WO2018173654A1 - 遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置 - Google Patents

遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置 Download PDF

Info

Publication number
WO2018173654A1
WO2018173654A1 PCT/JP2018/007308 JP2018007308W WO2018173654A1 WO 2018173654 A1 WO2018173654 A1 WO 2018173654A1 JP 2018007308 W JP2018007308 W JP 2018007308W WO 2018173654 A1 WO2018173654 A1 WO 2018173654A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
filter
feedback controller
controlled
control
Prior art date
Application number
PCT/JP2018/007308
Other languages
English (en)
French (fr)
Inventor
満 松原
山崎 勝
哲男 梁田
裕理 高野
雄介 上井
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to KR1020197017419A priority Critical patent/KR102207756B1/ko
Priority to CN201880010381.8A priority patent/CN110300932B/zh
Priority to DE112018000468.6T priority patent/DE112018000468T5/de
Publication of WO2018173654A1 publication Critical patent/WO2018173654A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Definitions

  • the present invention relates to a method for designing a filter in a feedback control system including a delay compensator composed of a model to be controlled and a filter and a feedback controller, a feedback control method using the same, and motor control including the control method Relates to the device.
  • the control gain should be increased to suppress disturbance and make the controlled variable follow the target value with high speed and high accuracy.
  • the upper limit of the control gain of the feedback control system is restricted due to this, and high-speed and high-accuracy target value tracking is possible. It is generally known to be an obstacle.
  • Patent Document 1 a delay compensation method that can compensate for the delay element existing in the closed loop of the feedback control system and suppress the step disturbance applied to the input end of the controlled object without a steady deviation.
  • Non-Patent Document 2 As shown in FIG. 3, a control block similar to Non-Patent Document 1 in which a filter 41 is added to the conventional Smith method is proposed.
  • the design method of the filter 41 which can suppress the step disturbance added to the input end of a control object without a steady deviation even if it is a case where it has is shown.
  • the filter 1 is constituted by a linear sum of n + 1 denominator orders of a nominal plant model of an arbitrary first-order lag transmission element as shown in the following formula (1).
  • the filter 41 is configured as shown in the following formula (2).
  • ⁇ h is a nominal delay time of all delay elements included in the controller or control object. Even if the controlled object has a pole at the origin, and the Smith method leaves a steady deviation with respect to the step disturbance applied to the input end of the controlled object, the steady deviation can be reduced to zero by appropriately configuring the filter 41. I can do it.
  • B (s) can select an arbitrary low-pass filter that satisfies a predetermined design constraint imposed on the filter 41, but has a high degree of freedom with respect to the filter structure and filter parameter design. Therefore, there is a problem that appropriate filter design is not easy.
  • the present invention has been made in view of such a problem, and the control object has a pole at the origin, and the Smith method leaves a steady deviation with respect to the step disturbance applied to the input end of the control object.
  • 1 can provide a method for designing the filter of the delay compensator shown in FIG. 1, which can make the steady-state deviation zero, can easily understand the physical meaning of parameters, and can be easily designed, and has a delay compensator using the filter.
  • a motor control device including the feedback control method thereof.
  • the present invention is a filter design method in a feedback control system composed of a delay compensator composed of a model to be controlled and a filter and a feedback controller.
  • the model to be controlled consists of a nominal plant model and a nominal delay model included in the feedback control system.
  • the delay compensator uses the manipulated variable output from the feedback controller and the output signal of the control target as input signals.
  • a signal obtained by applying a filter to the error signal obtained by subtracting the output signal of the controlled object and the output signal of the controlled object model with respect to the operation amount output by the feedback controller by the adder / subtractor, and the feedback controller Add the output signal of the nominal plant model to the manipulated variable output by the
  • the feedback controller uses the adder / subtractor to calculate the deviation between the output signal of the delay compensator and the target value signal, and compensates the controlled object based on the deviation.
  • the filter includes an arbitrary feedback controller for the controlled object, a model for the controlled object, a transfer function of a closed loop system configured by an arbitrary feedback controller for the controlled object and the controlled object model, and a closed loop system.
  • a round transfer function is arbitrarily used, and is a function configured in the form of a sum-and-difference product quotient.
  • the physical meaning of the filter parameters is easily understood, the parameter design guidelines are clarified, and the filter design can be facilitated.
  • FIG. 1 is a configuration diagram of a feedback control system including a delay compensator in Embodiment 1.
  • FIG. It is a block diagram of the cascade feedback control system of motor control.
  • 3 is a configuration diagram of a control system of Non-Patent Document 2.
  • FIG. It is a block diagram of control systems other than the nonpatent literature 2.
  • FIG. 6 is a configuration diagram of a speed control system of an AC servo motor in Embodiment 2. It is a block diagram of the speed control system containing the delay compensator in Example 2.
  • FIG. It is a block diagram of a speed control system including a delay compensator other than Non-Patent Document 2.
  • FIG. 1 is a configuration diagram of a feedback control system including a delay compensator in the present embodiment.
  • the filter 1 is designed by a design method to be described later, a feedback control method having a delay compensator having the filter, a motor control method and a motor control device having the feedback control method. Will be described.
  • control object 32 including the delay is subjected to the FB control by the FB controller 36 and the delay compensator 2.
  • the delay compensator 2 has a model to be controlled inside thereof, and in this embodiment, the model to be controlled includes a nominal plant model 34 and a nominal delay model 35.
  • the model to be controlled includes a nominal plant model 34 and a nominal delay model 35.
  • elements that generate a delay such as a low-pass filter and a minor loop control system, are included in the closed loop system, a nominal model of those delay elements may be included in the nominal delay model 35.
  • An error signal is calculated by the adder / subtractor 39 from the output signal y to be controlled with respect to the manipulated variable and the output signal of the model to be controlled, and a signal obtained by applying the filter 1 to the error signal and the signal of the nominal plant model 34.
  • the output signal of the delay compensator is calculated by adding the output signal to the adder / subtractor 310.
  • the output signal of the delay compensator is a predicted value signal of the output signal of the controlled object taking into account the delay element included in the controlled object, and the deviation between this and the target value signal r is calculated by the adder / subtractor 37, and the deviation is calculated. Based on this, the FB controller 36 compensates the control target.
  • the error signal calculated by the adder / subtractor 39 is zero, and the FB controller 36 does not include the nominal delay model 35 in the closed loop. It can be easily understood that the FB control is performed on the plant model Pm, and as a result, the control gain of the FB controller 36 can be increased.
  • the filter 1 includes an arbitrary FB controller for a controlled object, a model for the controlled object, an arbitrary FB controller for the controlled object, and a model for the controlled object.
  • Smith method even if a stationary deviation remains with respect to a step disturbance applied to the input terminal to be controlled, it belongs to a set of filters that can make the stationary deviation zero.
  • the FB controller Ca may have the same structure as the FB controller 36.
  • each control design parameter may be set independently or may be subordinate.
  • an arbitrary FB controller for the controlled object and a transfer function of a closed loop system configured by the model of the controlled object is, for example, the following expressions (6) and (7): Etc. are assumed.
  • the set of the filter 1 is composed of a function F as shown in the following formula (10) from the formulas (3) to (9).
  • the FB controller Ca can be placed as shown in the following formula (11).
  • the filter 1 specifically includes, for example, the following formula (12). That is, it is composed of a nominal plant model (equation (3)), the inverse of the nominal model (equation (5)) of the controlled object including the delay, the nominal model of the controlled object including the delay, and the feedback controller for the controlled object. It is assumed that the transfer function of the closed loop system (Equation (6)) and the inverse of the transfer function of the closed loop system (Equation (7)) composed of the nominal plant model and the feedback controller are respectively multiplied.
  • the filter 1 can be represented by the following expression (13) as an expression using two different FB controllers, for example.
  • the filter 1 includes, for example, Expression (14) as an expression using two different FB controllers.
