WO2018173890A1 - 転がり軸受 - Google Patents

転がり軸受 Download PDF

Info

Publication number
WO2018173890A1
WO2018173890A1 PCT/JP2018/010000 JP2018010000W WO2018173890A1 WO 2018173890 A1 WO2018173890 A1 WO 2018173890A1 JP 2018010000 W JP2018010000 W JP 2018010000W WO 2018173890 A1 WO2018173890 A1 WO 2018173890A1
Authority
WO
WIPO (PCT)
Prior art keywords
cage
rolling bearing
rolling
lubrication
bearing
Prior art date
Application number
PCT/JP2018/010000
Other languages
English (en)
French (fr)
Inventor
崇 西河
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018173890A1 publication Critical patent/WO2018173890A1/ja

Links

Images

Definitions

  • the present invention relates to a rolling bearing, and more particularly to a rolling bearing that rotatably supports a rotating shaft of a turbomachine.
  • a rolling bearing is composed of an inner ring having an inner raceway surface, an outer ring having an outer raceway surface, a plurality of rolling elements arranged so as to be freely rollable between the inner raceway surface and the outer raceway surface, and a plurality of rolling elements.
  • a cage that holds the rolling elements is provided, and the inside of the bearing (contact portion between the members) is lubricated and cooled by an appropriate lubrication method according to use conditions and the like.
  • Rolling bearings are lubricated by grease lubrication that lubricates the inside of the bearing with grease sealed in the bearing inner space (annular space between the inner ring and the outer ring), and lubricating oil supplied one after another to the bearing inner space from the outside of the bearing.
  • the oil lubrication is roughly classified into oil lubrication that lubricates the inside, and oil lubrication is usually preferably applied to a bearing that needs to improve lubrication / cooling efficiency.
  • jet lubrication for example, Patent Document 1
  • under-lace lubrication for example, air-oil lubrication
  • oil mist lubrication for example, and the like are known.
  • jet lubrication is a lubrication method that continuously injects lubricating oil at a high pressure from an oil supply nozzle arranged outside the bearing toward the bearing internal space.
  • jet lubrication is performed, for example, on a rotating shaft of a turbomachine having a combustion chamber that generates high-temperature combustion gas (a main shaft such as a gas turbine device, or a driven rotating shaft that rotates in response to the rotation of the main shaft). It is preferably applied to a shaft support bearing that rotates at a high speed in a high temperature atmosphere exceeding 200 ° C.
  • air oil lubrication and oil mist lubrication is a lubrication system that supplies much less lubricating oil per unit time than that of jet lubrication, thus reducing the amount of lubricating oil used (cost required for internal lubrication).
  • lubrication / cooling capacity is inferior to jet lubrication.
  • air oil lubrication and oil mist lubrication are usually applied to rolling bearings incorporated in equipment having a lower operating temperature range than the turbomachine, such as machine tools.
  • the object of the present invention is to stably exhibit a predetermined bearing performance over a long period of time even when used under severe conditions at high temperatures and high speeds and where the supply amount of lubricating oil is scarce. It is in providing the rolling bearing which can do.
  • the present invention devised to solve the above problems has an inner raceway surface, an inner ring mounted on a rotating shaft of a turbomachine, an outer race having an outer raceway surface, an inner raceway surface and an outer raceway surface.
  • Air oil lubrication or oil mist comprising a plurality of rolling elements that are arranged to freely roll between, and a cage that is arranged between the inner ring and the outer ring and has a plurality of pocket portions that individually hold the plurality of rolling elements.
  • a rolling bearing in which the inside of the bearing is lubricated by lubrication, wherein the inner ring and the outer ring are formed of a steel material tempered at 400 ° C.
  • the rolling element is formed of a steel material or ceramics tempered at 400 ° C. or higher
  • the cage is formed of a resin material mainly composed of super engineering plastic and is guided by a rolling element.
  • the term “turbo machine” refers to a machine having a combustion chamber that generates high-temperature combustion gas among machines configured to continuously convert fluid energy and mechanical energy. Examples include various gas turbine devices.
  • the “rotating shaft” is a concept that includes a driven rotating shaft that rotates following the rotation of the main shaft in addition to the main shaft of the gas turbine apparatus.
  • the inner ring and the outer ring are made of steel tempered at 400 ° C. or higher, it is possible to prevent as much as possible a decrease in strength and a dimensional change in the bearing operating temperature range (about 100 to 350 ° C.) of the turbomachine. .
  • the rolling element is formed of the same steel material as that of the race, it is possible to prevent as much as possible a decrease in strength and a dimensional change of the rolling element.
  • the rolling element may be formed of ceramics. In this case, in addition to the above characteristics, a rolling element with low heat generation and excellent smearing resistance can be obtained.
  • a cage is formed of a resin material having this as a main component, and the guide type of the cage is a rolling element guide. Even if the inner ring or outer ring rotates at a high speed under the adoption of a lubrication system with a small amount of lubricating oil supplied to the bearing, such as air oil lubrication or oil mist lubrication, the inner ring or outer ring and the cage Contact and sliding can be avoided. Thereby, it is possible to prevent as much as possible problems such as wear and seizure in the inner ring, the outer ring and the cage.
  • the rolling bearing according to the present invention provides a predetermined bearing performance for a long period of time even when used under severe conditions where high temperature and high speed are low and the supply amount of lubricating oil is poor. It has a feature that it can be stably exhibited over time and is highly reliable.
  • At least one of the inner diameter surface and the defining surface (pocket surface) of the pocket portion can be provided with an infinite number of recesses for retaining the lubricating oil.
  • the lubricating oil can be efficiently held, so that even if the amount of lubricating oil supplied to the bearing internal space is small, the oil film formation on the pocket surface can be improved, and the wear of the cage Can be effectively prevented.
  • the cage is made of the resin material (it is an injection-molded product of the resin material), if the convex mold corresponding to the recess is provided in the mold of the cage, the recess Can be easily provided without incurring a particular increase in cost.
  • the defining surface (pocket surface) of the pocket portion can be formed on a surface parallel to the center line of the pocket portion. Further, the contour line of the pocket portion can be formed in a rectangular shape regardless of whether the rolling element is a ball or a cylindrical roller.
  • the retainer can be a so-called integrated machined retainer that integrally includes a pair of annular portions spaced apart in the axial direction and a plurality of pillar portions disposed at predetermined intervals in the circumferential direction. .
  • each of the pair of annular portions is formed by alternately arranging a wide portion having a relatively large axial dimension and a narrow portion having a relatively small axial dimension in the circumferential direction. It can be arranged so as to overlap with the column portion in the circumferential direction. In this way, even when a pocket portion having a rectangular outline is adopted, the strength of the cage (particularly, the strength near the connecting portion between the column portion and the annular portion) is reduced, and the cage is maintained during bearing operation. Can be prevented from being deformed as much as possible.
