WO2018168995A1 - Électrode équipée d'une couche d'alliage de magnésium et bismuth, et batterie secondaire au magnésium - Google Patents

Électrode équipée d'une couche d'alliage de magnésium et bismuth, et batterie secondaire au magnésium Download PDF

Info

Publication number
WO2018168995A1
WO2018168995A1 PCT/JP2018/010207 JP2018010207W WO2018168995A1 WO 2018168995 A1 WO2018168995 A1 WO 2018168995A1 JP 2018010207 W JP2018010207 W JP 2018010207W WO 2018168995 A1 WO2018168995 A1 WO 2018168995A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
bismuth
electrode
alloy
secondary battery
Prior art date
Application number
PCT/JP2018/010207
Other languages
English (en)
Japanese (ja)
Inventor
信子 吉本
一大 山吹
加成恵 板岡
藤井 健太郎
敏治 松本
Original Assignee
国立大学法人山口大学
株式会社戸畑製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山口大学, 株式会社戸畑製作所 filed Critical 国立大学法人山口大学
Priority to JP2019506260A priority Critical patent/JP6958823B2/ja
Publication of WO2018168995A1 publication Critical patent/WO2018168995A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode including an alloy layer of magnesium and bismuth, and a magnesium secondary battery including the electrode.
  • lithium ion secondary batteries have been put into practical use as secondary batteries and are used in various applications such as electronic devices.
  • Magnesium not only has an electric capacity per volume about twice that of lithium, but also has a melting point as high as 650 ° C. compared to 186 ° C. of lithium.
  • the lithium ion secondary battery has been pointed out to be heated and ignited by a short circuit inside the battery. One of the causes is a low melting point of lithium.
  • magnesium has a higher melting point than lithium, and therefore has high safety.
  • Magnesium is more abundant on the earth than lithium, which is a rare metal, and is abundant in resources.
  • the conventional magnesium negative electrode has an oxide film as an insulating layer formed on the surface thereof, there is a problem that it is difficult for electricity to flow, the overvoltage becomes large, and the original battery capacity characteristics cannot be exhibited.
  • Non-Patent Document 1 a method of removing the oxide film on the surface of the magnesium negative electrode using EtMgBr / THF as an electrolytic solution.
  • this method has a problem that it is not resistant to the potential on the oxidation side and the electrolytic solution is decomposed, so that charging / discharging for a long time cannot be performed.
  • the positive electrode materials that can be used are limited, and only low-potential batteries with a voltage of about 1 V have been reported.
  • An object of the present invention is to solve the above-mentioned problems, suppress the formation of an oxide film, and produce an electrode capable of producing a high-potential and high-capacity magnesium secondary battery; It is to provide a secondary battery.
  • magnesium electrode itself from the elements constituting the magnesium secondary battery and started development.
  • Magnesium was alloyed with bismuth at an arbitrary ratio, and its electrochemical characteristics were evaluated as a negative electrode of a magnesium secondary battery.
  • an alloy with a smaller amount of bismuth was formed. As a result, it was found that the formation of an oxide film is suppressed, and it can be used as an electrode for a magnesium secondary battery having a high potential and a high capacity.
  • the magnesium-bismuth alloy electrode reported so far is a brittle intermetallic compound (Mg 3 Bi 2 ) and has poor electrode forming characteristics.
  • conductive carbon and a binder (binder) In order to function as an electrode, the content of magnesium having a high capacity is remarkably reduced (Mg content is 13% by mass or less).
  • Mg content is 13% by mass or less.
  • the present inventors have found that an electrode material having excellent forming characteristics can be obtained by setting the composition in the alloy to a state in which there are many Mg—Bi solid solutions or Mg—Mg 3 Bi 2 eutectics.
  • An electrode comprising an alloy layer of magnesium (Mg) and bismuth (Bi), wherein the alloy layer is a solid solution of magnesium (Mg) and bismuth (Bi) (Mg 1-x Bi x ; x includes 0.001 to 0.0112) or a solid solution of magnesium (Mg) and bismuth (Bi) (Mg 1-x Bi x ; where x is 0.001 to 0.0112) and magnesium (Mg ) And an bismuth (Bi) intermetallic compound (Mg 3 Bi 2 ).
  • a magnesium secondary battery comprising the electrode according to (1) or (2) as a negative electrode, and further comprising an electrolyte layer and a positive electrode.
  • the electrode of the present invention can increase the magnesium content while suppressing the formation of an oxide film. Moreover, it can process into the form which can be used as an electrode, without requiring a binder and a conductive support agent. Since the magnesium secondary battery of this invention can suppress formation of an oxide film, it can suppress an overvoltage and can obtain a secondary battery with a high potential and a high capacity.
  • FIG. 3 is a diagram showing cyclic voltammetry of a magnesium-bismuth alloy having a bismuth content of 2 mass% in Example 1.
  • FIG. 3 is a view showing cyclic voltammetry of a magnesium-bismuth alloy having a bismuth content of 30% by mass in Example 1.
