶媒を特許文献3に記載の組成、すなわち、表27の比較例11として示す有機半導体の良溶媒Aと貧溶媒Bに変更した以外は実施例1に準じて、比較用の有機半導体組成物22を調製した。表27に有機半導体組成物22におけるOSC-1の濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点、及び有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
比較例12(比較用の有機薄膜トランジスタ素子21の作製)
 有機半導体組成物1を比較例11で得られた有機半導体組成物22に変更した以外は実施例2に準じて、比較用の有機薄膜トランジスタ素子21を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表28に有機薄膜トランジスタ素子21の評価結果を示した。
比較例13(比較用の有機半導体組成物23の調製)
 比較例11と同様、PMMAを添加せず、特許文献3に記載の組成に変更した以外は実施例1に準じて、比較用の有機半導体組成物23を調製した。表27の比較例13には、比較例13で使用した有機半導体組成物20におけるOSC-1の濃度、有機溶媒Aの種類と沸点、有機溶媒Bの種類と沸点、及び有機溶媒Aと有機溶媒Bの含有質量比率(a:b)を示した。
比較例14(比較用の有機薄膜トランジスタ素子22の作製)
 有機半導体組成物1を比較例13で得られた有機半導体組成物23に変更した以外は実施例2に準じて、比較用の有機薄膜トランジスタ素子22を作製し、有機薄膜トランジスタ素子1の特性評価と同一の条件にて半導体特性を評価した。表28に有機薄膜トランジスタ素子22の評価結果を示した。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 以上より比較用の有機半導体組成物を用いて得られた有機薄膜トランジスタ素子20乃至22は、本発明の有機薄膜トランジスタ素子よりも移動度と閾値のばらつきが大きかった。このことから特許文献1、3に記載の溶媒組成だけでは、高移動度を保持しつつ、移動度のバラつきが小さく、さらに閾値のバラつきも小さい実用的な有機薄膜トランジスタを作製できないことがわかった。そのため、特許文献1、3から本発明の効果は容易に推測できるものではないと言える。
1 ソース電極
2 有機薄膜(有機半導体層)
3 ドレイン電極
4 絶縁体層
5 ゲート電極
6 基板
7 保護層

Claims (21)

  1.  有機半導体化合物、絶縁性化合物、該絶縁性化合物の良溶媒である有機溶媒A及び該絶縁性化合物の貧溶媒であり、かつ該有機溶媒Aよりも沸点の高い有機溶媒Bを含む有機半導体組成物であって、該有機溶媒Aと該有機溶媒Bの含有質量比率a:bが1:8乃至8:1である有機半導体組成物。
  2.  有機半導体化合物がアセン骨格、フェナセン骨格またはヘテロアセン骨格を有する化合物である請求項1に記載の有機半導体組成物。
  3.  ヘテロアセン骨格を有する化合物がチエノチオフェン骨格を有する化合物である請求項2に記載の有機半導体組成物。
  4.  絶縁性化合物が下記式(1)または(2)
    Figure JPOXMLDOC01-appb-C000001
    (式(1)及び(2)中、R乃至Rは独立して炭素数1乃至20の直鎖または分岐鎖のアルキル基を表す。)
    の繰り返し単位を有する化合物である請求項1に記載の有機半導体組成物。
  5.  有機溶媒Aがエーテル基、ケトン基またはエステル基を有する化合物からなる溶媒であり、かつ有機溶媒Bが炭化水素系の化合物からなる溶媒である請求項4に記載の有機半導体組成物。
  6.  有機溶媒A及び有機溶媒Bの両者が芳香族系の化合物からなる溶媒である請求項5に記載の有機半導体組成物。
  7. 絶縁性化合物が下記式(3)
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、R及びRは水素原子または炭素数1乃至8の直鎖若しくは分岐鎖のアルキル基を表す。)
    の繰り返し単位を有する化合物である請求項1に記載の有機半導体組成物。
  8.  有機溶媒Aが炭化水素系の化合物からなる溶媒であり、かつ有機溶媒Bがエーテル基、ケトン基、またはエステル基を有する化合物からなる溶媒である請求項7に記載の有機半導体組成物。
  9.  有機溶媒A及び有機溶媒Bの両者が芳香族系の化合物からなる溶媒である請求項8に記載の有機半導体組成物。
  10.  有機溶媒Aと有機溶媒Bの沸点の差が10℃以上である請求項1に記載の有機半導体組成物。
  11.  有機溶媒Aと有機溶媒Bの沸点の差が130℃以下である請求項10に記載の有機半導体組成物。
  12.  有機溶媒Aに対する有機半導体化合物の溶解度及び有機溶媒Bに対する有機半導体化合物の溶解度の両者が0.2質量%以上である請求項1に記載の有機半導体組成物。
  13.  有機溶媒Aに対する絶縁性化合物の溶解度が0.5質量%以上であり、かつ有機溶媒Bに対する絶縁性化合物の溶解度が0.05質量%以下である請求項1に記載の有機半導体組成物。
  14.  有機溶媒Aと絶縁性化合物とのハンセン溶解度パラメータにおける水素結合項の差が2.5cal/cm以下であり、かつ有機溶媒Bと絶縁性化合物とのハンセン溶解度パラメータにおける水素結合項の差が2.0cal/cm以上である請求項1に記載の有機半導体組成物。
  15.  有機溶媒Bと絶縁性化合物とのハンセン溶解度パラメータにおける水素結合項の差が5.0cal/cm以下である請求項14に記載の有機半導体組成物。
  16.  有機溶媒Aと有機溶媒Bの含有質量比率a:bが1:5乃至5:1である請求項1に記載の有機半導体組成物。
  17.  有機溶媒Aと有機溶媒Bの含有質量比率a:bが1:5乃至2:1である請求項16に記載の有機半導体組成物。
  18.  有機半導体化合物と絶縁性化合物の合計に対する絶縁性化合物の含有量が1乃至80質量%である請求項1に記載の有機半導体組成物。
  19.  有機半導体化合物と絶縁性化合物の合計に対する絶縁性化合物の含有量が1乃至15質量%である請求項18に記載の有機半導体組成物。
  20.  請求項1乃至19のいずれか一項に記載の有機半導体組成物を用いて得られる有機薄膜。
  21.  請求項20に記載の有機薄膜を有する有機薄膜トランジスタ。
     