  • y is a control target output
  • d is a disturbance applied to the input end of the control target output
  • Hdy (s) is a transfer characteristic from d to y, and is expressed by the following equations (16) to (19). is there.
  • the FB controller 36 is based on the assumption that Equation (22) is satisfied. From the equation (16), the filter 1 may satisfy the following equations (24) and (25).
  • Equation (25) Under the assumption of Equation (20) and Equation (22), the condition of Equation (25) can be written as the following Equation (27).
  • Equation (27) Compared with the second term on the right side of Equation (23), the unit step disturbance applied to the input end of the controlled object, which could not be removed by the standard Smith method, can be eliminated without steady deviation due to the contribution of the filter 1 satisfying Equation (27). I understand.
  • the FB controller Ca can satisfy the following equation (28) to satisfy the equations (24) and (27) that are the design conditions of the filter 1. Often,
  • P controller proportional element
  • first order lag system satisfy this.
  • the filter 1 is represented by the formula (14)
  • the following formula (29) may be used.
  • the FB controller Ca only needs to have an integrator.
  • the filter 1 shown in (14) is designed based on the design method for the filter 1 described above, and can be said to be sufficient for the elements of the filter set described above.
  • the filter 1 designed according to the present embodiment has the FB controllers Ca and FB as can be seen from the equations (10), (12) to (14). Only the control design parameters included in the controller 36 are the design values of the filter.
  • the control design parameters of the FB controller Ca and the FB controller 36 for the controlled object often have a physical meaning or a clear design guideline.
  • the FB controller Ca is expressed by equation (11)
  • the physical meaning and design guidelines of the control design parameters of the FB controller Ca can be made the same as the FB controller 36, and the physical meaning and design guidelines are clearer. Can be anything.
  • the physical meaning of the parameters of the filter 1 is easy to understand, the parameter design guidelines are clear, and the filter design can be facilitated.
  • the filter 1 of the equation (12) has the same delay compensation characteristics as in the case of the non-patent document 2 where the low-pass filter B (s) is expressed by the following equation (30).
  • the filter 1 of the expressions (13) and (14) is different from the expression (12), and therefore has a delay compensation characteristic different from that of the non-patent document 2 adopting the expression (30).
  • the FB control system of FIG. 1 provided with the filter 1 of FIG. 4 and the equation (13) exhibits equivalent control performance.
  • the FB control system of FIG. 1 provided with the filter 1 of Expression (14) can be rewritten into FIG. 5 having a delay compensator 62 having a configuration including a disturbance observer. (32)
  • the FB control system of FIG. 1 provided with the filter 1 of FIG. 5 and the equation (14) shows equivalent control performance.
  • this embodiment is a method for designing a filter in a feedback control system including a delay compensator composed of a model and a filter to be controlled and a feedback controller, and the model to be controlled is a nominal plant model.
  • the delay compensator consists of a nominal delay model included in the feedback control system, and the delay compensator uses the manipulated variable output from the feedback controller and the output signal of the control target as input signals, and the output signal of the control target and the feedback controller
  • a signal obtained by adding and subtracting the output signal with an adder / subtractor is used as an output signal
  • the feedback controller calculates the deviation between the output signal of the delay compensator and the target value signal by the adder / subtractor, and compensates the control target based on the deviation.
  • the filter is an arbitrary filter for the control target.
  • a feedback controller, a model to be controlled, a transfer function of a closed loop system including an arbitrary feedback controller for the control target and a model of the control target, and a round transfer function of the closed loop system are arbitrarily used. It is a function constructed in the form of sum-and-difference product quotient.
  • the filter includes another feedback controller having the same structure as the feedback controller for the control target, a model of the control target, a transfer function of a closed loop system including the another feedback controller and the model of the control target,
  • the closed loop loop transfer function is arbitrarily used to form a sum / difference product quotient.
  • the filter belongs to a set of filters that can make the steady deviation zero with respect to the step disturbance applied to the input end of the controlled object even when the controlled object has a pole at the origin.
  • the filter 1 only the control design parameters included in the feedback controller for the controlled object are the design parameters of the filter 1.
  • the physical meaning of the control design parameters can be grasped or the design guidelines are clear. Therefore, the physical meaning of the parameters of the filter 1 is easy to understand, the parameter design guidelines become clear, and the filter design can be facilitated.
  • the design parameters of the filter 1 are restricted to only the control design parameters, and the configuration of the filter 1 has a degree of freedom, and the filter 1 set includes a filter that realizes a disturbance suppression performance equivalent to that of Non-Patent Document 2.
  • a filter 1 that can suppress step disturbance applied to the input terminal to be controlled (other delay compensator other than the conventional delay compensation method) can be designed.
  • FIG. 6 is a block diagram of the speed control system of the AC servo motor in the present embodiment.
  • a speed control system 71 in the cascade FB control system of the AC servo motor shown in FIG. 6 is assumed.
  • the speed control system 71 is composed of a speed controller 72 and a control target having other configurations.
  • the unit 72 includes an FB controller including the delay compensator shown in FIG. 1.
  • the filter 1 is designed by a design method described later.
  • a feedback control method for a speed control system having a delay compensator including the filter, and a motor control method and a motor control device including the feedback control method will be described.
  • model Gsm to be controlled is specifically shown in the following equations (33) to (35).
  • Psm in Equation (34) is a nominal plant model in the speed control system
  • Mi in Equation (35) is an idealized current control system that is a minor loop control system in the speed control system
  • ⁇ sm is a current control system
  • J, Ka, and Pp are inertia, a motor constant, and the number of pole pairs, respectively
  • ⁇ i is a response frequency of the current control system.
  • the speed controller 72 of the speed control system is a PI controller and is expressed by the following equations (36) to (38).
  • L and ⁇ s are the break point ratio and the response frequency of the speed control system, respectively.
  • ⁇ i is set to several to 10 times ⁇ s.
  • the current control system cannot approximate 1 unless ⁇ i is increased at the same time, and this must be regarded as a delay element.
  • the current control system is a first-order lag element as shown in Expression (35), and this needs to be regarded as a lag element.
  • the current control system is regarded as a delay element, and the control block configuration of the speed control system is shown in FIG. 7 based on FIG.
  • the above-mentioned “arbitrary FB controller for the control target” is expressed as Csa
  • the “model of the control target” in the design method of the filter 1 of the present embodiment is, for example, the following equations (39) to (41): Suppose.
  • the filter 81 shown in FIG. That is, it is composed of a nominal plant model (Equation (39)), the inverse of the nominal model of the controlled object including the delay (Equation (41)), the nominal model of the controlled object including the delay, and the feedback controller for the controlled object. It is assumed that the transfer function of the closed loop system is multiplied by the inverse of the transfer function of the closed loop system composed of the nominal plant model and the feedback controller.
  • the delay compensator 82 including the filter 81 of the equation (42) is the same as that in the case of the non-patent document 2 in which the low-pass filter B (s) is expressed by the following equation (43) and Mi is added to the delay element.
  • the characteristics are the same.
  • the FB controller Csa is further expressed by the following equation (44):
  • the control design parameters are determined independently of the FB controller 86. Since the filter 81 designed in this way satisfies the expression (28) with respect to Csa, the unit step disturbance applied to the input end to be controlled can be removed without steady deviation.
  • the design parameter of the filter 81 included in the equation (42) is only ⁇ s2, and the physical meaning of this parameter is the response frequency of the speed control system shown in the equation (36).
  • the guideline for setting 81 design parameters becomes clear, and the filter design can be facilitated.
  • the filter 81 may be designed in the same manner as Expression (13). Furthermore, according to the above-described filter design method, the filter 81 may be designed as in the following expression (45) as in the expression (14).
  • the design parameters of the filter 81 included in the equation (45) are ⁇ s1 and ⁇ s2, and the physical meaning of these parameters is the response frequency of the speed control system shown in the equation (36).
  • filter design can be facilitated.

