WO2018168471A1 - 金属マンガンの製造方法 - Google Patents

金属マンガンの製造方法 Download PDF

Info

Publication number
WO2018168471A1
WO2018168471A1 PCT/JP2018/007554 JP2018007554W WO2018168471A1 WO 2018168471 A1 WO2018168471 A1 WO 2018168471A1 JP 2018007554 W JP2018007554 W JP 2018007554W WO 2018168471 A1 WO2018168471 A1 WO 2018168471A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
treatment
metal
solid
reducing agent
Prior art date
Application number
PCT/JP2018/007554
Other languages
English (en)
French (fr)
Inventor
山口 東洋司
村井 亮太
鷲見 郁宏
博一 杉森
関口 誓子
正浩 森
Original Assignee
Jfeスチール株式会社
Jfeマテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, Jfeマテリアル株式会社 filed Critical Jfeスチール株式会社
Priority to CN201880017577.XA priority Critical patent/CN110431245B/zh
Priority to JP2018529076A priority patent/JP6591675B2/ja
Publication of WO2018168471A1 publication Critical patent/WO2018168471A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals

Definitions

  • the present invention relates to a method for producing metal manganese (hereinafter also referred to as “metal Mn”), and more particularly, to a method for producing high-grade metal manganese using a manganese-containing material recovered from a waste dry battery or the like as a raw material.
  • metal Mn metal manganese
  • manganese is an element that has been widely used as a useful element, and has recently become an important element particularly in the production of high-tensile steel sheets for automobiles.
  • manganese used in the steel field it may be used in the component adjustment stage, which is the final stage of steel product production. In this case, high purity manganese is required. For this reason, the manganese usually used at this stage is electrolytic metal manganese produced by electrolysis.
  • the electrolysis method is a method in which manganese raw materials such as manganese ore (manganese source) are dissolved with an acid such as sulfuric acid, impurities are removed by solvent extraction, etc., and then electrolyzed to form metallic manganese. Manganese can be obtained.
  • this method has a high electrolysis cost, and the electrode plate cannot be enlarged due to problems such as peeling, and it is difficult to automate and requires manual labor.
  • wastewater treatment of selenium added to increase electrolysis efficiency there are various problems such as difficulty, and establishment of an alternative manufacturing method is required.
  • the blast furnace method is a method in which manganese ore, which is a manganese raw material (manganese source), is charged into a blast furnace together with coke and refined. It can be manufactured relatively inexpensively, but it contains impurities such as silicon and carbon, However, it is difficult to use these raw materials, and raw materials containing highly volatile substances such as zinc, sodium and potassium cannot be used.
  • the thermite method is a method of obtaining manganese metal by mixing a metal such as magnesium or aluminum with a manganese raw material (manganese source) such as manganese ore and causing a thermite reaction. Since an expensive metal is used for reduction and heating, there is a problem that the manufacturing cost increases and it is economically disadvantageous. Under such circumstances, industrial metal manganese production is currently performed only by electrolysis.
  • Manganese ores such as manganese oxide ore and manganese carbonate ore are commonly used as manganese raw materials (manganese sources) in the production of manganese metal, but these natural resources are limited and depleted. There is a fear. In particular, since ironworks consume a large amount of manganese as a raw material for steelmaking, securing a manganese source has become an extremely important problem in the steelmaking field. Moreover, in recent years, the price of manganese ore as a raw material has also been increasing due to its depletion.
  • Patent Document 1 discloses a process of selecting a manganese battery and an alkaline manganese battery from waste dry batteries, a process of obtaining powder particles by crushing and sieving, and dissolving the obtained powder particles with dilute hydrochloric acid or dilute sulfuric acid. A process for the recovery of manganese dioxide and carbon-containing mixtures with steps is described. According to the technique described in Patent Document 1, manganese dioxide and a carbon component can be easily and simultaneously recovered without causing a large loss, and the recovered mixture can be used as a starting material for producing ferromanganese. Yes.
  • Patent Document 2 describes a method for separating and recovering manganese dioxide and zinc chloride from a waste dry battery.
  • the technique described in Patent Document 2 obtains a material containing a large amount of manganese and zinc from a waste dry battery, and after washing it with water if necessary, dissolves it in hydrochloric acid, and then removes the impure components from the solution with a clean solution. Concentrate with heating, add perchloric acid to the concentrate and heat to obtain a solid mixture of manganese dioxide and zinc chloride, dissolve the solid mixture in water and filter, separate manganese dioxide and zinc chloride from waste dry batteries It is a method to collect.
  • the obtained zinc chloride is dissolved in an organic solvent to remove insoluble alkali metal salts that have been mixed therein, and the zinc chloride is purified. Further, the recovered manganese dioxide and zinc chloride are assumed to have a purity that can be used again for the production of dry batteries.
  • Patent Document 3 describes a metal recovery method.
  • the technique described in Patent Document 3 uses iron-reducing bacteria to act on a group consisting of a metal oxide and a metal hydroxide, reduces trivalent iron to divalent iron, and uses the obtained divalent iron.
  • Leaching metals such as cobalt, nickel and manganese contained in the group consisting of metal oxides and metal hydroxides to produce a leachate and a residue, separating the obtained leachate and residue, and a desired metal
  • This is a metal recovery method for recovering metal.
  • the group consisting of metal oxides and metal hydroxides includes wastes such as deep-sea bottom mineral resources, metal-containing oxide ores (land minerals), and metal-containing incineration residues.
  • low-grade metals contained in metal oxides and metal hydroxides can be recovered at high speed and with high efficiency, such as cobalt, nickel, and manganese contained in the leachate.
  • the metal can be recovered using a normal method.
  • Patent Document 4 describes a method for producing metallic manganese.
  • a manganese oxide-containing substance is charged together with a reducing agent in a heating furnace, and the furnace is heated until the furnace temperature reaches 1200 ° C. or higher, and then the manganese oxide is reduced, and then 700 ° C.
  • This is a method for producing manganese metal which is cooled to the following and discharged outside the furnace.
  • a waste battery, manganese ore, or the like can be used as the manganese oxide-containing substance, and a carbon-based reducing agent such as coal, coke, or graphite is used as the reducing agent.
  • Patent Document 5 describes a method for separating manganese and zinc from waste dry batteries.
  • the technique described in Patent Document 5 sorts manganese dry batteries and / or alkaline manganese dry batteries from waste dry batteries, crushes and sifts the selected dry batteries into powder particles, and uses an acid solution for the powder particles.
  • An acid leaching treatment was performed to obtain a leachate from which manganese and zinc were leached and a leaching residue containing manganese.
  • ozone was allowed to act on the separated leachate to produce manganese-containing precipitates and zinc ions.
  • a manganese solution contained in the waste dry battery as a leaching residue and a manganese-containing precipitate, and a zinc component contained in the waste dry battery is separated as a zinc ion-containing solution.
  • Manganese and zinc separation method is described in Patent Document 5 sorted.
  • JP 2007-12527 A Japanese Patent Laid-Open No. 11-191439 JP 2007-113116 A JP 2011-94207 A Japanese Patent Laying-Open No. 2015-206077
  • the contained Mn is an oxide or a hydroxide, and can be used as, for example, an iron-making raw material.
  • Mn is an oxide or a hydroxide
  • the manufacturing process becomes complicated, and as a result, it becomes expensive.
  • Manganese is by no means an expensive metal as a rare metal, and an increase in manufacturing cost hinders the practical application of the technology.
  • a microorganism medium and a drug added as a complexing agent that serves as a nutrient source for the microorganism are expensive.
  • the metal Mn produced by the technique described in Patent Document 4 often has a high carbon content (concentration) due to the carbon used as a reducing agent remaining, and the quality of the metal Mn is reduced. There's a problem.
  • equipment for generating ozone ozone generating equipment
  • ozone generating equipment is expensive and requires a large amount of power, leading to an increase in manufacturing cost and practical use. On top, there is a problem.
  • the present invention solves the problems of the prior art and provides a method for producing metal manganese, which can produce metal manganese that can be used as an iron-making raw material, and metal manganese equivalent to electrolytic metal manganese at low cost and in a simple manner. For the purpose.
  • the present inventors diligently studied a method for improving the quality of metallic manganese.
  • a manganese-containing substance is charged into an electric furnace (typically an arc melting furnace) together with a reducing agent and a flux and reduced in the electric furnace, it can be used as an alternative to electrolytic metal manganese.
  • high-purity manganese can be produced at low cost.
  • “substances obtained by sorting, crushing and sieving waste dry batteries” pellet particles
  • the powder obtained by sorting, crushing, and sieving the waste dry battery may contain zinc, carbon, and even chlorine as a main component in addition to manganese. I found out.
  • the carbon contained in the "manganese-containing material” can be burned and removed, and then the electric furnace It was conceived that the quality of the manganese metal obtained by the reduction treatment in can be easily improved.