  • the present invention can be preferably applied when a ball or a cylindrical roller is adopted as the rolling element.
  • FIG. 5 is a partially enlarged plan view of FIG. 5.
  • FIG. 1 shows a schematic longitudinal sectional view of a rolling bearing 1 according to an embodiment of the present invention.
  • a rolling bearing 1 shown in the figure rotatably supports a rotating shaft S of a turbo machine, and is mounted on an inner ring 2 mounted on the outer periphery of the rotating shaft S and a stationary side of a turbo machine (not shown).
  • An outer ring 3 a plurality of rolling elements (balls) 4 that are arranged between the inner raceway surface 2 b of the inner ring 2 and the outer raceway surface 3 b of the outer ring 3, and an annular cage 5 that holds the balls 4.
  • a ball bearing a ball bearing.
  • turbomach examples include a turbofan engine which is a kind of gas turbine device.
  • a turbofan engine is used, for example, as an aircraft engine, a fan that sucks air, a compressor that compresses a part of the sucked air, and fuel is injected into the compressed air. And a combustion chamber that generates combustion gas by being burned and a turbine that is rotated by the combustion gas.
  • a main shaft with a compressor rotor, turbine, and the like mounted on the outer periphery rotates at a high speed of about 1 to 5 ⁇ 10 4 rpm. Therefore, when the rotating shaft S shown in FIG.
  • the rolling bearing 1 is the main shaft of the turbofan engine (when the rolling bearing 1 shown in FIG. 1 is used as a bearing for supporting the main shaft of the turbofan engine), the DN value of the rolling bearing 1 (supporting)
  • the value calculated by multiplying the shaft diameter [mm] of the shaft to be multiplied by the rotation speed [rpm] is approximately 500,000 or more. Further, during operation of the turbofan engine, the internal temperature becomes high due to the influence of high-temperature combustion gas generated in the combustion chamber, so that the rolling bearing 1 should be operated in a high-temperature atmosphere exceeding 200 ° C. become.
  • a lubrication method for lubricating and cooling the inside of the rolling bearing 1 is particularly lubrication / cooling among oil lubrication.
  • Highly efficient jet lubrication is used.
  • jet lubrication uses a large amount of lubricating oil, there are problems such as high cost and a large lubrication device. Therefore, if such a problem cannot be allowed, air oil lubrication or mist that supplies (injects) air oil, which is a mixture of lubricating oil and air, to the internal space (annular space between the inner ring 2 and the outer ring 3) 1a.
  • the rolling bearing 1 employs a lubrication system that supports the rotating shaft S that rotates at a high speed in a high-temperature atmosphere as described above, but has a low supply amount of lubricating oil such as air oil lubrication or oil mist lubrication. Even in such a case, the configuration is such that the desired bearing performance can be stably exhibited and maintained. Details will be described below.
  • the rolling bearing 1 of the present embodiment is a so-called three-point contact ball bearing in which a ball 4 contacts the inner raceway surface 2b at two points and contacts the outer raceway surface 3b at one point. That is, the inner ring 2 has a pair of divided inner rings (a first divided inner ring 2A and a second divided inner ring 2B) divided at predetermined locations in the axial direction, and the ball 4 is provided on the first divided inner ring 2A.
  • the first inner raceway surface 2b1, the second inner raceway surface 2b2 provided on the second divided inner ring 2B, and the outer raceway surface 3b of the outer ring 3 are in contact with each other.
  • the inner raceway surface 2b is formed by the cooperation of the first inner raceway surface 2b1 and the second inner raceway surface 2b2.
  • the inner ring 2 of the present embodiment is divided into two near the groove bottom of the inner raceway surface 2b, and an axial gap of a predetermined dimension is provided between two opposing surfaces of the first divided inner ring 2A and the second divided inner ring 2B. (Axial clearance is not shown in FIG. 1).
  • the ball 4 when an axial load that urges the rolling bearing 1 toward one side in the axial direction is applied, the ball 4 has the first inner raceway surface 2b1 (or the second inner raceway surface 2b2) and When the ball 4 rotates in a state of being in contact with each of the outer raceway surfaces 3b and, conversely, an axial load that urges the rolling bearing 1 toward the other side in the axial direction is applied, the ball 4 is moved to the second inner raceway surface 2b2. (Or the first inner raceway surface 2b1) and the outer raceway surface 3b can be rotated in contact with each other at a single point. Therefore, the rolling bearing 1 composed of a three-point contact ball bearing has a feature that it can receive loads in the radial direction and the axial bidirectional direction.
  • air oil lubrication is adopted as a lubrication method for lubricating and cooling the inside of the bearing.
  • the nozzle member 20 is disposed on the outer side in the axial direction of the rolling bearing 1, specifically, on the outer side in the axial direction of the opening between the inner ring 2 and the outer ring 3. More specifically, the inside of the bearing is lubricated and cooled by supplying air oil one after another toward the space between the inner ring 2 and the cage 5.
  • the method for supplying air oil to the internal space 1a is not limited to this.
  • the outer ring 3 may be provided with an inner diameter surface 3a and a supply hole that opens to the outer diameter surface, and air oil may be supplied to the inner space 1a through the supply hole.
  • air oil lubricating oil
  • grease lubrication is employed at the opening between the inner ring 2 and the outer ring 3 in order to ensure the discharge of air oil (lubricating oil) that is successively supplied to the internal space 1a.
  • the provided sealing member is not arranged.
  • the inner ring 2 and the outer ring 3 are steel materials that have been subjected to quenching and tempering as heat treatment, and are formed of steel materials that have been tempered at 400 ° C. or higher.
  • a steel material for example, heat-resistant steel (heat-resistant bearing steel) containing a large amount of chromium and molybdenum or tungsten can be used.
  • heat resistant steel include AMS6491 standard M50 and AMS6278 standard M50NiL.
  • the above M50 is mainly 0.77 to 0.85 mass% carbon, 0.25 mass% or less silicon, 0.35 mass% or less manganese, 0.15 mass% or less nickel, A steel material containing 75 to 4.25% by mass of chromium, 4 to 4.5% by mass of molybdenum and 0.9 to 1.1% by mass of vanadium, the balance being iron and inevitable impurities.
  • M50NiL mainly means 0.11 to 0.15% by mass of carbon, 0.1 to 0.25% by mass of silicon, 0.15 to 0.35% by mass of manganese, 3.2 to 3 Containing .6% nickel, 4 to 4.25% chromium, 4 to 4.5% molybdenum and 1.13 to 1.33% vanadium, the balance being iron and inevitable impurities It is a steel material.
  • the ball 4 of the present embodiment is a steel material that has been subjected to quenching and tempering as a heat treatment, as with the inner ring 2 and the outer ring 3, and is formed of a steel material that has been tempered at 400 ° C. or higher.
  • the inner ring 2, the outer ring 3 and the ball 4 only need to be formed of a steel material tempered at 400 ° C. or higher, and can be formed of stainless steel in addition to the above heat-resistant steel.
  • the cage 5 includes a pair of annular portions 7 and 7 that are spaced apart in the axial direction, and a plurality of column portions 8 that extend in the axial direction and are disposed at predetermined intervals in the circumferential direction.
  • a so-called integrated machined cage in which a pocket portion 6 for holding the ball 4 is formed between a pair of annular portions 7 and 7 and two pillar portions 8 and 8 adjacent to each other.