Abstract

遅れ補償器とフィードバック制御器から成るフィードバック制御系において、制御対象が原点に極を有する場合でも制御対象の入力端に加わるステップ外乱を定常偏差ゼロにでき、且つパラメータの物理的意味が分かり設計し易い、遅れ補償器のフィルタの設計方法、及びそのフィルタを備えるフィードバック制御方法、及びその制御方法を備えたモータ制御装置の提供を目的とする。 上記目的を達成するために、制御対象のモデル及びフィルタから構成される遅れ補償器とフィードバック制御器から成るフィードバック制御系におけるフィルタの設計方法であって、フィルタは、制御対象に対するフィードバック制御器と、制御対象のモデルと、制御対象に対するフィードバック制御器と制御対象のモデルで構成される閉ループ系の伝達関数と、閉ループ系の一巡伝達関数と、を用いて和差積商の形で構成した関数とする。

Description

遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置
 本発明は、制御対象のモデル及びフィルタから構成される遅れ補償器とフィードバック制御器から成るフィードバック制御系におけるフィルタの設計方法、及びそれを用いたフィードバック制御方法、及びその制御方法を備えたモータ制御装置に関する。
 近年、FA分野では生産性向上のためにモータの益々の高速・高精度化制御が求められている。
 モータをフィードバック制御する際、外乱を抑制し制御量を目標値に高速・高精度に追従させるには制御ゲインを高めればよい。しかしながらフィードバックループ内に遅れ要素、例えばローパスフィルタやディジタル制御装置の演算遅れ、が存在する場合、これが原因でフィードバック制御系の制御ゲインの設定上限は制約を受け、高速・高精度な目標値追従の妨げになることが一般に知られている。
 一般的なモータのサーボ制御では、電流、速度、位置に関するカスケードフィードバック構造が採用され、図2に示すようにメジャーループ制御系21はマイナーループ制御系22をフィードバックループ内に内包する構造となる。なお、図2において、23はメジャーループ制御系の制御対象、24はメジャーループ制御系のフィードバック制御器である。例えば、カスケードフィードバック構造を基にモータを位置制御および速度制御する際には、メジャーループ制御系21は位置制御系となり、マイナーループ制御系22として速度制御系を内包する構造となり、少なからず1つは原点に極を有する制御対象を取り扱う。そのため、従来の代表的な遅れ補償法であるSmith法等では、制御対象の入力端に加わるステップ外乱の定常偏差が残るという問題があった。
 そこで、制御対象が原点に極を有する場合においても、フィードバック制御系の閉ループ内に存在する遅れ要素を補償でき、制御対象の入力端に加わるステップ外乱を定常偏差無く抑制できる遅れ補償法として、非特許文献1および非特許文献2が提案されている。
 非特許文献1では、図1に示すように、従来のSmith法にフィルタ1を加えた遅れ補償器2が提案され、Smith法(図1におけるフィルタ1=1の場合の構成)が抱える、制御対象が原点に近い極を有する場合は外乱の影響が長時間残ってしまうという課題や、制御対象が原点に極を有する場合は制御対象の入力端に加わるステップ外乱の抑制において定常偏差を残してしまうという課題を解決できるフィルタ1の設計方法が示されている。
 また非特許文献2では、図3に示すように、従来のSmith法にフィルタ41を加えた非特許文献1に類似の制御ブロックが提案され、外乱抑制性能の改善、および制御対象が原点に極を有する場合であっても制御対象の入力端に加わるステップ外乱を定常偏差無く抑制できるフィルタ41の設計方法が示されている。
渡部他、Smith法の外乱に対する制御特性の改善、計測自動制御学会論文集、第19巻、第3号、pp.187-192、1983 H.P.Huang et.al.,A Modified Smith Predictor with an Approximate Inverse of Dead Time, AiChE Journal,Vol.36,pp.1025-1031,1990
 非特許文献1では、フィルタ1は下記式(1)に示すように任意の一次遅れ伝達要素のノミナルプラントモデルの分母次数n+1個の線形和で構成する。
Figure JPOXMLDOC01-appb-M000001
 制御対象が原点に極を有し、Smith法では制御対象の入力端に加わるステップ外乱に対して定常偏差を残してしまう場合であっても、フィルタ1を適切に構成することで定常偏差をゼロに出来る。このような要求を満たすフィルタとするために、式(1)に含まれるパラメータbkは所定の設計制約条件を満たすように一意に決定されるが、n+1個のパラメータakについては正の数として任意に設計できる自由度が与えられ、その設定指針や物理的意味が不明瞭で、制御系の仕様に対して適切なパラメータ設計が容易でないという課題があった。
 また、非特許文献2では、下記式(2)に示すようにフィルタ41を構成する。
Figure JPOXMLDOC01-appb-M000002
 但し、τhは制御器もしくは制御対象が内包する遅れ要素の全てのノミナルな遅れ時間である。制御対象が原点に極を有し、Smith法では制御対象の入力端に加わるステップ外乱に対して定常偏差を残してしまう場合であっても、フィルタ41を適切に構成することで定常偏差をゼロに出来る。B(s)はフィルタ41に課される所定の設計制約条件を満たすような任意のローパスフィルタを選択できるが、フィルタの構造、及びフィルタパラメータの設計に関して自由度が高く、制御系の仕様に対して適切なフィルタ設計が容易でないという課題があった。
 本発明はこのような課題を鑑みてなされたものであり、制御対象が原点に極を有しSmith法では制御対象の入力端に加わるステップ外乱に対して定常偏差を残してしまう場合であっても定常偏差をゼロにでき、且つパラメータの物理的意味が分かり、設計し易い、図1に示す遅れ補償器のフィルタの設計方法を提供し、そのフィルタを用いた遅れ補償器を有するフィードバック制御方法、及びそのフィードバック制御方法を備えたモータ制御装置を提供することを目的とする。
 本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、制御対象のモデル及びフィルタから構成される遅れ補償器とフィードバック制御器から成るフィードバック制御系におけるフィルタの設計方法であって、制御対象のモデルは、ノミナルプラントモデルとフィードバック制御系内に内包されるノミナルな遅れモデルとから成り、遅れ補償器は、フィードバック制御器が出力する操作量と制御対象の出力信号とを入力信号とし、制御対象の出力信号とフィードバック制御器が出力する操作量に対する制御対象のモデルの出力信号とを加減算器で減じて得た誤差信号に対してフィルタを作用させた結果の信号と、フィードバック制御器が出力する操作量に対するノミナルプラントモデルの出力信号とを加減算器で加え合わせて得た信号を出力信号とするものであって、フィードバック制御器は、遅れ補償器の出力信号と目標値信号との偏差を加減算器で算出し、偏差を基に制御対象に対して補償を行うものであって、フィルタは、制御対象に対する任意のフィードバック制御器と、制御対象のモデルと、制御対象に対する任意のフィードバック制御器と制御対象のモデルで構成される閉ループ系の伝達関数と、閉ループ系の一巡伝達関数とを、任意に用いて和差積商の形で構成した関数とする。