  • zinc contained in the granular material is reduced to a metal body (metal zinc). It was also found that the zinc contained in the powder particles can be volatilized and removed during the reduction because of the low boiling point of metallic zinc.
  • the present inventors are concerned about the generation of harmful substances during the reduction treatment and heat treatment when chlorine is contained in the manganese-containing substance (powder body). I came up with the idea that it was necessary to treat the contained material (powder) to remove chlorine. As a result of further studies, the present inventors have found that it is effective to perform a water-washing treatment on the manganese-containing substance (powder body) as the “treatment for removing chlorine”.
  • the present inventors can easily separate and remove each component other than manganese contained in the manganese-containing material (waste dry battery powder) by performing the above-described pretreatment in advance, resulting in high quality (high Purity) It has been found that metal manganese can be produced (recovered) at low cost.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. [1] A method for producing metal manganese to obtain metal manganese by reducing a manganese-containing substance, The manganese-containing material is subjected to a water washing treatment in which water is added and washed as a slurry, Next, the slurry that has been subjected to the water washing treatment is subjected to a solid-liquid separation treatment that separates into solid and liquid, Furthermore, a heat treatment for heating the solid content separated by the solid-liquid separation treatment is performed, The solid content subjected to the heat treatment is charged into an electric furnace together with a reducing agent and a flux, and the solid content is reduced by heating by energization of the electric furnace and / or reaction heat of the reducing agent.
  • a method for producing metal manganese to obtain metal manganese [2] The method for producing manganese metal according to [1], wherein the manganese-containing substance is a substance obtained by sorting, crushing, and sieving a waste dry battery. [3] The method for producing manganese metal according to [1] or [2], wherein the ratio of the solid content of the slurry and the liquid in the water washing treatment is 1:10 to 5:10 by mass ratio. [4] The method for producing metallic manganese according to any one of [1] to [3], wherein the washing time in the washing treatment is 15 minutes or more. [5] The method for producing manganese metal according to any one of [1] to [4], wherein the temperature of the heat treatment is 600 ° C. or higher.
  • metal manganese comparable to electrolytic metal manganese can be manufactured at low cost and easily, and there is a remarkable industrial effect.
  • FIG. 1 is an explanatory diagram showing a flow of a method for producing manganese metal according to the present invention.
  • the present invention is a method for producing metallic manganese, in which a manganese-containing substance is used as a raw material, and the raw material is subjected to a reduction treatment to form metallic manganese.
  • the manganese-containing material used as a raw material is not particularly limited, but a material containing 10% by mass or more of manganese, 0.03% by mass or more of zinc, and 0.1% by mass or more of carbon is preferable.
  • “Selection” as used herein refers to a process of selecting alkaline batteries and / or alkaline manganese batteries from waste batteries. In this “sorting” step, alkaline dry batteries and / or alkaline manganese dry batteries are sorted out of the discarded and collected dry batteries.
  • the sorting method is not particularly limited as long as it can exclude mercury dry batteries, nickel-cadmium batteries, and the like, and any conventional method such as manual sorting or mechanical sorting using shape, radiation, or the like can be applied.
  • crushing refers to a process of crushing the selected alkaline battery and / or alkaline manganese battery.
  • a crusher is usually used for crushing the sorted waste battery.
  • manganese dioxide which is a positive electrode material for manganese dry batteries
  • carbon rods which are current collectors for manganese dry batteries
  • zinc powder which is a negative electrode material for alkaline manganese dry batteries
  • MnO (OH), Zn (OH) 2 , Mn produced by discharge (OH) 2 , ZnO, and various electrolytes become finer particles than the above-described foil-like / flaky solids.
  • the opening of the sieve used for sieving the crushed material is about 1 mm or more and 20 mm or less, and more preferably about 1 mm or more and 10 mm or less.
  • This obtained dry battery granular material contains manganese, zinc, and carbon as main components (elements), and further contains a certain amount of chlorine. Therefore, when manufacturing manganese metal using waste dry battery powder as a raw material, the degree of separation and removal of zinc, carbon, and chlorine is important.
  • the flow of the manufacturing method of the metal manganese of this invention is shown in FIG.
  • the raw material manganese-containing material (waste dry battery powder) is subjected to a water washing treatment, a solid-liquid separation treatment, and a heat treatment in this order.
  • a manganese-containing material (waste dry battery powder) as a raw material is subjected to a water washing treatment.
  • the washing process is a process in which water is added to a manganese-containing substance (waste dry battery powder) to form a slurry, and the slurry is washed with water.
  • the water washing treatment is preferably a treatment in which a manganese-containing substance (waste dry battery powder) is charged into a container, water is added to form a slurry, and the mixture is stirred for a certain time.
  • chlorine contained in the manganese-containing material (waste dry battery powder) is dissolved in the added water, and chlorine can be removed from the manganese-containing material (waste dry battery powder).
  • the ratio of the amount of water added to the amount of manganese-containing substance (waste dry battery particles), that is, the solid-liquid ratio is preferably 5:10 or less in terms of mass ratio.
  • the amount of the manganese-containing substance (waste dry battery particles) that is a solid is increased beyond the above-described solid-liquid ratio, handling as a slurry becomes difficult.
  • the solid-liquid ratio is preferably in the range of 1:10 to 5:10, more preferably 1:10 or more and 3:10 or less.
  • the washing treatment time is preferably 15 minutes (hereinafter referred to as “min”) or more in order to ensure the dissolution of chlorine in water.
  • the rinsing time is preferably about 1 hour (hereinafter referred to as “hr”) or less.
  • a solid-liquid separation treatment is performed on the manganese-containing material (waste dry battery powder particles) that has been subjected to the water washing treatment.
  • the manganese-containing substance (waste dry battery powder) after the water washing treatment is separated into a solid content and a separation liquid (water) by solid-liquid separation treatment.
  • the separated liquid (water) contains dissolved chlorine, whereby the contained chlorine can be separated and removed from the manganese-containing material (waste dry battery powder).
  • the solid-liquid separation process in this invention can be performed using conventional methods, such as gravity sedimentation separation, centrifugal filtration, filter press, and membrane separation.
  • the solid content obtained through the water washing treatment and the solid-liquid separation treatment is subjected to heat treatment. Thereby, carbon contained in the solid content (manganese-containing substance (waste dry battery powder)) is removed by combustion.
  • the heat treatment is a treatment in which the solid content obtained through the solid-liquid separation treatment is charged into a heating furnace and the solid content is heated.
  • the heating temperature in the heat treatment is preferably 600 ° C. or higher. If the heating temperature is less than 600 ° C., the heating temperature is low, carbon combustion does not occur, and the carbon contained in the solid content cannot be removed, or the heating is held to remove the carbon contained in the solid content. Time is prolonged and productivity is reduced.
  • a more preferable heating temperature is 800 ° C. or higher.
  • the upper limit of the heating temperature is not higher than the temperature at which manganese does not volatilize (boiling point: 2061 ° C.), the higher the temperature, the better.
  • the heat treatment time is preferably selected as appropriate from the state of carbon combustion, but is preferably about 15 min or more and about 3 hr or less from the viewpoint of economy and productivity. More preferably, it is 30 min or more and about 1 hr or less.
  • the solid content (manganese-containing substance) obtained through the water washing treatment-solid-liquid separation treatment-heating treatment is then subjected to a reduction step.
  • the reduction process is an electric furnace reduction process using an electric furnace.
  • an arc furnace is a typical example of an electric furnace to be used, but other resistance furnaces, induction melting furnaces, and the like can be used.
  • the electric furnace is an arc melting furnace.
  • the solid content (manganese-containing substance) obtained through the water washing process-solid-liquid separation process-heating process is charged into the arc melting furnace together with the reducing agent and the flux (slagging agent).
  • the charged manganese-containing material is heated by energization through a graphite electrode of an arc melting furnace, and manganese and zinc contained in the reducing agent are reduced to obtain a molten metal (metal manganese and metal zinc).
  • the molten metal temperature is 1600 ° C. or higher and the boiling point of metallic zinc is 907 ° C., when it is reduced to metallic zinc, it is vaporized as a gas.
  • high-grade metal manganese is one that can be used as a final component modifier of manganese steel, specifically, the Mn + Al concentration is 90% by mass or more, and the carbon (C) concentration is 0.2% by mass or less.
  • a phosphorus (P) concentration is 0.05 mass% or less and a sulfur (S) concentration is 0.05 mass%.
  • the volatilized zinc reacts quickly with oxygen in the air and becomes zinc oxide (melting point: 1975 ° C.) dust, which is captured by the bag filter and collected.
