WO2018168985A1 - 圧力変動吸着式水素製造装置 - Google Patents

圧力変動吸着式水素製造装置 Download PDF

Info

Publication number
WO2018168985A1
WO2018168985A1 PCT/JP2018/010134 JP2018010134W WO2018168985A1 WO 2018168985 A1 WO2018168985 A1 WO 2018168985A1 JP 2018010134 W JP2018010134 W JP 2018010134W WO 2018168985 A1 WO2018168985 A1 WO 2018168985A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
adsorption
tower
adsorption tower
gas
Prior art date
Application number
PCT/JP2018/010134
Other languages
English (en)
French (fr)
Inventor
阿曽沼飛昂
清水翼
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to AU2018236554A priority Critical patent/AU2018236554B2/en
Priority to KR1020197026142A priority patent/KR20190127713A/ko
Priority to CN201880018530.5A priority patent/CN110382408B/zh
Priority to US16/493,048 priority patent/US11369915B2/en
Priority to EP18768092.1A priority patent/EP3597592B1/en
Publication of WO2018168985A1 publication Critical patent/WO2018168985A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40013Pressurization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40013Pressurization
    • B01D2259/40018Pressurization with more than three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • B01D2259/4003Depressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • B01D2259/40037Equalization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • B01D2259/40041Equalization with more than three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40071Nine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40075More than ten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4061Further details for adsorption processes and devices using more than four beds using five beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/0425In-situ adsorption process during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration

Definitions

  • the present invention is provided with four or five adsorption towers for producing a product gas by adsorbing an adsorption target component other than a hydrogen component from a raw material gas containing a hydrogen component to an adsorbent,
  • an adsorption process is performed during the unit treatment period, and for the adsorption tower that performs the process following the adsorption process, a pressure equalizing discharge process is performed during the unit treatment period,
  • the desorption step is performed during the unit treatment period, and for the adsorption tower that performs the step subsequent to the desorption step, the unit treatment period is performed during the unit treatment period.
  • a process control unit for controlling the operation of the adsorption tower In the initial stage of the unit treatment period, a pre-stage pressure equalization process is performed in which the gas inside the adsorption tower in the pressure equalization discharge process is supplied to the adsorption tower in the return pressure process, and at the end of the unit treatment period, the pressure equalization process is performed.
  • a post-stage pressure equalization process is performed in which the internal gas of the adsorption tower in the pressure discharge process is supplied to the adsorption tower in the desorption process, and the product gas is introduced following the pre-stage pressure equalization process as the return pressure process.
  • the present invention relates to a pressure fluctuation adsorption hydrogen production apparatus configured to perform a boosting step of boosting pressure.
  • Such a pressure fluctuation adsorption type hydrogen production apparatus produces a product gas having a high hydrogen concentration by adsorbing an adsorption target component other than a hydrogen component to an adsorbent from a raw material gas containing an adsorption target component other than a hydrogen component and a hydrogen component.
  • adsorption target component carbon monoxide, methane, etc.
  • reformed gas supplied from a reformer that reforms city gas as raw material gas Produce gas.
  • the product gas is supplied to the fuel cell, and the off gas discharged from the adsorption tower that performs the desorption process is supplied to the combustion device that heats the reformer and burned.
  • the product recovery rate is improved by performing the pre-stage pressure equalization process and the post-stage pressure equalization process, but the product purity is not lowered. It is desirable to further improve the product recovery rate.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a pressure fluctuation adsorption type hydrogen production apparatus capable of improving the product recovery rate without reducing the product purity. In the point.
  • the pressure fluctuation adsorption type hydrogen production apparatus of the present invention is provided with four or five adsorption towers that adsorb an adsorption target component other than a hydrogen component from a raw material gas containing a hydrogen component to an adsorbent to generate a product gas,
  • an adsorption process is performed during the unit treatment period, and for the adsorption tower that performs the process following the adsorption process, a pressure equalizing discharge process is performed during the unit treatment period
  • the desorption step is performed during the unit treatment period
  • the unit treatment period is performed during the unit treatment period.
  • a process control unit for controlling the operation of the adsorption tower is provided,
  • the process control unit performs a pre-equalization step of supplying a gas inside the adsorption tower of the pressure equalization discharge step to the adsorption tower of the return pressure step at an initial stage of the unit treatment period, and the unit treatment period In the final stage, a post-stage pressure equalization process is performed in which the internal gas of the adsorption tower in the pressure equalization discharge process is supplied to the adsorption tower in the desorption process.
  • the characteristic configuration is
  • the process control unit is configured to control the operation of the adsorption tower in a form in which the pressure increasing process is executed in an overlapping manner with the subsequent pressure equalizing process.
  • the above-mentioned “initial stage of the unit processing period” means a period starting from the start time of the unit processing period, and the above “end of the unit processing period” means a period ending at the end time of the unit processing period. means. Further, when there are four adsorption towers, one adsorption tower sequentially performs a plurality of processes corresponding to the desorption process. When there are five adsorption towers, two adsorption towers are used in the desorption process. A plurality of corresponding processes are sequentially performed, and the subsequent pressure equalization process for the desorption process is performed after the plurality of processes corresponding to the desorption process.
  • the pressure-increasing step overlaps with the subsequent pressure-equalizing step, which means that a part of the product gas is supplied to the adsorption tower for pressure increase, and the internal gas of the adsorption tower is used for other adsorption to equalize the pressure. It means to feed the tower and to do it in parallel.
  • the process control unit controls the operation of the adsorption tower in such a manner that the pressure increasing process following the preceding pressure equalizing process in the decompression process overlaps with the subsequent pressure equalizing process.
  • the time for executing the pre-equalization step becomes longer, the time for supplying the gas inside the adsorption tower for performing the pressure equalization discharge step to the adsorption tower for the return pressure step becomes longer. Therefore, the adsorption tower for executing the pressure equalization discharge step Since the moving speed of moving the gas inside the adsorption tower to the adsorption tower in the decompression process can be reduced and the speed at which the gas inside the adsorption tower flows inside the adsorption tower can be lowered, the pressure equalizing discharge process is executed.
  • the adsorption target component other than the hydrogen component adsorbed by the adsorbent loaded in the adsorption tower flows along with the gas flow inside the adsorption tower and moves to the adsorption tower in the return pressure step. Can be suppressed.
  • the internal pressure of the adsorption tower that executes the pressure equalization discharge process is high, so if the time for executing the pre-stage pressure equalization process is short, the adsorption tower that executes the pressure equalization discharge process
  • the moving speed for moving the internal gas to the adsorption tower in the return pressure process is considerably high, and the adsorption target components other than the hydrogen component adsorbed by the adsorbent in the adsorption tower are moved along with the moving gas.
  • the speed of moving the gas inside the adsorption tower that performs the pressure equalization discharge process to the adsorption tower in the decompression process is increased, although the phenomenon of moving to the adsorption tower tends to occur. By lowering the speed, it is possible to accurately suppress a decrease in product purity.
  • the adsorption towers are connected to each other.
  • a pressure equalizing flow path is provided.
  • a speed control valve for example, a needle valve
  • the moving speed at which the gas inside the adsorption tower that executes the pressure equalizing discharge process is moved to the adsorption tower in the return pressure process in the former pressure equalizing process is reduced, the gas moving speed is also increased in the latter pressure equalizing process. Since the speed is low, the time for performing the subsequent pressure equalization step is set to be long.
  • the pressure increase process following the pre-stage pressure equalization process in the reverse pressure process is stopped immediately before the post-stage pressure equalization process is started.
  • the pressurization process is generally performed in a form in which a part of the product gas discharged from the adsorption tower through the product gas delivery path is supplied to the adsorption tower. Since a large amount of product gas is suddenly taken out from the gas delivery path, a large pressure fluctuation occurs in the product gas delivery path, which causes inconveniences such as a large fluctuation in the internal pressure of the adsorption tower that performs the adsorption process. As a result, there is a risk that it will be difficult to perform hydrogen production appropriately.
  • this feature configuration by performing the boosting step overlapping with the subsequent pressure equalizing step, it is possible to lengthen the time for executing the previous pressure equalizing step while appropriately performing the pressure increasing step over the necessary time. Can do it.
  • the product recovery rate can be improved without reducing the product purity.
  • a further characteristic configuration of the pressure fluctuation adsorption hydrogen production apparatus is such that the process control unit distributes the previous pressure equalization process and the pressure increase process throughout the unit processing period in the return pressure process. Thus, the operation of the adsorption tower is controlled.
  • the process control unit controls the operation of the adsorption tower in a form in which the pressure equalization process and the pressure increasing process are dispersed throughout the unit processing period in the decompression process, the entire unit processing period is utilized.
  • the pressure increasing step and the pre-stage pressure equalizing step can be performed.
  • the product recovery rate can be further improved without reducing the product purity.
  • FIG. 2 is a schematic view showing a pressure fluctuation adsorption hydrogen production apparatus. These are figures which show the driving
  • FIG. 3 is a diagram showing an operation cycle. These are the schematic which shows the pressure fluctuation adsorption type hydrogen production apparatus of another embodiment. These are figures which show the driving
  • FIG. 1 As shown in FIG. 1, as five adsorption towers 1, A tower, B tower, C tower, D tower, and E tower are provided in parallel, and a compressor 2 is provided below the five adsorption towers 1. A raw material gas supply passage 3 for supplying the compressed raw material gas G and an off gas discharge passage 4 for discharging off gas are connected. As the off gas discharge path 4, a tank side off gas discharge path 4A and a pump side off gas discharge path 4B are provided in parallel.