 本発明によれば、フィルタのパラメータの物理的意味が分かり易く、パラメータの設計指針が明確となり、フィルタ設計を容易化できる。
実施例1における遅れ補償器を含むフィードバック制御系の構成図である。 モータ制御のカスケードフィードバック制御系の構成図である。 非特許文献2の制御系の構成図である。 非特許文献2以外の制御系の構成図である。 非特許文献2以外の制御系の構成図である。 実施例2におけるACサーボモータの速度制御系の構成図である。 実施例2における遅れ補償器を含む速度制御系の構成図である。 非特許文献2以外の遅れ補償器を含む速度制御系の構成図である。
 以下、本発明を適用した実施例について図面を参照しながら説明する。
 なお各図において、共通な機能を有する構成要素には同一の番号を付与し、その説明を省略する。また、以降「フィードバック」は「FB」と略記する。また、以降、“制御対象のモデル”と記載するとき、“制御対象のモデル”は、制御対象のノミナルプラントモデルを指す場合もあれば、制御対象、制御器、センサ及び閉ループ系内に存在する遅れ要素の一部もしくは全体のノミナル遅れモデルを指す場合もあれば、制御対象のノミナルプラントモデルとノミナル遅れモデルの両方を含むノミナルなモデルを指す場合もある。
 図1は、本実施例における遅れ補償器を含むフィードバック制御系の構成図である。本実施例は、図1において、フィルタ1は後述する設計方法によりに設計され、そのフィルタを備えた遅れ補償器を有するフィードバック制御方法、及びそのフィードバック制御方法を備えたモータ制御方法およびモータ制御装置について説明する。
 図1において、遅れを含む制御対象32は、FB制御器36と遅れ補償器2によりFB制御がなされる。
 遅れ補償器2は、その内部に制御対象のモデルを有し、本実施例において制御対象のモデルは、ノミナルプラントモデル34およびノミナルな遅れモデル35から成る。なおローパスフィルタやマイナーループ制御系等、遅れを発生する要素が閉ループ系内に含まれる場合は、それらの遅れ要素のノミナルなモデルを、ノミナルな遅れモデル35に含むものとしてもよい。
 操作量に対する制御対象の出力信号yと制御対象のモデルの出力信号とから加減算器39で誤差信号が算出され、その誤差信号に対してフィルタ1を作用させた結果の信号とノミナルプラントモデル34の出力信号とを加減算器310で加え合わせることで、遅れ補償器の出力信号が算出される。遅れ補償器の出力信号は、制御対象が内包する遅れ要素を考慮した制御対象の出力信号の予測値信号であり、これと目標値信号rとの偏差を加減算器37で算出し、その偏差を基にFB制御器36が制御対象に対して補償を行う。
 モデル化誤差が無く外乱も介在しない理想的な状態を仮定すれば、加減算器39で算出される誤差信号は零であり、FB制御器36はノミナルな遅れモデル35を閉ループ内に含まず、ノミナルプラントモデルPmに対してFB制御を行っているものと見なせ、その結果FB制御器36の制御ゲインを高めることが可能になることが容易に理解できる。
 図1のFB制御系のフィルタ1の設計方法として、フィルタ1は、制御対象に対する任意のFB制御器と、制御対象のモデルと、前記制御対象に対する任意のFB制御器と前記制御対象のモデルで構成される閉ループ系の伝達関数と、前記閉ループ系の一巡伝達関数と、を任意に用いて和差積商の形で構成した関数であって、かつフィルタ1は、制御対象が原点に極を有しSmith法では制御対象の入力端に加わるステップ外乱に対して定常偏差を残してしまう場合であっても、定常偏差をゼロにできるフィルタの集合に属するもの、とする。
 以降制御対象に対する任意のFB制御器はCaと表記する。なおFB制御器CaはFB制御器36と同一の構造のものであっても構わない。FB制御器CaとFB制御器36が同一構造である場合、各々の制御設計パラメータは独立に設定できるものとしてもよいし、従属するものとしてもよい。
 以降、上記設計方法に従うフィルタ1の設計例を説明する。
 上記フィルタ1の設計方法における“制御対象のモデル”とは、本実施例においては図1に従い、下記式(3)~(5)に示すものを想定している。但し式(3)は図1の制御対象Pのノミナルプラントモデル、式(4)は制御対象の全体が内包する遅れ要素のノミナルな遅れモデル、式(5)は遅れを含む制御対象全体のノミナルモデルを示す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 また本実施例における、前述の“前記制御対象に対する任意のFB制御器と前記制御対象のモデルで構成される閉ループ系の伝達関数”とは、例えば以下に示す式(6)、式(7)等を想定する。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 また本実施例における、前述の“前記閉ループ系の一巡伝達関数”とは、例えば以下に示す式(8)、式(9)等を想定する。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 従って、前述のフィルタ1の設計方法によれば、例えばフィルタ1の集合は、式(3)~(9)から、下記式(10)のような関数Fがその部分集合を構成する。
Figure JPOXMLDOC01-appb-M000010
 FB制御器CaとFB制御器36を同一構造とする場合は、FB制御器Caは下記式(11)のように置くことが可能である。
Figure JPOXMLDOC01-appb-M000011
 本実施例において、前述のフィルタ1の設計方法によれば、フィルタ1は具体的には例えば下記式(12)が挙げられる。すなわち、ノミナルプラントモデル(式(3))と、遅れを含む制御対象のノミナルモデル(式(5))の逆数と、遅れを含む制御対象のノミナルモデルと制御対象に対するフィードバック制御器で構成される閉ループ系の伝達関数(式(6))と、ノミナルプラントモデルとフィードバック制御器で構成される閉ループ系の伝達関数(式(7))の逆数とを、各々掛け合わせたものとする。
Figure JPOXMLDOC01-appb-M000012
 この他にもフィルタ1は、例えば異なるFB制御器2つを用いた表現として下記式(13)が挙げられる。
Figure JPOXMLDOC01-appb-M000013
 また、この他にもフィルタ1は、例えば異なるFB制御器2つを用いた表現として式(14)が挙げられる。
Figure JPOXMLDOC01-appb-M000014
 次に、式(12)~(14)に示すフィルタ1が、前述のフィルタ1の設計方法における、フィルタ集合の要素であるための条件“制御対象が原点に極を有する場合であっても定常偏差をゼロにできる”を満たすためのFB制御器Caに課される条件について説明する。
 以下の式(15)に示す、制御対象の入力端に加わる単位ステップ外乱に対する最終値定理を用いる。
Figure JPOXMLDOC01-appb-M000015
 但し、yは制御対象出力、dは制御対象出力の入力端に印加される外乱であり、Hdy(s)は、dからyへの伝達特性であり以下の式(16)~(19)である。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 N=1とすると図1のFB制御系は従来のSmith法に相当するが、制御対象がただひとつ原点に極を有し、下記式(20)のように表現される場合、
Figure JPOXMLDOC01-appb-M000020