  • Each pocket portion 6 has a circular outline (true circle), and holds the balls 4 one by one.
  • the plurality of balls 4 are held at predetermined intervals in the circumferential direction on an annular track formed by the inner track surface 2b and the outer track surface 3b.
  • the defining surface (pocket surface) 6a of the pocket portion 6 holding the ball 4 is a surface parallel to the center line X of the pocket portion 6 (a straight line extending radially through the center of the ball 4 and the center of the pocket portion 6). Is formed. Accordingly, the separation distance between the pocket surface 6a and the outer surface of the ball 4 is the shortest in the vicinity of the central portion in the thickness direction of the cage 5, and gradually increases toward the outside in the thickness direction of the cage 5.
  • the cage 5 having the above-described configuration has super engineering plastic as a main component (base resin), and various types selected from the group of reinforcing materials such as glass fibers and carbon fibers, mold release agents, and antioxidants. It is an injection molded product of a resin material containing one or more fillers.
  • super engineering plastics examples include polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polyphenylene sulfide (PPS), polyether imide (PEI), fluororesin, and liquid crystal polymer. (LCP) can be mentioned, and among these, polyether ether ketone (PEEK) having particularly high mechanical strength and heat resistance can be preferably used. Only one kind of the above super engineering plastics may be used, or a plurality of kinds may be mixed and used.
  • the guidance form of the cage 5 is so-called rolling element guidance guided by the balls 4. Therefore, during operation of the rolling bearing 1, the inner diameter surface and the outer diameter surface of the cage 5 basically do not contact or slide with the outer diameter surface 2 a of the inner ring 2 and the inner diameter surface 3 a of the outer ring 3, respectively.
  • the inner ring 2 and the outer ring 3 are formed of a steel material tempered at 400 ° C. or higher. By doing so, it is possible to prevent the inner ring 2 and the outer ring 3 from decreasing in strength and dimensional changes as much as possible in the bearing operating temperature range (about 100 to 350 ° C.) of the turbomachine. Further, if the balls 4 as the rolling elements are formed of the same steel material as the inner ring 2 and the outer ring 3, it is possible to prevent the strength of the balls 4 from decreasing and the dimensional change as much as possible.
  • the cage 5 is formed of a resin material whose main component is super engineering plastic, and its guide type is a rolling element guide. Since the super engineering plastic is particularly excellent in mechanical strength among the self-lubricating resins, the cage 5 is formed of a resin material mainly composed of the resin, and the guide type of the cage 5 is a rolling element guide.
  • the inner ring 2 or the outer ring 3 rotates at a high speed under the use of a lubrication method in which the amount of lubricating oil supplied to the inside of the bearing is insufficient, such as air oil lubrication or oil mist lubrication, the inner ring 2 or the outer ring 3 Contact and sliding with the cage 5 can be avoided. Thereby, it is possible to prevent the inner ring 2, the outer ring 3, and the cage 5 from causing problems such as wear and seizure as much as possible.
  • the rolling bearing 1 according to the present invention has a predetermined bearing performance for a long period of time even when used under severe conditions where high temperature and high speed are low and the supply amount of lubricating oil is poor. It has a feature that it can be stably exhibited over a wide range and is highly reliable.
  • FIG. 3 shows an example in which an infinite number of slits (straight grooves) as the recesses 10 are provided in the pocket surface 6 a of the cage 5, and FIG. 4 shows slits as the recesses 10 in the inner diameter surface 5 a of the cage 5.
  • the recess 10 (slit) shown in FIGS. 3 and 4 can be molded at the same time as the cage 5 is injection-molded. However, when the slit is molded in the pocket surface 6a, the recess 10 (slit) is held depending on the extending direction.
  • the slit shown in FIG. 3 is constituted by a straight groove extending in the radial direction, which is the drawing direction of the molding die.
  • the said recessed part 10 can also be comprised with a dimple, for example.
  • the lubricant can be efficiently retained. Therefore, the oil film forming property on the pocket surface 6a can be enhanced. For this reason, even in the rolling bearing 1 in which air-oil lubrication in which the supply amount of the lubricating oil to the bearing internal space 1a is scarce is adopted, wear of the cage 5 can be effectively prevented.
  • the cage of the rolling bearing 1 described above can be replaced with a cage 15 in which the pocket portion 6 for holding the ball 4 has a rectangular outline, as shown in FIG.
  • the axial distance between the outer surface of the ball 4 and the pocket surface 6a (the pocket clearance) is smaller than when the cage 5 (see FIG. 2) in which the contour line of the pocket portion 6 is formed in a circular shape is employed. Since the gap width can be partially enlarged, the lubricating oil supplied to the inner diameter side of the cage 5 in the bearing internal space 1a can be smoothly moved to the outer diameter side of the cage 5. Become.
  • the contact portion between the ball 4 and the outer raceway surface 3b can be efficiently lubricated and cooled, and the durability and reliability of the rolling bearing 1 are improved. Further, since the surface area of the rectangular shape increases with respect to the same size as compared with the circular shape, the lubricating oil can be held efficiently and the oil film forming property can be improved.
  • the cage 15 shown in FIG. 5 corresponds to a configuration in which a part of the base portion of the column portion 8 (the connecting portion between the annular portion 7 and the column portion 8) is cut out of the cage 5 shown in FIG. Therefore, if no countermeasure is taken, the cage 15 may be easily deformed.
  • Such a problem can be prevented as much as possible by adopting, for example, the configuration shown in FIG. That is, as shown in FIG. 6, the annular portion 7 is formed by alternately arranging wide portions 7a having relatively large axial dimensions and narrow portions 7b having relatively small axial dimensions in the circumferential direction.
  • the wide portion 7a is configured so as to overlap the column portion 8 in the circumferential direction.
  • the rolling elements those formed of ceramics may be used.
  • the rolling elements those formed of ceramics may be used.
  • the durability and reliability of the rolling bearing 1 can be improved.
  • the inside of the bearing is lubricated and cooled by air oil lubrication.
  • the present invention is preferably applied to the rolling bearing 1 in which the inside of the bearing is lubricated and cooled by so-called oil mist lubrication. it can.
  • the ball 4 as a rolling element contacts the inner raceway surface 2b of the inner ring 2 at two points and contacts the outer raceway surface 3b of the outer ring 3 at one point.
  • the so-called three-point contact ball bearing is exemplified, but the present invention can also be applied to a so-called four-point contact ball bearing in which the ball 4 contacts the inner raceway surface 2b and the outer raceway surface 3b at two points.
  • the present invention can also be applied to so-called cylindrical roller bearings in which rolling elements are cylindrical rollers.
  • the rolling bearing 1 which concerns on this invention is used as a bearing for supporting the rotating shaft S of the turbofan engine which is a kind of gas turbine apparatus was demonstrated above, the rolling bearing 1 is other gas. It can also be suitably used as a bearing for supporting a rotating shaft of a turbine device such as a turbojet engine, a single-shaft gas turbine, or a twin-shaft gas turbine.