PCT/JP2018/010840 2017-03-21 2018-03-19 有機半導体組成物、有機薄膜及び有機薄膜トランジスタ WO2018174014A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880005059.6A CN110073507B (zh) 2017-03-21 2018-03-19 有机半导体组合物、有机薄膜及有机薄膜晶体管
KR1020197026536A KR20190130568A (ko) 2017-03-21 2018-03-19 유기 반도체 조성물, 유기 박막 및 유기 박막 트랜지스터
EP18772670.8A EP3608981A4 (en) 2017-03-21 2018-03-19 ORGANIC SEMICONDUCTOR COMPOSITION, ORGANIC SEMICONDUCTOR THIN-FILM AND ORGANIC THIN-FILM TRANSISTOR
KR1020237020651A KR20230096137A (ko) 2017-03-21 2018-03-19 유기 반도체 조성물, 유기 박막 및 유기 박막 트랜지스터
JP2019507666A JP7086488B2 (ja) 2017-03-21 2018-03-19 有機半導体組成物、有機薄膜及び有機薄膜トランジスタ
US16/495,914 US11495744B2 (en) 2017-03-21 2018-03-19 Organic semiconductor composition, organic thin film, and organic thin film transistor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-054440 2017-03-21
JP2017054440 2017-03-21
JP2017-167640 2017-08-31
JP2017167640 2017-08-31

Publications (1)

Publication Number Publication Date
WO2018174014A1 true WO2018174014A1 (ja) 2018-09-27

Family

ID=63585461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010840 WO2018174014A1 (ja) 2017-03-21 2018-03-19 有機半導体組成物、有機薄膜及び有機薄膜トランジスタ

Country Status (7)

Country Link
US (1) US11495744B2 (ja)
EP (1) EP3608981A4 (ja)
JP (1) JP7086488B2 (ja)
KR (2) KR20230096137A (ja)
CN (1) CN110073507B (ja)
TW (1) TWI752198B (ja)
WO (1) WO2018174014A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11276782B2 (en) * 2017-03-29 2022-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
JP7039414B2 (ja) * 2018-07-26 2022-03-22 株式会社東芝 放射線検出素子の作製方法および放射線検出素子
CN112062993B (zh) * 2020-09-18 2022-07-01 中国科学院微电子研究所 一种单分子层半导体高聚物薄膜的制备方法
CN113809234B (zh) * 2021-09-18 2024-01-19 东北师范大学 一种柔性液相有机薄膜场效应晶体管及其制备方法
CN114195825B (zh) * 2021-11-30 2024-02-02 北京大学深圳研究生院 一种萘并五元杂环并苯并五元杂环电子传输材料及其制备方法与有机发光器件