  • FIG. 3 is a diagram showing cyclic voltammetry of a magnesium-bismuth alloy having a bismuth content of 50% by mass in Example 1. It is a figure which shows the cyclic voltammetry of magnesium whose bismuth content in the comparative example 1 is 0 mass%.
  • 6 is a diagram showing a configuration of a magnesium secondary battery produced in Example 2.
  • FIG. 6 is a diagram showing the results of charge / discharge measurement of a magnesium secondary battery produced in Example 2.
  • FIG. 6 is a diagram showing the results of charge / discharge measurement of a magnesium secondary battery produced in Comparative Example 2.
  • FIG. 1 is a diagram showing cyclic voltammetry of a magnesium-
  • the electrode of the present invention is an electrode having an alloy layer of magnesium and bismuth, wherein the alloy contains a solid solution of magnesium and bismuth, or contains a solid solution of magnesium and bismuth and an intermetallic compound of magnesium and bismuth.
  • the phrase “containing a solid solution of magnesium and bismuth and an intermetallic compound of magnesium and bismuth” includes the case where the solid solution of magnesium and bismuth and the intermetallic compound are present in the alloy in the form of a eutectic structure.
  • metal Mg and Mg—Bi are used until the Bi content of the alloy is 8.87 mass% (1.12 at%), which is the solid solubility limit.
  • Mg—Bi solid solution and Mg—Mg 3 Bi 2 eutectic are formed from 8.87 mass% (1.12 at%) to the eutectic point of 58.9 mass% (14.3 at%).
  • an Mg—Mg 3 Bi 2 eutectic and an Mg 3 Bi 2 intermetallic compound are formed, and 82.2 mass% (35 at%) or more is known to form a Mg 3 Bi 2 intermetallic compound, a Bi—Mg solid solution, and metal Bi, and the form of the structure varies depending on the production conditions.
  • the alloy of magnesium and bismuth in the present invention includes a solid solution of magnesium and bismuth, or a solid solution of magnesium and bismuth and an intermetallic compound of magnesium and bismuth. That is, the composition of the magnesium alloy in the present invention includes the form in which the metallic Mg and Mg—Bi solid solution coexist, the form in which the Mg—Bi solid solution and Mg—Mg 3 Bi 2 eutectic coexist, and the Mg—Mg 3 Bi 2 eutectic. And Mg 3 Bi 2 intermetallic compound are included.
  • the content of bismuth in the magnesium alloy in the present invention is such that the battery reaction involves dissolution-precipitation of the metal Mg and Mg—Bi solid solution, so that no solid solution is formed in the alloy from the viewpoint of increasing the electric capacity per volume. 58.9 mass% or less is preferable with respect to the whole magnesium alloy, and 50 mass% or less is more preferable.
  • the bismuth content of the magnesium alloy is preferably 1 to 50% by mass with respect to the entire magnesium alloy from the viewpoint of workability of the magnesium alloy.
  • the bismuth content of the magnesium alloy in the present invention is preferably 1 to 58.9% by mass, and preferably 1 to 50% by mass, based on the entire magnesium alloy, from the viewpoint of the effect of suppressing the formation of an oxide film. More preferably, the content is 30 to 50% by mass.
  • x is preferably in the range of 0.001 or more which is the lower limit that can substantially exist as a solid solution and 0.0112 or less which is the solid solution limit.
  • the alloy layer in the electrode of the present invention contains a solid solution of Mg (Mg) and bismuth (Bi) (Mg 1-x Bi x ; where x is 0.001 to 0.0112), or magnesium (Mg) and Includes a solid solution with bismuth (Bi) (Mg 1-x Bi x ; x is 0.001 to 0.0112), an intermetallic compound (Mg 3 Bi 2 ) of magnesium (Mg) and bismuth (Bi) .
  • the processed form of the magnesium alloy itself is used as an electrode or attached to a current collector as an electrode. Can be used. Therefore, as in the case of using a granular electrode material, the electrode can be produced without the need for a binder or a conductive additive, and therefore the electrode can be produced without reducing the magnesium content in the electrode.
  • the electrode may be produced by processing the magnesium alloy into a scale shape, a flat shape, a spindle shape, a spherical shape, or the like, mixing with a binder, and fixing on the current collector.
  • the “magnesium alloy layer” in the present invention means a layer containing a magnesium alloy in the present invention, and the magnesium alloy in the present invention is processed into a plate shape, a columnar shape, etc., and the magnesium alloy itself forms a magnesium alloy layer. And the case where the magnesium alloy particles are fixed with a binder or the like to form a magnesium alloy layer.
  • the “electrode having a magnesium alloy layer” in the present invention is only required that the electrode has the magnesium alloy layer, and when the electrode is composed of only the magnesium alloy layer, the magnesium alloy layer and the current collector, etc. This includes the case where the electrode is configured together with other components.
  • the battery of the present invention includes the electrode of the present invention as a negative electrode, and further includes an electrolyte layer and a positive electrode.
  • What is used for the conventional magnesium secondary battery can be used for the positive electrode in the battery of this invention, electrolyte, and another component as needed.