  • Examples of the reducing agent used in the arc melting furnace reduction process include metallic aluminum, metallic silicon, and carbon.
  • a reducing agent for producing high-grade metallic manganese carbon that is easily mixed into metallic manganese (product).
  • inexpensive ferrosilicon can be used instead of metallic silicon. In that case, the iron concentration in the product (metallic manganese) becomes high, but when used as an iron-making raw material, iron does not become an impurity and can be used as metallic manganese.
  • the graphite electrode and the molten metal (melted metal) produced by the reduction reaction contact with the graphite electrode during heating and melting in the arc melting furnace. Then, it is inevitable that the carbon concentration in the generated molten metal increases to some extent. Therefore, in the arc melting furnace reduction process of the present invention, it is preferable to increase the distance (interval) between the graphite electrode and the charge or the molten metal, and to perform an operation (high voltage operation) that avoids contact. Thereby, it is possible to prevent carbon pickup from the graphite electrode.
  • a one-step reduction may be used, but a two-step reduction including a primary reduction and a finish reduction is preferable.
  • the primary reduction is limited to the reaction that reduces the degree of oxidation, and the reaction until the metal Mn is generated does not proceed.
  • the amount of the reducing agent is a part of the total required amount.
  • the required amount of the manganese-containing substance as a raw material is blended at the time of primary reduction.
  • the blending amount of the flux is an amount suitable for the blending amount of the reducing agent.
  • the entire required amount of the remaining reducing agent is added together with the flux, and the reaction up to the formation of metal Mn is advanced. Thereby, the contact between the electrode and the molten metal (molten metal Mn) can be minimized, and mixing of C (carbon) into the metal Mn can be minimized.
  • metallic aluminum generates an aluminum thermite reaction and generates a large amount of reaction heat.
  • metal aluminum when metal aluminum is used as the reducing agent, there is a concern that overheating may occur if heating is performed while the reaction heat of the reducing agent is generated. Therefore, in the present invention, it is preferable to stop the energization heating by the electrode while the heat of reaction of the reducing agent (aluminum thermite reaction heat) is generated. Thereby, it is possible to shorten the current heating time by the graphite electrode, and there is an advantage that carbon can be prevented from being mixed into the product (metal manganese).
  • the reducing agent when metal aluminum is used as the reducing agent, it is preferable to perform divided charging in which the metal aluminum as the reducing agent is charged in a plurality of times. Thereby, the heat generated by the aluminum thermite reaction can be made uniform, overheating can be prevented, evaporation (blowing loss) of the molten metal (metal Mn) can be suppressed, and the Mn yield can be improved.
  • the reducing agent when the reducing agent is dividedly charged, it is preferable to divide and charge the manganese-containing material and flux, or the raw material, as raw materials in order to make the reaction uniform.
  • the flux used in the arc melting furnace reduction process of the present invention is a substance mainly composed of CaO.
  • the substance mainly composed of CaO include quick lime, limestone, and slaked lime.
  • the compounding amount of the reducing agent is the reducing agent necessary to completely carry out the reduction reaction in which the oxide contained in the manganese-containing material as the raw material, manganese as the hydroxide, or zinc as the metal manganese and metal zinc. It goes without saying that the amount (theoretical reduction equivalent) or more is appropriate, but it is preferable to examine the appropriate amount in advance by experiments.
  • the blending amount of the flux is adjusted using the CaO / Al 2 O 3 ratio.
  • the CaO / Al 2 O 3 ratio is 0.55, but good reaction progress can be obtained if the ratio is in the range of about 0.4 to 1.0. If it is less than 0.4, manganese oxide in the slag cannot be lowered, and if it exceeds 1.0, free quicklime increases, the melting point of the slag becomes too high, and the amount of slag increases too much.
  • the blending amount of the flux is 0.4 to 1. as the ratio (mass ratio) of the flux amount in terms of CaO to the amount of reducing agent in terms of oxide, and the CaO / Al 2 O 3 ratio. It is preferable to adjust so that it may become in the range of 0.
  • a manganese dry cell and / or an alkaline manganese dry cell are sorted out from the waste dry cell, and the sorted waste dry cell is crushed using a twin-screw rotary crusher, and sieved with a 3 mm sieve, Waste dry battery powder) was obtained.
  • Table 1 shows the composition of the obtained granular material.
  • the obtained granular material contains oxygen and moisture derived from oxides and hydroxides in addition to the elements shown in Table 1.
  • the granular material subjected to the water washing treatment was then subjected to filtration using 5C filter paper as a solid-liquid separation treatment, and separated into a solid content and a separated liquid. Chlorine analysis was performed on the obtained solid content. The results are shown in Table 2.
  • the chlorine content in the granular material can be sufficiently reduced to less than 0.1% by water washing treatment for about 15 minutes.
  • the chlorine content of less than 0.1% by mass is the target chlorine content of the raw material that can be charged into the arc melting furnace in the arc melting furnace reduction step.
  • the amount of the obtained granular material and the amount of distilled water added are changed so that the solid-liquid ratio varies between 1:10 and 5:10 in terms of mass ratio. It was charged (charged) and washed with water. The washing with water was performed at a processing time of 15 min and stirred in the container. The granular material subjected to the water washing treatment was then subjected to filtration using 5C filter paper as a solid-liquid separation treatment, and separated into a solid content and a separated liquid. Chlorine analysis was performed on the obtained solid content. The results are shown in Table 3.
  • the solid-liquid ratio is preferably about 3:10 from the viewpoint of easy stirring.
  • the water washing process which adds 67 kg of water to the granular material 20kg and stir-washes it so that it may become solid-liquid ratio 3:10
  • recovery rate 92 mass%
  • the water-washed powder granules having a water content of 20% by mass could be obtained. It has been confirmed that a solid-liquid ratio of this level can be carried out without problems in the water washing process and the solid-liquid separation process.
  • the water-washing treatment of the manganese-containing material was sufficient with a solid-liquid ratio of about 5:10 or less and a water-washing time of about 15 minutes or more.
  • the obtained powder particles (waste dry battery powder particles): About 100 kg was charged into a baking furnace and subjected to heat treatment. In the heat treatment, the heating time was fixed at 180 min, and the heating temperature was changed in the range of 400 ° C to 1000 ° C. And the residual carbon density
  • the heating temperature was set to 600 ° C. and 800 ° C., and the influence of the heating time on the residual carbon concentration in the granular material was investigated for the heating time up to 60 min.
  • the results obtained are shown in Table 5.
  • Heating temperature At 600 ° C., the residual carbon concentration decreased to about 0.1% by mass%, but was about 60 min. On the other hand, when the heating temperature is 800 ° C., the rate of decrease in the residual carbon concentration is fast, and is reduced to about 0.1% by the heat treatment for 30 minutes. From this, it was determined that the heat treatment of the manganese-containing material (waste dry battery powder) was sufficient at 600 ° C. for about 60 minutes or at 800 ° C. for about 30 minutes.
  • the obtained powder (waste battery powder): 90 kg, and the solid-liquid ratio: 3:10
  • the slurry was stirred for 30 minutes and subjected to a water washing treatment of washing with water, and further subjected to a solid-liquid separation treatment with a centrifugal filtration device to separate into a solid content and a separated liquid.
  • the obtained solid content was charged into a firing furnace and subjected to a heat treatment at a heating temperature of 800 ° C. for 30 minutes.
  • the solid content (waste dry battery powder) subjected to the above heat treatment was subjected to an arc melting furnace reduction step as a reduction step.
  • the initial mixed raw materials were solids (waste dry battery particles) subjected to the above heat treatment: 50 kg, metallic aluminum as a reducing agent: 12 kg, and CaO (quick lime) as flux: 16.5 kg.
  • the raw material was melted by conducting heating by energization as the initial heating. During melting, energization was stopped until the aluminum thermite reaction started and ended.
  • a reducing agent and a flux were additionally charged and a finish reduction treatment was performed.
  • the added reducing agent was metal aluminum: 4 kg, and the added flux was CaO: 3.5 kg.
  • the energization was stopped until the aluminum thermite reaction was completed to prevent overheating.
  • the finish reduction treatment after the aluminum thermite reaction was completed, slag was sufficiently generated, and then the electrode was immersed in the slag and energized for a predetermined time to promote the reaction and adjust the temperature.
  • the electrode was kept out of contact with the molten metal, and an operation was performed to prevent carbon contamination.
  • the molten slag was discharged, and then molten metal (molten metal manganese) was poured into the mold and solidified.
  • the obtained metal manganese was 26 kg.
  • Table 6 shows the composition of the obtained manganese metal. Table 6 also shows the composition of existing electrolytic manganese and extremely low phosphorus extremely low carbon ferromanganese for comparison.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