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514710A (ja) 2002-12-20 2006-05-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 有機半導体材料におけるおよびこれに関連する改善
JP2007527624A (ja) 2004-02-18 2007-09-27 メルク パテント ゲーエムベーハー 有機半導体の溶液
JP2008503870A (ja) 2004-05-11 2008-02-07 メルク パテント ゲーエムベーハー 有機半導体の溶液
JP2008198992A (ja) * 2007-01-16 2008-08-28 Sony Corp 半導体装置の製造方法
WO2009122956A1 (ja) 2008-03-31 2009-10-08 住友化学株式会社 有機半導体組成物、並びに有機薄膜及びこれを備える有機薄膜素子
JP2011258824A (ja) * 2010-06-10 2011-12-22 Fuji Xerox Co Ltd 有機結晶構造物、有機トランジスタ、及び有機結晶構造物の製造方法
JP2014146637A (ja) * 2013-01-28 2014-08-14 Sony Corp 電子デバイス及びその製造方法、並びに、積層構造体の形成方法
WO2015147266A1 (ja) 2014-03-28 2015-10-01 富士フイルム株式会社 有機半導体膜形成用組成物
WO2016052056A1 (ja) * 2014-09-29 2016-04-07 富士フイルム株式会社 有機半導体組成物、及び、有機半導体素子
WO2016129479A1 (ja) 2015-02-12 2016-08-18 富士フイルム株式会社 有機半導体膜形成用組成物、有機半導体膜及びその製造方法、並びに、有機半導体素子及びその製造方法
WO2016143774A1 (ja) 2015-03-11 2016-09-15 富士フイルム株式会社 有機半導体液組成物、有機半導体素子及びその作製方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265243B1 (en) * 1999-03-29 2001-07-24 Lucent Technologies Inc. Process for fabricating organic circuits
CN100377380C (zh) * 2001-02-28 2008-03-26 剑桥显示技术有限公司 供沉积在基材上的材料配方和方法
KR100939468B1 (ko) * 2001-03-10 2010-01-29 메르크 파텐트 게엠베하 유기 반도체 용액 및 분산액
JP5025074B2 (ja) * 2003-02-13 2012-09-12 株式会社リコー 有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法
US20050067949A1 (en) * 2003-09-30 2005-03-31 Sriram Natarajan Solvent mixtures for an organic electronic device
JP4420692B2 (ja) * 2004-02-10 2010-02-24 シャープ株式会社 メモリ素子の製造方法
US7935960B2 (en) * 2005-05-12 2011-05-03 Merck Patent Gmbh Polyacene and semiconductor formulation
KR20080025525A (ko) * 2006-09-18 2008-03-21 삼성전자주식회사 용매 효과를 이용한 유기박막 형성방법, 그에 의해 제조된유기박막 및 이를 포함하는 유기 전자 소자
KR101314998B1 (ko) * 2006-12-13 2013-10-04 삼성전자주식회사 헤테로아센 화합물, 이를 포함하는 유기 박막 및 당해 박막을 포함하는 전자 소자
JP2009238968A (ja) * 2008-03-27 2009-10-15 Brother Ind Ltd 有機薄膜トランジスタの製造方法、およびそれを用いた有機薄膜トランジスタ
EP2304821B1 (en) * 2008-06-11 2012-06-27 3M Innovative Properties Company Mixed solvent systems for deposition of organic semiconductors
US8455373B2 (en) * 2008-07-03 2013-06-04 Postech Academy-Industry Foundation Ink-jet print ink and organic thin film transistor using thereof
US20120313086A1 (en) * 2010-09-07 2012-12-13 Nippon Kayaku Kabushiki Kaisha Organic Semiconductor Material, Organic Semiconductor Composition, Organic Thin Film, Field-Effect Transistor, And Manufacturing Method Therefor
CN102477045A (zh) * 2010-11-30 2012-05-30 中国科学院上海有机化学研究所 一类并噻吩醌式化合物、其制备方法、中间体及其应用
EP2649082B1 (en) * 2010-12-06 2015-01-14 Merck Patent GmbH Non-linear acene derivatives and their use as organic semiconductors
WO2016000804A1 (en) * 2014-06-30 2016-01-07 Merck Patent Gmbh Extended non-linear acene derivatives and their use as organic semiconductors
JP6484700B2 (ja) * 2015-03-13 2019-03-13 富士フイルム株式会社 有機半導体膜形成用組成物、有機薄膜トランジスタ、電子ペーパー、および、ディスプレイデバイス
JP6463475B2 (ja) * 2015-07-07 2019-02-06 富士フイルム株式会社 有機半導体素子、化合物、有機半導体組成物、および、有機半導体膜の製造方法
CN109790407B (zh) * 2016-11-23 2021-12-07 广州华睿光电材料有限公司 印刷油墨组合物及其制备方法和用途