  • the reformed gas from the reforming unit U that reforms the city gas containing hydrocarbons to generate a reformed gas having a large hydrogen component is supplied as the raw material gas G. ing.
  • the adsorption tower 1 is comprised so that adsorption
  • the adsorbent is configured to include a zeolite that adsorbs carbon monoxide and nitrogen, a carbon molecular sieve that adsorbs methane and carbon dioxide, and activated alumina that adsorbs moisture.
  • source gas supply valves A 1, B 1, C 1, D 1, E 1 that open and close the source gas supply path 3 tank side off gas discharge valves that open and close the tank side off gas discharge path 4 A A5, B5, C5, D5, E5 and pump-side offgas discharge valves A6, B6, C6, D6, E6 that open and close the pump-side offgas discharge passage 4B are provided.
  • An original gas valve 3 ⁇ / b> A that is closed when the hydrogen gas production operation is stopped is provided at the downstream side of the compressor 2 in the raw material gas supply path 3.
  • a pressure increasing flow path 6 for refluxing a part of them to the adsorption tower 1
  • a pressure equalizing flow path 7 for connecting the five adsorption towers 1 to each other.
  • the communication with the product gas delivery valves A 2, B 2, C 2, D 2, E 2 which opens and closes the communication with the product gas delivery path 5, and the communication with the pressure increasing flow path 6 is opened and closed.
  • Pressure increase valves A3, B3, C3, D3, E3, and pressure equalization regulating valves A4, B4, C4, D4, E4 that open and close communication with the pressure equalization flow path 7 are provided.
  • the pressure increasing flow path 6 is provided with a pressure increasing / closing valve 6A for opening / closing the pressure increasing flow path 6 and a pressure increasing adjusting valve 6B for adjusting the flow rate of the product gas H flowing through the pressure increasing flow path 6.
  • the pressure equalizing flow path 7 corresponds to each of the five adsorption towers 1, and the pressure equalizing valves 7A, 7B, 7C, 7D, and 7E for adjusting the speed of the gas flowing through the pressure equalizing flow path 7 are provided. Is provided.
  • the tank-side offgas discharge passage 4A is branched into a first offgas passage 4a and a second offgas passage 4b, and the first offgas passage 4a and the second offgas passage 4b serve as a burner 10 for heating the reforming unit U. It is configured to supply off-gas.
  • the first offgas passage 4a is provided with a first offgas valve 8a and a first offgas tank 9a for opening and closing the first offgas passage 4a, and a second offgas passage 4b for opening and closing the second offgas passage 4b.
  • a two off gas valve 8b and a second off gas tank 9b are provided.
  • the pump-side offgas discharge path 4B is provided with a third offgas tank 9c and a vacuum pump 11, and the offgas flowing through the pump-side offgas discharge path 4B also flows through the first offgas path 4a and the second offgas path 4b. Similarly to the off gas, the reformer U is supplied to the burner 10 for heating.
  • a process control unit P that controls the operation of the five adsorption towers 1 is provided, and the process control unit P repeats the adsorption process, the pressure equalizing discharge process, the desorption process, and the decompression process in order. It is configured to control the operation of the tower 1.
  • the adsorption process is performed during the unit treatment period K, and the adsorption tower 1 that performs the process subsequent to the adsorption process is subjected to the unit treatment.
  • the adsorption tower 1 which performs the discharge process for pressure equalization during the period K and performs the process following the discharge process for pressure equalization about the adsorption tower 1 which performs the desorption process during the unit treatment period K and performs the process following the desorption process Is configured such that during the unit processing period K, the pressure-reducing step is performed as a pre-step of the adsorption step, and the process control unit P controls the operation of the five adsorption towers 1.
  • the desorption process includes a desorption process I performed first and a desorption process II performed after the desorption process I. ing. Then, the five adsorption towers 1 sequentially perform the adsorption process, the pressure equalizing discharge process, the desorption process I, the desorption process II, and the decompression process by switching to the next process every time the unit processing period K elapses. It is configured.
  • the unit processing period K is 70 seconds, and the unit processing period K is composed of four steps.
  • the adsorption process, the pressure equalizing discharge process, the desorption process (desorption process I, desorption process II), and the return pressure process are sequentially repeated.
  • an operation cycle having 20 steps (steps) from step 1 to step 20 is executed for five unit processing periods K.
  • the process control unit P performs pressure equalization I as a pre-stage pressure equalization process for supplying the gas inside the adsorption tower 1 in the pressure equalizing discharge process to the adsorption tower 1 in the return pressure process.
  • the pressure equalization II is performed as a subsequent pressure equalization process for supplying the internal gas of the adsorption tower 1 in the pressure equalizing discharge process to the adsorption tower 1 in the desorption process (desorption process II).
  • the initial stage of the unit processing period K means a period starting from the start time of the unit processing period K
  • the end of the unit processing period K means a period ending at the end time of the unit processing period K.
  • the process control unit P is configured to perform a pressure increasing process in which the product gas H is introduced and the pressure is increased subsequent to the previous pressure equalizing process (pressure equalizing I) as the pressure recovery process.
  • the process control unit P is configured to control the operation of the adsorption tower 1 in such a manner that the pressure-increasing process is performed in an overlapping manner with the subsequent pressure equalizing process (pressure equalizing II).
  • the process control unit P controls the operation of the adsorption tower 1 in a form in which the pre-stage pressure equalization process (pressure equalization I) and the pressure increase process are dispersed throughout the unit processing period K in the return pressure process. Is configured to do.
  • each of the five adsorption towers 1 sequentially performs an adsorption process, a pressure equalizing discharge process, a desorption process I, a desorption process II, and a return pressure process.
  • the tower A performs the adsorption process
  • the tower B performs the decompression process
  • the tower C performs the desorption process II
  • the tower D performs the desorption process I
  • the tower E performs the pressure equalizing discharge process.
  • the raw material gas supply valve A1 and the product gas delivery valve A2 corresponding to the A tower are opened, and the adsorption process is performed for the A tower.
  • the pressure equalization regulating valve B4 corresponding to the B tower and the pressure equalizing regulating valve E4 corresponding to the E tower are opened, and the gas inside the E tower in the pressure equalizing discharge process is changed to B in the decompression process.
  • the pressure equalization I (previous discharge process) supplied to the tower is performed.
  • the pressure equalizing valve C4 corresponding to the C tower and the pressure equalizing valve E4 corresponding to the E tower are opened, and the internal gas of the E tower in the pressure equalizing discharge process is removed from the C tower in the desorbing process II.
  • Pressure equalization II second-stage discharge process
  • the pressure equalization I (previous discharge step) (out) and the pressure equalization II (subsequent discharge step) (out) are performed.
  • the pressure equalization I (out) is executed at step 1 and step 2
  • the pressure equalization II (out) is executed at step 4, between the pressure equalization I (out) and the pressure equalization II (out). Has a pause corresponding to step3.
  • the boosting valve B3 corresponding to the B tower is opened, and the boosting on-off valve 6A of the boosting flow path 6 is opened to boost the boosting of the B tower.
  • K ends. That is, in the B tower that executes the return pressure step, the pressure equalization I (previous discharge step) (on) and the pressure increase are sequentially performed. Then, (on) of the pressure equalization I (previous discharge step) is executed at step 1 and step 2, and subsequently the pressure increase is executed at step 3 and step 4, so that the pressure increase is equalized pressure II (the latter discharge) The process is repeated until the unit processing period K ends.
  • the tank-side off-gas discharge valve D5 corresponding to the D tower is opened and the first off-gas valve 8a is opened, and the first off-gas passage 4a is used as the first off-gas passage 4a.
  • the pressure reduction I discharged to the gas tank 9a is performed.
  • the second off-gas valve 8b is opened instead of the first off-gas valve 8a, and the second off-gas passage with the internal gas of the D tower as the off-gas Depressurization II is performed through 4b to the second off-gas tank 9b.
  • the pump-side off-gas discharge valve D6 is opened, and the internal gas in the D tower is taken as off-gas through the pump-side off-gas discharge passage 4B and sucked by the vacuum pump 11.
  • a vacuum is discharged to the third off-gas tank 9c. That is, in the D tower that performs the desorption step I, the decompression I, decompression II, and vacuum processes are sequentially performed. Then, the pressure reduction I is executed at step 1, the pressure reduction II is executed at step 2 and step 3, and the vacuum is executed at step 4.
  • the pump-side offgas discharge valve D6 corresponding to the C tower is opened, and the third gas sucked by the vacuum pump 11 through the pump-side offgas discharge passage 4B using the internal gas of the C tower as the offgas. Vacuum is discharged to the off-gas tank 9c. That is, in the C tower that performs the desorption process II, the vacuum and the equal pressure II (second-stage discharge process) (on) processes are sequentially performed. Then, vacuum is executed at step 1 to step 3, and (on) of pressure equalization II (second-stage discharge process) is executed at step 3.
  • the pressure inside the tower A is about 0.7 MPaG when the adsorption step is executed, but as shown in FIG. 3, the pressure equalization I (out), the pressure equalization II (out), the pressure reduction I, Each time the decompression II and vacuum processes are executed, the pressure gradually decreases to below atmospheric pressure.