 仮にモデル化誤差なく、下記式(21)であり、
Figure JPOXMLDOC01-appb-M000021
 FB制御器36が積分器を有し、下記式(22)を満たす場合であっても、
Figure JPOXMLDOC01-appb-M000022
 制御対象の入力端に加わる単位ステップ外乱に対する定常偏差は、式(15)の最終値定理によれば、下記式(23)のように、
Figure JPOXMLDOC01-appb-M000023
 右辺第2項が非零になることから、標準的なSmith法では制御対象の入力端に加わる単位ステップ外乱を除去できないことがわかる。
 上述のフィルタ1の設計方法に基づいてフィルタ1を設計するとき、制御対象の入力端に加わる単位ステップ外乱を除去するためには、FB制御器36が式(22)を満たす仮定のもと、式(16)から、下記式(24)、(25)を共に満たすフィルタ1であればよい。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
 下記式(26)から、
Figure JPOXMLDOC01-appb-M000026
 式(20)および式(22)を仮定する下では、式(25)の条件は次式(27)と書ける。
Figure JPOXMLDOC01-appb-M000027
 式(23)右辺第2項と比較すると、式(27)を満たすフィルタ1の寄与により、標準的なSmith法では除去できなかった制御対象の入力端に加わる単位ステップ外乱を定常偏差なく除去できることがわかる。
 フィルタ1を式(12)~(13)とした場合、フィルタ1の設計条件である式(24)および式(27)を満足するにはFB制御器Caは、下記式(28)であればよく、
Figure JPOXMLDOC01-appb-M000028
 例えばP制御器(比例要素)や一次遅れ系等がこれを満足する。またフィルタ1を式(14)とした場合は、下記式(29)であればよく、
Figure JPOXMLDOC01-appb-M000029
 すなわちFB制御器Caは積分器を有していればよい。
 上記のことから、式(28)を満たすFB制御器Caを用いて構成した式(12)~(13)に示すフィルタ1、および式(29)を満たすFB制御器Caを用いて構成した式(14)に示すフィルタ1は、上述のフィルタ1の設計方法に基づいて設計され、上述のフィルタ集合の要素足り得るといえる。
 制御対象のモデル及びそのパラメータ全てが既知である前提では、本実施例により設計されるフィルタ1は、式(10)、(12)~(14)からもわかるように、FB制御器CaとFB制御器36に含まれる制御設計パラメータのみがフィルタの設計値なっている。FB制御系設計時、制御対象に対するFB制御器CaとFB制御器36の制御設計パラメータは多くの場合、物理的意味が把握可能であったり、設計指針が明確なものである。特に、FB制御器Caを式(11)とする場合は、FB制御器Caの制御設計パラメータの物理的意味や設計指針をFB制御器36と同じにでき、物理的意味や設計指針をより明確なものにできる。
 上記のことから、本実施例によれば、フィルタ1のパラメータは物理的意味が分かり易く、パラメータの設計指針が明確であり、フィルタ設計を容易化できる。
 以降、本実施例で設計された式(12)~(14)のフィルタ1の差異に着目して議論を進める。
 式(12)のフィルタ1は、非特許文献2においてローパスフィルタB(s)を次式(30)とした場合と遅れ補償の特性が同じになる。
Figure JPOXMLDOC01-appb-M000030
 他方、式(13)、式(14)のフィルタ1は、式(12)とは異なるため、式(30)を採用した非特許文献2とは異なる遅れ補償の特性になることが分かる。
 式(13)のフィルタ1を備えた図1のFB制御系は、制御対象のモデルによる制御量yの予測誤差を式(28)を満たすFB制御器Caでフィルタする構成の遅れ補償器52を有する図4へと書き変えることができ、次式(31)とすれば、
Figure JPOXMLDOC01-appb-M000031
 図4と式(13)のフィルタ1を備えた図1のFB制御系は同等の制御性能を示すことになる。
 式(14)のフィルタ1を備えた図1のFB制御系は、外乱オブザーバの構成を内包する構成の遅れ補償器62を有する図5へと書き変えることが可能であり、このとき、次式(32)とすれば、
Figure JPOXMLDOC01-appb-M000032
 図5と式(14)のフィルタ1を備えた図1のFB制御系は同等の制御性能を示すことになる。
 上記のことから、本実施例におけるフィルタ1の設計方法によれば、フィルタ1の設計パラメータを制御設計パラメータのみと制約したうえでフィルタ1の構成には自由度が認められ、フィルタの集合には非特許文献2と同等の外乱抑制性能を実現するフィルタを含み、非特許文献2以外の外乱抑制性能を示す式(13)および式(14)のようなフィルタ1も設計できるため、既存の遅れ補償法以外にも、制御対象の入力端に加わるステップ外乱を抑制できる方法(遅れ補償器の他のブロック構成)が図4、図5のように存在し得ることを明確化できる。
 以上のように本実施例は、制御対象のモデル及びフィルタから構成される遅れ補償器とフィードバック制御器から成るフィードバック制御系におけるフィルタの設計方法であって、制御対象のモデルは、ノミナルプラントモデルとフィードバック制御系内に内包されるノミナルな遅れモデルとから成り、遅れ補償器は、フィードバック制御器が出力する操作量と制御対象の出力信号とを入力信号とし、制御対象の出力信号とフィードバック制御器が出力する操作量に対する制御対象のモデルの出力信号とを加減算器で減じて得た誤差信号に対してフィルタを作用させた結果の信号と、フィードバック制御器が出力する操作量に対するノミナルプラントモデルの出力信号とを加減算器で加え合わせて得た信号を出力信号とするものであって、フィードバック制御器は、遅れ補償器の出力信号と目標値信号との偏差を加減算器で算出し、偏差を基に制御対象に対して補償を行うものであって、フィルタは、制御対象に対する任意のフィードバック制御器と、制御対象のモデルと、前記制御対象に対する任意のフィードバック制御器と制御対象のモデルで構成される閉ループ系の伝達関数と、前記閉ループ系の一巡伝達関数とを、任意に用いて和差積商の形で構成した関数とする。
 また、フィルタは、制御対象に対するフィードバック制御器と同構造の別のフィードバック制御器と、制御対象のモデルと、前記別のフィードバック制御器と制御対象のモデルで構成される閉ループ系の伝達関数と、前記閉ループ系の一巡伝達関数とを、任意に用いて和差積商の形で構成した関数する。
 また、フィルタは、制御対象が原点に極を有する場合であっても制御対象の入力端に加わるステップ外乱に対して定常偏差をゼロにできるフィルタの集合に属するものとする。
 これにより、フィルタ1は、制御対象に対するフィードバック制御器に含まれる制御設計パラメータのみがフィルタ1の設計パラメータであり、制御設計パラメータは多くの場合物理的意味が把握可能であったり設計指針が明確なものであるため、フィルタ1のパラメータの物理的意味が分かり易く、パラメータの設計指針が明確となり、フィルタ設計を容易化できる。また、フィルタ1の設計パラメータを制御設計パラメータのみと制約したうえでフィルタ1の構成には自由度が認められ、フィルタ1の集合には非特許文献2と同等の外乱抑制性能を実現するフィルタを含み、また非特許文献2以外の外乱抑制性能を示すフィルタ1も設計できるため、既存の遅れ補償法以外にも、制御対象の入力端に加わるステップ外乱を抑制できる方法(遅れ補償器の他のブロック構成)が存在し得ることを明確化できる。したがって、上述の優位性を有するフィルタの設計方法、およびその設計方法に基づき設計されたフィルタを備える図1に示す制御方法、及びその制御方法を備えた制御装置の提供が可能となる。