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514710A (ja) 2002-12-20 2006-05-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 有機半導体材料におけるおよびこれに関連する改善
JP2007527624A (ja) 2004-02-18 2007-09-27 メルク パテント ゲーエムベーハー 有機半導体の溶液
JP2008503870A (ja) 2004-05-11 2008-02-07 メルク パテント ゲーエムベーハー 有機半導体の溶液
JP2008198992A (ja) * 2007-01-16 2008-08-28 Sony Corp 半導体装置の製造方法
WO2009122956A1 (ja) 2008-03-31 2009-10-08 住友化学株式会社 有機半導体組成物、並びに有機薄膜及びこれを備える有機薄膜素子
JP2011258824A (ja) * 2010-06-10 2011-12-22 Fuji Xerox Co Ltd 有機結晶構造物、有機トランジスタ、及び有機結晶構造物の製造方法
JP2014146637A (ja) * 2013-01-28 2014-08-14 Sony Corp 電子デバイス及びその製造方法、並びに、積層構造体の形成方法
WO2015147266A1 (ja) 2014-03-28 2015-10-01 富士フイルム株式会社 有機半導体膜形成用組成物
WO2016052056A1 (ja) * 2014-09-29 2016-04-07 富士フイルム株式会社 有機半導体組成物、及び、有機半導体素子
WO2016129479A1 (ja) 2015-02-12 2016-08-18 富士フイルム株式会社 有機半導体膜形成用組成物、有機半導体膜及びその製造方法、並びに、有機半導体素子及びその製造方法
WO2016143774A1 (ja) 2015-03-11 2016-09-15 富士フイルム株式会社 有機半導体液組成物、有機半導体素子及びその作製方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
APPL. MATER. INTERFACES, vol. 7, 2015, pages 16486
APPL. PHYS. LETT., vol. 98, 2011, pages 193302
C. M. HANSEN: "Hansen Solubility Parameters: A User's Handbook", 2007, TAYLOR AND FRANCIS GROUP, LLC
POLYMER PHYSICS, vol. 54, 2016, pages 1760
See also references of EP3608981A4
SYNTHETIC. MET., vol. 221, 2016, pages 186

Also Published As

Publication number Publication date
CN110073507B (zh) 2023-07-04
KR20190130568A (ko) 2019-11-22
US20200136061A1 (en) 2020-04-30
CN110073507A (zh) 2019-07-30
EP3608981A1 (en) 2020-02-12
US11495744B2 (en) 2022-11-08
JP7086488B2 (ja) 2022-06-20
KR20230096137A (ko) 2023-06-29
EP3608981A4 (en) 2020-12-23
TWI752198B (zh) 2022-01-11
TW201843230A (zh) 2018-12-16
JPWO2018174014A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
Hu et al. Greater than 10 cm2 V− 1 s− 1: A breakthrough of organic semiconductors for field‐effect transistors
JP7086488B2 (ja) 有機半導体組成物、有機薄膜及び有機薄膜トランジスタ
Shan et al. Molecular design of n-type organic semiconductors for high-performance thin film transistors
JP6170488B2 (ja) 新規縮合多環芳香族化合物及びその用途
TWI674266B (zh) 有機化合物及其用途
JP6592758B2 (ja) 新規な縮合多環芳香族化合物及びその用途
Chang et al. Organic field-effect transistor: Device physics, materials, and process
JP6425646B2 (ja) 新規縮合多環芳香族化合物及びその用途
US20140291659A1 (en) Dioxaanthanthrene compound, laminated structure and formation method thereof, and electronic device and manufacturing method thereof
TWI712602B (zh) 有機半導體組合物及包含其之有機薄膜、與其用途
TW201641503A (zh) 有機化合物、有機半導體材料、有機薄膜及其製造方法、有機半導體組成物,以及有機半導體裝置
Abd Wahab et al. Charge Carrier Mobility of Organic Thin Film Transistor: Intrinsic and Extrinsic Influencing Factors Based on Organic Semiconducting Materials
JP6572473B2 (ja) 有機化合物及びその用途
JP2018052926A (ja) 縮合多環芳香族化合物及びその用途
JP7156769B2 (ja) 有機半導体組成物、有機薄膜及び有機薄膜トランジスタ
WO2014047647A1 (en) Organic thin film transistors and methods of making the same
JP6497560B2 (ja) 新規縮合多環芳香族化合物及びその用途
JP6592863B2 (ja) 有機化合物及びその用途
JP6526585B2 (ja) 縮合多環芳香族化合物及びその用途
JP2015163595A (ja) 電荷移動錯体およびその結晶、その結晶の製造方法、電界効果トランジスタ、並びに、光電変換素子
Mori et al. Organic semiconductors
Hou Fully-additive printed electronics: synthesis and characterization of selenophene-based p-type organic semiconductor, and formulation of P (VDF-TrFE)-based nanocomposite dielectric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507666

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197026536

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018772670

Country of ref document: EP

Effective date: 20191021