WO2018171134A1 - 一种车辆控制方法及装置 - Google Patents
一种车辆控制方法及装置 Download PDFInfo
- Publication number
- WO2018171134A1 WO2018171134A1 PCT/CN2017/102030 CN2017102030W WO2018171134A1 WO 2018171134 A1 WO2018171134 A1 WO 2018171134A1 CN 2017102030 W CN2017102030 W CN 2017102030W WO 2018171134 A1 WO2018171134 A1 WO 2018171134A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- driver
- vehicle
- manipulation information
- intervention
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 230000001133 acceleration Effects 0.000 claims description 29
- 238000012546 transfer Methods 0.000 claims description 24
- 210000004556 brain Anatomy 0.000 claims description 18
- 230000008921 facial expression Effects 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 230000006399 behavior Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims 1
- 238000004590 computer program Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000006996 mental state Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/005—Handover processes
- B60W60/0053—Handover processes from vehicle to occupant
- B60W60/0055—Handover processes from vehicle to occupant only part of driving tasks shifted to occupants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/181—Preparing for stopping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/082—Selecting or switching between different modes of propelling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/005—Handover processes
- B60W60/0053—Handover processes from vehicle to occupant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/005—Handover processes
- B60W60/0059—Estimation of the risk associated with autonomous or manual driving, e.g. situation too complex, sensor failure or driver incapacity
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0257—Control of position or course in two dimensions specially adapted to land vehicles using a radar
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/028—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
- B60W2050/0063—Manual parameter input, manual setting means, manual initialising or calibrating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
- B60W2050/007—Switching between manual and automatic parameter input, and vice versa
- B60W2050/0072—Controller asks driver to take over
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/403—Image sensing, e.g. optical camera
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/408—Radar; Laser, e.g. lidar
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/21—Voice
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/215—Selection or confirmation of options
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/22—Psychological state; Stress level or workload
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/223—Posture, e.g. hand, foot, or seat position, turned or inclined
Definitions
- the present invention relates to the field of vehicle engineering technology, and in particular, to a vehicle control method and apparatus.
- the vehicle control is realized, including the manual driving mode and the automatic driving mode; when the manual driving mode is turned on, the vehicle control right is immediately given to the driver, and the driver has full control; when the automatic driving is started In the mode, the driver immediately gives the vehicle control to the vehicle, and the main control unit of the vehicle makes decisions and controls according to the information returned by the sensor to realize automatic driving.
- the driver can select whether to turn on the manual driving mode or the automatic driving mode by triggering the physical switch to realize manual control and automatic control of the vehicle.
- the vehicle control method disclosed in the prior art has a large safety problem.
- the present invention provides a vehicle control method and apparatus for improving safety of vehicle control and reducing vehicle accidents.
- An embodiment of the present invention provides, in an aspect, a vehicle control method, including:
- the vehicle When the vehicle is currently in the automatic driving mode and it is determined that the intervention intention is a slow intervention, the vehicle is controlled to reach a predetermined safe state and the corresponding control of the vehicle is handed over to the driver.
- an embodiment of the present invention further provides a vehicle control apparatus, including:
- An obtaining unit configured to obtain artificial manipulation information on the vehicle
- a determining unit configured to determine a driver's intervention intention according to the artificial manipulation information
- the first control unit is configured to control the vehicle to reach a predetermined safety state when the vehicle is currently in the automatic driving mode and determine that the intervention intention is a slow intervention, and transfer the corresponding control right of the vehicle to the driver.
- an embodiment of the present invention further provides a vehicle control apparatus, including: a processor and at least one memory, wherein the at least one memory stores at least one machine executable instruction, and the processor executes the at least one machine Executable instructions to implement:
- the vehicle When the vehicle is currently in the automatic driving mode and it is determined that the intervention intention is a slow intervention, the vehicle is controlled to reach a predetermined safe state and the corresponding control of the vehicle is handed over to the driver.
- the technical solution of the present invention can not control the vehicle to reach a safe state when the driver needs to be slowly involved according to the human control information, and can transfer the corresponding control right of the vehicle in a safe state.
- the transfer of vehicle control rights can be realized while ensuring the safety of the vehicle.
- the corresponding control right of the vehicle can be transferred to the driver, which can be the transfer of partial control rights or the transfer of control of the entire vehicle. More flexible, it can give the driver a reaction and adaptation time, further reduce the probability of driver misoperation, and further improve the safety of vehicle driving.
- FIG. 1 is a flow chart of a method for controlling a vehicle in an embodiment of the present invention
- FIG. 2 is a second flowchart of a method for controlling a vehicle in an embodiment of the present invention
- FIG. 3 is a third flowchart of a method for controlling a vehicle according to an embodiment of the present invention.
- FIG. 4 is a fourth flowchart of a method for controlling a vehicle according to an embodiment of the present invention.
- FIG. 5 is a fifth flowchart of a method for controlling a vehicle according to an embodiment of the present invention.
- FIG. 6 is a sixth flowchart of a method for controlling a vehicle according to an embodiment of the present invention.
- FIG. 7 is a seventh flowchart of a method for controlling a vehicle according to an embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of a vehicle control device according to an embodiment of the present invention.
- FIG. 9 is a second schematic structural diagram of a vehicle control device according to an embodiment of the present invention.
- Figure 10 is a third schematic structural diagram of a vehicle control device according to an embodiment of the present invention.
- FIG. 11 is a fourth structural schematic diagram of a vehicle control device according to an embodiment of the present invention.
- FIG. 12 is a fifth schematic structural diagram of a vehicle control device according to an embodiment of the present invention.
- Embodiment 1 is a flowchart of a vehicle control method according to Embodiment 1 of the present invention, where the method includes:
- Step 101 Obtain artificial manipulation information on the vehicle
- Step 102 Determine, according to the man-made manipulation information, an intention of the driver to participate;
- Step 103 When the vehicle is currently in the automatic driving mode and it is determined that the intervention intention is a slow intervention, the vehicle is controlled to reach a predetermined safety state, and the corresponding control right of the vehicle is handed over to the driver.
- step 104 in order to avoid the problem that the vehicle does not respond to the emergency or sudden situation in the automatic driving mode, the vehicle response is not obtained, thereby causing the vehicle accident. Also included is the following step 104, as shown in FIG. 2:
- Step 104 In response to the man-made manipulation information and transferring the corresponding control right of the vehicle to the driver when the vehicle is currently in the automatic driving mode and determining that the intervention intention is emergency intervention.
- the vehicle is controlled to reach a predetermined state.
- the safety state can be specifically achieved by, but not limited to, controlling the vehicle to decelerate and performing lane keeping until the vehicle stops in a safe area, such as an emergency lane, a service area, a parking lot, and the like.
- a person skilled in the art can also realize the following steps: controlling a lane change of a vehicle, stopping in a safe area such as an emergency lane, a service area, a parking lot, or the like; or, performing a preceding vehicle following, etc., the application is not strictly limited, and the field is not strictly limited.
- the technician can flexibly set according to actual needs.
- the manner in which the step 101 obtains the man-made manipulation information of the vehicle is various, and the present application is not strictly limited.
- any one of the following methods or a combination of multiple methods may be used to obtain the method.
- Artificial manipulation information :
- Method 1 collecting control commands issued by the driver to operate a lateral controller of the vehicle (such as a steering wheel or other steering mechanism) and/or a vertical controller (such as a brake controller, a throttle controller, etc.), and according to the control
- the instruction obtains the artificial manipulation information. For example, collecting the degree of opening and closing of the brake pedal by the driver, converting the degree of opening and closing of the brake pedal into the value of the degree of braking for braking control of the vehicle, and transmitting the deceleration to the onboard CAN (Controller Area Network) bus. Request signal.
- CAN Controller Area Network
- the driver's voice command is collected, and the voice command is recognized to obtain the man-made manipulation information.
- the driver's voice command is collected, and the voice command is voice-recognized, and the semantics corresponding to the voice command are obtained, and the semantics is preset.
- the instruction set is compared to obtain a preset control instruction that needs to be executed, that is, artificially manipulated information. For example, if the driver's voice command is “quick brake”, the corresponding semantics is “quick brake”, and the corresponding human control information is “100% brake”.
- the method 3 collect touch information of a specific gesture performed by a driver in a specific area of the touch display device, and identify the touch information to obtain the artificial manipulation information.
- the touch display device of the HMI system obtains a preset control command (ie, human manipulation information) that needs to be executed by recognizing the touch area and the gesture of the driver on the touch display device.
- a certain area of the touch display device is preset as a turning area.
- Method 4 Receive a control command input by a driver through a preset physical switch, and parse the control command to obtain the artificial manipulation information.
- a physical switch such as a rocker switch, a self-reset switch, or a self-locking switch, etc.
- the driver inputs a control command through the physical switch.
- Method 5 Identifying the driver to operate the joystick or the handle to obtain the man-made manipulation information.
- a communication protocol is defined in advance for each operation of the joystick, and the upper vehicle controller receives and analyzes the The signal obtains the control command (ie, man-made control information) that needs to be executed, for example, the front push stick is acceleration, the left push stick is left turn, and the function button 1 is brake.
- the control command ie, man-made control information
- the front push stick is acceleration
- the left push stick is left turn
- the function button 1 is brake.
- the method 6 is: receiving, by the driver, a control instruction issued by executing a preset program on the smart terminal, and parsing the control instruction to obtain the artificial manipulation information. For example, by using the access vehicle internal network to connect the smart terminal, the driver executes a preset program on the smart terminal, and uploads an instruction sent by the driver to execute the preset program to the upper vehicle controller, and the upper vehicle controller analyzes the The instruction gets the control instruction that needs to be executed (ie, the human manipulation information).
- the brain wave information of the driver is collected by the brain wave collector, and the brain wave information is recognized to obtain the artificial manipulation information.
- the brain wave collector is used to access the upper vehicle controller to identify the driver's brain wave to obtain a preset control command (ie, man-made manipulation information) that needs to be executed.
- the body motion and/or facial expression of the driver obtained by monitoring the sensor, and the man-made manipulation information is obtained according to the limb movement and/or facial expression.
- a camera or a radar is set in the cab, and the driver's health state or mental state is monitored by a camera or radar to recognize the driver's limb movements and/or facial expressions, and a preset control command to be executed is obtained.
- the driver raises his left hand to indicate a left turn, and raises his right hand to indicate a right turn. You can refer to the traffic police gesture.
- Those skilled in the art can flexibly set according to actual needs and user habits, and this application does not strictly limit.
- the final human manipulation information may be obtained by, but not limited to, the following manners: scheme 1, respectively obtaining initial human manipulation information according to each manner, and evaluating the authenticity of each initial human manipulation information. Degree, the initial human control information with the highest credibility is selected as the final human manipulation information; scheme 2, the initial artificial manipulation information is obtained according to each method, and the principle of majority obeying majority is adopted, and the same number of the same initial artificial manipulation information is determined as Eventually manipulating information.
- the lateral control of the vehicle can be realized, the longitudinal control of the vehicle can be realized, and other control of the vehicle can be realized (for example, start/release of the automatic driving mode, parking/departure, steering) Lamp control, wiper control, etc.).
- other control of the vehicle for example, start/release of the automatic driving mode, parking/departure, steering
- Lamp control for example, start/release of the automatic driving mode, parking/departure, steering
- wiper control etc.
- the technical solution of the present invention can not control the vehicle to reach a safe state when the driver needs to be slowly involved according to the human control information, and can transfer the corresponding control right of the vehicle in a safe state.
- the transfer of vehicle control rights can be realized while ensuring the safety of the vehicle.
- the corresponding control right of the vehicle can be transferred to the driver, which can be the transfer of partial control rights or the transfer of control of the entire vehicle. More flexible, it can give the driver a reaction and adaptation time, further reduce the probability of driver misoperation, and further improve the safety of vehicle driving.
- Embodiment 2 Vehicle longitudinal control
- only the vehicle acceleration control may be used, or only the vehicle deceleration control may be performed, and the vehicle acceleration/deceleration control may be performed.
- the aforementioned man-made manipulation information includes longitudinal man-made manipulation information for manipulating the vehicle longitudinal controller.
- the driver's intention of the driver is determined according to the man-made manipulation information, which may be implemented by the following steps A1 to A2. As shown in FIG. 3, the method specifically includes:
- Step A1 Obtain longitudinal automatic manipulation information for controlling the longitudinal controller of the vehicle calculated during automatic driving of the vehicle.
- the driver control unit disposed on the vehicle determines and controls the controller on the vehicle according to the state information of the vehicle and the environmental information collected by the sensor disposed on the vehicle, for example, controlling the vehicle to decelerate and accelerate. Change lanes, stop, etc.