高品位金属マンガンの製造方法であって、マンガン含有物質、好ましくは廃乾電池から、マンガン乾電池および/またはアルカリマンガン乾電池を選別し、粉砕、篩分けして得られた粉粒体に、水を添加してスラリーとし該スラリーを水洗する水洗処理を施し、ついで、該水洗処理されたスラリーに固液分離処理を施し、さらに分離された固形分に、加熱温度:600℃以上の加熱処理を施し、ついで、加熱処理された固形分に還元剤およびフラックスを混合して、アーク溶解炉に装入し、通電加熱および/または還元剤の反応熱により、マンガン含有物質を還元する還元工程を施して、金属マンガンを得る。還元剤としては、金属アルミニウムおよび/または金属珪素とすることが好ましい。原料に含まれる塩素を水洗処理により溶解分離除去し、原料に含まれる炭素を加熱処理により燃焼除去し、さらにアーク溶解炉還元工程で、マンガン、亜鉛を還元し、還元された亜鉛を揮発除去して、高品位の金属マンガンを得ることができる。

Description

金属マンガンの製造方法
 本発明は、金属マンガン(以下、「金属Mn」ともいう)の製造方法に係り、特に、廃乾電池等から回収されたマンガン含有物質を原料として、高品位の金属マンガンを製造する方法に関する。
 鉄鋼分野においては、マンガンは従来から、有用な元素として広く用いられてきた元素であり、近年では、特に自動車向け高張力鋼板の製造において、重要な元素になっている。
 鉄鋼分野で使用するマンガンとして、鉄鋼製品製造の最終段階である成分調整段階で使用する場合がある。この場合には高純度のマンガンが要求される。このため、通常、この段階で使用されるマンガンは、電気分解法により製造された電解金属マンガンである。電気分解法は、マンガン鉱石などのマンガン原料(マンガン源)を硫酸などの酸で溶解し、溶媒抽出等で不純物を除去したのち、電気分解して金属マンガンとする方法であり、高純度の金属マンガンを得ることができる。しかし、この方法は、電解コストが高く、また剥離等の問題のため電極板を大きくできず、また自動化が困難で人手が必要であったり、また電解効率を高めるために添加するセレンの廃水処理が困難等、様々な問題があり、代替製造法の確立が求められている。
 電気分解法以外の、金属マンガンの一般的な製造方法としては、高炉法、テルミット法などがある。高炉法は、マンガン原料(マンガン源)であるマンガン鉱石をコークスと共に高炉に装入して精錬する方法であり、比較的安価に製造できるが、シリコンや炭素などの不純物を含むことや、粉状の原料を用いることが難しいこと、亜鉛、ナトリウム、カリウムなどの揮発性の高い物質を含む原料を使用できないこと、などの問題があった。また、テルミット法は、マンガン鉱石などのマンガン原料(マンガン源)に、マグネシウムやアルミニウムなどの金属を混合して、テルミット反応を起こさせることにより金属マンガンを得る方法であるが、マグネシウムやアルミニウムなどの高価な金属を還元および昇熱に用いるので、製造コストが高騰し経済的に不利となるという問題があった。このような状況から、工業的な金属マンガンの製造は、電気分解法のみで行われているのが現状である。
 金属マンガンの製造において、マンガン原料(マンガン源)として使用されているものとしては、酸化マンガン鉱石、炭酸マンガン鉱石などのマンガン鉱石が一般的であるが、これら天然資源には限りがあり、枯渇する恐れがある。特に、製鉄所では、製鋼原料としてマンガンを大量に消費することから、マンガン源の確保は、製鉄分野においても極めて重要な問題となっている。しかも、近年では、原料であるマンガン鉱石も、その枯渇から価格が上昇傾向にある。
 近年、このような金属資源の枯渇や取引価格の上昇等により、低品位の原鉱や、精鉱、製鉄所副生成物、産業廃棄物などから、積極的にマンガンを回収しようとする試みがなされている。例えば、産業廃棄物として処分されている乾電池の一部には、マンガン含有率が高いものが存在する。1次電池として代表的なマンガン乾電池およびアルカリマンガン乾電池は、正極材料として二酸化マンガンを使用している。したがって、これらの廃乾電池からマンガンを回収し、これを製鋼原料として再利用する技術が確立できれば、マンガン源の確保に有効に寄与することが期待される。しかも、世界各国では、莫大な量の乾電池が生産され、消費、廃棄されている。なお、乾電池では、負極材料として亜鉛を使用している。
 しかしながら、現状では、放電終了後に廃棄されたマンガン乾電池やアルカリマンガン乾電池から、亜鉛精錬メーカーによる亜鉛の一部の回収、あるいは、アーク溶解炉メーカーによる鉄や炭素の一部の回収が、行なわれているに過ぎず、資源リサイクルが十分に行なわれているとはいえない。現状では、未だ多くの資源がリサイクルされることなく未利用のまま、廃材として埋め立て処理等に利用されている。
 そこで、最近では、廃乾電池から、亜鉛や鉄、炭素のみならず、マンガンを回収する各種技術が提案されている。
 特許文献1には、廃乾電池からマンガン電池およびアルカリマンガン電池を選別する工程と、破砕、篩い分けして粉粒体を得る工程と、得られた粉粒体を希塩酸または希硫酸で溶解処理する工程を有する、二酸化マンガンおよび炭素含有混合物の回収方法が記載されている。特許文献1に記載された技術によれば、二酸化マンガンと炭素成分とを、簡便に、しかも大きな損失を生じることなく同時に回収でき、回収された混合物は、フェロマンガン製造の出発原料として利用できるとしている。
 特許文献2には、廃乾電池より二酸化マンガンと塩化亜鉛を分離回収する方法が記載されている。特許文献2に記載された技術は、廃乾電池の中からマンガンと亜鉛を多く含む材料を得て、これを必要により水洗したのち塩酸に溶解し、その溶液を浄液により不純成分を除去したのち加熱濃縮し、その濃縮物に過塩素酸を加えて加熱し、二酸化マンガンと塩化亜鉛の固形混合物を得、該固形混合物を水に溶解して濾過する、廃乾電池より二酸化マンガンと塩化亜鉛を分離回収する方法である。特許文献2に記載された技術では、得られた塩化亜鉛は有機溶剤に溶かして、混在していた不溶性のアルカリ金属塩類を除去して、塩化亜鉛を精製するとしている。また、回収された二酸化マンガンおよび塩化亜鉛は、再び乾電池製造に利用可能な純度を有しているとしている。
 特許文献3には、金属回収方法が記載されている。特許文献3に記載された技術は、金属酸化物および金属水酸化物からなる群に、鉄還元細菌を作用させ、3価鉄を2価鉄に還元し、得られた2価鉄を用いて、金属酸化物および金属水酸化物からなる群に含まれる、コバルト、ニッケル、およびマンガン等の金属を浸出させ、浸出液と残渣を生成し、得られた浸出液と残渣とを分離し、所望の金属を回収する金属回収方法である。金属酸化物および金属水酸化物からなる群としては、深海底鉱物資源、金属含有酸化鉱(陸上鉱物)、金属含有焼却残渣などの廃棄物等が挙げられるとしている。特許文献3に記載された技術によれば、金属酸化物、金属水酸化物に含まれる低品位の金属を高速・高効率に回収することができ、浸出液に含まれるコバルト、ニッケル、マンガン等の金属は、通常の方法を用いて、回収することができるとしている。
 特許文献4には、金属マンガンの製造方法が記載されている。特許文献4に記載された技術は、加熱炉内に還元剤とともに酸化マンガン含有物質を装入し、加熱炉の炉内温度が1200℃以上になるまで加熱し酸化マンガンを還元し、その後700℃以下まで冷却して、炉外に排出する金属マンガンの製造方法である。特許文献4に記載された技術では、酸化マンガン含有物質としては、廃電池、マンガン鉱石等を用いることができ、還元剤として、石炭、コークス、黒鉛等の炭素系還元剤を使用するとしている。
 特許文献5には、廃乾電池からのマンガンおよび亜鉛分離方法が記載されている。特許文献5に記載された技術は、廃乾電池からマンガン乾電池および/またはアルカリマンガン乾電池を選別し、選別した乾電池を破砕、篩い分けして粉粒体とし、該粉粒体に酸溶液を用いて酸浸出処理を施し、マンガンおよび亜鉛を浸出した浸出液と、マンガンを含有する浸出残渣とを得て、固液分離したのち、分離された浸出液にオゾンを作用させて、マンガン含有沈殿物と亜鉛イオン含有溶液とを得て、固液分離して、廃乾電池に含まれるマンガン成分を浸出残渣とマンガン含有沈殿物とし、廃乾電池に含まれる亜鉛成分を亜鉛イオン含有溶液として分離する、廃乾電池からのマンガンおよび亜鉛分離方法である。