  • the pressure inside the A tower gradually increases and returns to about 0.7 MPaG each time the equalization II (on), equalization I (on), and pressure increase processes are executed. Become.
  • the adsorption tower 1 is four towers of A tower, B tower, C tower, and D tower, and the above embodiment.
  • the basic configuration is the same as that of the above-described embodiment, differences from the above-described embodiment will be described in detail in the following description.
  • one offgas discharge path 4 is provided in the lower part of the adsorption tower 1, and one offgas tank is provided in the offgas discharge path 4. 9 is provided.
  • source gas supply valves A1, B1, C1, D1 for opening and closing the source gas supply path 3 and off gas discharge valves A7, B7, C7 for opening and closing the off gas discharge path 4, D7 is provided.
  • the product gas H that is branched from the product gas delivery path 5 for sending the product gas H toward the product tank HT and the product gas delivery path 5, and flows through the product gas delivery path 5.
  • a pressure increasing flow path 6 for refluxing a part of the adsorption tower 1 to the adsorption tower 1 and a pressure equalizing flow path 7 for connecting the four adsorption towers 1 to each other are connected.
  • the product gas delivery valves A2, B2, C2, D2 that open and close the communication with the product gas delivery passage 5, and the pressure increase valves that open and close the communication with the pressure increase flow channel 6
  • Pressure equalizing valves A4, B4, C4, and D4 that open and close communication with A3, B3, C3, and D3 and the pressure equalizing flow path 7 are provided.
  • the pressure increasing flow path 6 is provided with a pressure increasing / closing valve 6A for opening / closing the pressure increasing flow path 6 and a pressure increasing adjusting valve 6B for adjusting the flow rate of the product gas H flowing through the pressure increasing flow path 6.
  • the pressure equalizing flow path 7 is provided with pressure equalizing regulating valves 7A, 7B, 7C, 7D for adjusting the speed of the gas flowing through the pressure equalizing flow path 7, corresponding to each of the four adsorption towers 1. It has been.
  • a flow path 12 is provided, and corresponding to each of the four adsorption towers 1, cleaning valves A8, B8, C8, and D8 for opening and closing communication with the cleaning flow path 12 are provided.
  • a cleaning adjustment valve 12 ⁇ / b> A that adjusts the flow rate of the product gas H flowing through 12 is provided.
  • a process control unit P that controls the operation of the four adsorption towers 1 is provided.
  • the process control unit P sequentially repeats the adsorption process, the pressure equalizing discharge process, the desorption process, and the decompression process, and the four adsorption processes. It is configured to control the operation of the tower 1.
  • the adsorption process is performed during the unit treatment period K, and for the adsorption tower 1 that performs the process following the adsorption process,
  • the desorption process is performed during the unit treatment period K, and the adsorption tower 1 that performs the process following the desorption process is During the treatment period K, the process control unit P is configured to control the operation of the four adsorption towers 1 in a form in which a pressure-reducing process is performed as a previous process of the adsorption process.
  • the unit processing period K is 130 seconds, and the unit processing period K is composed of four steps.
  • the adsorption process, the pressure equalizing discharge process, the desorption process, and the decompression process are sequentially repeated for the four adsorption towers 1, the illustration is omitted, but the four unit processing periods K are performed.
  • an operation cycle having 16 steps (steps) from step 1 to step 16 is executed.
  • the tower A performs the adsorption process
  • the tower D performs the pressure equalizing discharge process
  • the tower C executes the desorption process
  • the tower B executes the return pressure process.
  • the adsorption step, the pressure equalizing discharge step, the desorption step, and the return pressure step are sequentially repeated in a state where the adsorption tower 1 is changed.
  • the adsorption tower 1 of this another embodiment is comprised large sized with a capacity
  • the process control unit P performs pressure equalization I as a pre-stage pressure equalization process for supplying the gas inside the adsorption tower 1 in the pressure equalizing discharge process to the adsorption tower 1 in the return pressure process.
  • pressure equalization II is performed as a subsequent pressure equalization process in which the internal gas of the adsorption tower 1 in the pressure equalizing discharge process is supplied to the adsorption tower 1 in the desorption process.
  • the initial stage of the unit processing period K means a period starting from the start time of the unit processing period K
  • the end of the unit processing period K means a period ending at the end time of the unit processing period K. means.
  • the process control unit P is configured to perform a pressure increasing process in which the product gas H is introduced and the pressure is increased subsequent to the previous pressure equalizing process (pressure equalizing I) as the pressure recovery process.
  • the process control unit P is configured to control the operation of the adsorption tower 1 in such a manner that the pressure-increasing process is performed in an overlapping manner with the subsequent pressure equalizing process (pressure equalizing II).
  • the process control unit P controls the operation of the adsorption tower 1 in a form in which the pre-stage pressure equalization process (pressure equalization I) and the pressure increase process are dispersed throughout the unit processing period K in the return pressure process. Is configured to do.
  • each of the four adsorption towers 1 sequentially performs an adsorption process, a pressure equalizing discharge process, a desorption process, and a decompression process.
  • a The operation of the unit processing period K based on FIG. 5 is representative of the case where the tower performs the adsorption process, the tower B performs the return pressure process, the tower C performs the desorption process, and the tower D performs the pressure equalization discharge process. Details of the embodiment will be described.
  • the raw material gas supply valve A1 and the product gas delivery valve A2 corresponding to the A tower are opened, and the adsorption process is performed for the A tower.
  • the pressure equalizing valve B4 corresponding to the B tower and the pressure equalizing valve D4 corresponding to the D tower are opened, and the gas inside the D tower in the pressure equalizing discharge process is changed to B in the repressure process.
  • the pressure equalization I (previous discharge process) supplied to the tower is performed.
  • the pressure equalizing valve C4 corresponding to the C tower and the pressure equalizing valve D4 corresponding to the D tower are opened, and the internal gas of the D tower in the pressure equalizing discharge process is transferred to the C tower in the desorption process.
  • Supply pressure equalization II (second-stage discharge process) is performed. That is, in the D tower that executes the pressure equalizing discharge process, the pressure equalization I (previous stage discharge process) (out) and the pressure equalization II (second stage discharge process) (out) are performed. Incidentally, the pressure equalization I (out) is executed at step 1 and step 2, and the pressure equalization II (out) is executed at step 4, between the pressure equalization I (out) and the pressure equalization II (out). Has a pause corresponding to step3.
  • the boosting valve B3 corresponding to the B tower is opened, and the boosting on-off valve 6A of the boosting flow path 6 is opened to boost the boosting of the B tower.
  • K ends. That is, in the B tower that executes the return pressure step, the pressure equalization I (previous discharge step) (on) and the pressure increase are sequentially performed. Then, (on) of the pressure equalization I (previous discharge step) is executed at step 1 and step 2, and subsequently the pressure increase is executed at step 3 and step 4, so that the pressure increase is equalized pressure II (the latter discharge) The process is repeated until the unit processing period K ends.
  • the offgas discharge valve C7 corresponding to the C tower is opened, and decompression is performed so that the internal gas of the C tower is discharged to the offgas tank 9 through the offgas discharge passage 4 as offgas.
  • the cleaning valve C8 corresponding to the C tower is opened, and the product gas H from the cleaning flow path 12 is used as the cleaning gas to flow inside the C tower. Perform cleaning. The cleaning gas after cleaning is discharged to the off gas tank 9 through the off gas discharge path 4.
  • each process of depressurization, washing, and pressure equalization II (second-stage discharge process) (on) is sequentially performed. Then, pressure reduction is performed at step 1, cleaning is performed at step 2 and step 3, and (on) of pressure equalization II (second-stage discharge process) is performed at step 4.
  • the process control unit P distributes the previous pressure equalization process (pressure equalization I) and the pressure increase process throughout the unit processing period K in the decompression process.
  • pressure equalization I previous pressure equalization process
  • pressure increase process throughout the unit processing period K in the decompression process.
  • pressure equalizing II the pressure equalizing step is performed before the end of the unit processing period K in a form in which the pressure increasing step is executed overlapping with the subsequent pressure equalizing step (pressure equalizing II). You may implement in the state which complete
  • the case where the raw material gas contains methane, carbon dioxide, carbon monoxide, and nitrogen as adsorption target components other than hydrogen and hydrogen gas is exemplified.
  • the pressure fluctuation adsorption type hydrogen production apparatus of the invention can apply various gases including adsorption target components other than hydrogen and hydrogen components as a raw material gas.
  • the cleaning is performed in the desorption step when the four adsorption towers 1 are provided.
  • the cleaning process may be performed in the desorption process.
  • the vacuum is performed in the desorption process. You may make it perform the process of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