- the driverless control unit can pass an upper vehicle controller (such as an FPGA Field-Programmable Gate Array), a DSP (Digital Signal Processing), an ECU (Electronic Control Unit), Implementation of a VCU (Vehicle Control Unit) or an information processing device such as an industrial computer.
- the foregoing step A1 may obtain the longitudinal automatic manipulation information for controlling the vertical controller of the vehicle by sending a request to the driverless control unit; or obtain the information periodically sent by the driver control unit by passively receiving the information.
- Longitudinal automatic manipulation information for manipulating the vehicle longitudinal controller The present application does not strictly limit how to obtain the longitudinal automatic manipulation information for controlling the longitudinal controller of the vehicle.
- Step A2 Comparing the longitudinal artificial manipulation information with the vertical automatic manipulation information, and determining the driver's intervention intention according to the comparison result.
- the longitudinal artificial manipulation information includes a first value indicating a degree of manipulation of the driver to operate the vertical controller
- the longitudinal automatic manipulation information includes a second calculated degree of manipulation of the manipulation longitudinal controller.
- the value ie, the second value is calculated by the aforementioned driverless control unit.
- Step A21 Determine a driver's intervention intention according to the first value and the second value.
- step A21 is specifically implemented by any one of the following schemes 1 to 3:
- Scenario 1 determining that the first value is greater than the second value, and the difference between the first value and the second value is between the first threshold and the second threshold, determining that the driver's intervention intention is slow intervention, Where the first threshold is less than the second threshold;
- Solution 2 determining that the first value is greater than the second value, and the difference between the first value and the second value is greater than the second threshold, determining that the driver's intervention intention is an emergency intervention;
- the third method determines that the first value is greater than the second value, and the difference between the first value and the second value is between the first threshold and the second threshold, determining that the driver's intervention intention is slow intervention.
- the first threshold is less than the second threshold; and, when it is determined that the first value is greater than the second value, and the difference between the first value and the second value is greater than the second threshold, determining that the driver's intervention intention is urgent intervention.
- the foregoing schemes 1 to 3 may further include: determining that the first value is less than or equal to the second value, or determining the The first value is greater than the second value, and the difference between the first value and the second value is less than the first threshold; determining that the driver's intervention intention is an erroneous operation, and the driver does not respond to the driver at this time. Manipulate the information.
- the setting of the first threshold and the second threshold may be flexibly set according to actual requirements, and the application is not strictly limited.
- step 104 the responding to the human manipulation information and corresponding to the vehicle Control is transferred to the driver, as shown in Figure 5, including:
- the longitudinal controller is controlled according to the first value, and the vertical control right or the vehicle control right is transferred to the driver.
- the longitudinal controller is a brake controller
- the first value represents a value of a brake degree at which the driver controls the brake controller to perform braking
- the second value is calculated by the driverless control unit.
- the degree of braking may refer to a brake pedal opening degree, a deceleration value, or an engine torque value, which is not strictly limited herein.
- the longitudinal controller is a throttle controller
- the first value is a value indicating that the driver controls the accelerator controller to accelerate
- the second value is calculated by the driverless control unit.
- the degree of acceleration may refer to the accelerator pedal opening degree, the acceleration value, the engine torque value or the throttle opening degree, etc., which is not strictly limited.
- the brake controller and the throttle controller are controlled at the same time.
- the priority is set in advance, and the priority of the deceleration control is higher than that of the acceleration control.
- the driver intervention intention determination is performed according to the first information;
- the second information of the acceleration control of the vehicle ie, the manipulation information for controlling the throttle controller
- the intervention intention judgment determines the intervention intention judgment based on the second information if the first information is not included.
- step A2 further includes steps A22 to A23.
- step A2 further includes steps A22 to A23:
- Step A22 Before step A21, it is determined whether the vertical man-made manipulation information includes a third value indicating the degree of braking of the brake controller to perform braking. If yes, step A23 is performed, and if not, step A21 is performed.
- Step A23 determining a driver's intervention intention according to a fourth value indicating a degree of braking of the brake controller to perform braking according to the third value and the vertical automatic manipulation information.
- step A23 may be as follows: if the third value is greater than the fourth value and the difference between the third value and the fourth value is between the third threshold and the fourth threshold, determining that the driver's intervention intention is slow intervention Wherein the third threshold is less than the fourth threshold; if the third value is greater than the fourth value and the difference between the third value and the fourth value is greater than the fourth threshold, determining that the driver's intervention intention is an emergency intervention; The step A21 is performed if the value of three is less than the fourth value.
- Embodiment 3 Vehicle lateral control
- the aforementioned man-made manipulation information includes lateral man-made manipulation information for manipulating a vehicle lateral controller (for example, a steering wheel).
- determining the driver's intervention intention according to the human manipulation information the specific implementation may be as follows: determining whether the fifth value of the manipulation degree of the manipulation lateral controller is greater than the preset value in the lateral human manipulation information a fifth threshold, if yes, determining that the driver's intervention intention is an emergency intervention; the responding to the human manipulation information and transferring the corresponding control right of the vehicle to the driver, specifically: according to the fifth value to the lateral controller Control and transfer lateral control or vehicle control to the driver.
- Figure 7 As shown in Figure 7.
- the lateral man-made manipulation information may include an actual torque value indicating that the steering wheel actually acts on the hydraulic steering mechanism or the liquid-electric hybrid assist and other vehicle steering actuators.
- the embodiment of the present invention further provides a vehicle control device, and the structure of the device can be described in detail through the following embodiments.
- FIG. 8 is a schematic structural diagram of a vehicle control apparatus according to an embodiment of the present invention, the apparatus includes:
- An obtaining unit 81 configured to acquire artificial manipulation information on the vehicle
- a determining unit 82 configured to determine a driver's intervention intention according to the human manipulation information
- the first control unit 83 is configured to control the vehicle to reach a predetermined safety state when the vehicle is currently in the automatic driving mode and determine that the intervention intention is a slow intervention, and transfer the corresponding control right of the vehicle to the driver.
- the device further includes a second control unit 84, as shown in FIG. 9, in order to avoid the problem that the vehicle response is not obtained when manual intervention is required in an automatic driving mode, thereby causing a vehicle accident.
- a second control unit 84 as shown in FIG. 9, in order to avoid the problem that the vehicle response is not obtained when manual intervention is required in an automatic driving mode, thereby causing a vehicle accident.
- the second control unit 84 is configured to respond to the artificial manipulation information and transfer the corresponding control right of the vehicle to the driver when the vehicle is currently in the automatic driving mode and determine that the intervention intention is emergency intervention.
- the first control unit 83 controls the vehicle to reach a predetermined security state, and specifically includes:
- the safe area can be, for example, an emergency lane, a service area, a parking lot, and the like.
- the foregoing first control unit 83 can also be implemented by: controlling a lane change of the vehicle, stopping in a safe area such as an emergency lane, a service area, a parking lot, or the like; or, performing a preceding vehicle following.
- a safe area such as an emergency lane, a service area, a parking lot, or the like.
- the manner in which the acquiring unit 81 acquires the man-made manipulation information of the vehicle is various, and the present application is not strictly limited.
- the following may be adopted in any one of the following manners or a combination of multiple manners.
- Artificial manipulation information :
- Method 1 collecting control commands issued by the driver to operate a lateral controller of the vehicle (such as a steering wheel or other steering mechanism) and/or a vertical controller (such as a brake controller, a throttle controller, etc.), and according to the control
- the instruction obtains the artificial manipulation information.
- the degree of opening and closing of the brake pedal is collected by the driver, the brake pedal opening degree is converted into a value of the degree of braking for braking control of the vehicle, and a deceleration request signal is transmitted to the onboard CAN bus.
- the driver's voice command is collected, and the voice command is recognized to obtain the man-made manipulation information.
- the driver's voice command is collected, and the voice command is voice-recognized to obtain the semantics corresponding to the voice command, and the semantics are compared with the preset instruction set to obtain the required
- the preset control command executed is the artificial manipulation information. For example, if the driver's voice command is “quick brake”, the corresponding semantics is “quick brake”, and the corresponding human control information is “100% brake”.
- the method 3 collect touch information of a specific gesture performed by a driver in a specific area of the touch display device, and identify the touch information to obtain the artificial manipulation information.
- the touch display device of the HMI system obtains a preset control command (ie, human manipulation information) that needs to be executed by recognizing the touch area and the gesture of the driver on the touch display device.
- a certain area of the touch display device is preset as a turning area.
- Method 4 Receive a control command input by a driver through a preset physical switch, and parse the control command to obtain the artificial manipulation information.
- a physical switch such as a rocker switch, a self-reset switch, or a self-locking switch, etc.
- the driver inputs a control command through the physical switch.
- Method 5 Identify the operation behavior of the driver on the joystick or the handle, and obtain the man-made manipulation information. For example, a communication protocol is defined in advance for each operation of the joystick, and the signal sent by the joystick controller is received and parsed by the upper vehicle controller to obtain a control command (ie, human manipulation information) that needs to be executed, for example, before the push The lever is accelerated, the left push stick is left, and the function button 1 is brake.
- a control command ie, human manipulation information
- the method 6 is: receiving, by the driver, a control instruction issued by executing a preset program on the smart terminal, and parsing the control instruction to obtain the artificial manipulation information. For example, by using the access vehicle internal network to connect the smart terminal, the driver executes a preset program on the smart terminal, and uploads an instruction sent by the driver to execute the preset program to the upper vehicle controller, and the upper vehicle controller analyzes the The instruction gets the control instruction that needs to be executed (ie, the human manipulation information).
- the brain wave information of the driver is collected by the brain wave collector, and the brain wave information is recognized to obtain the artificial manipulation information.
- the brain wave collector is used to access the upper vehicle controller to identify the driver's brain wave to obtain a preset control command (ie, man-made manipulation information) that needs to be executed.
- the body motion and/or facial expression of the driver obtained by monitoring the sensor, and the man-made manipulation information is obtained according to the limb movement and/or facial expression.
- a camera or a radar is set in the cab, and the driver's health state or mental state is monitored by a camera or radar to recognize the driver's limb movements and/or facial expressions, and a preset control command to be executed is obtained.
- the driver raises his left hand to indicate a left turn, and raises his right hand to indicate a right turn. You can refer to the traffic police gesture.
- Those skilled in the art can flexibly set according to actual needs and user habits, and this application does not strictly limit.
- the final human manipulation information may be obtained by, but not limited to, the following manners: scheme 1, respectively obtaining initial human manipulation information according to each manner, and evaluating each initial human manipulation information. Reliability, the initial human control information with the highest credibility is selected as the final human manipulation information; scheme 2, the initial artificial manipulation information is obtained according to each method, and the principle of majority obeying majority is adopted, and the same initial artificial control information is determined. For the ultimate human manipulation of information.
- the lateral control of the vehicle can be realized, the longitudinal control of the vehicle can be realized, and other control of the vehicle can be realized (for example, start/release of the automatic driving mode, parking/departure, steering) Lamp control, wiper control, etc.).
- other control of the vehicle for example, start/release of the automatic driving mode, parking/departure, steering
- Lamp control for example, start/release of the automatic driving mode, parking/departure, steering
- wiper control etc.
- Embodiment 5 Vehicle longitudinal control
- the vehicle control device provided in the fifth embodiment may be used for acceleration control only for the vehicle, or for deceleration control of the vehicle, or for acceleration and deceleration control of the vehicle.
- the man-made manipulation information includes longitudinal man-made manipulation information for manipulating the longitudinal controller of the vehicle;
- the determining unit 82 shown in FIG. 8 or FIG. 9 may specifically include an obtaining sub-unit 821 and a first determining sub-unit 822, such as Figure 10 shows:
- the obtaining subunit 821 is configured to obtain longitudinal automatic manipulation information that is calculated during the automatic driving process of the vehicle and that controls the longitudinal controller of the vehicle;
- the driver control unit disposed on the vehicle determines and controls the controller on the vehicle according to the state information of the vehicle and the environmental information collected by the sensor disposed on the vehicle, for example, controlling the vehicle to decelerate and accelerate. Change lanes, stop, etc.
- the driverless control unit can be implemented by an upper vehicle controller (such as an FPGA, DSP, ECU, VCU, or industrial computer with information processing capabilities).
- the foregoing obtaining sub-unit 821 may obtain longitudinal automatic control information for manipulating the longitudinal controller of the vehicle by sending a request to the driverless control unit; or, by passively receiving information periodically issued by the driverless control unit, from the information
- the longitudinal automatic manipulation information for manipulating the longitudinal controller of the vehicle is obtained.