特開2007-12527号公報 特開平11-191439号公報 特開2007-113116号公報 特開2011-94207号公報 特開2015-206077号公報
 しかしながら、特許文献1~3に記載された各技術で回収されたMn含有物質では、含有されるMnは、酸化物あるいは水酸化物となっていると考えられ、例えば、製鉄原料として利用可能な状態となるには、更なるMnの還元を必要とし、製造工程が複雑となり、結果として高価になるという問題がある。マンガンはレアメタルとしては決して高価な金属ではなく、製造コストの増加はその技術の実用化の妨げとなる。なお、特許文献3に記載された技術では、微生物の培地や、微生物の栄養源となる錯化剤として添加されている薬剤が高価であるという問題がある。また、特許文献4に記載された技術で製造された金属Mnは、還元剤として使用した炭素が残留して炭素含有量(濃度)が高くなる場合が多く、金属Mnとしての品位が低下するという問題がある。また、特許文献5に記載された技術では、現時点では、オゾンを発生させるための設備(オゾン発生設備)が高価であり、しかも多量の電力を必要とするため、製造コストの高騰を招き、実用上、問題を残している。
 本発明は、かかる従来技術の問題を解決し、製鉄原料として利用可能な金属マンガン、さらには電解金属マンガンに匹敵する金属マンガンを安価で、かつ簡便に製造できる、金属マンガンの製造方法を提供することを目的とする。
 本発明者らは、上記した目的を達成するために、金属マンガンの品位向上方法について鋭意検討した。その結果、マンガン含有物質を、還元剤およびフラックスとともに、電気炉(代表的な例としてはアーク溶解炉)へ装入し、電気炉で還元処理を行えば、電解金属マンガンの代替として使用可能な高純度マンガンを安価に製造することができることに想到した。さらに、この方法によれば、「廃乾電池を選別し、破砕し、篩分けして得られた物質」(粉粒体)をそのまま、マンガン源(マンガン含有物質)として使用できることも見出した。しかし、廃乾電池を選別し、破砕し、篩分けして得られた粉粒体には、主成分として、マンガン以外に、亜鉛、炭素が含まれ、さらには塩素が含有される場合があることを知見した。
 そこで、更なる検討を行い、前処理として、粉粒体(マンガン含有物質)に加熱処理を施せば、「マンガン含有物質」(粉粒体)に含まれる炭素を燃焼除去でき、その後の電気炉における還元処理で得られる金属マンガンの品位を容易に向上できることに想到した。また、還元処理に際し、粉粒体に含まれる亜鉛は、還元されて金属体(金属亜鉛)となる。金属亜鉛の沸点が低いことから、粉粒体に含まれる亜鉛は、還元時に揮発して除去できることも知見した。
 さらに、本発明者らは、マンガン含有物質(粉粒体)に塩素が含有される場合には、還元処理や、加熱処理に際し、有害物質の発生が懸念され、そのため、前処理として予め、マンガン含有物質(粉粒体)に、塩素を除去する処理を施す必要があることに思い至った。本発明者らは、更なる検討により、「塩素を除去する処理」として、マンガン含有物質(粉粒体)に水洗処理を施すことが有効であることを見出した。
 このように、本発明者らは、予め上記した前処理を施すことにより、マンガン含有物質(廃乾電池粉粒体)に含まれるマンガン以外の各成分を、容易に分離除去でき、高品位(高純度)金属マンガンを安価に製造(回収)できることを知見した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次の通りである。
[1]マンガン含有物質を還元して金属マンガンを得る金属マンガンの製造方法であって、
 前記マンガン含有物質に、水を加えてスラリーとして水洗する水洗処理を施し、
 ついで該水洗処理された前記スラリーに、固形分と液体とに分離する固液分離処理を施し、
 さらに該固液分離処理により分離された前記固形分を加熱する加熱処理を施し、
 前記加熱処理を施された前記固形分を還元剤とフラックスとともに、電気炉に装入し、該電気炉の通電による加熱および/または前記還元剤の反応熱により、前記固形分を還元処理して金属マンガンを得る金属マンガンの製造方法。
[2]前記マンガン含有物質が、廃乾電池を選別し、破砕し、篩い分けして得られた物質である[1]に記載の金属マンガンの製造方法。
[3]前記水洗処理における前記スラリーの固形分と液体の比が、質量比で1:10~5:10である[1]または[2]に記載の金属マンガンの製造方法。
[4]前記水洗処理における水洗時間が、15分以上である[1]ないし[3]のいずれかに記載の金属マンガンの製造方法。
[5]前記加熱処理の温度が、600℃以上である[1]ないし[4]のいずれかに記載の金属マンガンの製造方法。
[6]前記還元処理で使用する前記還元剤が、金属アルミニウムおよび/または金属珪素である[1]ないし[5]のいずれかに記載の金属マンガンの製造方法。
[7]前記還元処理で使用する前記フラックスが、CaOを主成分とする物質である[1]ないし[6]のいずれかに記載の金属マンガンの製造方法。
 本発明によれば、電解金属マンガンに匹敵する金属マンガンを、安価でかつ簡便に製造でき、産業上格段の効果を奏する。
図1は、本発明の金属マンガンの製造方法のフローを示す説明図である。
 本発明は、マンガン含有物質を原料とし、該原料に還元処理を施して金属マンガンとする、金属マンガンの製造方法である。本発明では、原料とするマンガン含有物質は特に限定されないが、マンガンを10質量%以上、亜鉛を0.03質量%以上、炭素を0.1質量%以上含む物質とするのが好ましい。更に、廃乾電池を選別、破砕、篩分けを行って、得られた粉粒体(廃乾電池粉粒体)を用いることが好ましい。
 ここでいう「選別」とは、廃乾電池から、アルカリ乾電池および/またはアルカリマンガン乾電池を選別する処理をいう。この「選別」工程では、廃棄・回収された乾電池の中から、アルカリ乾電池および/またはアルカリマンガン乾電池を選別する。選別方法は、水銀乾電池やニカド電池等を除外できる方法であれば特に限定する必要はなく、手選別や、形状や放射線等を利用する機械選別など、常用の方法がいずれも適用できる。
 また、ここでいう「破砕」とは、選別したアルカリ乾電池および/またはアルカリマンガン乾電池を破砕する処理をいう。選別した廃乾電池の破砕には、通常、破砕機を使用する。破砕機の型式については特に限定する必要はないが、破砕後に、乾電池を構成している包装材等と粉粒体が良く分離される型式のもの、例えば2軸回転式の破砕機とすることが好ましい。
 これら乾電池が破砕されると、包装材(鉄、プラスチックおよび紙等)や、マンガン乾電池の負極材料である亜鉛缶、アルカリマンガン乾電池の集電体である真鍮棒は、箔状や片状の固形物となる。一方、マンガン乾電池の正極材料である二酸化マンガン、マンガン乾電池の集電体である炭素棒、アルカリマンガン乾電池の負極材料である亜鉛粉、放電により生成したMnO(OH)やZn(OH)、Mn(OH)、ZnOなど、および各種電解液は、上記した箔状・片状の固形物よりも更に細かい粉粒体となる。
 したがって、選別した廃乾電池を破砕した後、所定の目開きの篩を用いて篩い分けすると、選別した廃乾電池から包装材等の大きな固形物が除去され、マンガン乾電池および/またはアルカリマンガン乾電池の主要構成材料である、二酸化マンガン、炭素、塩化亜鉛または塩化アンモニウム、鉄、苛性カリ、更には、放電によって生成したMnO(OH)やZn(OH)、Mn(OH)、ZnOなどが混合した粉粒体(廃乾電池粉粒体)を得ることができる。なお、破砕物の篩分けに使用する篩の目開きは、1mm以上20mm以下程度とすることが好ましく、さらに好ましくは1mm以上10mm以下程度である。
 この得られた廃乾電池粉粒体は、マンガン、亜鉛、および炭素が主要な成分(元素)として含まれ、さらに塩素も一定量含有されている。そのため、廃乾電池粉粒体を原料として、金属マンガンを製造する場合には、亜鉛、炭素、塩素の分離除去の程度が重要になる。本発明の金属マンガンの製造方法のフローを図1に示す。
 本発明では、還元処理を施す前に、前処理として、原料であるマンガン含有物質(廃乾電池粉粒体)に、水洗処理、固液分離処理、加熱処理をこの順で施す。