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

ボール4を介して相対回転する内輪2および外輪3と、内外輪2,3間に配置された保持器5とを備え、内輪2がターボ機械の回転軸Sに装着され、エアオイル潤滑により軸受内部が潤滑される転がり軸受1であって、内輪2および外輪3が、400℃以上で焼戻しされた鋼材で形成され、ボール4が、400℃以上で焼戻しされた鋼材又はセラミックスで形成され、かつ、保持器5が、スーパーエンジニアリングプラスチックを主成分とする樹脂材料で形成されると共に、ボール4によって案内される。

Description

転がり軸受
 本発明は、転がり軸受に関し、特に、ターボ機械の回転軸を回転自在に支持する転がり軸受に関する。
 周知のように、転がり軸受は、内側軌道面を有する内輪と、外側軌道面を有する外輪と、内側軌道面と外側軌道面の間に転動自在に配された複数の転動体と、複数の転動体を保持した保持器とを備え、使用条件等に応じた適宜の潤滑方式によって軸受内部(部材同士の接触部)が潤滑・冷却される。
 転がり軸受の潤滑方式は、軸受内部空間(内輪と外輪の間の環状空間)に封入したグリースにより軸受内部を潤滑するグリース潤滑と、軸受外部から軸受内部空間に次々に供給される潤滑油により軸受内部を潤滑する油潤滑とに大別され、油潤滑は、通常、潤滑・冷却効率を高める必要がある軸受に好ましく適用される。油潤滑の方式としては、ジェット潤滑(例えば特許文献1)、アンダーレース潤滑、エアオイル潤滑(例えば特許文献2)、オイルミスト潤滑などが公知である。このうち、ジェット潤滑とは、軸受外部に配置した給油ノズルから軸受内部空間に向けて潤滑油を高圧で連続的に噴射する潤滑方式であり、前述した各種油潤滑の中でも特に潤滑・冷却能力に優れる。そのため、ジェット潤滑は、例えば、高温の燃焼ガスを発生させる燃焼室を備えたターボ機械の回転軸(ガスタービン装置などの主軸、又は該主軸の回転を受けて回転する従動回転軸)のように、200℃超の高温雰囲気下で高速回転する軸の支持用軸受に好ましく適用される。
特開2012-41940号公報 特開2011-106493号公報
 前述したエアオイル潤滑やオイルミスト潤滑は、単位時間あたりの潤滑油の供給量がジェット潤滑のそれよりも格段に少ない潤滑方式であることから、潤滑油の使用量(内部潤滑に要するコスト)を抑制できる反面、潤滑・冷却能力はジェット潤滑よりも劣る。このため、エアオイル潤滑やオイルミスト潤滑は、通常、工作機械のように、上記ターボ機械よりも使用温度範囲が低い機器に組み込まれる転がり軸受に適用される。
 しかしながら、上記ターボ機械の回転軸の支持用軸受でありながら、使用環境・条件等を考慮すると、エアオイル潤滑やオイルミスト潤滑のように、潤滑油の供給量が乏しい潤滑方式を採用せざるを得ない転がり軸受の需要も潜在的に存在する。このような転がり軸受であっても、その構成部材(内輪、外輪、転動体および保持器)に摩耗や焼付き等が発生するのを可及的に防止し、所望の軸受性能を安定的に発揮可能とする必要がある。
 以上の実情に鑑み、本発明の課題は、高温・高速かつ潤滑油の供給量が乏しい過酷条件下で使用される場合であっても、所定の軸受性能を長期間に亘って安定的に発揮することのできる転がり軸受を提供することにある。
 上記の課題を解決するために創案された本発明は、内側軌道面を有し、ターボ機械の回転軸に装着される内輪と、外側軌道面を有する外輪と、内側軌道面と外側軌道面の間に転動自在に配された複数の転動体と、内輪と外輪の間に配置され、複数の転動体を個別に保持した複数のポケット部を有する保持器とを備え、エアオイル潤滑又はオイルミスト潤滑により軸受内部が潤滑される転がり軸受であって、内輪および外輪が、400℃以上で焼戻しされた鋼材で形成され、転動体が、400℃以上で焼戻しされた鋼材又はセラミックスで形成され、かつ、保持器が、スーパーエンジニアリングプラスチックを主成分とする樹脂材料で形成されると共に、転動体によって案内されることを特徴とする。なお、ここでいう「ターボ機械」とは、流体エネルギーと機械エネルギーの変換を連続的に行うように構成された機械のうち、高温の燃焼ガスを発生させる燃焼室を備えた機械をいい、代表例としては各種ガスタービン装置を挙げることができる。また、「回転軸」は、上記ガスタービン装置の主軸の他、この主軸の回転を受けて従動回転する従動回転軸も含む概念である。
 上記のように、内輪および外輪を400℃以上で焼戻しされた鋼材で形成すれば、ターボ機械の軸受使用温度範囲(100~350℃程度)での強度低下や寸法変化を可及的に防止できる。また、転動体を軌道輪と同様の鋼材で形成すれば、転動体の強度低下や寸法変化を可及的に防止することができる。転動体はセラミックスで形成しても良く、この場合には、上記の特徴に加え、低発熱で耐スミアリング性に優れた転動体を得ることができる。さらに、スーパーエンジニアリングプラスチックは、自己潤滑性を有する樹脂の中でも特に機械的強度に優れることから、これを主成分とする樹脂材料で保持器を形成すると共に、保持器の案内形式を転動体案内とすれば、エアオイル潤滑又はオイルミスト潤滑のように、軸受内部への潤滑油の供給量が乏しい潤滑方式の採用下で内輪または外輪が高速で回転する場合においても、内輪または外輪と保持器との接触・摺動を避けることができる。これにより、内輪、外輪および保持器に摩耗や焼付き等の不具合が生じるのを可及的に防止することができる。
 以上の作用効果が相俟って、本発明に係る転がり軸受は、高温・高速かつ潤滑油の供給量が乏しい過酷条件下で使用される場合であっても、所定の軸受性能を長期間に亘って安定的に発揮することができて信頼性に富む、という特徴を有する。