- the present application does not strictly limit how the acquisition sub-unit 821 obtains the longitudinal automatic manipulation information for manipulating the longitudinal controller of the vehicle.
- the first determining subunit 822 is configured to compare the longitudinal artificial manipulation information with the longitudinal automatic manipulation information, and determine the driver's intervention intention according to the comparison result.
- the longitudinal artificial manipulation information includes a first value indicating a degree of manipulation of the driver to operate the vertical controller
- the longitudinal automatic manipulation information includes a second calculated degree of manipulation of the manipulation longitudinal controller.
- the value ie, the second value is calculated by the aforementioned driverless control unit.
- the first determining sub-unit 822 is specifically implemented as follows: determining the driver's intervention intention according to the first value and the second value.
- the first determining sub-unit 822 determines the driver's intervention intention according to the first value and the second value, and specifically includes:
- Scenario 1 determining that the first value is greater than the second value, and the difference between the first value and the second value is between the first threshold and the second threshold, determining that the driver's intervention intention is slow intervention, Where the first threshold is less than the second threshold;
- Solution 2 determining that the first value is greater than the second value, and the difference between the first value and the second value is greater than the second threshold, determining that the driver's intervention intention is an emergency intervention;
- the third method determines that the first value is greater than the second value, and the difference between the first value and the second value is between the first threshold and the second threshold, determining that the driver's intervention intention is slow intervention. Where the first threshold is less than the second threshold; And determining that the first value is greater than the second value and the difference between the first value and the second value is greater than the second threshold, determining that the driver's intervention intention is an emergency intervention.
- the foregoing first determining sub-unit 822 may further include: determining that the first value is less than or equal to a second value, or determining that the first value is greater than a second value, and the first value is the second value The difference between the values is less than the first threshold; then the driver's intervention intention is determined to be an erroneous operation, and the driver's human control information is not responded at this time.
- the setting of the first threshold and the second threshold may be flexibly set according to actual requirements, and the application is not strictly limited.
- the second control unit 84 responds to the artificial manipulation information and transfers the corresponding control right of the vehicle.
- the driver is specifically configured to: control the longitudinal controller according to the first value, and transfer the vertical control right or the vehicle control right to the driver.
- the longitudinal controller is a brake controller
- the first value represents a value of a brake degree at which the driver controls the brake controller to perform braking
- the second value is a control brake calculated by the driverless control unit.
- the degree of braking may refer to a brake pedal opening degree, a deceleration value, or an engine torque value, which is not strictly limited herein.
- the longitudinal controller is a throttle controller
- the first value is a value indicating that the driver controls the accelerator controller to accelerate
- the second value is calculated by the driverless control unit.
- the degree of acceleration may refer to the accelerator pedal opening degree, the acceleration value, the engine torque value or the throttle opening degree, etc., which is not strictly limited.
- the brake controller and the throttle controller are controlled at the same time.
- the priority is set in advance, and the priority of the deceleration control is higher than that of the acceleration control.
- the longitudinal artificial manipulation information includes the first information for decelerating control of the vehicle (ie, the manipulation information for manipulating the brake controller)
- the driver intervention intention determination is performed according to the first information
- the longitudinal human manipulation information is used
- the second information of the acceleration control of the vehicle ie, the manipulation information for controlling the throttle controller
- the figure judges that if the first information is not included, the intervention intention judgment is performed based on the second information.
- the determining unit 82 shown in FIG. 10 further includes a determining subunit 823 and a second determining subunit 824, as shown in FIG.
- the determining sub-unit 823 is configured to determine whether the vertical artificial control information includes a third value indicating a degree of braking for the brake controller to perform braking, and if yes, triggering the second determining sub-unit 824, if not, triggering First determining subunit 822;
- the second determining sub-unit 824 is configured to determine the driver's intervention intention according to the fourth value of the braking degree indicating that the brake controller performs braking in the third value and the vertical automatic control information, which includes: If the value is greater than the fourth value and the difference between the third value and the fourth value is between the third threshold and the fourth threshold, determining that the driver intervention intention is a slow intervention, wherein the third threshold is less than the fourth threshold; If the third value is greater than the fourth value and the difference between the third value and the fourth value is greater than the fourth threshold, determining that the driver's intervention intention is an emergency intervention; if the third value is less than the fourth value, triggering the third A determination subunit 822.
- Embodiment 6 Vehicle lateral control
- the artificial manipulation information includes lateral artificial manipulation information for manipulating the lateral controller
- the determining unit 82 is specifically configured to: determine whether the fifth value of the degree of manipulation of the manipulation lateral controller in the horizontal artificial manipulation information is greater than a preset fifth threshold, and if yes, determine that the driver's intervention intention is urgent intervention;
- the second control unit 84 is specifically configured to: control the horizontal controller according to the fifth value, and transfer the lateral control right or the vehicle control right to the driver.
- the lateral maneuvering information may include actual torque values indicative of the steering wheel actually acting on the hydraulic steering mechanism or the hydroelectric hybrid assist and other vehicle steering actuators.
- the present invention also provides a vehicle control apparatus, as shown in FIG. 12, in an exemplary embodiment, the apparatus includes a processor 2001 and at least one memory 2002, which is stored in at least one memory 2002. At least one machine executable instruction, the processor 2001 executing the at least one machine executable instruction to: obtain human manipulation information for the vehicle; determine a driver's intervention intention according to the human manipulation information; In the automatic driving mode and determining that the intervention intention is a slow intervention, the vehicle is controlled to reach a predetermined safety state, and the corresponding control of the vehicle is handed over to the driver.
- the processor 2001 executing the at least one machine executable instruction further implements: when the vehicle is currently in an automatic driving mode and determining that the intervention intention is an emergency intervention, responding to the artificial manipulation information and transferring the corresponding control right of the vehicle to the driver .
- the processor 2001 executing the at least one machine executable instruction to achieve control of the vehicle to reach a predetermined safe state comprises: controlling the vehicle to decelerate and performing lane keeping until the vehicle stops in the safe area.
- the man-made manipulation information includes longitudinal man-made manipulation information for manipulating the longitudinal controller of the vehicle; then, the processor 2001 executes the at least one machine executable instruction to determine the driver according to the human manipulation information.
- the intervention intention specifically includes: obtaining longitudinal automatic manipulation information calculated by the vehicle during the automatic driving process to control the longitudinal controller of the vehicle; and comparing the longitudinal artificial manipulation information with the longitudinal automatic manipulation information, according to the comparison result Determine the driver's intention to intervene.
- the longitudinal man-made manipulation information includes a first value indicating a degree of manipulation of the driver to manipulate the vertical controller, and the longitudinal automatic manipulation information includes a second value of the calculated degree of manipulation of the manipulation longitudinal controller;
- the processor 2001 executes the at least one machine executable instruction to compare the longitudinal human manipulation information with the vertical automatic manipulation information, and determines the driver's intervention intention according to the comparison result, specifically: according to the first value and The second value determines the driver's intervention intention; the determining the driver's intervention intention according to the first value and the second value specifically includes: determining that the first value is greater than the second value and the first value is When the difference between the second values is between the first threshold and the second threshold, determining that the driver's intervention intention is a slow intervention, wherein the first threshold is less than the second threshold; and/or determining that the first value is greater than When the second value is used and the difference between the first value and the second value is greater than the second threshold, it is determined that the driver's intervention intention is an emergency intervention.
- the longitudinal controller is a brake controller
- the first value and the second value are values indicating a degree of braking for operating the brake controller to perform braking.
- the vertical controller is a throttle controller
- the first value and the second value are values indicating an acceleration degree of the accelerator controller for performing acceleration.
- the processor 2001 executes the at least one machine executable instruction to implement the processor 2001 to execute the at least one machine before determining the driver's intervention intention according to the first value and the second value
- the executing instruction further implements: determining whether the longitudinal artificial control information includes a third value indicating a degree of braking of the brake controller to perform braking; if included, indicating operation control according to the third value and the vertical automatic manipulation information
- the fourth value of the brake degree of the brake controller determines the driver's intervention intention, and specifically includes: if the third value is greater than the fourth value, and the difference between the third value and the fourth value is at the third threshold And a fourth threshold, determining that the driver intervention intention is a slow intervention, wherein the third threshold is less than the fourth threshold; if the third value is greater than the fourth value and the difference between the third value and the fourth value is greater than a fourth threshold, determining that the driver intervention intention is an emergency intervention; and if the third value is less than the fourth value, performing the step of determining the driver's intervention intention
- the processor 2001 executes the at least one machine executable instruction to determine that the driver's intervention intention is an emergency intervention according to the first value and the second value, the responding to the human manipulation information and the vehicle Corresponding control Transferring the right to the driver specifically includes: controlling the vertical controller according to the first value, and transferring the vertical control right or the vehicle control right to the driver.
- the human manipulation information includes lateral human manipulation information for manipulating the lateral controller; then, the processor 2001 executes the at least one machine executable instruction to determine the driver's intervention according to the human manipulation information.
- the intention includes: determining whether the fifth value indicating the degree of manipulation of the manipulation lateral controller in the horizontal artificial manipulation information is greater than a preset fifth threshold, and if yes, determining that the driver's intervention intention is an emergency intervention;
- the controller 2001 executes the at least one machine executable instruction to implement the responsive to the human manipulation information and hand over the corresponding control of the vehicle to the driver, specifically: controlling the lateral controller according to the fifth value, and Lateral control or vehicle control is transferred to the driver.
- the processor 2001 executes the at least one machine-executable instruction to implement acquiring man-made manipulation information for the vehicle, specifically: collecting control generated by the driver operating the lateral controller and/or the vertical controller of the vehicle. Commanding, and obtaining the artificial manipulation information according to the control instruction; and/or collecting a driver's voice command, identifying the voice command to obtain the man-made manipulation information; and/or collecting the driver's touch display device Touching information of a specific gesture in a specific area, identifying the touch information to obtain the artificial manipulation information; and/or receiving a control instruction input by the driver through a preset physical switch, and parsing the control instruction to obtain the artificial Manipulating the information; and/or identifying the driver's operational behavior on the joystick or the handle to obtain the human manipulation information; and/or receiving the control command issued by the driver on the smart terminal by executing the preset program,
- the control command obtains the artificial manipulation information; and/or, collects the driver's brain wave information through the brain wave collector, and recognizes The electroencephal
- an embodiment of the present invention further provides a storage medium (which may be a non-volatile machine readable storage medium), where the computer program stores a computer program for vehicle control, the computer program Having a code segment configured to perform the following steps: obtaining human manipulation information for the vehicle; determining a driver's intervention intention based on the human manipulation information; and when the vehicle is currently in an automatic driving mode and determining that the intervention intention is a slow intervention, The vehicle is controlled to a predetermined safe state and the corresponding control of the vehicle is transferred to the driver.
- a storage medium which may be a non-volatile machine readable storage medium
- an embodiment of the present invention further provides a computer program having a code segment configured to perform the following vehicle control: acquiring human manipulation information for the vehicle; and according to the human manipulation information, The driver's intervention intention is determined; when the vehicle is currently in the automatic driving mode and it is determined that the intervention intention is a slow intervention, the vehicle is controlled to reach a predetermined safety state, and the corresponding control of the vehicle is handed over to the driver.
- the automatic driving mode when the automatic driving mode has not been switched to the manual driving mode, it is possible to determine that the driver needs to be slowly involved according to the human manipulation information, and control the vehicle to reach a safe state, and is safe.
- the corresponding control of the vehicle is transferred to the driver in the state. On the one hand, it can be used to ensure the safety of the vehicle.
- the transfer of vehicle control rights on the other hand, the transfer of the corresponding control of the vehicle to the driver, can be the transfer of partial control rights or the transfer of vehicle control rights, more flexible, can give the driver a reaction and Adapt to the time, further reduce the probability of driver misoperation, and further improve the safety of vehicle driving.