 まず、前処理として、原料であるマンガン含有物質(廃乾電池粉粒体)に、水洗処理を施す。水洗処理は、マンガン含有物質(廃乾電池粉粒体)に水を加えてスラリーとし、該スラリーを水洗する処理とする。具体的には、水洗処理は、容器にマンガン含有物質(廃乾電池粉粒体)を装入し水を加えてスラリーとし、一定時間攪拌する処理とすることが好ましい。これにより、マンガン含有物質(廃乾電池粉粒体)に含まれる塩素が、加えた水に溶解し、塩素をマンガン含有物質(廃乾電池粉粒体)から除去することが可能となる。
 本発明における水洗処理では、マンガン含有物質(廃乾電池粉粒体)量に対する加える水量の比、すなわち固液比は質量比で、5:10以下とすることが好ましい。上記した固液比を超えて、固体であるマンガン含有物質(廃乾電池粉粒体)量を増加すると、スラリーとしてのハンドリングが難しくなる。一方、固体の量を少なくし固液比を小さくなると、水洗用の容器を大きくする必要があり、経済的に不利となる。そのため、固液比は、1:10~5:10の範囲とすることが好ましく、1:10以上で3:10以下が更に好ましい。
 また、水洗処理の時間は、塩素の水への溶解を確実にするため、15分(以下「min」と記す)以上とすることが好ましい。なお、長時間の水洗は、容器が大型化するなど経済的に不利となるため、水洗時間は1時間(以下「hr」と記す)以下程度とすることが好ましい。
 水洗処理を施されたマンガン含有物質(廃乾電池粉粒体)に、ついで固液分離処理を施す。水洗処理後のマンガン含有物質(廃乾電池粉粒体)は、固液分離処理により、固形分と分離液(水)とに分離される。分離液(水)には、溶解した塩素が含まれ、これにより、マンガン含有物質(廃乾電池粉粒体)から、含まれた塩素を分離除去できる。なお、本発明における固液分離処理は、重力沈降分離、遠心ろ過、フィルタープレス、膜分離等、常用の方法を用いて行うことができる。
 ついで、水洗処理-固液分離処理を経て得られた固形分に、加熱処理を施す。これにより、固形分(マンガン含有物質(廃乾電池粉粒体))に含まれた炭素を燃焼除去する。
 加熱処理は、固液分離処理を経て得られた固形分を、加熱炉等に装入し、該固形分を加熱する処理とする。加熱処理における加熱温度は、600℃以上とすることが好ましい。加熱温度が600℃未満では、加熱温度が低く、炭素の燃焼が起こらず、固形分に含まれた炭素を除去することができないか、あるいは固形分に含まれた炭素を除去するための加熱保持時間が長時間となり、生産性が低下する。なお、より好ましい加熱温度は800℃以上である。一方、加熱温度の上限は、マンガンが揮発しない温度(沸点:2061℃)以下であれば、高温となるほど好ましい。しかし、高温での加熱処理は、加熱処理コストの高騰を招くため、処理時間とコストとの観点から適正温度を決定することが好ましい。なお、加熱処理時間は、炭素の燃焼状況から適宜、選択することが好ましいが、経済性、生産性の観点から15min以上で、3hr以下程度とすることが好ましい。より好ましくは30min以上で、1hr以下程度である。
 水洗処理-固液分離処理-加熱処理を経て得られた固形分(マンガン含有物質)は、ついで、還元工程を施される。本発明では、還元工程は、電気炉を用いる電気炉還元工程とする。ここで、用いる電気炉はアーク溶解炉が代表的な例であるが、その他に抵抗炉、誘導溶解炉などを用いることができる。以降は、電気炉がアーク溶解炉であるものとして説明する。また、生成した金属溶湯(溶融した状態の金属を「金属溶湯」または「溶湯」と言う)の出湯、溶融スラグの排滓のため、傾動可能な炉とすることが好ましい。
 アーク溶解炉還元工程では、水洗処理-固液分離処理-加熱処理を経て得られた固形分(マンガン含有物質)を、還元剤とフラックス(造滓剤)とともに、アーク溶解炉に装入する。装入されたマンガン含有物質は、アーク溶解炉の黒鉛製電極を介し通電により加熱され、還元剤により含まれるマンガンおよび亜鉛が還元されて、金属溶湯(金属マンガンおよび金属亜鉛)を得る。このとき、溶湯温度は1600℃以上であり、金属亜鉛の沸点は907℃であるため、還元されて金属亜鉛となると、気体となって揮発する。これにより、金属溶湯中は、金属マンガンのみとなり、高品位の金属マンガンを得ることができることになる。ここで、高品位の金属マンガンとは、マンガン鋼の最終成分調整剤として使用できるものであり、具体的にはMn+Al濃度が90質量%以上、炭素(C)濃度が0.2質量%以下、リン(P)濃度が0.05質量%以下、および硫黄(S)濃度が0.05質量%のものを言う。
 なお、揮発した亜鉛は、空気中の酸素と速やかに反応して酸化亜鉛(融点:1975℃)のダストとなり、バグフィルターに捕捉されて、回収される。
 アーク溶解炉還元工程で使用する還元剤としては、金属アルミニウム、金属珪素、炭素が例示できるが、高品位金属マンガンを製造する場合の還元剤としては、金属マンガン(製品)中に混入しやすい炭素は適当でなく、金属アルミニウムおよび/または金属珪素とすることが好ましい。なお、金属珪素に代えて、安価なフェロシリコンを用いることもできる。その場合は、製品(金属マンガン)中の鉄濃度が高くなるが、製鉄原料として使用する場合には鉄は不純物にはならないので金属マンガンとして使用可能である。
 なお、還元剤として、金属アルミニウムや金属珪素を用いた場合でも、アーク溶解炉での加熱、溶融時に、黒鉛製電極と、装入物特に還元反応により生成する溶融金属(金属溶湯)とが接触すると、生成される金属溶湯中の炭素濃度がある程度増加することは避けられない。そこで、本発明のアーク溶解炉還元工程では、黒鉛製電極と、装入物あるいは金属溶湯との距離(間隔)を大きくし、接触を避けた操業(高電圧操業)を行うことが好ましい。これにより、黒鉛製電極からの炭素のピックアップを防止することができる。
 また、本発明のアーク溶解炉還元工程では、一段階の還元としてもよいが、一次還元と仕上還元との二段階還元とすることが好ましい。還元剤として金属アルミニウムおよび/または金属珪素を用いる場合には、一次還元では、酸化度を低減する反応に留め、金属Mnを生成するまでの反応は進行させないこととする。このため、一次還元では、還元剤の配合量は、全必要量の一部とする。原料であるマンガン含有物質は、所要量全量を一次還元時に配合する。なお、フラックスの配合量も還元剤の配合量に適合した量とすることが好ましい。そして、仕上還元では、全必要量の残りの還元剤をフラックスとともに投入し、金属Mnの生成までの反応を進行させる。これにより、電極と金属溶湯(溶融金属Mn)との接触を必要最小限とすることができ、金属MnへのC(炭素)の混入を最小限とすることができる。
 さらに、金属アルミニウムは、アルミテルミット反応を生じ、多量の反応熱を発生する。このため、還元剤として金属アルミニウムを使用する場合、還元剤の反応熱が発生しているときに、通電による加熱を行うと、過加熱となる心配がある。そこで、本発明では、還元剤の反応熱(アルミテルミット反応熱)が発生している間は、電極による通電加熱を停止することが好ましい。これにより、黒鉛製電極による通電加熱時間を短縮することができ、製品(金属マンガン)への炭素の混入を抑制できるという利点もある。
 また、本発明のアーク溶解炉還元工程では、還元剤として金属アルミニウムを使用する場合には、還元剤である金属アルミニウムを複数回に分けて装入する、分割装入とすることが好ましい。これにより、アルミテルミット反応による発熱を均一化でき、過加熱を防止でき、溶融金属(金属Mn)の蒸発(吹き上げロス)を抑制し、Mn歩留を向上することができる。なお、還元剤の分割装入に際しては、反応の均一化のために、原料であるマンガン含有物質およびフラックス、あるいはフラックスを分割して装入することが好ましい。
 本発明のアーク溶解炉還元工程で使用するフラックスは、CaOを主成分とする物質とすることが好ましい。CaOを主成分とする物質としては、生石灰、石灰石、消石灰が例示できる。
 還元剤の配合量は、原料であるマンガン含有物質に含まれる酸化物、あるいは水酸化物としてのマンガン、亜鉛を金属マンガン、金属亜鉛とする還元反応、を完全に遂行するために必要な還元剤量(理論還元当量)以上とすることはいうまでもないが、予め実験によって適正量を検討することが好ましい。