製品純度を低下させることのない状態で製品回収率を向上することができる圧力変動吸着式水素製造装置を提供する。 吸着工程、均圧用排出工程、脱着工程、及び、復圧工程を順次繰り返す状態で、原料ガスから水素成分以外の吸着対象成分を吸着剤に吸着して製品ガスを生成する吸着塔1の作動を制御する工程制御部Pが、単位処理期間の初期において、均圧用排出工程の吸着塔1の内部のガスを復圧工程の吸着塔1に供給する前段均圧工程を行い単位処理期間の終期において、均圧用排出工程の吸着塔1の内部ガスを脱着工程の吸着塔1に供給する後段均圧工程を行い、且つ、復圧工程として、前段均圧工程の後に続いて製品ガスHを投入して昇圧する昇圧工程を行うように構成され、且つ、昇圧工程を後段均圧工程と重複して実行させる形態で、吸着塔1の作動を制御するように構成されている。

Description

圧力変動吸着式水素製造装置
 本発明は、水素成分を含む原料ガスから水素成分以外の吸着対象成分を吸着剤に吸着して製品ガスを生成する4又は5つの吸着塔が設けられ、
 前記吸着塔のうちの1つについては、単位処理期間の間は吸着工程を行い、前記吸着工程に続く工程を行う前記吸着塔については、前記単位処理期間の間は均圧用排出工程を行い、前記均圧用排出工程に続く工程を行う前記吸着塔については、前記単位処理期間の間は脱着工程を行い、前記脱着工程に続く工程を行う前記吸着塔については、前記単位処理期間の間は前記吸着工程の前工程としての復圧工程を行う形態で、前記吸着塔の作動を制御する工程制御部が設けられ、
 前記単位処理期間の初期において、前記均圧用排出工程の前記吸着塔の内部のガスを前記復圧工程の前記吸着塔に供給する前段均圧工程を行い、前記単位処理期間の終期において、前記均圧用排出工程の前記吸着塔の内部ガスを前記脱着工程の前記吸着塔に供給する後段均圧工程を行い、且つ、前記復圧工程として、前記前段均圧工程の後に続いて前記製品ガスを投入して昇圧する昇圧工程を行うように構成された圧力変動吸着式水素製造装置に関する。
 かかる圧力変動吸着式水素製造装置は、水素成分及び水素成分以外の吸着対象成分を含む原料ガスから水素成分以外の吸着対象成分を吸着剤に吸着することにより、水素濃度の高い製品ガスを製造するものである。
 例えば、都市ガスを改質処理する改質器から供給される改質ガスを原料ガスとして、水素成分以外の吸着対象成分(一酸化炭素、メタン等)を分離し、水素成分の濃度が高い製品ガスを製造する。そして、製品ガスを燃料電池に供給し、また、脱着工程を行う吸着塔から排出されるオフガスを、改質器を加熱する燃焼装置に供給して燃焼させるようにしたものがある
 かかる圧力変動吸着式水素製造装置の従来例として、復圧工程における前段均圧工程に続く昇圧工程を、後段均圧工程が開始される直前にて停止させる形態に構成されたものがある(例えば、特許文献1参照。)。
特開2015-38015号公報
 圧力変動吸着式水素製造装置においては、製品純度を低下させることのない状態で製品回収率を向上することが望まれる。
 つまり、圧力変動吸着式水素製造装置においては、前段均圧工程や後段均圧工程を行うことによって、製品回収率を向上させることが行われているが、製品純度を低下させることのない状態で製品回収率を一層向上させることが望まれる。
 本発明は、上記実状に鑑みて為されたものであって、その目的は、製品純度を低下させることのない状態で製品回収率を向上することができる圧力変動吸着式水素製造装置を提供する点にある。
 本発明の圧力変動吸着式水素製造装置は、水素成分を含む原料ガスから水素成分以外の吸着対象成分を吸着剤に吸着して製品ガスを生成する4又は5つの吸着塔が設けられ、
 前記吸着塔のうちの1つについては、単位処理期間の間は吸着工程を行い、前記吸着工程に続く工程を行う前記吸着塔については、前記単位処理期間の間は均圧用排出工程を行い、前記均圧用排出工程に続く工程を行う前記吸着塔については、前記単位処理期間の間は脱着工程を行い、前記脱着工程に続く工程を行う前記吸着塔については、前記単位処理期間の間は前記吸着工程の前工程としての復圧工程を行う形態で、前記吸着塔の作動を制御する工程制御部が設けられ、
 前記工程制御部が、前記単位処理期間の初期において、前記均圧用排出工程の前記吸着塔の内部のガスを前記復圧工程の前記吸着塔に供給する前段均圧工程を行い、前記単位処理期間の終期において、前記均圧用排出工程の前記吸着塔の内部ガスを前記脱着工程の前記吸着塔に供給する後段均圧工程を行い、且つ、前記復圧工程として、前記前段均圧工程の後に続いて前記製品ガスを投入して昇圧する昇圧工程を行うように構成されたものであって、その特徴構成は、
 前記工程制御部が、前記昇圧工程を前記後段均圧工程と重複して実行させる形態で、前記吸着塔の作動を制御するように構成されている点にある。
 上記の「前記単位処理期間の初期」とは、単位処理期間の開始時点から始まる期間を意味し、上記の「前記単位処理期間の終期」とは、単位処理期間の終了時点に終了する期間を意味する。
 また、吸着塔が4つの場合には、1つの吸着塔が、脱着工程に対応する複数の処理を順次行うことになり、吸着塔が5つの場合には、2つの吸着塔が、脱着工程に対応する複数の処理を順次行うことになり、脱着工程に対する後段均圧工程は、脱着工程に対応する複数の処理の後で行なわれることになる。
 さらに、昇圧工程を後段均圧工程と重複して実行させるとは、製品ガスの一部を昇圧のために吸着塔に供給することを、均圧のために吸着塔の内部ガスを他の吸着塔に供給することと、並行して行うことを意味する。
 すなわち、工程制御部が、復圧工程における前段均圧工程に続く昇圧工程を、後段均圧工程と重複して実行させる形態で、吸着塔の作動を制御することになるので、昇圧工程を適切に行いながらも、昇圧工程を後段均圧工程と重複して実行させることにより、前段均圧工程を実行する時間を長くすることができる。
 前段均圧工程を実行する時間が長くなると、均圧用排出工程を実行する吸着塔の内部のガスを復圧工程の吸着塔に供給する時間が長くなるから、均圧用排出工程を実行する吸着塔の内部のガスを復圧工程の吸着塔に移動させる移動速度を低速にして、吸着塔の内部のガスが吸着塔の内部を流動する速度を低くすることができるため、均圧用排出工程を実行する吸着塔に装填されている吸着剤に吸着されている水素成分以外の吸着対象成分が、吸着塔の内部のガスの流動に伴って流動して、復圧工程の吸着塔に移動することを抑制できる。
 その結果、均圧用排出工程を実行する吸着塔の吸着剤に吸着されている水素成分以外の吸着対象成分が、復圧工程の吸着塔に移動することを抑制できるため、製品純度を低下させることのない状態で製品回収率を向上することができる。
 特に、前段均圧工程においては、均圧用排出工程を実行する吸着塔の内部圧が高い状態であるから、前段均圧工程を実行する時間が短いと、均圧用排出工程を実行する吸着塔の内部のガスを復圧工程の吸着塔に移動させる移動速度がかなり高速になって、吸着塔の吸着剤に吸着されている水素成分以外の吸着対象成分が、移動するガスに伴って復圧工程の吸着塔に移動する現象が生じ易いが、前段均圧工程を実行する時間を長くして、均圧用排出工程を実行する吸着塔の内部のガスを復圧工程の吸着塔に移動させる移動速度を低速にすることによって、製品純度の低下を的確に抑制することができる。
 ちなみに、均圧用排出工程を実行する吸着塔の内部のガスを復圧工程の吸着塔に移動させるには、つまり、前段均圧工程や後段均圧工程を行うには、吸着塔同士を接続する均圧用流路を設けることになる。そして、均圧用排出工程を実行する吸着塔の内部のガスを復圧工程の吸着塔に移動させる移動速度を低速にするためには、均圧用流路に速度制御用の弁(例えば、ニードル弁)を設けることになる。
 従って、前段均圧工程において、均圧用排出工程を実行する吸着塔の内部のガスを復圧工程の吸着塔に移動させる移動速度を低速にすると、後段均圧工程においても、ガスの移動速度が低速になるため、後段均圧工程を行う時間をも長く設定することになる。
 ところで、前段均圧工程を実行する時間を長くするにあたり、従来例と同様に、復圧工程における前段均圧工程に続く昇圧工程を、後段均圧工程が開始される直前にて停止させる形態としながら、昇圧工程を実行する時間を短くして、前段均圧工程を実行する時間を長くすることが考えられるが、この場合、昇圧工程を短時間で行うことに起因して、装置の各部で圧力変動が生じて、水素製造を適切に行い難くなる虞がある。
 つまり、昇圧工程は、一般に、吸着塔から製品ガス送出路を通して排出される製品ガスの一部を吸着塔に供給する形態で行われるが、昇圧工程を短時間で行うようにすると、例えば、製品ガス送出路から多量の製品ガスを急激に取り出すために、製品ガス送出路に大きな圧力変動が生じ、それに伴って吸着工程を行う吸着塔の内部圧が大きく変動する等の不都合をきたすことになり、その結果、水素製造を適切に行い難くなる虞がある。
 本特徴構成によれば、昇圧工程を後段均圧工程と重複して実行させることにより、必要な時間を掛けて昇圧工程を適切に行いながらも、前段均圧工程を実行する時間を長くすることができるのである。
 要するに、本発明の圧力変動吸着式水素製造装置の特徴構成によれば、製品純度を低下させることのない状態で製品回収率を向上することができる。
 本発明の圧力変動吸着式水素製造装置の更なる特徴構成は、前記工程制御部が、前記復圧工程において、前記前段均圧工程と前記昇圧工程とを前記単位処理期間の全体に分散させる形態で、前記吸着塔の作動を制御するように構成されている点にある。
 すなわち、工程制御部が、復圧工程において、前段均圧工程と昇圧工程とを単位処理期間の全体に分散させる形態で、吸着塔の作動を制御するから、単位処理期間の全体を利用して、昇圧工程と前段均圧工程とを行わせることができる。
 したがって、単位処理期間の全体を利用しながら、昇圧工程を、必要な時間を掛けて適切に行いながらも、前段均圧工程を実行する時間を十分に長くして、製品純度を低下させることのない状態で製品回収率を一層向上することができる。