- each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
- the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
- embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Radar, Positioning & Navigation (AREA)
- Human Computer Interaction (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Traffic Control Systems (AREA)
Abstract
一种车辆控制方法及装置,该方法包括:获取对车辆的人为操控信息(101);根据该人为操控信息,确定驾驶员的介入意图(102);在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员(103)。该方法及装置可解决车辆控制存在安全隐患的问题,提高车辆控制的安全性。
Description
本申请要求在2017年3月22日提交中国专利局、申请号为201710172083.6、发明名称为“一种车辆控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及车辆工程技术领域,特别涉及一种车辆控制方法及装置。
目前,在自动驾驶领域,实现对车辆的控制,包括人工驾驶模式和自动驾驶模式;当开启人工驾驶模式时将整车控制权立即交给驾驶员,由驾驶员进行全权控制;当开启自动驾驶模式时,驾驶员立即将整车控制权交给车辆,由车辆的主控单元根据传感器回传的信息进行决策和控制,以实现自动驾驶。
目前,主要是通过在车辆上设置实体开关,驾驶员可通过触发该实体开关选择开启人工驾驶模式还是自动驾驶模式,以实现对车辆的人工控制和自动控制。
然而,现有的该种控制车辆的方式,存在以下问题:
(1)若在开启自动驾驶模式下,若遇到突发情况或故障情况需要人工介入,例如急刹车、急转弯等,而该驾驶员一般在情急之下顾不上触发实体开关以将当前自动驾驶模式切换至人工驾驶模式,使得人工操作得不到车辆的响应,从而导致车辆失控,发生事故。
(2)直接将自动驾驶模式切换至完全的人工驾驶模式,从生理角度人需要一定的接手时间和反应时间,驾驶员可能还未从自动驾驶状态下完全投入手工驾驶状态,在该过渡期间很可能会由于驾驶员的误操作(例如驾驶员误踩踏板、操作量不足、操作量过当等)导致车辆失控,发生事故。
综上,现有技术公开的车辆控制方式,存在较大的安全问题。
发明内容
鉴于上述问题,本发明提供一种车辆控制方法及装置,提高车辆控制的安全性,降低车辆事故。
本发明实施例,一方面,提供一种车辆控制方法,包括:
获取对车辆的人为操控信息;
根据所述人为操控信息,确定驾驶员的介入意图;
在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
相应的,本发明实施例还提供一种车辆控制装置,包括:
获取单元,用于获取对车辆的人为操控信息;
确定单元,用于根据所述人为操控信息,确定驾驶员的介入意图;
第一控制单元,用于在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
另一方面,本发明实施例还提供一种车辆控制装置,包括:一个处理器和至少一个存储器,所述至少一个存储器中存储至少一条机器可执行指令,所述处理器执行所述至少一条机器可执行指令以实现:
获取对车辆的人为操控信息;
根据所述人为操控信息,确定驾驶员的介入意图;
在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
本发明技术方案,在自动驾驶模式下还未切换至人工驾驶模式下,能够根据人为操控信息判断驾驶员需要缓慢介入时,控制车辆达到安全状态,并在安全状态下将车辆的相应控制权转交给驾驶员。一方面,能够在确保车辆安全的情况下实现车辆控制权的转移,另一方面,将车辆相应的控制权转交给驾驶员,可以是部分控制权的转交也可以是整车控制权的转交,更加灵活,能够给驾驶员留有反应和适应时间,更进一步降低驾驶员误操作的概率,进一步提高车辆驾驶的安全性。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。显而易见地,下面描述中的附图仅仅是本发明一些实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本发明实施例中车辆控制的方法流程图之一;
图2为本发明实施例中车辆控制的方法流程图之二;
图3为本发明实施例中车辆控制的方法流程图之三;
图4为本发明实施例中车辆控制的方法流程图之四;
图5为本发明实施例中车辆控制的方法流程图之五;
图6为本发明实施例中车辆控制的方法流程图之六;
图7为本发明实施例中车辆控制的方法流程图之七;
图8为本发明实施例中车辆控制装置的结构示意图之一;
图9为本发明实施例中车辆控制装置的结构示意图之二;
图10为本发明实施例中车辆控制装置的结构示意图之三;
图11为本发明实施例中车辆控制装置的结构示意图之四;
图12为本发明实施例中车辆控制装置的结构示意图之五。
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
以上是本发明的核心思想,为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明实施例中技术方案作进一步详细的说明。
实施例一
参见图1,为本发明实施例一提供的车辆控制方法的流程图,该方法包括:
步骤101、获取对车辆的人为操控信息;
步骤102、根据所述人为操控信息,确定驾驶员的介入意图;
步骤103、在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
优选地,为避免在自动驾驶模式下遇到紧急或突发情况需要人工介入时得不到车辆的响应,从而导致车辆事故的问题,本发明实施例,在图1所示的方法流程中,还包括以下步骤104,如图2所示:
步骤104、在车辆当前处于自动驾驶模式且确定介入意图为紧急介入时,响应所述人为操控信息并将车辆相应的控制权转交给驾驶员。
优选地,本发明实施例中,前述图1和图2所示的步骤103中,控制车辆达到预定的
安全状态,具体可通过但不局限于以下一种方式实现:控制车辆减速并进行车道保持,直到车辆停止在安全区域,安全区域例如可以是应急车道、服务区、停车场等。本领域技术人员还可以通过以下方式实现:控制车辆变道,停止在应急车道、服务区、停车场等安全区域;或者,还可以是进行前车跟随等,本申请不做严格限定,本领域技术人员可以根据实际需求进行灵活设置。
优选地,本发明实施例中,前述步骤101获取对车辆的人为操控信息的方式多种多样,本申请并不做严格的限定,例如可以采用以下任意一种方式或多种方式的组合来获取人为操控信息:
方式1、采集驾驶员对车辆的横向控制器(例如方向盘或其他转向机构)和/或纵向控制器(例如制动控制器、油门控制器等)进行操作而发出的控制指令,并根据该控制指令得到所述人为操控信息。例如,采集驾驶员踩踏刹车踏板的开合度,将该刹车踏板开合度转换成对车辆进行刹车控制的刹车程度的取值,并向车载CAN(Controller Area Network,控制器局域网络)总线发送减速度请求信号。
方式2、采集驾驶员的音声指令,识别所述音声指令得到所述人为操控信息。例如,通过HMI(Human Machine Interface,人机界面)系统的音声采集设备,采集驾驶员的音声指令,并对该音声指令进行语音识别,得到该音声指令对应的语义,并将该语义跟预设的指令集进行比对,得到需要执行的预设控制指令,即人为操控信息。例如:驾驶员的音声指令为“快急刹车”,则得到相应的语义为“急刹”,则对应的人为操控信息为“100%刹车”。
方式3、采集驾驶员在触控显示设备的特定区域进行特定手势的触控信息,识别所述触控信息得到所述人为操控信息。例如,通过HMI系统的触控显示设备,通过识别驾驶员在触控显示设备的触控区域和手势,得到需要执行的预设控制指令(即人为操控信息)。例如,预先设定触控显示设备的某一区域(例如)为转向区域,三根手指同时向左滑动则表示左转,三根手指同时向右滑动则表示右转,三根手指同时向上滑动表示直行,三根手指同时向下滑动则表示倒车,一根手指原地画圈表示停车等等。本领域技术人员可以根据实际需求和用户习惯灵活设置,本申请不做严格限定。
方式4、接收驾驶员通过预置的实体开关输入的控制指令,解析所述控制指令得到所述人为操控信息。例如,在车辆中用户便于操作的位置(例如方向盘上)设置实体开关(例如翘板开关、自复位开关或自锁开关等),驾驶员通过该实体开关输入控制指令。本领域技术人员可以根据实际需求和用户习惯灵活设置,本申请不做严格限定。
方式5、识别驾驶员对摇杆或手柄进行操作,得到所述人为操控信息。例如,预先对摇杆的每一种操作定义一种通信协议,通过上层车辆控制器接收并解析摇杆控制器发出的
信号,得到需要执行的控制指令(即人为操控信息),例如前推摇杆为加速、左推摇杆为左转、功能按键1为刹车等。本领域技术人员可以根据实际需求和用户习惯灵活设置,本申请不做严格限定。
方式6、接收驾驶员在智能终端上通过执行预设程序发出的控制指令,解析所述控制指令得到所述人为操控信息。例如,利用接入车辆内部网络联网智能终端,驾驶员在该智能终端上执行预设程序,并将该驾驶员执行预设程序发送的指令上传到上层车辆控制器,由上层车辆控制器解析该指令得到需要执行的控制指令(即人为操控信息)。
方式7、通过脑波采集器采集驾驶员的脑波信息,识别所述脑波信息得到所述人为操控信息。例如,利用脑波采集器接入上层车辆控制器,对驾驶员脑波进行识别以得到需要执行的预设控制指令(即人为操控信息)。
方式8、通过监控传感器采集得到的驾驶员的肢体动作和/或面部表情,并根据该肢体动作和/或面部表情得到所述人为操控信息。例如,在驾驶室设置摄像头或雷达,通过摄像头或雷达对驾驶员的健康状态或精神状态进行监控,识别驾驶员的肢体动作和/或面部表情,得到需要执行的预设控制指令。例如,驾驶员举手左摆表示左转,举手右摆表示右转,可以参考交警手势。本领域技术人员可以根据实际需求和用户习惯灵活设置,本申请不做严格限定。
当前述步骤101通过以上的其中一种方式实现时,根据该种实现方式得到相应的人为操控信息。当前述步骤101通过以上两种以上方式实现时,可以通过但不仅限于以下方式得到最终的人为操控信息:方案1、分别根据每种方式得到初始人为操控信息,评估各初始人为操控信息的可信度,选取可信度最高的初始人为操控信息作为最终人为操控信息;方案2、分别根据每种方式得到初始人为操控信息,采取少数服从多数的原则,将数量最多的相同初始人为操控信息确定为最终人为操控信息。
优选地,本发明实施例中,既可以实现对车辆的横向控制,也可以实现对车辆的纵向控制,还可以实现对车辆的其他控制(例如自动驾驶模式的开始/解除、停车/出发、转向灯的控制、雨刷的控制等)。为进一步对本发明提供的技术方案进行详细的描述,以便于本领域技术人员的理解,下面结合几个实例进行详细的描述。
本发明技术方案,在自动驾驶模式下还未切换至人工驾驶模式下,能够根据人为操控信息判断驾驶员需要缓慢介入时,控制车辆达到安全状态,并在安全状态下将车辆的相应控制权转交给驾驶员。一方面,能够在确保车辆安全的情况下实现车辆控制权的转移,另一方面,将车辆相应的控制权转交给驾驶员,可以是部分控制权的转交也可以是整车控制权的转交,更加灵活,能够给驾驶员留有反应和适应时间,更进一步降低驾驶员误操作的概率,进一步提高车辆驾驶的安全性。
实施例二、车辆纵向控制
本发明实施例二中,既可以仅对车辆加速控制,也可以仅对车辆减速控制,还可以对车辆加减速控制。
前述图1和图2所示的方法中,前述人为操控信息包含对车辆纵向控制器进行操控的纵向人为操控信息。前述步骤102中,根据所述人为操控信息,确定驾驶员的介入意图,具体可通过以下步骤A1~步骤A2实现,如图3所示,具体包括:
步骤A1、获取车辆自动驾驶过程中计算得到的对所述车辆纵向控制器进行操控的纵向自动操控信息。
本发明实施例中,由设置在车辆上的无人驾驶控制单元根据车辆的状态信息和设置在车辆上的传感器采集到的环境信息进行决策和控制车辆上的控制器,例如控制车辆减速、加速、变道、停止等。无人驾驶控制单元可通过上层车辆控制器(例如FPGA Field-Programmable Gate Array,现场可编程门阵列)、DSP(Digital Signal Processing,数字信号处理器)、ECU(Electronic Control Unit,电子控制单元)、VCU(Vehicle Control Unit,整车控制器)或工业电脑等具有信息处理能力的设备)实现。前述步骤A1可通过向无人驾驶控制单元发送请求获取对所述车辆纵向控制器进行操控的纵向自动操控信息;或者,通过被动接收无人驾驶控制单元定期下发的信息,从该信息中获取对所述车辆纵向控制器进行操控的纵向自动操控信息。本申请对于如何获取得到对所述车辆纵向控制器进行操控的纵向自动操控信息的方式不做严格的限定。
步骤A2、将所述纵向人为操控信息与纵向自动操控信息进行比较,根据比较结果确定驾驶员的介入意图。
优选地,本发明实施例中,纵向人为操控信息包含表示驾驶员操控纵向控制器的操控程度的第一取值,所述纵向自动操控信息包含计算得到的操控纵向控制器的操控程度的第二取值(即所述第二取值由前述无人驾驶控制单元计算得到)。此时,图3所示的步骤A2可通过步骤A21实现,如图4所示:
步骤A21、根据所述第一取值和所述第二取值确定驾驶员的介入意图。
前述步骤A21,具体通过以下方案1~方案3中的任意一个方案实现:
方案1、判断所述第一取值大于第二取值且第一取值与第二取值的差值位于第一阈值和第二阈值之间时,确定驾驶员的介入意图为缓慢介入,其中第一阈值小于第二阈值;
方案2、判断所述第一取值大于第二取值且第一取值与第二取值的差值大于第二阈值时,确定驾驶员的介入意图为紧急介入;
方案3、判断所述第一取值大于第二取值且第一取值与第二取值的差值位于第一阈值和第二阈值之间时,确定驾驶员的介入意图为缓慢介入,其中第一阈值小于第二阈值;以及,判断所述第一取值大于第二取值且第一取值与第二取值的差值大于第二阈值时,确定驾驶员的介入意图为紧急介入。
优选地,为避免驾驶员误操作,响应人为操控信息导致车辆控制错误的问题,前述方案1~方案3还可进一步包括:判断所述第一取值小于等于第二取值,或者判断所述第一取值大于第二取值且第一取值与第二取值的差值小于所述第一阈值;则确定所述驾驶员的介入意图为误操作,此时不响应驾驶员的人为操控信息。
本发明实施例中,对于第一阈值、第二阈值的设定可根据实际需求灵活设置,本申请并不做严格限定。
优选地,当根据第一取值和第二取值确定驾驶员的介入意图为紧急介入时,图4所示的方法中,步骤104中,所述响应所述人为操控信息并将车辆相应的控制权转交给驾驶员,如图5所示,具体包括:
根据所述第一取值控制所述纵向控制器,并将纵向控制权或整车控制权转交给驾驶员。
下面分别针对减速控制、加速控制、加减速控制,采用三个具体实例进行相应的描述。
实例1、减速控制
在实例1中,所述纵向控制器为制动控制器,前述第一取值表示驾驶员操控制动控制器进行刹车的刹车程度的取值,第二取值为无人驾驶控制单元计算得到的表示操控制动控制器进行刹车的刹车程度的取值。刹车程度可以是指刹车踏板开合度、减速度值或发动机扭矩值,本申请不作严格限定。
实例2、加速控制
在实例2中,所述纵向控制器为油门控制器,前述第一取值为表示驾驶员操控油门控制器进行加速的加速程度的取值,第二取值为无人驾驶控制单元计算得到的操控油门控制器进行加速的加速程度的取值。加速程度可以是指油门踏板开合度、加速度值、发动机扭矩值或节气门开度等,本申请不做严格限定。
实例3、加减速控制
优选地,为避免因为用户误操作,同时控制制动控制器和油门控制器,导致车辆控制不准确的问题,本发明实施例中,预先设置优先级,减速控制的优先级高于加速控制的优
先级,当纵向人为操控信息包含对车辆进行减速控制的第一信息(即对制动控制器进行操控的操控信息)时,根据该第一信息进行驾驶员介入意图判断;当纵向人为操控信息中包含车辆进行加速控制的第二信息(即对油门控制器进行操控的操控信息)时,还需要判断纵向操控信息中是否还包含前述第一信息,如果包含第一信息则根据第一信息进行介入意图判断,如果不包含第一信息则根据第二信息进行介入意图判断。
因此,在前述图4或图5所示的方法流程中,步骤A2还包括步骤A22~步骤A23,如图6所示为在图4所示的方法中还包括步骤A22~步骤A23:
步骤A22、在步骤A21之前判断所述纵向人为操控信息中是否包含表示操控制动控制器进行刹车的刹车程度的第三取值,若包含则执行步骤A23,若不包含则执行步骤A21。
步骤A23、根据第三取值和纵向自动操控信息中表示操控制动控制器进行刹车的刹车程度的第四取值确定驾驶员的介入意图。
步骤A23具体实现可如下:若第三取值大于第四取值且第三取值与第四取值的差值位于第三阈值和第四阈值之间,则确定驾驶员介入意图为缓慢介入,其中第三阈值小于第四阈值;若第三取值大于第四取值且第三取值与第四取值的差值大于第四阈值,则确定驾驶员介入意图为紧急介入;若第三取值小于第四取值则执行所述步骤A21。
实施例三、车辆横向控制
在实例三中,前述图1和图2所示的方法中,前述人为操控信息包含对车辆横向控制器(例如方向盘)进行操控的横向人为操控信息。前述步骤102中,根据所述人为操控信息,确定驾驶员的介入意图,具体实现可如下:判断所述横向人为操控信息中表示操控横向控制器的操控程度的第五取值是否大于预置的第五阈值,若是则确定驾驶员的介入意图为紧急介入;所述响应所述人为操控信息并将车辆相应的控制权转交给驾驶员,具体包括:根据所述第五取值对横向控制器进行控制,并将横向控制权或整车控制权转交给驾驶员。如图7所示。
本发明实施例三中,所述横向人为操控信息可以包含表示方向盘实际作用到液力转向机构或者液电混合助力及其他车辆转向执行机构的实际扭矩值。
基于前述车辆控制方法相同构思,本发明实施例还提供车辆控制装置,该装置的结构可通过以下实施例进行详细的描述。
实施例四
参见图8,为本发明实施例中车辆控制装置的结构示意图,该装置包括:
获取单元81,用于获取对车辆的人为操控信息;
确定单元82,用于根据所述人为操控信息,确定驾驶员的介入意图;
第一控制单元83,用于在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
优选地,为避免在自动驾驶模式下遇到紧急或突发情况需要人工介入时得不到车辆的响应,从而导致车辆事故的问题,所述装置还包括第二控制单元84,如图9所示:
第二控制单元84,用于在车辆当前处于自动驾驶模式且确定介入意图为紧急介入时,响应所述人为操控信息并将车辆相应的控制权转交给驾驶员。
优选地,所述第一控制单元83控制车辆达到预定的安全状态,具体包括:
控制车辆减速并进行车道保持,直到车辆停止在安全区域。安全区域例如可以是应急车道、服务区、停车场等。
本发明实施例中,前述第一控制单元83还可通过以下方式实现:控制车辆变道,停止在应急车道、服务区、停车场等安全区域;或者,还可以是进行前车跟随等。本领域技术人员可以根据实际需求进行灵活设置。
优选地,前述优选地,所述获取单元81获取对车辆的人为操控信息的方式多种多样,本申请并不做严格的限定,例如可以采用以下任意一种方式或多种方式的组合来获取人为操控信息:
方式1、采集驾驶员对车辆的横向控制器(例如方向盘或其他转向机构)和/或纵向控制器(例如制动控制器、油门控制器等)进行操作而发出的控制指令,并根据该控制指令得到所述人为操控信息。例如,采集驾驶员踩踏刹车踏板的开合度,将该刹车踏板开合度转换成对车辆进行刹车控制的刹车程度的取值,并向车载CAN总线发送减速度请求信号。
方式2、采集驾驶员的音声指令,识别所述音声指令得到所述人为操控信息。例如,通过HMI系统的音声采集设备,采集驾驶员的音声指令,并对该音声指令进行语音识别,得到该音声指令对应的语义,并将该语义跟预设的指令集进行比对,得到需要执行的预设控制指令,即人为操控信息。例如:驾驶员的音声指令为“快急刹车”,则得到相应的语义为“急刹”,则对应的人为操控信息为“100%刹车”。
方式3、采集驾驶员在触控显示设备的特定区域进行特定手势的触控信息,识别所述触控信息得到所述人为操控信息。例如,通过HMI系统的触控显示设备,通过识别驾驶员在触控显示设备的触控区域和手势,得到需要执行的预设控制指令(即人为操控信息)。例如,预先设定触控显示设备的某一区域(例如)为转向区域,三根手指同时向左滑动则表示左转,三根手指同时向右滑动则表示右转,三根手指同时向上滑动表示直行,三根手指同时向下滑动表示倒车,一根手指画圈表示停车等等。本领域技术人员可以根据实际
需求和用户习惯灵活设置,本申请不做严格限定。
方式4、接收驾驶员通过预置的实体开关输入的控制指令,解析所述控制指令得到所述人为操控信息。例如,在车辆中用户便于操作的位置(例如方向盘上)设置实体开关(例如翘板开关、自复位开关或自锁开关等),驾驶员通过该实体开关输入控制指令。本领域技术人员可以根据实际需求和用户习惯灵活设置,本申请不做严格限定。
方式5、识别驾驶员对摇杆或手柄进行的操作行为,得到所述人为操控信息。例如,预先对摇杆的每一种操作定义一种通信协议,通过上层车辆控制器接收并解析摇杆控制器发出的信号,得到需要执行的控制指令(即人为操控信息),例如前推摇杆为加速、左推摇杆为左转、功能按键1为刹车等。本领域技术人员可以根据实际需求和用户习惯灵活设置,本申请不做严格限定。
方式6、接收驾驶员在智能终端上通过执行预设程序发出的控制指令,解析所述控制指令得到所述人为操控信息。例如,利用接入车辆内部网络联网智能终端,驾驶员在该智能终端上执行预设程序,并将该驾驶员执行预设程序发送的指令上传到上层车辆控制器,由上层车辆控制器解析该指令得到需要执行的控制指令(即人为操控信息)。
方式7、通过脑波采集器采集驾驶员的脑波信息,识别所述脑波信息得到所述人为操控信息。例如,利用脑波采集器接入上层车辆控制器,对驾驶员脑波进行识别以得到需要执行的预设控制指令(即人为操控信息)。
方式8、通过监控传感器采集得到的驾驶员的肢体动作和/或面部表情,并根据该肢体动作和/或面部表情得到所述人为操控信息。例如,在驾驶室设置摄像头或雷达,通过摄像头或雷达对驾驶员的健康状态或精神状态进行监控,识别驾驶员的肢体动作和/或面部表情,得到需要执行的预设控制指令。例如,驾驶员举手左摆表示左转,举手右摆表示右转,可以参考交警手势。本领域技术人员可以根据实际需求和用户习惯灵活设置,本申请不做严格限定。
当获取单元81通过以上的其中一种方式实现时,根据该种实现方式得到相应的人为操控信息。当前述获取单元81通过以上两种以上方式实现时,可以通过但不仅限于以下方式得到最终的人为操控信息:方案1、分别根据每种方式得到初始人为操控信息,评估各初始人为操控信息的可信度,选取可信度最高的初始人为操控信息作为最终人为操控信息;方案2、分别根据每种方式得到初始人为操控信息,采取少数服从多数的原则,将数量最多的相同初始人为操控信息确定为最终人为操控信息。
优选地,本发明实施例中,既可以实现对车辆的横向控制,也可以实现对车辆的纵向控制,还可以实现对车辆的其他控制(例如自动驾驶模式的开始/解除、停车/出发、转向灯的控制、雨刷的控制等)。为进一步对本发明提供的技术方案进行详细的描述,以便于
本领域技术人员的理解,下面结合几个实例进行详细的描述。
实施例五、车辆纵向控制
本实施例五提供的车辆控制装置,既可以仅对车辆加速控制,也可以仅对车辆减速控制,还可以对车辆加减速控制。
优选地,所述人为操控信息包含对车辆纵向控制器进行操控的纵向人为操控信息;图8或图9所示的确定单元82,具体可包括获取子单元821和第一确定子单元822,如图10所示:
获取子单元821,用于获取车辆自动驾驶过程中计算得到的对所述车辆纵向控制器进行操控的纵向自动操控信息;
本发明实施例中,由设置在车辆上的无人驾驶控制单元根据车辆的状态信息和设置在车辆上的传感器采集到的环境信息进行决策和控制车辆上的控制器,例如控制车辆减速、加速、变道、停止等。无人驾驶控制单元可通过上层车辆控制器(例如FPGA、DSP、ECU、VCU或工业电脑等具有信息处理能力的设备)实现。前述获取子单元821可通过向无人驾驶控制单元发送请求获取对所述车辆纵向控制器进行操控的纵向自动操控信息;或者,通过被动接收无人驾驶控制单元定期下发的信息,从该信息中获取对所述车辆纵向控制器进行操控的纵向自动操控信息。本申请对于获取子单元821如何获取得到对所述车辆纵向控制器进行操控的纵向自动操控信息的方式不做严格的限定。
第一确定子单元822,用于将所述纵向人为操控信息与纵向自动操控信息进行比较,根据比较结果确定驾驶员的介入意图。
优选地,本发明实施例中,纵向人为操控信息包含表示驾驶员操控纵向控制器的操控程度的第一取值,所述纵向自动操控信息包含计算得到的操控纵向控制器的操控程度的第二取值(即所述第二取值由前述无人驾驶控制单元计算得到)。此时,第一确定子单元822具体实现如下:根据所述第一取值和所述第二取值确定驾驶员的介入意图。
第一确定子单元822根据所述第一取值和所述第二取值确定驾驶员的介入意图,具体包括:
方案1、判断所述第一取值大于第二取值且第一取值与第二取值的差值位于第一阈值和第二阈值之间时,确定驾驶员的介入意图为缓慢介入,其中第一阈值小于第二阈值;
方案2、判断所述第一取值大于第二取值且第一取值与第二取值的差值大于第二阈值时,确定驾驶员的介入意图为紧急介入;
方案3、判断所述第一取值大于第二取值且第一取值与第二取值的差值位于第一阈值和第二阈值之间时,确定驾驶员的介入意图为缓慢介入,其中第一阈值小于第二阈值;以
及,判断所述第一取值大于第二取值且第一取值与第二取值的差值大于第二阈值时,确定驾驶员的介入意图为紧急介入。
优选地,前述第一确定子单元822还可进一步包括:判断所述第一取值小于等于第二取值,或者判断所述第一取值大于第二取值且第一取值与第二取值的差值小于所述第一阈值;则确定所述驾驶员的介入意图为误操作,此时不响应驾驶员的人为操控信息。
本发明实施例中,对于第一阈值、第二阈值的设定可根据实际需求灵活设置,本申请并不做严格限定。
优选地,当第一确定子单元822根据第一取值和第二取值确定驾驶员的介入意图为紧急介入时,第二控制单元84响应所述人为操控信息并将车辆相应的控制权转交给驾驶员,具体用于:根据所述第一取值控制所述纵向控制器,并将纵向控制权或整车控制权转交给驾驶员。
下面分别针对减速控制、加速控制、加减速控制,采用三个具体实例进行相应的描述。
实例1、减速控制
所述纵向控制器为制动控制器,前述第一取值表示驾驶员操控制动控制器进行刹车的刹车程度的取值,第二取值为无人驾驶控制单元计算得到的表示操控制动控制器进行刹车的刹车程度的取值。刹车程度可以是指刹车踏板开合度、减速度值或发动机扭矩值,本申请不作严格限定。
实例2、加速控制
在实例2中,所述纵向控制器为油门控制器,前述第一取值为表示驾驶员操控油门控制器进行加速的加速程度的取值,第二取值为无人驾驶控制单元计算得到的操控油门控制器进行加速的加速程度的取值。加速程度可以是指油门踏板开合度、加速度值、发动机扭矩值或节气门开度等,本申请不做严格限定。