 一方、フラックスの配合量は、CaO/Al比、を用いて調整する。CaO/Al比は0.55であるが、0.4~1.0程度の範囲内であれば、良好な反応の進行が得られる。0.4未満では、スラグ中の酸化マンガンが低下しきれず、また1.0を超えると、遊離の生石灰が多くなり、スラグの融点が高くなりすぎるとともに、スラグ量が増加しすぎる。このようなことから、フラックスの配合量は、CaO換算でのフラックス量と、酸化物換算での還元剤量との比(質量比)、CaO/Al比で0.4~1.0の範囲内となるように調整することが好ましい。
 以下、さらに実施例に基づき、本発明について説明する。
 廃乾電池から、マンガン乾電池および/またはアルカリマンガン乾電池を選別し、該選別した廃乾電池を二軸回転式破砕機を用いて破砕し、目開き:3mmの篩で篩い分けして、粉粒体(廃乾電池粉粒体)を得た。得られた粉粒体の組成を表1に示す。なお、得られた粉粒体は、表1に示す元素以外に、酸化物や水酸化物に由来する酸素および水分を含む。
 まず、得られた粉粒体50gを容器(ビーカー)に投入(装入)し、そこに蒸留水500mLを添加して、固液比1:10で水洗する水洗処理を施した。なお、水洗は、表2に示す水洗時間:5、15、30minとし、容器内で攪拌する処理とした。
 水洗処理を施された粉粒体には、ついで固液分離処理として、5Cろ紙を用いたろ過を施し、固形分と分離液とに分離した。得られた固形分について、塩素分析を実施した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2から、粉粒体(廃乾電池粉粒体)中の塩素含有量は、処理時間:15min程度の水洗処理で、十分に0.1質量%未満とすることができることが確認できる。なお、0.1質量%未満という塩素含有量は、アーク溶解炉還元工程において、アーク溶解炉に投入可能な原料の目標塩素含有量である。
 つぎに、固液比を質量比で1:10~5:10の間で変化するように、得られた粉粒体の投入量と蒸留水の添加量を変化して、容器(ビーカー)に投入(装入)し、水洗する水洗処理を施した。なお、水洗は、処理時間:15minに固定して、容器内で攪拌する処理とした。水洗処理を施された粉粒体に、ついで固液分離処理として、5Cろ紙を用いたろ過を施し、固形分と分離液とに分離した。得られた固形分について、塩素分析を実施した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、固液比を5:10まで固形分を高めたスラリーにおいても、水洗処理により、粉粒体(廃乾電池粉粒体)中の塩素量は、十分に0.1質量%未満とすることができ、水洗処理後の塩素含有量への固液比の影響は小さいことが確認できる。なお、この実験では、容器を小型としているため、撹拌を強化することで十分な撹拌ができたが、容器を大型化した場合には、固液比が3:10あたりまでは均一な撹拌が比較的容易であるが、固液比を5:10程度に高めると、均一な撹拌は難しくなることが予想される。そこで、下記のように装置を大型化(粉粒体が20kgを超え数トン規模)した際には、撹拌の容易性の観点から、固液比は3:10程度とすることが好ましい。なお、固液比3:10となるように、粉粒体20kgに、67kgの水を添加し攪拌洗浄する水洗処理を施したのち、遠心ろ過器を用いてろ過したところ、回収率92質量%、含水率20質量%の水洗処理済み粉粒体を得ることができた。この程度の固液比であれば、水洗処理、固液分離処理において問題なく実施できることを確認している。
 このようなことから、マンガン含有物質(廃乾電池粉粒体)の水洗処理は、固液比を5:10以下程度とし、水洗時間を15min程度以上とする処理で十分であると判断した。
 次に、得られた粉粒体(廃乾電池粉粒体):約100kgを、焼成炉に装入し、加熱処理を施した。加熱処理は、加熱時間:180minと一定とし、加熱温度を400℃~1000℃の範囲で変化させた。そして、加熱処理後の、粉粒体中の残留炭素濃度を測定した。得られた結果を表4に示す。なお、加熱温度:800℃、1000℃の場合には、MnおよびZn量についても測定した。
Figure JPOXMLDOC01-appb-T000004
 表4から、加熱温度:600℃以上とすることにより、加熱処理後の残留炭素濃度は、0.1質量%以下に低下していることがわかる。加熱温度:400℃、500℃の場合においても、加熱処理により残留炭素濃度は低下しているが、しかし、残留炭素濃度の低下量は少なく、残留炭素濃度を0.1質量%以下にまで低下させるためには、3hrを超える更なる長時間の加熱処理を必要とする。このため、加熱温度を400℃、500℃とすることは実用的ではないことがわかる。なお、表4から、マンガンおよび亜鉛の濃度は、加熱温度の上昇にともない炭素の燃焼除去による全体の重量減少により、相対的に高くなっていることがわかる。
 次に、加熱温度を600℃、800℃とし、粉粒体中の残留炭素濃度に及ぼす加熱時間の影響を、60minまでの加熱時間について調査した。得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 加熱温度:600℃では、残留炭素濃度が質量%で0.1%程度まで低下するのに、60min程度であった。一方、加熱温度:800℃の場合には、残留炭素濃度の低下速度は速く、30min間加熱処理で0.1%程度まで低下している。このようなことから、マンガン含有物質(廃乾電池粉粒体)の加熱処理は、600℃で60min程度、または800℃で30min程度で十分であると判断した。
 次に、上記したように、廃乾電池から、選別、破砕、篩分けして、得られた粉粒体(廃乾電池粉粒体):90kgに水を添加し、固液比:3:10のスラリーとしたのち、該スラリーに30min間攪拌し、水洗する水洗処理を施し、さらに遠心ろ過装置で固液分離処理を施し、固形分と分離液とに分離した。ついで、得られた固形分を焼成炉に装入して、加熱温度:800℃で30min間加熱する加熱処理を施した。
 ついで、上記した加熱処理を施された固形分(廃乾電池粉粒体)に、還元工程としてアーク溶解炉還元工程を施した。
 アーク溶解炉還元工程では、試験アーク溶解炉の炉内に、通電用金属Mnを5kg投入し、黒鉛製電極を降ろしたのち、初期混合原料を装入した。初期混合原料は、上記した加熱処理を施された固形分(廃乾電池粉粒体):50kgと、還元剤である金属アルミニウム:12kg、フラックスであるCaO(生石灰):16.5kgとした。
 初期混合原料を装入したのち、初期加熱として通電による加熱を実施して原料を溶解した。なお、溶解中、アルミテルミット反応が開始し終了するまでの間は、通電を停止した。
 初期加熱後のアルミテルミット反応が終了したのち、所定の温度を確保し、反応を安定して促進させるために、再び通電した。この操作を複数回繰り返した。なお、途中で、追加混合原料を装入した。追加混合原料の配合は、還元剤として金属アルミニウム:4kgと、フラックスとしてCaO(生石灰):5.5kgとした。なお、ここまでの還元剤の添加量は、一次還元処理として、金属Mnを生成するまでの理論還元当量未満とした。
 一次還元処理後、さらに還元剤およびフラックスを追加装入し、仕上還元処理を行った。追加した還元剤は、金属アルミニウム:4kg、追加したフラックスはCaO:3.5kgとした。追加還元剤を装入したのち、過熱防止のため、アルミテルミット反応が終了するまで通電を停止した。仕上還元処理では、アルミテルミット反応終了後、十分にスラグを生成させたのち、電極をスラグ中に浸漬し、所定時間通電し、反応促進、温度調節を行った。なお、仕上還元処理においても、電極は金属溶湯との接触は避け、炭素混入を防止する操業を行った。
 還元処理終了後、溶融スラグを排出し、次いで金属溶湯(溶融金属マンガン)を鋳型に注入し、凝固させた。得られた金属マンガンは26kgであった。
 得られた金属マンガンの組成を表6に示す。なお、表6には、比較として、既存の電解マンガン、極低リン極低炭素フェロマンガンの組成も合わせて示した。
Figure JPOXMLDOC01-appb-T000006
 表6から、本発明例は、アーク溶解炉による還元処理により、亜鉛は殆ど揮発し、金属中には残存しておらず、また、炭素や、その他元素の残留も少なく、電解金属マンガン代替として使用できることが確認できた。