 図6は、本実施例におけるACサーボモータの速度制御系の構成図である。本実施例では、図6に示すACサーボモータのカスケードFB制御系における速度制御系71を想定し、図6において、速度制御器72と、それ以外の構成からなる制御対象で構成され、速度制御器72は図1に示す遅れ補償器を含むFB制御器を備え、図1において、フィルタ1は後述する設計方法によりに設計される。また、そのフィルタを備えた遅れ補償器を有する速度制御系のフィードバック制御方法、及びそのフィードバック制御方法を備えたモータ制御方法およびモータ制御装置について説明する。
 本実施例においては、制御対象のモデルGsmは具体的に次式(33)~(35)に示すものとする。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
 式(34)のPsmは速度制御系におけるノミナルプラントモデル、式(35)のMiは速度制御系におけるマイナーループ制御系である電流制御系を理想化したものであり、τsmは、電流制御系、及び速度制御系の閉ループに内包される全ての遅れの総和である。また、J、Ka、Ppは各々、イナーシャ、モータ定数、極対数であり、ωiは電流制御系の応答周波数である。
 速度制御系の速度制御器72はPI制御器とし、次式(36)~(38)とする。
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
 但し、L、ωsは各々折れ点比、速度制御系の応答周波数である。一般に、電流制御系を近似的に1と見なすために、ωiはωsの数~10倍に設定される。
 速度制御系の高応答化のためにωsを高めると、ωiを同時に高めない限り、電流制御系が1に近似できなくなり、これを遅れ要素と見なす必要がある。この場合電流制御系は式(35)に示すように1次遅れ要素であり、これを遅れ要素と見なす必要がある。
 本実施例では、電流制御系を遅れ要素と見なし、速度制御系の制御ブロック構成は図1に基づき図7とする。
 図7のFB制御系において、本実施例ではフィルタ81の設計方法として、フィルタ81は、制御対象に対する任意のFB制御器と、制御対象のモデルと、制御対象に対する任意のFB制御器と制御対象のモデルで構成される閉ループ系の伝達関数と、前記閉ループ系の一巡伝達関数とを、任意に用いて和差積商の形で構成した関数であって、かつフィルタ81は、制御対象が原点に極を有しSmith法では制御対象の入力端に加わるステップ外乱に対して定常偏差を残してしまう場合であっても、定常偏差をゼロにできるフィルタの集合に属するもの、とする。
 ここで、上述の“制御対象に対する任意のFB制御器”はCsaと表記し、本実施例のフィルタ1の設計方法における“制御対象のモデル”は、例えば以下式(39)~(41)を想定する。
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
 上述のフィルタの設計方法に従い、図7のフィルタ81は、例えば式(12)と同様に下記式(42)のように設計する。すなわち、ノミナルプラントモデル(式(39))と、遅れを含む制御対象のノミナルモデル(式(41))の逆数と、遅れを含む制御対象のノミナルモデルと制御対象に対するフィードバック制御器で構成される閉ループ系の伝達関数と、ノミナルプラントモデルとフィードバック制御器で構成される閉ループ系の伝達関数の逆数とを、各々掛け合わせたものとする。
Figure JPOXMLDOC01-appb-M000042
 なお、式(42)のフィルタ81を備えた遅れ補償器82は、非特許文献2においてローパスフィルタB(s)を次式(43)とし、かつ遅れ要素にMiを加味した場合と遅れ補償の特性が同じになる。
Figure JPOXMLDOC01-appb-M000043
 本実施例では更に、FB制御器Csaに対して、下記式(44)のように、
Figure JPOXMLDOC01-appb-M000044
FB制御器36と同構造を持ちながら、その制御設計パラメータはFB制御器86とは独立に定められるものとする。このように設計されたフィルタ81は、Csaに関して式(28)を満たすことから、制御対象の入力端に加わる単位ステップ外乱を定常偏差なく除去できるものである。
 この結果、式(42)に含まれるフィルタ81の設計パラメータはωs2のみとなり、このパラメータの物理的意味は式(36)で示した速度制御系の応答周波数であるため、本実施例において、フィルタ81の設計パラメータの設定指針は明らかとなり、フィルタ設計を容易化できる。
 また上述のフィルタの設計方法に従い、フィルタ81に関して、式(13)と同様に設計してもよい。さらには上述のフィルタの設計方法に従い、フィルタ81に関して、式(14)と同様に次式(45)のように設計してもよい。
Figure JPOXMLDOC01-appb-M000045
 更にFB制御器Csaに関して式(44)を仮定すれば、Csaは式(29)の条件を満たすことから、上述のフィルタの設計方法に従い式(45)のように設計されたフィルタ81は、制御対象の入力端に加わる単位ステップ外乱を定常偏差なく除去できるものである。
 この結果、式(45)に含まれるフィルタ81の設計パラメータはωs1、ωs2となり、このパラメータの物理的意味は式(36)で示した速度制御系の応答周波数であるため、その設定指針は明らかとなり、フィルタ設計を容易化できる。
 さらには、式(45)のフィルタ81を備えた図7のFB制御系は、外乱オブザーバの構成を内包する構成の遅れ補償器92を有する図8へと書き変えることが可能であり、このとき、次式(46)とすれば、
Figure JPOXMLDOC01-appb-M000046
 図8と式(45)のフィルタ81を備えた図7のFB制御系は同等の制御性能を示すことになる。
 上記のことから、本実施例におけるフィルタ81の設計方法によれば、フィルタ81の設計パラメータを制御設計パラメータのみと制約したうえでフィルタ81の構成には自由度が認められ、既存の遅れ補償法以外にも、制御対象の入力端に加わるステップ外乱を抑制できる方法(遅れ補償器の他のブロック構成)が図8のように存在し得ることを明確化できる。
1…フィルタ
2…遅れ補償器
21…メジャーループ制御系
22…マイナーループ制御系
23…メジャーループ制御系の制御対象
24…メジャーループ制御系のフィードバック制御器
25、37~39、310、64、712…加減算器
32…遅れを含む制御対象
34…ノミナルプラントモデル
35…ノミナルな遅れモデル
36…フィードバック制御器
41…非特許文献2のフィルタ
51…非特許文献2以外の遅れ補償器のフィルタ
52…非特許文献2以外の遅れ補償器
61…非特許文献2以外の遅れ補償器のフィルタ
62…非特許文献2以外の遅れ補償器
71…モータの速度制御系
77…ACサーボモータ
78…電流検出器
81…速度制御系の遅れ補償器のフィルタ
82…速度制御系の遅れ補償器
83…速度制御系の制御対象
85…速度制御系の遅れ要素
91…非特許文献2以外の遅れ補償器のフィルタ
92…非特許文献2以外の遅れ補償器