  • examples of the positive electrode include those in which a positive electrode active material is fixed on a current collector by a binder, and may include a conductive aid as necessary.
  • positive electrode active material for example, sulfur or sulfur compounds, V 2 O 5, sulfur-doped V 2 O 5 or the like V 2 O 5 system, MnO 2 system, MnO 3, MgMnO oxides such as MnO 3 system, such as 3 Positive electrode of sulfide type, positive electrode of sulfide type such as Mo 6 S 8 type, Mg 1.03 Mn 0.97 SiO 4 , MgCoSiO 4 , MgFeSiO 4 , MgMnSiO 4, Mo 9 Se 11 , FePO 4 and the like. .
  • binder examples include fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, and resin materials such as styrene butadiene rubber and carboxymethyl cellulose.
  • conductive assistant examples include graphite such as amorphous carbon, natural graphite, and artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, and carbon nanotube. Examples include carbonaceous materials.
  • Examples of the electrolyte include magnesium halides such as magnesium perchlorate (Mg (ClO 4 ) 2 ), Grignard reagent (RMgX (R is an organic group, X is a halogen)), magnesium bromide (MgBr 2 ), and the like.
  • magnesium halides such as magnesium perchlorate (Mg (ClO 4 ) 2 ), Grignard reagent (RMgX (R is an organic group, X is a halogen)
  • magnesium bromide MgBr 2
  • electrolyte solvent known non-aqueous electrolyte solvents can be used.
  • acetonitrile dietochiethane
  • diethylene glycol dimethyl ether diglyme
  • triethylene glycol dimethyl ether triglyme
  • tetraglyme tetraglyme
  • tetrahydrofuran THF
  • propylene carbonate PC
  • ethylene carbonate butylene carbonate, vinylene carbonate, ⁇ -butyllactone
  • sulfolane 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, 3-methyl-1 , 3-dioxolane, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like.
  • Example 1 Pretreatment of electrodes
  • Mg-Bi alloy magnesium-bismuth alloy according to the present invention having a bismuth (Bi) content of 2% by mass, 30% by mass, and 50% by mass is cut into a cylindrical shape having a diameter of 7 mm and a thickness of 2 mm. Both surfaces of the metal piece were polished in the order of emery paper # 220, 600, 2000 to obtain a test piece.
  • the potential difference at the rise of the oxidation-reduction response due to dissolution-precipitation of magnesium is 2 V or more. This is an effect of the oxide film formed on the surface of the magnesium electrode.
  • the Mg—Bi alloy of the example is used as a test piece, as shown in FIGS. 1 to 3, the potential difference at the start of the oxidation-reduction response is small, particularly when the Bi content is 30% by mass or more. An oxidation-reduction response has been observed. Thus, it can be seen that the formation of the oxide film was suppressed in the Mg—Bi alloy of the example.
  • the magnesium content of the Mg—Bi alloy of the example is 98 to 50% by mass, and is extremely large, for example, compared to 16% by mass of the magnesium content in the Mg 3 Bi 2 intermetallic compound.
  • the results of charge / discharge measurement of a magnesium-sulfur battery showed that a high-potential discharge behavior was obtained as compared with a normal pure magnesium metal negative electrode.
  • the suppression effect of the magnesium oxide film in the negative electrode was confirmed.
  • the discharge capacity also reached the theoretical capacity of sulfur.
  • the electrode of the present invention suppresses the formation of an oxide film on the electrode surface and has a high magnesium content, it can be suitably used for a magnesium secondary battery, suppresses overvoltage, and has a high potential and high capacity. A secondary battery can be obtained.
  • the electrode of this invention uses a magnesium alloy as an electrode material, it has sufficient intensity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention a pour objet de fournir une électrode dans laquelle la formation d'un film d'oxyde est inhibée, et qui permet de fabriquer une batterie secondaire au magnésium haute tension et haute capacitance, et également de fournir une batterie secondaire au magnésium haute tension et haute capacitance dans laquelle la formation d'un film d'oxyde est inhibée. L'électrode de l'invention est caractéristique en ce que soit elle contient une solution solide (Mg1-xBix, x étant compris entre 0,001 et 0,0112) à base de magnésium (Mg) et de bismuth (Bi), soit elle contient une solution solide (Mg1-xBix, x étant compris entre 0,001 et 0,0112) à base de magnésium (Mg) et de bismuth (Bi), et un composé intermétallique (Mg3Bi2) à base de magnésium (Mg) et de bismuth (Bi). La batterie secondaire au magnésium de l'invention est caractéristique en ce qu'elle est équipée de ladite électrode en tant qu'électrode négative, et est équipée en outre d'une couche d'électrolyte et d'électrode positive.
PCT/JP2018/010207 2017-03-16 2018-03-15 Électrode équipée d'une couche d'alliage de magnésium et bismuth, et batterie secondaire au magnésium WO2018168995A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019506260A JP6958823B2 (ja) 2017-03-16 2018-03-15 マグネシウムとビスマスの合金層を備える電極及びマグネシウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017051226 2017-03-16
JP2017-051226 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018168995A1 true WO2018168995A1 (fr) 2018-09-20