实例3、加减速控制
优选地,为避免因为用户误操作,同时控制制动控制器和油门控制器,导致车辆控制不准确的问题,本发明实施例中,预先设置优先级,减速控制的优先级高于加速控制的优先级,当纵向人为操控信息包含对车辆进行减速控制的第一信息(即对制动控制器进行操控的操控信息)时,根据该第一信息进行驾驶员介入意图判断;当纵向人为操控信息中包含车辆进行加速控制的第二信息(即对油门控制器进行操控的操控信息)时,还需要判断纵向操控信息中是否还包含前述第一信息,如果包含第一信息则根据第一信息进行介入意
图判断,如果不包含第一信息则根据第二信息进行介入意图判断。
优选地,图10所示的确定单元82还进一步包括判断子单元823、第二确定子单元824,如图11所示:
判断子单元823,用于判断所述纵向人为操控信息中是否包含表示操控制动控制器进行刹车的刹车程度的第三取值,若包含则触发第二确定子单元824,若不包含则触发第一确定子单元822;
第二确定子单元824,用于根据第三取值和纵向自动操控信息中表示操控制动控制器进行刹车的刹车程度的第四取值确定驾驶员的介入意图,具体包括:若第三取值大于第四取值且第三取值与第四取值的差值位于第三阈值和第四阈值之间,则确定驾驶员介入意图为缓慢介入,其中第三阈值小于第四阈值;若第三取值大于第四取值且第三取值与第四取值的差值大于第四阈值,则确定驾驶员介入意图为紧急介入;若第三取值小于第四取值则触发第一确定子单元822。
实施例六、车辆横向控制
优选地,所述人为操控信息包含对横向控制器进行操控的横向人为操控信息;
所述确定单元82,具体用于:判断所述横向人为操控信息中表示操控横向控制器的操控程度的第五取值是否大于预置的第五阈值,若是则确定驾驶员的介入意图为紧急介入;
所述第二控制单元84,具体用于:根据所述第五取值对横向控制器进行控制,并将横向控制权或整车控制权转交给驾驶员。
所述横向人为操控信息可以包含表示方向盘实际作用到液力转向机构或者液电混合助力及其他车辆转向执行机构的实际扭矩值。
实施例七
基于相同的发明构思,本发明还提供了一种车辆控制装置,如图12所示,在一个示例性实施例中,该装置包括一个处理器2001和至少一个存储器2002,至少一个存储器2002中存储至少一条机器可执行指令,所述处理器2001执行所述至少一条机器可执行指令以实现:获取对车辆的人为操控信息;根据所述人为操控信息,确定驾驶员的介入意图;在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
其中,处理器2001执行所述至少一条机器可执行指令还实现:在车辆当前处于自动驾驶模式且确定介入意图为紧急介入时,响应所述人为操控信息并将车辆相应的控制权转交给驾驶员。
其中,处理器2001执行所述至少一条机器可执行指令以实现控制车辆达到预定的安全状态具体包括:控制车辆减速并进行车道保持,直到车辆停止在安全区域。
其中,所述人为操控信息包含对车辆纵向控制器进行操控的纵向人为操控信息;则,所述处理器2001执行所述至少一条机器可执行指令以实现根据所述人为操控信息,确定驾驶员的介入意图,具体包括:获取车辆自动驾驶过程中计算得到的对所述车辆纵向控制器进行操控的纵向自动操控信息;以及,将所述纵向人为操控信息与纵向自动操控信息进行比较,根据比较结果确定驾驶员的介入意图。
其中,所述纵向人为操控信息包含表示驾驶员操控纵向控制器的操控程度的第一取值,所述纵向自动操控信息包含计算得到的操控纵向控制器的操控程度的第二取值;则,所述处理器2001执行所述至少一条机器可执行指令以实现将所述纵向人为操控信息与纵向自动操控信息进行比较,根据比较结果确定驾驶员的介入意图,具体包括:根据第一取值和第二取值确定驾驶员的介入意图;所述根据第一取值和第二取值确定驾驶员的介入意图具体包括:判断所述第一取值大于第二取值且第一取值与第二取值的差值位于第一阈值和第二阈值之间时,确定驾驶员的介入意图为缓慢介入,其中第一阈值小于第二阈值;和/或,判断所述第一取值大于第二取值且第一取值与第二取值的差值大于第二阈值时,确定驾驶员的介入意图为紧急介入。
其中,所述纵向控制器为制动控制器,所述第一取值和第二取值为表示操控制动控制器进行刹车的刹车程度的取值。
其中,所述纵向控制器为油门控制器,所述第一取值和第二取值为表示操控油门控制器进行加速的加速程度的取值。
其中,在所述处理器2001执行所述至少一条机器可执行指令以实现在根据第一取值和第二取值确定驾驶员的介入意图之前,所述处理器2001执行所述至少一条机器可执行指令还实现:判断所述纵向人为操控信息中是否包含表示操控制动控制器进行刹车的刹车程度的第三取值;若包含,则根据第三取值和纵向自动操控信息中表示操控制动控制器进行刹车的刹车程度的第四取值确定驾驶员的介入意图,具体包括:若第三取值大于第四取值且第三取值与第四取值的差值位于第三阈值和第四阈值之间,则确定驾驶员介入意图为缓慢介入,其中第三阈值小于第四阈值;若第三取值大于第四取值且第三取值与第四取值的差值大于第四阈值,则确定驾驶员介入意图为紧急介入;若第三取值小于第四取值则执行所述根据第一取值和第二取值确定驾驶员的介入意图的步骤;若不包含,则执行所述根据第一取值和第二取值确定驾驶员的介入意图的步骤。
其中,所述处理器2001执行所述至少一条机器可执行指令以实现根据第一取值和第二取值确定驾驶员的介入意图为紧急介入时,所述响应所述人为操控信息并将车辆相应的控
制权转交给驾驶员,具体包括:根据所述第一取值控制所述纵向控制器,并将纵向控制权或整车控制权转交给驾驶员。
其中,所述人为操控信息包含对横向控制器进行操控的横向人为操控信息;则,所述处理器2001执行所述至少一条机器可执行指令以实现根据所述人为操控信息,确定驾驶员的介入意图,具体包括:判断所述横向人为操控信息中表示操控横向控制器的操控程度的第五取值是否大于预置的第五阈值,若是则确定驾驶员的介入意图为紧急介入;所述处理器2001执行所述至少一条机器可执行指令以实现响应所述人为操控信息并将车辆相应的控制权转交给驾驶员,具体包括:根据所述第五取值对横向控制器进行控制,并将横向控制权或整车控制权转交给驾驶员。
其中,所述处理器2001执行所述至少一条机器可执行指令以实现获取对车辆的人为操控信息,具体包括:采集驾驶员对车辆的横向控制器和/或纵向控制器进行操作而发出的控制指令,并根据该控制指令得到所述人为操控信息;和/或,采集驾驶员的音声指令,识别所述音声指令得到所述人为操控信息;和/或,采集驾驶员在触控显示设备的特定区域进行特定手势的触控信息,识别所述触控信息得到所述人为操控信息;和/或,接收驾驶员通过预置的实体开关输入的控制指令,解析所述控制指令得到所述人为操控信息;和/或,识别驾驶员对摇杆或手柄进行的操作行为,得到所述人为操控信息;和/或,接收驾驶员在智能终端上通过执行预设程序发出的控制指令,解析所述控制指令得到所述人为操控信息;和/或,通过脑波采集器采集驾驶员的脑波信息,识别所述脑波信息得到所述人为操控信息;和/或,通过监控传感器采集得到的驾驶员的肢体动作和/或面部表情,并根据该肢体动作和/或面部表情得到所述人为操控信息。
基于与前述方法相同的构思,本发明实施例还提供一种存储介质(该存储介质可以是非易失性机器可读存储介质),该存储介质中存储有用于车辆控制的计算机程序,该计算机程序具有被配置用于执行以下步骤的代码段:获取对车辆的人为操控信息;根据所述人为操控信息,确定驾驶员的介入意图;在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
基于与前述方法相同的构思,本发明实施例还提供一种计算机程序,该计算机程序具有被配置用于执行以下车辆控制的代码段:获取对车辆的人为操控信息;根据所述人为操控信息,确定驾驶员的介入意图;在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
综上所述,根据本发明的本发明技术方案,在自动驾驶模式下还未切换至人工驾驶模式下,能够根据人为操控信息判断驾驶员需要缓慢介入时,控制车辆达到安全状态,并在安全状态下将车辆的相应控制权转交给驾驶员。一方面,能够在确保车辆安全的情况下实
现车辆控制权的转移,另一方面,将车辆相应的控制权转交给驾驶员,可以是部分控制权的转交也可以是整车控制权的转交,更加灵活,能够给驾驶员留有反应和适应时间,更进一步降低驾驶员误操作的概率,进一步提高车辆驾驶的安全性。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域普通技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或者部件可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件固件、软件或者他们的组合加以实现,这是本领域普通技术人员在阅读了本发明的说明的情况下运用它们的基本编程技能就能实现的。
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的上述实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括上述实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (33)
- 一种车辆控制方法,其特征在于,包括:获取对车辆的人为操控信息;根据所述人为操控信息,确定驾驶员的介入意图;在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
- 根据权利要求1所述的方法,其特征在于,还包括:在车辆当前处于自动驾驶模式且确定介入意图为紧急介入时,响应所述人为操控信息并将车辆相应的控制权转交给驾驶员。
- 根据权利要求1或2所述的方法,其特征在于,控制车辆达到预定的安全状态具体包括:控制车辆减速并进行车道保持,直到车辆停止在安全区域。
- 根据权利要求1或2所述的方法,其特征在于,所述人为操控信息包含对车辆纵向控制器进行操控的纵向人为操控信息;根据所述人为操控信息,确定驾驶员的介入意图,具体包括:获取车辆自动驾驶过程中计算得到的对所述车辆纵向控制器进行操控的纵向自动操控信息;以及,将所述纵向人为操控信息与纵向自动操控信息进行比较,根据比较结果确定驾驶员的介入意图。
- 根据权利要求4所述的方法,其特征在于,所述纵向人为操控信息包含表示驾驶员操控纵向控制器的操控程度的第一取值,所述纵向自动操控信息包含计算得到的操控纵向控制器的操控程度的第二取值;将所述纵向人为操控信息与纵向自动操控信息进行比较,根据比较结果确定驾驶员的介入意图,具体包括:根据第一取值和第二取值确定驾驶员的介入意图;所述根据第一取值和第二取值确定驾驶员的介入意图具体包括:判断所述第一取值大于第二取值且第一取值与第二取值的差值位于第一阈值和第二阈值之间时,确定驾驶员的介入意图为缓慢介入,其中第一阈值小于第二阈值;和/或,判断所述第一取值大于第二取值且第一取值与第二取值的差值大于第二阈值时,确定驾驶员的介入意图为紧急介入。
- 根据权利要求5所述的方法,其特征在于,所述纵向控制器为制动控制器,所述第一取值和第二取值为表示操控制动控制器进行刹车的刹车程度的取值。
- 根据权利要求5所述的方法,其特征在于,所述纵向控制器为油门控制器,所述第 一取值和第二取值为表示操控油门控制器进行加速的加速程度的取值。
- 根据权利要求7所述的方法,其特征在于,在根据第一取值和第二取值确定驾驶员的介入意图之前,还包括:判断所述纵向人为操控信息中是否包含表示操控制动控制器进行刹车的刹车程度的第三取值;若包含,则根据第三取值和纵向自动操控信息中表示操控制动控制器进行刹车的刹车程度的第四取值确定驾驶员的介入意图,具体包括:若第三取值大于第四取值且第三取值与第四取值的差值位于第三阈值和第四阈值之间,则确定驾驶员介入意图为缓慢介入,其中第三阈值小于第四阈值;若第三取值大于第四取值且第三取值与第四取值的差值大于第四阈值,则确定驾驶员介入意图为紧急介入;若第三取值小于第四取值则执行所述根据第一取值和第二取值确定驾驶员的介入意图的步骤;若不包含,则执行所述根据第一取值和第二取值确定驾驶员的介入意图的步骤。
- 根据权利要求5所述的方法,其特征在于,根据第一取值和第二取值确定驾驶员的介入意图为紧急介入时,所述响应所述人为操控信息并将车辆相应的控制权转交给驾驶员,具体包括:根据所述第一取值控制所述纵向控制器,并将纵向控制权或整车控制权转交给驾驶员。
- 根据权利要求2所述的方法,其特征在于,所述人为操控信息包含对横向控制器进行操控的横向人为操控信息;根据所述人为操控信息,确定驾驶员的介入意图,具体包括:判断所述横向人为操控信息中表示操控横向控制器的操控程度的第五取值是否大于预置的第五阈值,若是则确定驾驶员的介入意图为紧急介入;所述响应所述人为操控信息并将车辆相应的控制权转交给驾驶员,具体包括:根据所述第五取值对横向控制器进行控制,并将横向控制权或整车控制权转交给驾驶员。
- 根据权利要求1所述的方法,其特征在于,获取对车辆的人为操控信息,具体包括:采集驾驶员对车辆的横向控制器和/或纵向控制器进行操作而发出的控制指令,并根据该控制指令得到所述人为操控信息;和/或,采集驾驶员的音声指令,识别所述音声指令得到所述人为操控信息;和/或,采集驾驶员在触控显示设备的特定区域进行特定手势的触控信息,识别所述触控信息得到所述人为操控信息;和/或,接收驾驶员通过预置的实体开关输入的控制指令,解析所述控制指令得到所述 人为操控信息;和/或,识别驾驶员对摇杆或手柄进行的操作行为,得到所述人为操控信息;和/或,接收驾驶员在智能终端上通过执行预设程序发出的控制指令,解析所述控制指令得到所述人为操控信息;和/或,通过脑波采集器采集驾驶员的脑波信息,识别所述脑波信息得到所述人为操控信息;和/或,通过监控传感器采集得到的驾驶员的肢体动作和/或面部表情,并根据该肢体动作和/或面部表情得到所述人为操控信息。