Claims (13)

  1.  制御対象のモデル及びフィルタから構成される遅れ補償器とフィードバック制御器から成るフィードバック制御系におけるフィルタの設計方法であって、
     前記制御対象のモデルは、ノミナルプラントモデルと前記フィードバック制御系内に内包されるノミナルな遅れモデルとから成り、
     前記遅れ補償器は、前記フィードバック制御器が出力する操作量と制御対象の出力信号とを入力信号とし、前記制御対象の出力信号と前記フィードバック制御器が出力する操作量に対する前記制御対象のモデルの出力信号とを加減算器で減じて得た誤差信号に対して前記フィルタを作用させた結果の信号と、前記フィードバック制御器が出力する操作量に対する前記ノミナルプラントモデルの出力信号とを加減算器で加え合わせて得た信号を出力信号とするものであって、
     前記フィードバック制御器は、前記遅れ補償器の前記出力信号と目標値信号との偏差を加減算器で算出し、前記偏差を基に前記制御対象に対して補償を行うものであって、
     前記フィルタは、前記制御対象に対する任意のフィードバック制御器と、前記制御対象のモデルと、前記制御対象に対する任意のフィードバック制御器と前記制御対象のモデルで構成される閉ループ系の伝達関数と、前記閉ループ系の一巡伝達関数とを、任意に用いて和差積商の形で構成した関数とすることを特徴とするフィルタの設計方法。
  2.  請求項1に記載のフィルタの設計方法であって、
     前記フィルタは、前記制御対象に対するフィードバック制御器と同構造の別のフィードバック制御器と、前記制御対象のモデルと、前記別のフィードバック制御器と前記制御対象のモデルで構成される閉ループ系の伝達関数と、前記閉ループ系の一巡伝達関数とを、任意に用いて和差積商の形で構成した関数することを特徴とするフィルタの設計方法。
  3.  請求項1に記載のフィルタの設計方法であって、
     前記フィルタは、前記制御対象が原点に極を有する場合であっても該制御対象の入力端に加わるステップ外乱に対して定常偏差をゼロにできるフィルタの集合に属するものとすることを特徴とするフィルタの設計方法。
  4.  請求項2に記載のフィルタの設計方法であって、
     前記フィルタは、前記制御対象が原点に極を有する場合であっても該制御対象の入力端に加わるステップ外乱に対して定常偏差をゼロにできるフィルタの集合に属するものとすることを特徴とするフィルタの設計方法。
  5.  請求項1に記載のフィルタの設計方法であって、
     前記フィルタは、前記ノミナルプラントモデルと、遅れを含む前記制御対象のノミナルモデルの逆数と、前記遅れを含む前記制御対象のノミナルモデルと前記制御対象に対するフィードバック制御器で構成される閉ループ系の伝達関数と、前記ノミナルプラントモデルと前記フィードバック制御器で構成される閉ループ系の伝達関数の逆数とを、各々掛け合わせたものとすることを特徴とするフィルタの設計方法。
  6.  請求項5に記載のフィルタの設計方法であって、
     前記フィルタは、前記制御対象が原点に極を有する場合であっても該制御対象の入力端に加わるステップ外乱に対して定常偏差をゼロにできるフィルタの集合に属するものとすることを特徴とするフィルタの設計方法。
  7.  請求項6に記載のフィルタの設計方法であって、
     前記フィルタは、前記ノミナルプラントモデルと、遅れを含む前記制御対象のノミナルモデルの逆数と、前記遅れを含む前記制御対象のノミナルモデルと前記制御対象に対するフィードバック制御器と同構造の別のフィードバック制御器とで構成される閉ループ系の伝達関数と、前記ノミナルプラントモデルと前記別のフィードバック制御器とで構成される閉ループ系の伝達関数の逆数とを、各々掛け合わせたものであることを特徴とするフィルタの設計方法。
  8.  制御対象のモデル及びフィルタから構成される遅れ補償器とフィードバック制御器から成るフィードバック制御系を用いたフィードバック制御方法であって、
     前記制御対象のモデルは、ノミナルプラントモデルと前記フィードバック制御系内に内包されるノミナルな遅れモデルとから成り、
     前記遅れ補償器は、前記フィードバック制御器が出力する操作量と制御対象の出力信号とを入力信号とし、前記制御対象の出力信号と前記フィードバック制御器が出力する操作量に対する前記制御対象のモデルの出力信号とを加減算器で減じて得た誤差信号に対して前記フィルタを作用させた結果の信号と、前記フィードバック制御器が出力する操作量に対する前記ノミナルプラントモデルの出力信号とを加減算器で加え合わせて得た信号を出力信号とするものであって、
     前記フィルタは、前記制御対象に対する任意のフィードバック制御器と、前記制御対象のモデルと、前記制御対象に対する任意のフィードバック制御器と前記制御対象のモデルで構成される閉ループ系の伝達関数と、前記閉ループ系の一巡伝達関数とを、任意に用いて和差積商の形で構成した関数で構成され、
     前記フィードバック制御器は、前記遅れ補償器の前記出力信号と目標値信号との偏差を加減算器で算出し、前記偏差を基に前記制御対象に対して補償を行うことを特徴とするフィードバック制御方法。
  9.  請求項8に記載のフィードバック制御方法であって、
     前記フィルタは、前記制御対象に対するフィードバック制御器と同構造の別のフィードバック制御器と、前記制御対象のモデルと、前記別のフィードバック制御器と前記制御対象のモデルで構成される閉ループ系の伝達関数と、前記閉ループ系の一巡伝達関数とを、任意に用いて和差積商の形で構成した関数で構成されることを特徴とするフィードバック制御方法。
  10.  請求項8に記載のフィードバック制御方法であって、
     前記フィルタは、前記ノミナルプラントモデルと、遅れを含む前記制御対象のノミナルモデルの逆数と、前記遅れを含む前記制御対象のノミナルモデルと前記制御対象に対するフィードバック制御器で構成される閉ループ系の伝達関数と、前記ノミナルプラントモデルと前記フィードバック制御器で構成される閉ループ系の伝達関数の逆数とを、各々掛け合わせたものとすることを特徴とするフィードバック制御方法。
  11.  制御対象のモデル及びフィルタから構成される遅れ補償器とフィードバック制御器から成るフィードバック制御系を用いたモータ制御装置であって、
     前記制御対象のモデルは、ノミナルプラントモデルと前記フィードバック制御系内に内包されるノミナルな遅れモデルとから成り、
     前記遅れ補償器は、前記フィードバック制御器が出力する操作量と制御対象の出力信号とを入力信号とし、前記制御対象の出力信号と前記フィードバック制御器が出力する操作量に対する前記制御対象のモデルの出力信号とを加減算器で減じて得た誤差信号に対して前記フィルタを作用させた結果の信号と、前記フィードバック制御器が出力する操作量に対する前記ノミナルプラントモデルの出力信号とを加減算器で加え合わせて得た信号を出力信号とするものであって、
     前記フィルタは、前記制御対象に対する任意のフィードバック制御器と、前記制御対象のモデルと、前記制御対象に対する任意のフィードバック制御器と前記制御対象のモデルで構成される閉ループ系の伝達関数と、前記閉ループ系の一巡伝達関数とを、任意に用いて和差積商の形で構成した関数で構成され、
     前記フィードバック制御器は、前記遅れ補償器の前記出力信号と目標値信号との偏差を加減算器で算出し、前記偏差を基に前記制御対象に対して補償を行うことを特徴とするモータ制御装置。
  12.  請求項11に記載のモータ制御装置であって、
     前記フィルタは、前記制御対象に対するフィードバック制御器と同構造の別のフィードバック制御器と、前記制御対象のモデルと、前記別のフィードバック制御器と前記制御対象のモデルで構成される閉ループ系の伝達関数と、前記閉ループ系の一巡伝達関数とを、任意に用いて和差積商の形で構成した関数で構成されることを特徴とするモータ制御装置。
  13.  請求項11に記載のモータ制御装置であって、
     前記フィルタは、前記ノミナルプラントモデルと、遅れを含む前記制御対象のノミナルモデルの逆数と、前記遅れを含む前記制御対象のノミナルモデルと前記制御対象に対するフィードバック制御器で構成される閉ループ系の伝達関数と、前記ノミナルプラントモデルと前記フィードバック制御器で構成される閉ループ系の伝達関数の逆数とを、各々掛け合わせたものとすることを特徴とするモータ制御装置。
PCT/JP2018/007308 2017-03-21 2018-02-27 遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置 WO2018173654A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197017419A KR102207756B1 (ko) 2017-03-21 2018-02-27 지연 보상기의 필터의 설계 방법, 및 그것을 이용한 피드백 제어 방법, 모터 제어 장치
CN201880010381.8A CN110300932B (zh) 2017-03-21 2018-02-27 延迟补偿器的滤波器的设计方法和使用其的反馈控制方法、电动机控制装置
DE112018000468.6T DE112018000468T5 (de) 2017-03-21 2018-02-27 Verfahren zum Entwerfen eines Filters eines Verzögerungskompensators, Regelungsverfahren unter Verwendung desselben und Motorsteuervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017054595A JP7039176B2 (ja) 2017-03-21 2017-03-21 遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置
JP2017-054595 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018173654A1 true WO2018173654A1 (ja) 2018-09-27