 保持器のうち、その内径面とポケット部の画成面(ポケット面)の少なくとも一方には、潤滑油を保持するための凹部を無数に設けることができる。このようにすれば、潤滑油を効率よく保持することができるので、軸受内部空間に供給される潤滑油量が少なくても、ポケット面での油膜形成性を高めることができ、保持器の摩耗を効果的に防止することができる。なお、保持器は上記樹脂材料で形成される(上記樹脂材料の射出成形品とされる)ので、上記凹部に対応する凸状の型部を保持器の成形型に設けておけば、上記凹部を特段のコスト増を招来することなく容易に設けることができる。
 ポケット部の画成面(ポケット面)は、ポケット部の中心線と平行な面に形成することができる。また、ポケット部の輪郭線は、転動体がボールであるか円筒ころであるかに関わらず、矩形状に形成することができる。
 保持器は、軸方向に離間して配置された一対の環状部と、周方向に所定間隔で配置され複数の柱部とを一体に備えた、いわゆる一体型もみ抜き保持器とすることができる。このとき、一対の環状部は、それぞれ、軸方向寸法が相対的に大きい幅広部と、軸方向寸法が相対的に小さい幅狭部とを周方向で交互に配置してなり、幅広部が、柱部と周方向でオーバーラップするように配置されたものとすることができる。このようにすれば、特に矩形状の輪郭線を有するポケット部を採用した場合でも、保持器の強度(特に、柱部と環状部の連結部付近の強度)が低下し、軸受運転時に保持器が変形等するのを可及的に防止することができる。
 本発明は、転動体としてボール又は円筒ころを採用する場合に好ましく適用することができる。
 以上より、本発明によれば、高温・高速かつ潤滑油の供給量が乏しい過酷条件下で使用される場合であっても、所定の軸受性能を長期間に亘って安定的に発揮することができて信頼性に富む転がり軸受を提供することができる。
本発明の実施形態に係る転がり軸受の概略縦断面図である。 図1に示す転がり軸受を構成する保持器の概略斜視図である。 変形例に係る保持器の部分斜視図である。 変形例に係る保持器の部分斜視図である。 変形例に係る保持器の概略斜視図である。 図5の部分拡大平面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1に、本発明の実施形態に係る転がり軸受1の概略縦断面図を示す。同図に示す転がり軸受1は、ターボ機械の回転軸Sを回転自在に支持するものであって、回転軸Sの外周に装着された内輪2と、図示しないターボ機械の静止側に装着された外輪3と、内輪2の内側軌道面2bと外輪3の外側軌道面3bの間に転動自在に配された複数の転動体(ボール)4と、ボール4を保持した円環状の保持器5とを備えた玉軸受である。
 ここで、上記のターボ機械としては、例えば、ガスタービン装置の一種であるターボファンエンジンを挙げることができる。詳細な図示は省略するが、ターボファンエンジンは、例えば航空機のエンジンとして使用されるものであり、空気を吸入するファン、吸入した空気の一部を圧縮する圧縮機、圧縮空気に燃料を噴射して燃焼させることにより燃焼ガスを発生させる燃焼室、および燃焼ガスによって回転するタービンなどを備えている。係る構成を有するターボファンエンジンにおいては、圧縮機のロータやタービンなどを外周に装着した主軸が1~5×104rpm程度の高速で回転する。そのため、図1に示す回転軸Sがターボファンエンジンの主軸である場合(図1に示す転がり軸受1をターボファンエンジンの主軸の支持用軸受として使用する場合)、転がり軸受1のDN値(支持すべき軸の軸径[mm]に回転数[rpm]を乗じて算出される値)は概ね50万以上となる。また、ターボファンエンジンの運転中には、その内部温度が燃焼室で発生する高温の燃焼ガス等の影響によって高温になることから、転がり軸受1は200℃超の高温雰囲気下で運転されることになる。
 上記のように、転がり軸受1を高温雰囲気下で高速回転する回転軸Sの支持用軸受として使用する場合、その内部を潤滑・冷却するための潤滑方式としては、油潤滑の中でも特に潤滑・冷却効率に優れたジェット潤滑が採用される。しかしながら、ジェット潤滑は、多量の潤滑油を使用するため、コストが嵩む、潤滑装置が大掛かりになる、などといった問題がある。そのため、このような問題を許容できない場合には、潤滑油と空気を混合してなるエアオイルを内部空間(内輪2と外輪3の間の環状空間)1aに供給(噴射)するエアオイル潤滑、又はミスト状の潤滑油を内部空間1aに噴射するオイルミスト潤滑といった、単位時間あたりの潤滑油の供給量がジェット潤滑のそれよりも少ない潤滑方式を採用せざるを得ない。
 本実施形態に係る転がり軸受1は、上記のように高温雰囲気下で高速回転する回転軸Sを支持するものでありながら、エアオイル潤滑又はオイルミスト潤滑といった潤滑油の供給量が乏しい潤滑方式が採用される場合にも、所望の軸受性能を安定的に発揮・維持できるような構成を備えている。以下、その詳細を説明する。
 内輪2の外径面2aおよび外輪3の内径面3aには、それぞれ、円環状の内側軌道面2bおよび外側軌道面3bが形成されており、ボール4は、両軌道面2b,3b間に転動自在に配されている。本実施形態の転がり軸受1は、ボール4が内側軌道面2bと二点で接触すると共に外側軌道面3bと一点で接触した、いわゆる3点接触玉軸受である。すなわち、内輪2は、その軸方向所定箇所で分割された一対の分割内輪(第1の分割内輪2Aおよび第2の分割内輪2B)を有し、ボール4は、第1の分割内輪2Aに設けられた第1内側軌道面2b1、第2の分割内輪2Bに設けられた第2内側軌道面2b2および外輪3の外側軌道面3bに対して接触している。なお、この場合、内側軌道面2bは、第1内側軌道面2b1と第2内側軌道面2b2の協働で形成される。