Family

ID=63523500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010207 WO2018168995A1 (fr) 2017-03-16 2018-03-15 Électrode équipée d'une couche d'alliage de magnésium et bismuth, et batterie secondaire au magnésium

Country Status (2)

Country Link
JP (1) JP6958823B2 (fr)
WO (1) WO2018168995A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499440A (zh) * 2019-09-20 2019-11-26 江西理工大学 一种加强镁铋合金中粗大的镁三铋二相形貌的变质方法
JP2021077459A (ja) * 2019-11-05 2021-05-20 国立大学法人山口大学 マグネシウム二次電池用の絶縁抑制電解液及び絶縁抑制方法
WO2021166655A1 (fr) * 2020-02-21 2021-08-26 国立研究開発法人物質・材料研究機構 MATÉRIAU D'ÉLECTRODE NÉGATIVE EN ALLIAGE À BASE DE Mg, SON PROCÉDÉ DE PRODUCTION ET BATTERIE SECONDAIRE AU Mg L'UTILISANT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159786A (ja) * 1991-12-09 1993-06-25 Toshiba Battery Co Ltd マンガン乾電池
JP2013193933A (ja) * 2012-03-21 2013-09-30 Furukawa Electric Co Ltd:The 多孔質シリコン粒子及び多孔質シリコン複合体粒子並びにこれらの製造方法
US20140302354A1 (en) * 2013-04-08 2014-10-09 Battelle Memorial Institute Electrodes for Magnesium Energy Storage Devices
US20140322595A1 (en) * 2013-04-25 2014-10-30 Toyotal Motor Engineering & Manufacturing North America, Inc. Preparation of high energy-density electrode materials for rechargeable magnesium batteries
JP2015520493A (ja) * 2012-05-30 2015-07-16 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド マグネシウムイオン充電池用ビスマス−スズ二元負極