- 一种车辆控制装置,其特征在于,包括:获取单元,用于获取对车辆的人为操控信息;确定单元,用于根据所述人为操控信息,确定驾驶员的介入意图;第一控制单元,用于在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
- 根据权利要求12所述的装置,其特征在于,还包括:第二控制单元,用于在车辆当前处于自动驾驶模式且确定介入意图为紧急介入时,响应所述人为操控信息并将车辆相应的控制权转交给驾驶员。
- 根据权利要求12或13所述装置,其特征在于,所述第一控制单元或第二控制单元控制车辆达到预定的安全状态,具体包括:控制车辆减速并进行车道保持,直到车辆停止在安全区域。
- 根据权利要求12或13所述的装置,其特征在于,所述人为操控信息包含对车辆纵向控制器进行操控的纵向人为操控信息;所述确定单元,具体包括:获取子单元,用于获取车辆自动驾驶过程中计算得到的对所述车辆纵向控制器进行操控的纵向自动操控信息;第一确定子单元,用于将所述纵向人为操控信息与纵向自动操控信息进行比较,根据比较结果确定驾驶员的介入意图。
- 根据权利要求15所述的装置,其特征在于,所述纵向人为操控信息包含表示驾驶员操控纵向控制器的操控程度的第一取值,所述纵向自动操控信息包含计算得到的操控纵向控制器的操控程度的第二取值;第一确定子单元,具体用于:根据第一取值和第二取值确定驾驶员的介入意图;所述根据第一取值和第二取值确定驾驶员的介入意图具体包括:判断所述第一取值大于第二取值且第一取值与第二取值的差值位于第一阈值和第二阈值之间时,确定驾驶员的 介入意图为缓慢介入,其中第一阈值小于第二阈值;和/或,判断所述第一取值大于第二取值且第一取值与第二取值的差值大于第二阈值时,确定驾驶员的介入意图为紧急介入。
- 根据权利要求16所述的装置,其特征在于,所述纵向控制器为制动控制器,所述第一取值和第二取值为表示操控制动控制器进行刹车的刹车程度的取值。
- 根据权利要求16所述的装置,其特征在于,所述纵向控制器为油门控制器,所述第一取值和第二取值为表示操控油门控制器进行加速的加速程度的取值。
- 根据权利要求18所述的装置,其特征在于,所述确定单元还包括:判断子单元,用于判断所述纵向人为操控信息中是否包含表示操控制动控制器进行刹车的刹车程度的第三取值,若包含则触发第二确定子单元,若不包含则触发第一确定子单元;第二确定子单元,用于根据第三取值和纵向自动操控信息中表示操控制动控制器进行刹车的刹车程度的第四取值确定驾驶员的介入意图,具体包括:若第三取值大于第四取值且第三取值与第四取值的差值位于第三阈值和第四阈值之间,则确定驾驶员介入意图为缓慢介入,其中第三阈值小于第四阈值;若第三取值大于第四取值且第三取值与第四取值的差值大于第四阈值,则确定驾驶员介入意图为紧急介入;若第三取值小于第四取值则触发第一确定子单元。
- 根据权利要求16所述的装置,其特征在于,所述第一确定子单元确定驾驶员的接入意图为紧急介入时;所述第二控制单元具体用于:根据所述第一取值控制所述纵向控制器,并将纵向控制权或整车控制权转交给驾驶员。
- 根据权利要求13所述的装置,其特征在于,所述人为操控信息包含对横向控制器进行操控的横向人为操控信息;所述确定单元,具体用于:判断所述横向人为操控信息中表示操控横向控制器的操控程度的第五取值是否大于预置的第五阈值,若是则确定驾驶员的介入意图为紧急介入;所述第二控制单元,具体用于:根据所述第五取值对横向控制器进行控制,并将横向控制权或整车控制权转交给驾驶员。
- 根据权利要求12所述的装置,其特征在于,所述获取单元,具体用于:采集驾驶员对车辆的横向控制器和/或纵向控制器进行操作而发出的控制指令,并根据该控制指令得到所述人为操控信息;和/或,采集驾驶员的音声指令,识别所述音声指令得到所述人为操控信息;和/或,采集驾驶员在触控显示设备的特定区域进行特定手势的触控信息,识别所述触控信息得到所述人为操控信息;和/或,接收驾驶员通过预置的实体开关输入的控制指令,解析所述控制指令得到所述人为操控信息;和/或,识别驾驶员对摇杆或手柄进行的操作行为,得到所述人为操控信息;和/或,接收驾驶员在智能终端上通过执行预设程序发出的控制指令,解析所述控制指令得到所述人为操控信息;和/或,通过脑波采集器采集驾驶员的脑波信息,识别所述脑波信息得到所述人为操控信息;和/或,通过监控传感器采集得到的驾驶员的肢体动作和/或面部表情,并根据该肢体动作和/或面部表情得到所述人为操控信息。
- 一种车辆控制装置,其特征在于,包括:一个处理器和至少一个存储器,所述至少一个存储器中存储至少一条机器可执行指令,所述处理器执行所述至少一条机器可执行指令以实现:获取对车辆的人为操控信息;根据所述人为操控信息,确定驾驶员的介入意图;在车辆当前处于自动驾驶模式且确定介入意图为缓慢介入时,控制车辆达到预定的安全状态,并将车辆相应的控制权转交给驾驶员。
- 根据权利要求23所述的装置,其特征在于,所述处理器执行所述至少一条机器可执行指令还实现:在车辆当前处于自动驾驶模式且确定介入意图为紧急介入时,响应所述人为操控信息并将车辆相应的控制权转交给驾驶员。
- 根据权利要求23或24所述的装置,其特征在于,所述处理器执行所述至少一条机器可执行指令以实现控制车辆达到预定的安全状态具体包括:控制车辆减速并进行车道保持,直到车辆停止在安全区域。
- 根据权利要求23或24所述的装置,其特征在于,所述人为操控信息包含对车辆纵向控制器进行操控的纵向人为操控信息;则,所述处理器执行所述至少一条机器可执行指令以实现根据所述人为操控信息,确定驾驶员的介入意图,具体包括:获取车辆自动驾驶过程中计算得到的对所述车辆纵向控制器进行操控的纵向自动操控信息;以及,将所述纵向人为操控信息与纵向自动操控信息进行比较,根据比较结果确定驾驶员的介入意图。
- 根据权利要求26所述的装置,其特征在于,所述纵向人为操控信息包含表示驾驶 员操控纵向控制器的操控程度的第一取值,所述纵向自动操控信息包含计算得到的操控纵向控制器的操控程度的第二取值;则,所述处理器执行所述至少一条机器可执行指令以实现将所述纵向人为操控信息与纵向自动操控信息进行比较,根据比较结果确定驾驶员的介入意图,具体包括:根据第一取值和第二取值确定驾驶员的介入意图;所述根据第一取值和第二取值确定驾驶员的介入意图具体包括:判断所述第一取值大于第二取值且第一取值与第二取值的差值位于第一阈值和第二阈值之间时,确定驾驶员的介入意图为缓慢介入,其中第一阈值小于第二阈值;和/或,判断所述第一取值大于第二取值且第一取值与第二取值的差值大于第二阈值时,确定驾驶员的介入意图为紧急介入。
- 根据权利要求27所述的装置,其特征在于,所述纵向控制器为制动控制器,所述第一取值和第二取值为表示操控制动控制器进行刹车的刹车程度的取值。
- 根据权利要求27所述的装置,其特征在于,所述纵向控制器为油门控制器,所述第一取值和第二取值为表示操控油门控制器进行加速的加速程度的取值。
- 根据权利要求29所述的装置,其特征在于,所述处理器执行所述至少一条机器可执行指令以实现在根据第一取值和第二取值确定驾驶员的介入意图之前,所述处理器行所述至少一条机器可执行指令还实现:判断所述纵向人为操控信息中是否包含表示操控制动控制器进行刹车的刹车程度的第三取值;若包含,则根据第三取值和纵向自动操控信息中表示操控制动控制器进行刹车的刹车程度的第四取值确定驾驶员的介入意图,具体包括:若第三取值大于第四取值且第三取值与第四取值的差值位于第三阈值和第四阈值之间,则确定驾驶员介入意图为缓慢介入,其中第三阈值小于第四阈值;若第三取值大于第四取值且第三取值与第四取值的差值大于第四阈值,则确定驾驶员介入意图为紧急介入;若第三取值小于第四取值则执行所述根据第一取值和第二取值确定驾驶员的介入意图的步骤;若不包含,则执行所述根据第一取值和第二取值确定驾驶员的介入意图的步骤。
- 根据权利要求27所述的装置,其特征在于,所述处理器执行所述至少一条机器可执行指令以实现根据第一取值和第二取值确定驾驶员的介入意图为紧急介入时,所述响应所述人为操控信息并将车辆相应的控制权转交给驾驶员,具体包括:根据所述第一取值控制所述纵向控制器,并将纵向控制权或整车控制权转交给驾驶员。
- 根据权利要求24所述的装置,其特征在于,所述人为操控信息包含对横向控制器进行操控的横向人为操控信息;则,所述处理器执行所述至少一条机器可执行指令以实现根据所述人为操控信息,确定驾 驶员的介入意图,具体包括:判断所述横向人为操控信息中表示操控横向控制器的操控程度的第五取值是否大于预置的第五阈值,若是则确定驾驶员的介入意图为紧急介入;所述处理器执行所述至少一条机器可执行指令以实现响应所述人为操控信息并将车辆相应的控制权转交给驾驶员,具体包括:根据所述第五取值对横向控制器进行控制,并将横向控制权或整车控制权转交给驾驶员。
- 根据权利要求23所述的装置,其特征在于,所述处理器执行所述至少一条机器可执行指令以实现获取对车辆的人为操控信息,具体包括:采集驾驶员对车辆的横向控制器和/或纵向控制器进行操作而发出的控制指令,并根据该控制指令得到所述人为操控信息;和/或,采集驾驶员的音声指令,识别所述音声指令得到所述人为操控信息;和/或,采集驾驶员在触控显示设备的特定区域进行特定手势的触控信息,识别所述触控信息得到所述人为操控信息;和/或,接收驾驶员通过预置的实体开关输入的控制指令,解析所述控制指令得到所述人为操控信息;和/或,识别驾驶员对摇杆或手柄进行的操作行为,得到所述人为操控信息;和/或,接收驾驶员在智能终端上通过执行预设程序发出的控制指令,解析所述控制指令得到所述人为操控信息;和/或,通过脑波采集器采集驾驶员的脑波信息,识别所述脑波信息得到所述人为操控信息;和/或,通过监控传感器采集得到的驾驶员的肢体动作和/或面部表情,并根据该肢体动作和/或面部表情得到所述人为操控信息。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/576,622 US11500375B2 (en) | 2017-03-22 | 2019-09-19 | Method and apparatus for vehicle control |
US17/986,678 US12024209B2 (en) | 2017-03-22 | 2022-11-14 | Method and apparatus for vehicle control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710172083.6 | 2017-03-22 | ||
CN201710172083.6A CN106873596B (zh) | 2017-03-22 | 2017-03-22 | 一种车辆控制方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/576,622 Continuation US11500375B2 (en) | 2017-03-22 | 2019-09-19 | Method and apparatus for vehicle control |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018171134A1 true WO2018171134A1 (zh) | 2018-09-27 |
Family
ID=59172473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/102030 WO2018171134A1 (zh) | 2017-03-22 | 2017-09-18 | 一种车辆控制方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (2) | US11500375B2 (zh) |
CN (1) | CN106873596B (zh) |
WO (1) | WO2018171134A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106873596B (zh) | 2017-03-22 | 2018-12-18 | 北京图森未来科技有限公司 | 一种车辆控制方法及装置 |
JP6951906B2 (ja) * | 2017-08-22 | 2021-10-20 | 株式会社アイシン | 中止地点管理システム、中止地点通知システム、中止地点案内システムおよび中止地点管理プログラム |
US10668925B2 (en) * | 2017-09-05 | 2020-06-02 | Baidu Usa Llc | Driver intention-based lane assistant system for autonomous driving vehicles |
CN107738627A (zh) * | 2017-09-05 | 2018-02-27 | 百度在线网络技术(北京)有限公司 | 一种在自动驾驶系统中进行雨刷控制的方法和装置 |
CN107797534B (zh) * | 2017-09-30 | 2019-05-28 | 安徽江淮汽车集团股份有限公司 | 一种纯电动自动驾驶系统 |