 本実施形態の内輪2は、内側軌道面2bの溝底付近で2分割されており、第1の分割内輪2Aと第2の分割内輪2Bの対向二面間には所定寸法の軸方向隙間を設けることができる(図1においては、軸方向隙間を示していない)。このような軸方向隙間を設けておけば、転がり軸受1を軸方向一方側に付勢するアキシャル荷重が作用すると、ボール4は、第1内側軌道面2b1(又は第2内側軌道面2b2)および外側軌道面3bのそれぞれと一点で接触した状態で回転し、これとは逆に、転がり軸受1を軸方向他方側に付勢するアキシャル荷重が作用すると、ボール4は、第2内側軌道面2b2(又は第1内側軌道面2b1)および外側軌道面3bのそれぞれと一点で接触した状態で回転可能である。従って、3点接触玉軸受からなる転がり軸受1は、ラジアル方向およびアキシャル双方向の荷重を受けることができる、という特徴を有する。
 本実施形態の転がり軸受1においては、軸受内部を潤滑・冷却するための潤滑方式としてエアオイル潤滑が採用される。本実施形態では、転がり軸受1の軸方向外側、具体的には、内輪2と外輪3の間の開口部の軸方向外側にノズル部材20を配置し、このノズル部材20から内部空間1a(より詳細には、内輪2と保持器5の間の空間)に向けてエアオイルを次々に供給することにより、軸受内部を潤滑・冷却するようにしている。なお、内部空間1aへのエアオイルの供給方法はこれに限られるわけではない。例えば、外輪3に、その内径面3aおよび外径面に開口した供給孔を設け、該供給孔を介して内部空間1aにエアオイルを供給するようにしても構わない。エアオイル潤滑を採用した場合、内部空間1aに次々に供給されるエアオイル(潤滑油)の排出性を担保するため、内輪2と外輪3の間の開口部には、いわゆるグリース潤滑を採用する場合に設けられるシール部材が配置されない。
 内輪2および外輪3は、熱処理としての焼入れ焼戻しが施された鋼材であって、400℃以上で焼戻しされた鋼材で形成される。このような鋼材としては、例えば、クロムおよびモリブデン又はタングステンを多く含有する耐熱鋼(耐熱軸受鋼)を使用することができる。クロムおよびモリブデンを多く含有する耐熱鋼の具体例としては、AMS6491規格のM50やAMS6278規格のM50NiLを挙げることができる。
 上記のM50とは、主に、0.77~0.85質量%の炭素、0.25質量%以下の珪素、0.35質量%以下のマンガン、0.15質量%以下のニッケル、3.75~4.25質量%のクロム、4~4.5質量%のモリブデンおよび0.9~1.1質量%のバナジウムを含有し、残部鉄および不可避的不純物からなる鋼材である。また、M50NiLとは、主に、0.11~0.15質量%の炭素、0.1~0.25質量%の珪素、0.15~0.35質量%のマンガン、3.2~3.6質量%のニッケル、4~4.25質量%のクロム、4~4.5質量%のモリブデンおよび1.13~1.33質量%のバナジウムを含有し、残部鉄および不可避的不純物からなる鋼材である。
 本実施形態のボール4は、内輪2および外輪3と同様に、熱処理としての焼入れ焼戻しが施された鋼材であって、400℃以上で焼戻しされた鋼材で形成される。
 内輪2、外輪3およびボール4は、400℃以上で焼戻しされた鋼材で形成されていれば良く、上記の耐熱鋼以外にも、ステンレス鋼で形成することもできる。
 保持器5は、図2にも示すように、軸方向に離間して配置された一対の環状部7,7と、軸方向に延び、周方向に所定間隔で配置された複数の柱部8とが一体に設けられた、いわゆる一体型もみ抜き保持器であり、一対の環状部7,7と隣り合う2つの柱部8,8の間にボール4を保持するポケット部6が形成されている。各ポケット部6は、その輪郭線が円形(真円形)をなし、ボール4を1個ずつ保持する。これにより、複数のボール4は、内側軌道面2bと外側軌道面3bとで形成される円環状の軌道上に周方向所定間隔で保持される。
 ボール4を保持したポケット部6の画成面(ポケット面)6aは、ポケット部6の中心線(ボール4の中心およびポケット部6の中心を通って径方向に延びる直線)Xと平行な面に形成されている。従って、ポケット面6aとボール4の外表面との離間距離は、保持器5の厚さ方向中央部付近で最も小さく、保持器5の厚さ方向外側に向けて漸次大きくなっていいる。
 以上の構成を有する保持器5は、スーパーエンジニアリングプラスチックを主成分(ベース樹脂)とし、これに、ガラス繊維や炭素繊維等の強化材、離型剤、酸化防止剤等の群から選択される各種充填材を一種又は二種以上配合した樹脂材料の射出成形品とされる。使用可能なスーパーエンジニアリングプラスチックとしては、例えば、ポリエーテルエーテルケトン(PEEK)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニレンサルファイド(PPS)、ポリエーテルイミド(PEI)、フッ素樹脂、液晶ポリマー(LCP)などを挙げることができ、この中でも特に高い機械的強度と耐熱性を併せ持つポリエーテルエーテルケトン(PEEK)を好ましく使用することができる。上記のスーパーエンジニアリングプラスチックは、一種のみを使用しても良いし、複数種混合して使用しても良い。
 保持器5の案内形式は、ボール4によって案内される、いわゆる転動体案内である。そのため、転がり軸受1の運転中、保持器5の内径面および外径面は、それぞれ、内輪2の外径面2aおよび外輪3の内径面3aと基本的に接触・摺動しない。
 以上で説明したように、本実施形態の転がり軸受1においては、内輪2および外輪3が400℃以上で焼戻しされた鋼材で形成される。このようにすれば、ターボ機械の軸受使用温度範囲(100~350℃程度)において、内輪2および外輪3の強度低下や寸法変化を可及的に防止できる。また、転動体としてのボール4を内輪2および外輪3と同様の鋼材で形成すれば、ボール4の強度低下や寸法変化を可及的に防止することができる。