Family

ID=63586459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007308 WO2018173654A1 (ja) 2017-03-21 2018-02-27 遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置

Country Status (5)

Country Link
JP (1) JP7039176B2 (ja)
KR (1) KR102207756B1 (ja)
CN (1) CN110300932B (ja)
DE (1) DE112018000468T5 (ja)
WO (1) WO2018173654A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865957A4 (en) * 2018-10-09 2022-07-06 Hitachi Industrial Equipment Systems Co., Ltd. METHOD AND DEVICE FOR FEEDBACK CONTROL

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979330B2 (ja) * 2017-10-30 2021-12-15 株式会社日立産機システム フィードバック制御方法、及びモータ制御装置
TWI755704B (zh) * 2019-05-14 2022-02-21 日商富士金股份有限公司 流量控制裝置、流量控制方法、流量控制裝置的控制程式
CN114384804B (zh) * 2022-01-12 2023-11-21 中国人民解放军国防科技大学 一种当跟踪指令为零时抵消闭环系统传递函数零点影响的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651805A (ja) * 1992-07-31 1994-02-25 Meidensha Corp プラントの適応制御方法およびそれを実現する装置
JP2008079478A (ja) * 2006-09-25 2008-04-03 Yaskawa Electric Corp サーボ制御装置とその速度追従制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892823B2 (ja) * 2003-03-17 2007-03-14 山洋電気株式会社 モータの速度制御装置
CN1845025A (zh) * 2006-04-29 2006-10-11 沈阳工业大学 用零相位误差跟踪控制和干扰观测提高轮廓加工精度方法
JP5192802B2 (ja) * 2007-12-28 2013-05-08 株式会社日立産機システム モータ制御装置、及びモータ制御システム
CN105450126A (zh) * 2015-12-17 2016-03-30 江苏经纬轨道交通设备有限公司 一种车载永磁同步电机矢量控制方法
CN106411183A (zh) * 2016-09-27 2017-02-15 淮阴工学院 电机同步系统线性优化自抗扰复合卡尔曼滤波器控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651805A (ja) * 1992-07-31 1994-02-25 Meidensha Corp プラントの適応制御方法およびそれを実現する装置
JP2008079478A (ja) * 2006-09-25 2008-04-03 Yaskawa Electric Corp サーボ制御装置とその速度追従制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865957A4 (en) * 2018-10-09 2022-07-06 Hitachi Industrial Equipment Systems Co., Ltd. METHOD AND DEVICE FOR FEEDBACK CONTROL

Also Published As

Publication number Publication date
DE112018000468T5 (de) 2019-10-02
CN110300932B (zh) 2022-08-02
JP2018156557A (ja) 2018-10-04
JP7039176B2 (ja) 2022-03-22
CN110300932A (zh) 2019-10-01
KR102207756B1 (ko) 2021-01-26
KR20190087490A (ko) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2018173654A1 (ja) 遅れ補償器のフィルタの設計方法、及びそれを用いたフィードバック制御方法、モータ制御装置
Folea et al. Theoretical analysis and experimental validation of a simplified fractional order controller for a magnetic levitation system
KR101460463B1 (ko) 모터 제어 장치
JP5120654B2 (ja) サーボ制御装置
Karimi et al. Robust controller design by linear programming with application to a double-axis positioning system
TWI504131B (zh) 馬達控制裝置
US20090251092A1 (en) Position controller
Xie High frequency measurement noise rejection based on disturbance observer
KR101402873B1 (ko) 전동기의 위치제어장치
Silva et al. Direct adaptive rejection of unknown time-varying narrow band disturbances applied to a benchmark problem
KR102430383B1 (ko) 피드백 제어 방법, 및 피드백 제어 장치
CN113241973A (zh) S型滤波器迭代学习控制直线电机轨迹跟踪控制方法
Rodrigues et al. Tuning rules for unstable dead-time processes
KR20140126851A (ko) 전류 제한 장치가 있는 서보 제어기의 무튜닝 비선형 제어 방법
KR20190018014A (ko) 제어 시스템
WO2019087554A1 (ja) フィードバック制御方法、及びモータ制御装置
Shen et al. A multiple periodic disturbance rejection control for process with long dead-time
KR20170003254A (ko) 인공지능 알고리즘을 이용한 실시간 적응 제어 시스템 및 방법
Al Janaideh et al. Adaptive control of uncertain Hammerstein systems with hysteretic nonlinearities
Luan et al. Conversion of SISO processes with multiple time-delays to single time-delay processes
JP2999330B2 (ja) スライディングモード制御系を用いた制御方法
Tanaka et al. Controller design approach based on linear programming
Lima et al. First-order dead-time compensation with feedforward action
Basovich et al. Feedforward control of LTI system with uncertainty and disturbance
CN112859587B (zh) 一种基于附加集成模块的pid目标跟踪控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197017419

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18770832

Country of ref document: EP

Kind code of ref document: A1