 要するに、本発明の圧力変動吸着式水素製造装置の特徴構成によれば、製品純度を低下させることのない状態で製品回収率を一層向上することができる。
は、圧力変動吸着式水素製造装置を示す概略図である。 は、単位処理期間の運転形態を示す図である。 は、運転サイクルを示す図である。 は、別実施形態の圧力変動吸着式水素製造装置を示す概略図である。 は、別実施形態の単位処理期間の運転形態を示す図である。
 〔実施形態〕
 以下、本発明の実施形態を図面に基づいて説明する。
 (全体構成)
 図1に示すように、5つの吸着塔1として、A塔、B塔、C塔、D塔、E塔が並列状態で設けられ、5つの吸着塔1の下部には、圧縮機2にて圧縮された原料ガスGを供給する原料ガス供給路3、及び、オフガスを排出するオフガス排出路4が接続されている。
 オフガス排出路4として、タンク側オフガス排出路4Aとポンプ側オフガス排出路4Bとが並列状態で設けられている。
 本実施形態においては、炭化水素を含む都市ガスを改質処理して水素成分が多い改質ガスを生成する改質部Uからの改質ガスが、原料ガスGとして供給されるように構成されている。
 そして、吸着塔1が、水素成分を含む原料ガスGから水素成分以外の吸着対象成分を吸着剤に吸着して製品ガスを生成するように構成されている。
 すなわち、原料ガスには、水素以外の吸着対象成分として、メタン、二酸化炭素、一酸化炭素、水分、及び、窒素を含むものであり、メタン、二酸化炭素、一酸化炭素、水分、及び、窒素が、吸着塔1の吸着剤に吸着されることになる。
 つまり、吸着剤が、一酸化炭素及び窒素を吸着するゼオライト、メタン及び二酸化炭素を吸着するカーボンモレキュラーシーブ、及び、水分を吸着する活性アルミナを含む形態に構成されている。
 そして、5つの吸着塔1の夫々に対応して、原料ガス供給路3を開閉する原料ガス供給弁A1、B1、C1、D1、E1、タンク側オフガス排出路4Aを開閉するタンク側オフガス排出弁A5、B5、C5、D5、E5、及び、ポンプ側オフガス排出路4Bを開閉するポンプ側オフガス排出弁A6、B6、C6、D6、E6が設けられている。
 尚、原料ガス供給路3における圧縮機2の下流側箇所には、水素ガス製造運転を停止する際に閉じる元ガス弁3Aが設けられている。
 5つの吸着塔1の上部には、製品ガスHを製品タンクHTに向けて送出する製品ガス送出路5、その製品ガス送出路5から分岐して、製品ガス送出路5を流動する製品ガスHの一部を吸着塔1に還流する昇圧用流路6、及び、5つの吸着塔1を互いに連通接続するための均圧用流路7が接続されている。
 そして、5つの吸着塔1の夫々に対応して、製品ガス送出路5との連通を開閉する製品ガス送出弁A2、B2、C2、D2、E2、昇圧用流路6との連通を開閉する昇圧弁A3、B3、C3、D3、E3,及び、均圧用流路7との連通を開閉する均圧調整弁A4、B4、C4、D4、E4が設けられている。
 また、昇圧用流路6には、当該昇圧用流路6を開閉する昇圧開閉弁6A、及び、当該昇圧用流路6を流動する製品ガスHの流速を調整する昇圧調整弁6Bが設けられている。
 また、均圧用流路7には、5つの吸着塔1の夫々に対応して、当該均圧用流路7を流動するガスの速度を調整する均圧調整弁7A、7B、7C、7D、7Eが設けられている。
 タンク側オフガス排出路4Aが、第1オフガス路4aと第2オフガス路4bとに分岐され、それら第1オフガス路4a及び第2オフガス路4bが、改質部Uを加熱するためのバーナ10にオフガスを供給するように構成されている。
 第1オフガス路4aには、当該第1オフガス路4aを開閉する第1オフガス弁8a及び第1オフガスタンク9aが設けられ、第2オフガス路4bには、当該第2オフガス路4bを開閉する第2オフガス弁8b及び第2オフガスタンク9bが設けられている。
 また、ポンプ側オフガス排出路4Bには、第3オフガスタンク9c及び真空ポンプ11が設けられ、ポンプ側オフガス排出路4Bを流動するオフガスも、第1オフガス路4a及び第2オフガス路4bを流動するオフガスと同様に、改質部Uを加熱するバーナ10に供給されるように構成されている。
 (運転制御について)
 5つの吸着塔1の作動を制御する工程制御部Pが設けられ、この工程制御部Pが、吸着工程、均圧用排出工程、脱着工程、及び、復圧工程を順次繰り返す状態で、5つの吸着塔1の作動を制御するように構成されている。
 すなわち、図2及び図3に示すように、吸着塔1のうちの1つについては、単位処理期間Kの間は吸着工程を行い、吸着工程に続く工程を行う吸着塔1については、単位処理期間Kの間は均圧用排出工程を行い、均圧用排出工程に続く工程を行う吸着塔1については、単位処理期間Kの間は脱着工程を行い、脱着工程に続く工程を行う吸着塔1については、単位処理期間Kの間は吸着工程の前工程としての復圧工程を行う形態で、工程制御部Pが5つの吸着塔1の作動を制御するように構成されている。
 ちなみに、本実施形態においては、5つの吸着塔1を備えることに対応させて、脱着工程として、先に行う脱着工程Iと、脱着工程Iの後で行う脱着工程IIとを備えるように構成されている。
 そして、5つの吸着塔1が、吸着工程、均圧用排出工程、脱着工程I、脱着工程II、復圧工程を、単位処理期間Kが経過するごとに次の工程に切換える形態で、順次行うように構成されている。
 ちなみに、本実施形態においては、単位処理期間Kが70秒であり、そして、単位処理期間Kが、4つのstep(ステップ)にて構成されている。
 本実施形態においては、5つの吸着塔1について、吸着工程、均圧用排出工程、脱着工程(脱着工程I、脱着工程II)、及び、復圧工程を順次繰り返すものであるから、図3に示すように、5つの単位処理期間Kに対して、step1からstep20までの20のstep(ステップ)を備える運転サイクルを実行するように構成されている。
 そして、工程制御部Pが、単位処理期間Kの初期において、均圧用排出工程の吸着塔1の内部のガスを復圧工程の吸着塔1に供給する前段均圧工程としての均圧Iを行い、単位処理期間Kの終期において、均圧用排出工程の吸着塔1の内部ガスを脱着工程(脱着工程II)の吸着塔1に供給する後段均圧工程としての均圧IIを行うように構成されている。
 ちなみに、「単位処理期間Kの初期」とは、単位処理期間Kの開始時点から始まる期間を意味し、「単位処理期間Kの終期」とは、単位処理期間Kの終了時点に終了する期間を意味する。
 また、工程制御部Pが、復圧工程として、前段均圧工程(均圧I)の後に続いて製品ガスHを投入して昇圧する昇圧工程を行うように構成されている。
 加えて、工程制御部Pが、昇圧工程を後段均圧工程(均圧II)と重複して実行させる形態で、吸着塔1の作動を制御するように構成されている。
 本実施形態においては、工程制御部Pが、復圧工程において、前段均圧工程(均圧I)と昇圧工程とを単位処理期間Kの全体に分散させる形態で、吸着塔1の作動を制御するように構成されている。
 (単位処理期間の運転形態の詳細)
 上述の如く、5つの吸着塔1の夫々は、吸着工程、均圧用排出工程、脱着工程I、脱着工程II、復圧工程を順次行うことになるが、以下の説明においては、5つの吸着塔1のうち、A塔が吸着工程を行い、B塔が復圧工程を行い、C塔が脱着工程IIを行い、D塔が脱着工程Iを行い、E塔が均圧用排出工程を行う場合を代表として、図2に基づいて、単位処理期間Kの運転形態の詳細を説明する。
 すなわち、単位処理期間Kの間は、A塔に対応する原料ガス供給弁A1及び製品ガス送出弁A2を開いて、A塔については吸着工程を行う。
 単位処理期間Kの初期において、B塔に対応する均圧調整弁B4及びE塔に対応する均圧調整弁E4を開いて、均圧用排出工程のE塔の内部のガスを復圧工程のB塔に供給する均圧I(前段排出工程)を行う。
 単位処理期間Kの終期において、C塔に対応する均圧調整弁C4及びE塔に対応する均圧調整弁E4を開いて、均圧用排出工程のE塔の内部ガスを脱着工程IIのC塔に供給する均圧II(後段排出工程)を行う。
 つまり、均圧用排出工程を実行するE塔においては、均圧I(前段排出工程)の(出)、及び、均圧II(後段排出工程)の(出)が行われることになる。
 ちなみに、均圧Iの(出)が、step1及びstep2で実行され、均圧IIの(出)が、step4で実行され、均圧Iの(出)と均圧IIの(出)との間には、step3に対応する休止がある。
 均圧I(前段排出工程)に続いて、B塔に対応する昇圧弁B3を開き、かつ、昇圧用流路6の昇圧開閉弁6Aを開いて、B塔を昇圧する昇圧を、単位処理期間Kが終了するまで行う。
 つまり、復圧工程を実行するB塔においては、均圧I(前段排出工程)の(入)、及び、昇圧が順次行われる。
 そして、均圧I(前段排出工程)の(入)が、step1及びstep2で実行され、続いて、昇圧が、step3及びstep4で実行されるものであるから、昇圧が、均圧II(後段排出工程)と重複しながら単位処理期間Kが終了するまで行われる。
 単位処理期間Kの初期において、D塔に対応するタンク側オフガス排出弁D5を開き、かつ、第1オフガス弁8aを開いて、D塔の内部ガスをオフガスとして第1オフガス路4aを通して第1オフガスタンク9aに排出する減圧Iを行う。
 減圧Iに続いて、タンク側オフガス排出弁D5を開き状態に維持したまま、第1オフガス弁8aに代えて、第2オフガス弁8bを開いて、D塔の内部ガスをオフガスとして第2オフガス路4bを通して第2オフガスタンク9bに排出する減圧IIを行う。
 減圧IIに続いて、タンク側オフガス排出弁D5に代えて、ポンプ側オフガス排出弁D6を開いて、D塔の内部ガスをオフガスとしてポンプ側オフガス排出路4Bを通して、真空ポンプ11にて吸引されている第3オフガスタンク9cに排出する真空を行う。
 つまり、脱着工程Iを実行するD塔においては、減圧I、減圧II、及び、真空の各処理が順次行われることになる。
 そして、減圧Iがstep1で実行され、減圧IIが、step2及びstep3で実行され、真空がstep4で実行されることになる。
 単位処理期間Kの初期において、C塔に対応するポンプ側オフガス排出弁D6を開いて、C塔の内部ガスをオフガスとしてポンプ側オフガス排出路4Bを通して、真空ポンプ11にて吸引されている第3オフガスタンク9cに排出する真空を行う。