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8685564B2 (en) * 2011-06-22 2014-04-01 Toyota Motor Engineering & Manufacturing North America, Inc. Active material for rechargeable battery
JP6374390B2 (ja) * 2013-08-27 2018-08-15 パナソニック株式会社 電気化学エネルギー蓄積デバイス
US9819021B2 (en) * 2014-10-16 2017-11-14 Toyota Motor Engineering & Manufacturing North America, Inc. Metastable vanadium oxide cathode materials for rechargeable magnesium battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159786A (ja) * 1991-12-09 1993-06-25 Toshiba Battery Co Ltd マンガン乾電池
JP2013193933A (ja) * 2012-03-21 2013-09-30 Furukawa Electric Co Ltd:The 多孔質シリコン粒子及び多孔質シリコン複合体粒子並びにこれらの製造方法
JP2015520493A (ja) * 2012-05-30 2015-07-16 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド マグネシウムイオン充電池用ビスマス−スズ二元負極
US20140302354A1 (en) * 2013-04-08 2014-10-09 Battelle Memorial Institute Electrodes for Magnesium Energy Storage Devices
US20140322595A1 (en) * 2013-04-25 2014-10-30 Toyotal Motor Engineering & Manufacturing North America, Inc. Preparation of high energy-density electrode materials for rechargeable magnesium batteries

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499440A (zh) * 2019-09-20 2019-11-26 江西理工大学 一种加强镁铋合金中粗大的镁三铋二相形貌的变质方法
JP2021077459A (ja) * 2019-11-05 2021-05-20 国立大学法人山口大学 マグネシウム二次電池用の絶縁抑制電解液及び絶縁抑制方法
JP7384346B2 (ja) 2019-11-05 2023-11-21 国立大学法人山口大学 マグネシウム二次電池用の絶縁抑制電解液及び絶縁抑制方法
WO2021166655A1 (fr) * 2020-02-21 2021-08-26 国立研究開発法人物質・材料研究機構 MATÉRIAU D'ÉLECTRODE NÉGATIVE EN ALLIAGE À BASE DE Mg, SON PROCÉDÉ DE PRODUCTION ET BATTERIE SECONDAIRE AU Mg L'UTILISANT
JPWO2021166655A1 (fr) * 2020-02-21 2021-08-26
JP7362164B2 (ja) 2020-02-21 2023-10-17 国立研究開発法人物質・材料研究機構 Mg基合金負極材及びその製造方法、並びにこれを用いたMg二次電池

Also Published As

Publication number Publication date
JP6958823B2 (ja) 2021-11-02
JPWO2018168995A1 (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6620028B2 (ja) 電気化学エネルギー蓄積デバイス
JP2009064730A (ja) マグネシウムイオン含有非水電解液及びその製造方法、並びに電気化学デバイス
WO2016050329A1 (fr) Électrolytes pour batterie rechargeable à base de calcium et batterie rechargeable à base de calcium les comprenant
JP2011142066A (ja) リチウム二次電池
CN104766965A (zh) 纳米级锂硅合金材料及其制备方法和用途
WO2014170979A1 (fr) Matériau actif d'électrode négative pour batterie secondaire au sodium utilisant une solution électrolytique de sel fondu, électrode négative et batterie secondaire au sodium utilisant une solution électrolytique de sel fondu
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
WO2018168995A1 (fr) Électrode équipée d'une couche d'alliage de magnésium et bismuth, et batterie secondaire au magnésium
JP5824057B2 (ja) 電池
US10483527B2 (en) Cathode material for rechargeable magnesium battery and method for preparing the same
JP2014216299A (ja) ナトリウムイオン二次電池
US9716292B2 (en) Electrochemical energy storage device
CN110024190B (zh) 非水二次电池用电极活性物质及使用其的非水二次电池
JP4433021B2 (ja) 非水電解質電池
JP2016100263A (ja) 多価カチオン電池用正極材料、及び多価カチオン電池
JP2011103260A (ja) 非水系二次電池用正極活物質
JP2013229279A (ja) リチウム−硫黄電池
KR101953228B1 (ko) 이차 전지
JP2006127933A (ja) 非水電解液及びこれを用いた非水電解質二次電池
JP4535722B2 (ja) 非水電解質二次電池
JP3132671B2 (ja) 非水電解液二次電池用正極活物質の製造方法
JP2019102308A (ja) 正極活物質
US11489157B2 (en) One-dimensional structure pre-calciated materials as positive electrode for rechargeable calcium batteries and cell comprising the same
JP2021077459A (ja) マグネシウム二次電池用の絶縁抑制電解液及び絶縁抑制方法
JP6385392B2 (ja) 非水電解液二次電池用正極活物質及びその製造方法、正極、電池、電池パックならびに車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767718

Country of ref document: EP

Kind code of ref document: A1