CN108297877B (zh) | 2017-10-10 | 2019-08-13 | 腾讯科技(深圳)有限公司 | 车辆控制方法、系统及装置 |
JP6939692B2 (ja) * | 2018-04-27 | 2021-09-22 | トヨタ自動車株式会社 | 車両制御システム |
CN110553850B (zh) * | 2018-06-04 | 2020-12-29 | 广州汽车集团股份有限公司 | 自动变速器车辆驾驶性标定测试油门控制方法及系统 |
US20200073379A1 (en) * | 2018-08-31 | 2020-03-05 | Toyota Research Institute, Inc. | Systems and methods for confirming that a driver has control of a vehicle |
CN109334591A (zh) * | 2018-11-28 | 2019-02-15 | 奇瑞汽车股份有限公司 | 智能汽车的控制方法、装置及存储介质 |
US20210191394A1 (en) * | 2019-12-18 | 2021-06-24 | Lyft, Inc. | Systems and methods for presenting curated autonomy-system information of a vehicle |
CN113247020B (zh) * | 2021-05-12 | 2023-03-24 | 东风汽车集团股份有限公司 | 一种基于l3级自动驾驶的车辆接管控制方法及系统 |
CN113771877B (zh) * | 2021-09-14 | 2023-01-24 | 广州文远知行科技有限公司 | 基于自动驾驶的制动控制方法、装置、设备及存储介质 |
CN114103973B (zh) * | 2021-11-12 | 2024-05-28 | 上汽通用五菱汽车股份有限公司 | 车辆控制方法、装置、车辆及计算机可读存储介质 |
CN114708577A (zh) * | 2022-03-29 | 2022-07-05 | 上海商汤临港智能科技有限公司 | 车窗的控制方法、装置、电子设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103434502A (zh) * | 2013-09-04 | 2013-12-11 | 厦门大学 | 基于脑机接口技术的紧急刹车系统 |
CN105807764A (zh) * | 2015-01-19 | 2016-07-27 | 丰田自动车株式会社 | 自动驾驶车辆系统 |
CN105988467A (zh) * | 2015-03-23 | 2016-10-05 | 丰田自动车株式会社 | 自动驾驶装置 |
CN106043309A (zh) * | 2016-06-27 | 2016-10-26 | 常州加美科技有限公司 | 无人驾驶车辆驾驶模式切换的应对策略 |
US20170017233A1 (en) * | 2015-07-13 | 2017-01-19 | Toyota Jidosha Kabushiki Kaisha | Automatic driving system |
CN106873596A (zh) * | 2017-03-22 | 2017-06-20 | 北京图森未来科技有限公司 | 一种车辆控制方法及装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005082081A (ja) * | 2003-09-10 | 2005-03-31 | Advics:Kk | 車両用制動制御装置 |
US6919801B2 (en) * | 2003-10-06 | 2005-07-19 | Jae Yeal Kim | Vehicle safety system for preventing inadvertent acceleration of a vehicle |
US8965633B2 (en) * | 2011-09-02 | 2015-02-24 | GM Global Technology Operations LLC | System and method for speed adaptive steering override detection during automated lane centering |
WO2014083764A1 (ja) * | 2012-11-27 | 2014-06-05 | 日産自動車株式会社 | 加減速誤操作判定装置、誤操作加速抑制制御装置、加減速誤操作判定方法 |
JP6141964B2 (ja) * | 2013-03-11 | 2017-06-07 | 株式会社日立製作所 | 自律制御装置 |
JP6156077B2 (ja) * | 2013-11-08 | 2017-07-05 | トヨタ自動車株式会社 | 車両制御装置 |
US9248832B2 (en) * | 2014-01-30 | 2016-02-02 | Mobileye Vision Technologies Ltd. | Systems and methods for detecting traffic signal details |
US9684306B2 (en) * | 2015-01-09 | 2017-06-20 | Qualcomm Incorporated | Transitioning from autonomous vehicle control to operator vehicle control |
JP6260544B2 (ja) * | 2015-01-19 | 2018-01-17 | トヨタ自動車株式会社 | 自動運転装置 |
KR101684091B1 (ko) * | 2015-04-07 | 2016-12-20 | 현대자동차주식회사 | 자동변속기의 인터락을 이용한 안전 주행 유도 방법 |
JP2017001597A (ja) * | 2015-06-15 | 2017-01-05 | トヨタ自動車株式会社 | 自動運転装置 |
US10234859B2 (en) * | 2015-08-20 | 2019-03-19 | Harman International Industries, Incorporated | Systems and methods for driver assistance |
JP6387939B2 (ja) * | 2015-10-16 | 2018-09-12 | トヨタ自動車株式会社 | 車両のブレーキ制御装置 |
CN105270407B (zh) * | 2015-10-20 | 2017-10-31 | 广州橙行智动汽车科技有限公司 | 一种自动驾驶汽车行驶模式切换方法及系统 |
CN106023458B (zh) * | 2016-05-13 | 2019-08-13 | 智车优行科技(北京)有限公司 | 车辆控制方法、装置、终端、车辆、服务器及系统 |
-
2017
- 2017-03-22 CN CN201710172083.6A patent/CN106873596B/zh active Active
- 2017-09-18 WO PCT/CN2017/102030 patent/WO2018171134A1/zh active Application Filing
-
2019
- 2019-09-19 US US16/576,622 patent/US11500375B2/en active Active
-
2022
- 2022-11-14 US US17/986,678 patent/US12024209B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103434502A (zh) * | 2013-09-04 | 2013-12-11 | 厦门大学 | 基于脑机接口技术的紧急刹车系统 |
CN105807764A (zh) * | 2015-01-19 | 2016-07-27 | 丰田自动车株式会社 | 自动驾驶车辆系统 |
CN105988467A (zh) * | 2015-03-23 | 2016-10-05 | 丰田自动车株式会社 | 自动驾驶装置 |
US20170017233A1 (en) * | 2015-07-13 | 2017-01-19 | Toyota Jidosha Kabushiki Kaisha | Automatic driving system |
CN106043309A (zh) * | 2016-06-27 | 2016-10-26 | 常州加美科技有限公司 | 无人驾驶车辆驾驶模式切换的应对策略 |
CN106873596A (zh) * | 2017-03-22 | 2017-06-20 | 北京图森未来科技有限公司 | 一种车辆控制方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
US20200012277A1 (en) | 2020-01-09 |
CN106873596A (zh) | 2017-06-20 |
US12024209B2 (en) | 2024-07-02 |
US20220066447A9 (en) | 2022-03-03 |
US20230073942A1 (en) | 2023-03-09 |
CN106873596B (zh) | 2018-12-18 |
US11500375B2 (en) | 2022-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018171134A1 (zh) | 一种车辆控制方法及装置 | |
CN106891895B (zh) | 一种车辆控制方法及装置 | |
WO2019178907A1 (zh) | 一种用于智能网联车的平行遥控驾驶系统 | |
US9845866B2 (en) | Device and method for selectively operating a motor vehicle in a user-controlled or an automatic driving operation mode | |
CN106965673B (zh) | 停车控制装置 | |
CN111547035A (zh) | 车辆减速控制方法、装置、存储介质及车辆 | |
CN114348020B (zh) | 一种5g远程与自动驾驶安全冗余系统及控制方法 | |
CN113401144B (zh) | 自动驾驶车辆的控制方法、装置、设备和介质 | |
US20200057441A1 (en) | Systems and methods for intelligent arbitration between autonomous and manual operation signals of an autonomous agent | |
CN108995641A (zh) | 一种基于epb系统的车辆驻车控制方法 | |
JP2016539038A (ja) | 手動モード及び自律モードにある輸送体のための作動方法 | |
CN111873975B (zh) | 一种电子驻车制动的控制方法、装置、系统、设备及介质 | |
CN110654377A (zh) | 一种车辆防撞控制方法及控制系统 | |
CN111824173A (zh) | 一种适于智能驾驶系统故障的分级处理方法及装置 | |
CN110291570A (zh) | 驾驶模式切换控制装置、方法和程序 | |
CN108216246B (zh) | 自动安全驾驶互动系统及其决策方法 | |
CN108974013A (zh) | 基于方向盘握力的人机权限切换方法及装置 | |
CN110621567B (zh) | 车辆传感器系统、组件和方法 | |
WO2024109680A1 (zh) | 一种自动驾驶模式接管方法、驾驶员监控系统及车辆 | |
CN117325872A (zh) | 一种自动驾驶车辆驾驶员接管认知行为预测系统 | |
WO2024073933A1 (zh) | 介入手术机器人导管导丝动作控制方法及其相关设备 | |
US20230382420A1 (en) | Vehicle Guidance System and Method for Operating a Driving Function in Different Modes | |
US20230406313A1 (en) | Vehicle Guidance System and Method for Automated Starting of a Vehicle | |
CN109017735A (zh) | 制动系统 | |
CN113911137A (zh) | 一种车辆急停系统及车辆控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17901533 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17901533 Country of ref document: EP Kind code of ref document: A1 |