 つまり、脱着工程IIを実行するC塔においては、真空、及び、均圧II(後段排出工程)の(入)の各処理が順次行われることになる。
 そして、真空がstep1~step3で実行され、均圧II(後段排出工程)の(入)が、step3で実行される。
 尚、A塔の内部の圧力は、吸着工程を実行するときには、0.7MPaG程度であるが、図3に示す如く、均圧Iの(出)、均圧IIの(出)、減圧I、減圧II、真空の各処理が実行されるごとに、漸次低下して、大気圧以下となる。
 そして、均圧IIの(入)、均圧Iの(入)、昇圧の各処理が実行されるごとに、A塔の内部の圧力は漸次上昇して、0.7MPaG程度に復帰することになる。
 〔別実施形態〕
 次に、圧力変動吸着式水素製造方法の別実施形態を説明するが、この別実施形態は、吸着塔1が、A塔、B塔、C塔、D塔の4塔であり、上記実施形態における真空の処理に代えて、洗浄の処理を行うものであるが、基本的な構成は上記実施形態と同様であるから、以下の説明においては、上記実施形態と異なる点を詳述する。
 (全体構成)
 この別施形態の圧力変動吸着式水素製造装置においては、図4に示すように、吸着塔1の下部に、1つのオフガス排出路4が設けられ、そのオフガス排出路4に、1つのオフガスタンク9が設けられている。
 4つの吸着塔1の夫々に対応して、原料ガス供給路3を開閉する原料ガス供給弁A1、B1、C1、D1、及び、オフガス排出路4を開閉するオフガス排出弁A7、B7、C7、D7が設けられている。
 4つの吸着塔1の上部には、製品ガスHを製品タンクHTに向けて送出する製品ガス送出路5、その製品ガス送出路5から分岐して、製品ガス送出路5を流動する製品ガスHの一部を吸着塔1に還流する昇圧用流路6、及び、4つの吸着塔1を互いに連通接続するための均圧用流路7が接続されている。
 そして、4つの吸着塔1の夫々に対応して、製品ガス送出路5との連通を開閉する製品ガス送出弁A2、B2、C2、D2、昇圧用流路6との連通を開閉する昇圧弁A3、B3、C3、D3、及び、均圧用流路7との連通を開閉する均圧調整弁A4、B4、C4、D4が設けられている。
 また、昇圧用流路6には、当該昇圧用流路6を開閉する昇圧開閉弁6A、及び、当該昇圧用流路6を流動する製品ガスHの流速を調整する昇圧調整弁6Bが設けられている。
 また、均圧用流路7には、4つの吸着塔1の夫々に対応して、当該均圧用流路7を流動するガスの速度を調整する均圧調整弁7A、7B、7C、7Dが設けられている。
 加えて、4つの吸着塔1の上部には、製品ガス送出路5から分岐して、製品ガス送出路5を流動する製品ガスHの一部を洗浄のために吸着塔1に流動させる洗浄用流路12が設けられ、4つの吸着塔1の夫々に対応して、洗浄用流路12との連通を開閉する洗浄用弁A8、B8、C8、D8が設けられ、また、洗浄用流路12を通流する製品ガスHの流量を調整する洗浄調整弁12Aが設けられている。
 (運転制御について)
 4つの吸着塔1の作動を制御する工程制御部Pが設けられ、この工程制御部Pが、吸着工程、均圧用排出工程、脱着工程、及び、復圧工程を順次繰り返す状態で、4つの吸着塔1の作動を制御するように構成されている。
 すなわち、図5に示すように、吸着塔1のうちの1つについては、単位処理期間Kの間は吸着工程を行い、吸着工程に続く工程を行う吸着塔1については、単位処理期間Kの間は均圧用排出工程を行い、均圧用排出工程に続く工程を行う吸着塔1については、単位処理期間Kの間は脱着工程を行い、脱着工程に続く工程を行う吸着塔1については、単位処理期間Kの間は吸着工程の前工程としての復圧工程を行う形態で、工程制御部Pが4つの吸着塔1の作動を制御するように構成されている。
 ちなみに、本実施形態においては、単位処理期間Kが130秒であり、そして、単位処理期間Kが、4つのstep(ステップ)にて構成されている。
 本実施形態においては、4つの吸着塔1について、吸着工程、均圧用排出工程、脱着工程、及び、復圧工程を順次繰り返すものであるから、図示は省略するが、4つの単位処理期間Kに対して、step1からstep16までの16のstep(ステップ)を備える運転サイクルを実行するように構成されている。
 つまり、図3においては、単位処理期間Kにおいて、A塔が吸着工程を実行し、D塔が均圧用排出工程をし、C塔が脱着工程を実行し、B塔が復圧工程を実行する場合を例示するが、単位処理期間Kが経過するごとに、吸着塔1を異ならせる状態で、吸着工程、均圧用排出工程、脱着工程、及び、復圧工程が順次繰り返されることになる。
 尚、本別実施形態の吸着塔1は、上記実施形態の吸着塔1に較べて容量が大きな大型に構成されるものであるため、各stepの時間が、上記実施形態に較べて長く設定されている。
 そして、工程制御部Pが、単位処理期間Kの初期において、均圧用排出工程の吸着塔1の内部のガスを復圧工程の吸着塔1に供給する前段均圧工程としての均圧Iを行い、単位処理期間Kの終期において、均圧用排出工程の吸着塔1の内部ガスを脱着工程の吸着塔1に供給する後段均圧工程としての均圧IIを行うように構成されている。
 ちなみに、「単位処理期間Kの初期」とは、単位処理期間Kの開始時点から始まる期間を意味し、「単位処理期間Kの終期」とは、単位処理期間Kの終了時点に終了する期間を意味する。
 また、工程制御部Pが、復圧工程として、前段均圧工程(均圧I)の後に続いて製品ガスHを投入して昇圧する昇圧工程を行うように構成されている。
 加えて、工程制御部Pが、昇圧工程を後段均圧工程(均圧II)と重複して実行させる形態で、吸着塔1の作動を制御するように構成されている。
 本実施形態においては、工程制御部Pが、復圧工程において、前段均圧工程(均圧I)と昇圧工程とを単位処理期間Kの全体に分散させる形態で、吸着塔1の作動を制御するように構成されている。
 (単位処理期間の運転形態の詳細)
 上述の如く、4つの吸着塔1の夫々は、吸着工程、均圧用排出工程、脱着工程、復圧工程を順次行うことになるが、以下の説明においては、4つの吸着塔1のうち、A塔が吸着工程を行い、B塔が復圧工程を行い、C塔が脱着工程を行い、D塔が均圧用排出工程を行う場合を代表として、図5に基づいて、単位処理期間Kの運転形態の詳細を説明する。
 すなわち、単位処理期間Kの間は、A塔に対応する原料ガス供給弁A1及び製品ガス送出弁A2を開いて、A塔については吸着工程を行う。
 単位処理期間Kの初期において、B塔に対応する均圧調整弁B4及びD塔に対応する均圧調整弁D4を開いて、均圧用排出工程のD塔の内部のガスを復圧工程のB塔に供給する均圧I(前段排出工程)を行う。
 単位処理期間Kの終期において、C塔に対応する均圧調整弁C4及びD塔に対応する均圧調整弁D4を開いて、均圧用排出工程のD塔の内部ガスを脱着工程のC塔に供給する均圧II(後段排出工程)を行う。
 つまり、均圧用排出工程を実行するD塔においては、均圧I(前段排出工程)の(出)、及び、均圧II(後段排出工程)の(出)が行われることになる。
 ちなみに、均圧Iの(出)が、step1及びstep2で実行され、均圧IIの(出)が、step4で実行され、均圧Iの(出)と均圧IIの(出)との間には、step3に対応する休止がある。
 均圧I(前段排出工程)に続いて、B塔に対応する昇圧弁B3を開き、かつ、昇圧用流路6の昇圧開閉弁6Aを開いて、B塔を昇圧する昇圧を、単位処理期間Kが終了するまで行う。
 つまり、復圧工程を実行するB塔においては、均圧I(前段排出工程)の(入)、及び、昇圧が順次行われる。
 そして、均圧I(前段排出工程)の(入)が、step1及びstep2で実行され、続いて、昇圧が、step3及びstep4で実行されるものであるから、昇圧が、均圧II(後段排出工程)と重複しながら単位処理期間Kが終了するまで行われる。
 単位処理期間Kの初期において、C塔に対応するオフガス排出弁C7を開いて、C塔の内部ガスをオフガスとしてオフガス排出路4を通してオフガスタンク9に排出する減圧を行う。
 減圧に続いて、オフガス排出弁C7を開き状態に維持したまま、C塔に対応する洗浄用弁C8を開いて、洗浄用流路12からの製品ガスHを洗浄ガスとしてC塔の内部を流動させる洗浄を行う。尚、洗浄後の洗浄ガスは、オフガス排出路4を通してオフガスタンク9に排出される。
 つまり、脱着工程を実行するC塔においては、減圧、洗浄、及び、均圧II(後段排出工程)の(入)の各処理が順次行われることになる。
 そして、減圧がstep1で実行され、洗浄が、step2及びstep3で実行され、均圧II(後段排出工程)の(入)が、step4で実行される。
 〔その他の別実施形態〕
 次に、その他の別実施形態を列記する。
(1)上記実施形態及び別実施形態においては、工程制御部Pが、復圧工程において、前段均圧工程(均圧I)と昇圧工程とを単位処理期間Kの全体に分散させる形態で、吸着塔1の作動を制御する場合を例示したが、昇圧工程を後段均圧工程(均圧II)と重複して実行させる形態で、単位処理期間Kの終了時点よりも前に、昇圧工程を終了する状態で実施してもよい。
(2)上記実施形態及び別の実施形態においては、原料ガスが、水素、水素ガス以外の吸着対象成分として、メタン、二酸化炭素、一酸化炭素、及び、窒素を含む場合を例示したが、本発明の圧力変動吸着式水素製造装置は、水素及び水素成分以外の吸着対象成分を含む種々のガスを原料ガスとして適用できるものである。
(3)上記実施形態では、5つの吸着塔1を備える場合において、脱着工程において真空の処理を行う場合を例示し、別実施形態では、4つの吸着塔1を備える場合において、脱着工程において洗浄の処理を行う場合を例示したが、5つの吸着塔1を備える場合において、脱着工程において洗浄の処理を行うようにしてもよく、また、4つの吸着塔1を備える場合において、脱着工程において真空の処理を行うようにしてもよい。
 なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
1    吸着塔
K    単位処理期間
P    工程制御部