 これに加え、保持器5は、スーパーエンジニアリングプラスチックを主成分とする樹脂材料で形成されると共に、その案内形式が転動体案内とされる。スーパーエンジニアリングプラスチックは、自己潤滑性を有する樹脂の中でも特に機械的強度に優れることから、これを主成分とする樹脂材料で保持器5を形成すると共に、保持器5の案内形式を転動体案内とすれば、エアオイル潤滑又はオイルミスト潤滑のように、軸受内部への潤滑油の供給量が乏しい潤滑方式の採用下で内輪2または外輪3が高速で回転する場合においても、内輪2または外輪3と保持器5との接触・摺動を避けることができる。これにより、内輪2、外輪3および保持器5に摩耗や焼付き等の不具合が生じるのを可及的に防止することができる。
 以上の作用効果が相俟って、本発明に係る転がり軸受1は、高温・高速かつ潤滑油の供給量が乏しい過酷条件下で使用される場合であっても、所定の軸受性能を長期間に亘って安定的に発揮することができて信頼性に富む、という特徴を有する。
 以上、本発明の一実施形態に係る転がり軸受1について説明を行ったが、転がり軸受1には、本発明の要旨を逸脱しない範囲で適宜の変更を施すことが可能である。
 例えば、保持器5のうち、その内径面5aおよびポケット面6aの少なくとも一方には、潤滑油を保持するための微小な凹部を無数に設けることが可能である。図3は、保持器5のポケット面6aに凹部10としてのスリット(ストレート溝)を無数に設けた場合の一例であり、図4は、保持器5の内径面5aに凹部10としてのスリットを無数に設けた場合の一例である。図3および図4に示す凹部10(スリット)は、保持器5を射出成形するのと同時に型成形することができるが、ポケット面6aにスリットを型成形する場合、その延在方向によっては保持器5を円滑に離型することが難しくなる。従って、図3に示すスリットは、成形金型の抜き方向である径方向に延びたストレート溝で構成されている。なお、上記凹部10は、例えばディンプルで構成することも可能である。
 以上のように、保持器5の内径面5aと保持器5のポケット面6aの少なくとも一方に、潤滑油を保持するための凹部10を無数に設けておけば、潤滑油を効率よく保持することができるので、ポケット面6aでの油膜形成性を高めることができる。そのため、軸受内部空間1aへの潤滑油の供給量が乏しいエアオイル潤滑が採用される転がり軸受1においても、保持器5の摩耗を効果的に防止することができる。
 また、前述した転がり軸受1の保持器は、図5に示すように、ボール4を保持するポケット部6が矩形状の輪郭線を有する保持器15に置き換えることも可能である。この場合、ポケット部6の輪郭線が円形に形成された保持器5(図2参照)を採用する場合に比べ、ボール4の外表面とポケット面6aとの軸方向の離間距離(ポケット隙間の隙間幅)を部分的に拡大することができるので、軸受内部空間1aのうち、保持器5の内径側に供給された潤滑油を保持器5の外径側に円滑に移動させることが可能となる。これにより、ボール4と外側軌道面3bとの接触部を効率良く潤滑・冷却することが可能となって、転がり軸受1の耐久性・信頼性が向上する。また、円形に比べて矩形状のほうが同じサイズに対して表面積が増加するため、潤滑油を効率良く保持くすることができ、油膜形成性を高めることが出来る。
 図5に示す保持器15は、図2に示す保持器5のうち、柱部8の付け根部(環状部7と柱部8の連結部)の一部を肉取りしたような構成に相当するため、何ら対策を施さなければ、保持器15が変形等し易くなるおそれがある。このような問題は、例えば図6に示す構成を採用することによって可及的に防止することができる。すなわち、図6に示すように、環状部7を、軸方向寸法が相対的に大きい幅広部7aと、軸方向寸法が相対的に小さい幅狭部7bとを周方向で交互に配置したもので構成し、かつ幅広部7aを、柱部8を周方向でオーバーラップするように配置する。これにより、保持器15のうち、環状部7と柱部8の連結部の軸方向寸法を増すことができるので、保持器15の耐変形性を高めることができる。
 なお、図示は省略しているが、図5および図6に示す保持器15においても、図3および図4に示したような凹部10を設けることができる。
 また、転動体(ボール4)として、セラミックスで形成されたものを使用しても良い。この場合には、軸受運転時の強度低下や寸法変化、さらには摩耗を可及的に防止し得ることに加え、低発熱で耐スミアリング性に優れたボール4を実現することができるので、転がり軸受1の耐久性・信頼性を高めることができる。
 また、以上で説明した実施形態においては、エアオイル潤滑により軸受内部を潤滑・冷却するようにしたが、本発明は、いわゆるオイルミスト潤滑により軸受内部が潤滑・冷却される転がり軸受1にも好ましく適用できる。
 また、以上では、本発明に係る転がり軸受1の具体例として、転動体としてのボール4が内輪2の内側軌道面2bと2点で接触すると共に外輪3の外側軌道面3bと1点で接触する、いわゆる3点接触玉軸受を例示したが、本発明は、ボール4が内側軌道面2bおよび外側軌道面3bとそれぞれ2点で接触する、いわゆる4点接触玉軸受にも適用できる。さらに、本発明は、転動体を円筒ころとした、いわゆる円筒ころ軸受にも適用できる。
 また、以上では、本発明に係る転がり軸受1を、ガスタービン装置の一種であるターボファンエンジンの回転軸Sを支持するための軸受として用いる場合を説明したが、転がり軸受1は、その他のガスタービン装置、例えば、ターボジェットエンジン、一軸式ガスタービン、二軸式ガスタービンなどの回転軸を支持するための軸受としても好適に用い得る。
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことである。本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
1    転がり軸受
1a   軸受内部空間
2    内輪
2b   内側軌道面
3    外輪
3b   外側軌道面
4    ボール(転動体)
5    保持器
6    ポケット部
6a   ポケット部の画成面(ポケット面)
7    環状部
7a   幅広部
7b   幅狭部
8    柱部
10   凹部
15   保持器
20   ノズル部材
S    回転軸