Claims (7)

  1.  マンガン含有物質を還元して金属マンガンを得る金属マンガンの製造方法であって、
     前記マンガン含有物質に、水を加えてスラリーとして水洗する水洗処理を施し、
     ついで該水洗処理された前記スラリーに、固形分と液体とに分離する固液分離処理を施し、
     さらに該固液分離処理により分離された前記固形分を加熱する加熱処理を施し、
     前記加熱処理を施された前記固形分を還元剤とフラックスとともに、電気炉に装入し、該電気炉の通電による加熱および/または前記還元剤の反応熱により、前記固形分を還元処理して金属マンガンを得る金属マンガンの製造方法。
  2.  前記マンガン含有物質が、廃乾電池を選別し、破砕し、篩い分けして得られた物質である請求項1に記載の金属マンガンの製造方法。
  3.  前記水洗処理における前記スラリーの固形分と液体の比が、質量比で1:10~5:10である請求項1または2に記載の金属マンガンの製造方法。
  4.  前記水洗処理における水洗時間が、15分以上である請求項1ないし3のいずれかに記載の金属マンガンの製造方法。
  5.  前記加熱処理の温度が、600℃以上である請求項1ないし4のいずれかに記載の金属マンガンの製造方法。
  6.  前記還元処理で使用する前記還元剤が、金属アルミニウムおよび/または金属珪素である請求項1ないし5のいずれかに記載の金属マンガンの製造方法。
  7.  前記還元処理で使用する前記フラックスが、CaOを主成分とする物質である請求項1ないし6のいずれかに記載の金属マンガンの製造方法。
PCT/JP2018/007554 2017-03-15 2018-02-28 金属マンガンの製造方法 WO2018168471A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880017577.XA CN110431245B (zh) 2017-03-15 2018-02-28 金属锰的制造方法
JP2018529076A JP6591675B2 (ja) 2017-03-15 2018-02-28 金属マンガンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-049454 2017-03-15
JP2017049454 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018168471A1 true WO2018168471A1 (ja) 2018-09-20

Family

ID=63522971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007554 WO2018168471A1 (ja) 2017-03-15 2018-02-28 金属マンガンの製造方法

Country Status (3)

Country Link
JP (1) JP6591675B2 (ja)
CN (1) CN110431245B (ja)
WO (1) WO2018168471A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041247A (zh) * 2019-12-11 2020-04-21 遵义天磁锰业集团有限公司 一种基于金属锰制液的常温氧化铁脱硫剂的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107678A (zh) * 2021-12-03 2022-03-01 万循材料科技有限公司 一种从废旧无汞锌锰干电池中回收锌锰金属的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261443A (ja) * 1985-05-16 1986-11-19 Nippon Mining Co Ltd 廃乾電池からの有価物の分離回収方法
JP2002327215A (ja) * 2001-03-02 2002-11-15 Mitsui Mining & Smelting Co Ltd 有価金属の回収方法
JP2016156074A (ja) * 2015-02-26 2016-09-01 Jfeスチール株式会社 金属マンガンの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312307C (zh) * 2004-06-16 2007-04-25 吴光亮 一种锰合金生产工艺
CN100480184C (zh) * 2007-04-03 2009-04-22 深圳市格林美高新技术股份有限公司 一种废弃锌锰电池的选择性挥发回收工艺
JP5446735B2 (ja) * 2009-10-30 2014-03-19 Jfeスチール株式会社 金属マンガンの製造方法
CN102154566B (zh) * 2011-03-25 2012-07-25 重庆大学 一种以软锰矿为原料制备高锰含量锰-铝中间合金的方法
JP5745348B2 (ja) * 2011-06-21 2015-07-08 Npo法人サーモレックス・ラボ 廃電池のリサイクル方法
JP5948637B2 (ja) * 2013-04-03 2016-07-06 東邦亜鉛株式会社 金属回収方法
WO2015162902A1 (ja) * 2014-04-21 2015-10-29 Jfeスチール株式会社 廃乾電池からの有価成分の回収方法および回収設備
CN104060100B (zh) * 2014-05-08 2016-08-24 无锡市阳泰冶金炉料有限公司 从富锰渣中提取金属锰的工艺方法
CN104789778B (zh) * 2015-03-11 2017-09-12 长沙矿冶研究院有限责任公司 一种含Mn废旧电池的回收处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261443A (ja) * 1985-05-16 1986-11-19 Nippon Mining Co Ltd 廃乾電池からの有価物の分離回収方法
JP2002327215A (ja) * 2001-03-02 2002-11-15 Mitsui Mining & Smelting Co Ltd 有価金属の回収方法
JP2016156074A (ja) * 2015-02-26 2016-09-01 Jfeスチール株式会社 金属マンガンの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041247A (zh) * 2019-12-11 2020-04-21 遵义天磁锰业集团有限公司 一种基于金属锰制液的常温氧化铁脱硫剂的制备方法

Also Published As

Publication number Publication date
JPWO2018168471A1 (ja) 2019-03-28
CN110431245B (zh) 2022-08-12
CN110431245A (zh) 2019-11-08
JP6591675B2 (ja) 2019-10-16

Similar Documents

Publication Publication Date Title
JP7303327B2 (ja) リチウム電池正極用の前駆体化合物を調製する方法
JP6219325B2 (ja) 金属マンガンの製造方法
JP6648674B2 (ja) 金属マンガンの製造方法
CN113517484B (zh) 废钴酸锂电池的处理方法及其产物
JP6070898B2 (ja) 廃乾電池からの有価成分の回収方法および回収設備
KR20200024909A (ko) 리튬 화합물의 용해 방법 및, 탄산리튬의 제조 방법, 그리고, 리튬 이온 이차 전지 스크랩으로부터의 리튬의 회수 방법
JP2016037661A (ja) 有価金属の回収方法
WO2022085222A1 (ja) リチウムの回収方法及び炭酸リチウムの製造方法
JP6591675B2 (ja) 金属マンガンの製造方法
CN100586617C (zh) 从含锌粉料中回收并制取超细锌粉的方法
JP6411001B1 (ja) 金属マンガンの製造方法
JP6820689B2 (ja) 金属マンガンの製造方法
JP2017150029A (ja) 金属マンガンの製造方法
CN112813278A (zh) 一种铜浮渣的回收处理方法
CN111748694A (zh) 一种富集回收富钒渣中钒资源的方法
WO2023157826A1 (ja) 亜鉛回収方法
US20230411722A1 (en) Lithium-rich compositions
WO2024048247A1 (ja) 有価金属の回収方法
JP2024034822A (ja) 有価金属の回収方法
EA043847B1 (ru) Способ получения исходных соединений для катодов литиевых аккумуляторных батарей

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529076

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766769

Country of ref document: EP

Kind code of ref document: A1