Claims (2)

  1.  水素成分を含む原料ガスから水素成分以外の吸着対象成分を吸着剤に吸着して製品ガスを生成する4又は5つの吸着塔が設けられ、
     前記吸着塔のうちの1つについては、単位処理期間の間は吸着工程を行い、前記吸着工程に続く工程を行う前記吸着塔については、前記単位処理期間の間は均圧用排出工程を行い、前記均圧用排出工程に続く工程を行う前記吸着塔については、前記単位処理期間の間は脱着工程を行い、前記脱着工程に続く工程を行う前記吸着塔については、前記単位処理期間の間は前記吸着工程の前工程としての復圧工程を行う形態で、前記吸着塔の作動を制御する工程制御部が設けられ、
     前記工程制御部が、前記単位処理期間の初期において、前記均圧用排出工程の前記吸着塔の内部のガスを前記復圧工程の前記吸着塔に供給する前段均圧工程を行い、前記単位処理期間の終期において、前記均圧用排出工程の前記吸着塔の内部ガスを前記脱着工程の前記吸着塔に供給する後段均圧工程を行い、且つ、前記復圧工程として、前記前段均圧工程の後に続いて前記製品ガスを投入して昇圧する昇圧工程を行うように構成された圧力変動吸着式水素製造装置であって、
     前記工程制御部が、前記昇圧工程を前記後段均圧工程と重複して実行させる形態で、前記吸着塔の作動を制御するように構成されている圧力変動吸着式水素製造装置。
  2.  前記工程制御部が、前記復圧工程において、前記前段均圧工程と前記昇圧工程とを前記単位処理期間の全体に分散させる形態で、前記吸着塔の作動を制御するように構成されている請求項1記載の圧力変動吸着式水素製造装置。
PCT/JP2018/010134 2017-03-16 2018-03-15 圧力変動吸着式水素製造装置 WO2018168985A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2018236554A AU2018236554B2 (en) 2017-03-16 2018-03-15 Pressure swing adsorption hydrogen manufacturing apparatus
KR1020197026142A KR20190127713A (ko) 2017-03-16 2018-03-15 압력 변동 흡착식 수소 제조 장치
CN201880018530.5A CN110382408B (zh) 2017-03-16 2018-03-15 压力变动吸附式氢制造装置
US16/493,048 US11369915B2 (en) 2017-03-16 2018-03-15 Pressure swing adsorption type hydrogen manufacturing apparatus
EP18768092.1A EP3597592B1 (en) 2017-03-16 2018-03-15 Pressure swing adsorption hydrogen manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017051668A JP6692315B2 (ja) 2017-03-16 2017-03-16 圧力変動吸着式水素製造装置
JP2017-051668 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018168985A1 true WO2018168985A1 (ja) 2018-09-20

Family

ID=63523057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010134 WO2018168985A1 (ja) 2017-03-16 2018-03-15 圧力変動吸着式水素製造装置

Country Status (7)

Country Link
US (1) US11369915B2 (ja)
EP (1) EP3597592B1 (ja)
JP (1) JP6692315B2 (ja)
KR (1) KR20190127713A (ja)
CN (1) CN110382408B (ja)
AU (1) AU2018236554B2 (ja)
WO (1) WO2018168985A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100529A (ja) * 2018-12-21 2020-07-02 東京瓦斯株式会社 水素製造装置、及び水素製造装置の洗浄方法、水素製造装置制御プログラム、及び水素製造システム
US20220096994A1 (en) * 2020-09-29 2022-03-31 Hyundai Motor Company System and method for pressure swing adsorption

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513166B1 (ko) * 2021-08-05 2023-03-23 주식회사 에프알디 압력순환흡착 방식을 이용한 고순도 수소 가스 정제 장치
CN115259087B (zh) * 2022-07-29 2023-09-05 广西柳州钢铁集团有限公司 一种创建预判机制提高氢气纯度的制氢操作方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716447A (ja) * 1993-06-30 1995-01-20 Japan Pionics Co Ltd ガス発生装置
JP2007209868A (ja) * 2006-02-08 2007-08-23 Mitsubishi Kakoki Kaisha Ltd 圧力スイング吸着装置の安定運転方法
US20110005391A1 (en) * 2007-07-09 2011-01-13 Korea Institute Of Energy Research Pressure swing adsorption apparatus and method for hydrogen purification using the same
JP2015038015A (ja) 2013-07-19 2015-02-26 大阪瓦斯株式会社 圧力変動吸着式水素製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077780A (en) * 1976-10-20 1978-03-07 Union Carbide Corporation Recovery of hydrogen and nitrogen from ammonia plant purge gas
US5354346A (en) * 1992-10-01 1994-10-11 Air Products And Chemicals, Inc. Purge effluent repressurized adsorption process
US5704964A (en) * 1994-12-27 1998-01-06 Nippon Sanso Corporation Pressure swing adsorption process
US5656065A (en) * 1995-10-04 1997-08-12 Air Products And Chemicals, Inc. Multibed pressure swing adsorption apparatus and method for the operation thereof
US7390350B2 (en) * 2005-04-26 2008-06-24 Air Products And Chemicals, Inc. Design and operation methods for pressure swing adsorption systems
US7491260B2 (en) * 2005-06-23 2009-02-17 Air Products And Chemicals, Inc. Valve operation diagnostic method for pressure swing adsorption systems
US7618478B2 (en) * 2006-04-03 2009-11-17 Praxair Technology, Inc. Process and apparatus to recover medium purity carbon dioxide
WO2011139813A1 (en) * 2010-05-05 2011-11-10 Lummus Technology Inc. Staged blowdown of adsorbent bed
US8491704B2 (en) * 2011-01-11 2013-07-23 Praxair Technology, Inc. Six bed pressure swing adsorption process operating in normal and turndown modes
JP5968252B2 (ja) * 2013-03-04 2016-08-10 大阪瓦斯株式会社 メタンガス濃縮方法
FR3013605B1 (fr) * 2013-11-28 2017-05-26 Air Liquide Procede psa avec une etape active par temps de phase
US9381460B2 (en) * 2014-09-11 2016-07-05 Air Products And Chemicals, Inc. Pressure swing adsorption process
JP6091681B1 (ja) * 2016-03-31 2017-03-08 大阪瓦斯株式会社 圧力変動吸着式ガス製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716447A (ja) * 1993-06-30 1995-01-20 Japan Pionics Co Ltd ガス発生装置
JP2007209868A (ja) * 2006-02-08 2007-08-23 Mitsubishi Kakoki Kaisha Ltd 圧力スイング吸着装置の安定運転方法
US20110005391A1 (en) * 2007-07-09 2011-01-13 Korea Institute Of Energy Research Pressure swing adsorption apparatus and method for hydrogen purification using the same
JP2015038015A (ja) 2013-07-19 2015-02-26 大阪瓦斯株式会社 圧力変動吸着式水素製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3597592A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100529A (ja) * 2018-12-21 2020-07-02 東京瓦斯株式会社 水素製造装置、及び水素製造装置の洗浄方法、水素製造装置制御プログラム、及び水素製造システム
JP7129329B2 (ja) 2018-12-21 2022-09-01 東京瓦斯株式会社 水素製造装置、及び水素製造装置の洗浄方法、水素製造装置制御プログラム、及び水素製造システム
US20220096994A1 (en) * 2020-09-29 2022-03-31 Hyundai Motor Company System and method for pressure swing adsorption
US11850545B2 (en) * 2020-09-29 2023-12-26 Hyundai Motor Company System and method for pressure swing adsorption

Also Published As

Publication number Publication date
EP3597592A1 (en) 2020-01-22
EP3597592A4 (en) 2021-01-27
US20200122080A1 (en) 2020-04-23
AU2018236554B2 (en) 2022-11-24
EP3597592B1 (en) 2023-01-25
US11369915B2 (en) 2022-06-28
CN110382408A (zh) 2019-10-25
KR20190127713A (ko) 2019-11-13
AU2018236554A1 (en) 2019-10-31
CN110382408B (zh) 2023-04-18
JP6692315B2 (ja) 2020-05-13
JP2018154518A (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2018168985A1 (ja) 圧力変動吸着式水素製造装置
WO2015008837A1 (ja) 圧力変動吸着式水素製造方法
KR960010377B1 (ko) 흡착분리방법
US9403118B2 (en) Nitrogen-enriched gas manufacturing method, gas separation method and nitrogen-enriched gas manufacturing apparatus
JP6091681B1 (ja) 圧力変動吸着式ガス製造装置
US10201775B2 (en) Regulating flow of pressure swing adsorbers
US9944575B2 (en) Methane gas concentration method
US9895646B2 (en) Method of pressure swing adsorption with regulation
US9732297B2 (en) Gas purification method
US20130061750A1 (en) Method and apparatus for concentrating ozone gas
WO2017170983A1 (ja) 圧力変動吸着式ガス製造装置
JP2017148715A (ja) 圧力変動吸着式水素製造装置およびその運転方法
US10124287B2 (en) Gas concentration method
JP7174486B2 (ja) 水素製造装置の運転方法及び水素製造装置
WO2017169690A1 (ja) 圧力変動吸着式ガス製造装置
JPH0810551A (ja) 原料ガスから炭酸ガスを除去する方法
JP6091682B1 (ja) 圧力変動吸着式ガス製造装置
JP7261926B1 (ja) 圧力変動吸着装置及び方法
JPWO2015146766A1 (ja) 目的ガスの精製方法および精製装置
WO2020196823A1 (ja) 水素製造装置の運転方法及び水素製造装置
JP6745694B2 (ja) ガス分離装置の運転方法および、制御装置
JP2005262000A (ja) 窒素ガス生成方法
WO2017163792A1 (ja) 濃縮された目的ガスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197026142

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018768092

Country of ref document: EP

Effective date: 20191016

ENP Entry into the national phase

Ref document number: 2018236554

Country of ref document: AU

Date of ref document: 20180315

Kind code of ref document: A