Claims (6)

  1.  内側軌道面を有し、ターボ機械の回転軸に装着される内輪と、外側軌道面を有する外輪と、内側軌道面と外側軌道面の間に転動自在に配された複数の転動体と、内輪と外輪の間に配置され、複数の転動体を個別に保持した複数のポケット部を有する保持器とを備え、エアオイル潤滑又はオイルミスト潤滑により軸受内部が潤滑される転がり軸受であって、
     内輪および外輪が、400℃以上で焼戻しされた鋼材で形成され、
     転動体が、400℃以上で焼戻しされた鋼材又はセラミックスで形成され、かつ、
     保持器が、スーパーエンジニアリングプラスチックを主成分とする樹脂材料で形成されると共に、転動体によって案内されることを特徴とする転がり軸受。
  2.  保持器のうち、その内径面とポケット部の画成面の少なくとも一方に、潤滑油を保持するための凹部が無数に設けられている請求項1に記載の転がり軸受。
  3.  ポケット部の画成面が、ポケット部の中心線と平行な面に形成されている請求項1又は2に記載の転がり軸受。
  4.  ポケット部の輪郭線が矩形状をなす請求項1~3の何れか一項に記載の転がり軸受。
  5.  保持器は、軸方向に離間して配置された一対の環状部と、周方向に所定間隔で配置された複数の柱部とを一体に備え、
     一対の環状部は、軸方向寸法が相対的に大きい幅広部と、軸方向寸法が相対的に小さい幅狭部とを周方向で交互に配置してなり、幅広部は、柱部と周方向でオーバーラップするように配置されている請求項4に記載の転がり軸受。
  6.  前記転動体がボール又は円筒ころである請求項1~5の何れか一項に記載の転がり軸受。
PCT/JP2018/010000 2017-03-21 2018-03-14 転がり軸受 WO2018173890A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-054500 2017-03-21
JP2017054500A JP2018155376A (ja) 2017-03-21 2017-03-21 転がり軸受

Publications (1)

Publication Number Publication Date
WO2018173890A1 true WO2018173890A1 (ja) 2018-09-27

Family

ID=63584426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010000 WO2018173890A1 (ja) 2017-03-21 2018-03-14 転がり軸受

Country Status (2)

Country Link
JP (1) JP2018155376A (ja)
WO (1) WO2018173890A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154813A (ja) * 1988-12-02 1990-06-14 Nippon Seiko Kk 転がり軸受及びその使用方法
JPH0678626U (ja) * 1993-02-25 1994-11-04 日本トムソン株式会社 保持器付きころ
JPH0932858A (ja) * 1995-07-18 1997-02-04 Koyo Seiko Co Ltd 円錐ころ軸受
JPH11336768A (ja) * 1998-05-25 1999-12-07 Koyo Seiko Co Ltd 円錐ころ軸受用保持器ならびにそれを備える円錐ころ軸受
JP2005090692A (ja) * 2003-09-19 2005-04-07 Ntn Corp 転がり軸受用保持器およびそれを備えた転がり軸受
JP2006038167A (ja) * 2004-07-29 2006-02-09 Nsk Ltd 転がり軸受
JP2006090517A (ja) * 2004-09-27 2006-04-06 Ntn Corp 耐食性転がり軸受および耐食性転がり軸受の製造方法
JP2012149755A (ja) * 2011-01-21 2012-08-09 Ntn Corp 転がり軸受用保持器
JP2015094403A (ja) * 2013-11-11 2015-05-18 日本精工株式会社 転がり軸受

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154813A (ja) * 1988-12-02 1990-06-14 Nippon Seiko Kk 転がり軸受及びその使用方法
JPH0678626U (ja) * 1993-02-25 1994-11-04 日本トムソン株式会社 保持器付きころ
JPH0932858A (ja) * 1995-07-18 1997-02-04 Koyo Seiko Co Ltd 円錐ころ軸受
JPH11336768A (ja) * 1998-05-25 1999-12-07 Koyo Seiko Co Ltd 円錐ころ軸受用保持器ならびにそれを備える円錐ころ軸受
JP2005090692A (ja) * 2003-09-19 2005-04-07 Ntn Corp 転がり軸受用保持器およびそれを備えた転がり軸受
JP2006038167A (ja) * 2004-07-29 2006-02-09 Nsk Ltd 転がり軸受
JP2006090517A (ja) * 2004-09-27 2006-04-06 Ntn Corp 耐食性転がり軸受および耐食性転がり軸受の製造方法
JP2012149755A (ja) * 2011-01-21 2012-08-09 Ntn Corp 転がり軸受用保持器
JP2015094403A (ja) * 2013-11-11 2015-05-18 日本精工株式会社 転がり軸受

Also Published As

Publication number Publication date
JP2018155376A (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
CN112424476B (zh) 螺杆压缩机元件和机器
JP2008240796A (ja) シール付きアンギュラ玉軸受及び主軸装置
CN112997018B (zh) 圆柱滚子轴承
US20120189235A1 (en) Bearing race for a rolling-element bearing
CN109944874B (zh) 两个混合球轴承和压缩机轴承装置
KR20110060920A (ko) 롤링 베어링
US20190211874A1 (en) Bearing device, and spidle device for machine tool
EP2840269A1 (en) Rolling bearing
US10309459B2 (en) Ball bearing for a turbocharger
EP3848602B1 (en) Rolling bearing and spindle device equipped with rolling bearing
JP2008082298A (ja) 過給機
WO2017146047A1 (ja) 極低温環境用転がり軸受
JP5929544B2 (ja) 転がり軸受及び工作機械用主軸装置
JP2007292117A (ja) 転がり軸受
JP2018150988A (ja) 転がり軸受
WO2018173890A1 (ja) 転がり軸受
US20190032513A1 (en) Journal bearing and rotary machine
JP2009203846A (ja) ターボチャージャ用軸受装置
US10260563B2 (en) Bearing cages for roller bearing assemblies
EP3943767A1 (en) Angular contact ball bearing and retainer for angular contact ball bearing
US20190048924A1 (en) Journal device and rotary machine
JP2006316933A (ja) 転がり軸受
CN109563877B (zh) 滚珠轴承和机床用主轴装置
JP2013072439A (ja) 転がり軸受
JPH11132244A (ja) 潤滑装置付円筒ころ軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771057

Country of ref document: EP

Kind code of ref document: A1