WO2018168218A1 - センサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法 - Google Patents

センサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法 Download PDF

Info

Publication number
WO2018168218A1
WO2018168218A1 PCT/JP2018/002486 JP2018002486W WO2018168218A1 WO 2018168218 A1 WO2018168218 A1 WO 2018168218A1 JP 2018002486 W JP2018002486 W JP 2018002486W WO 2018168218 A1 WO2018168218 A1 WO 2018168218A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
adhesion state
elastic wave
peak frequency
frequency
Prior art date
Application number
PCT/JP2018/002486
Other languages
English (en)
French (fr)
Inventor
英文 高峯
渡部 一雄
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to CN201880000153.2A priority Critical patent/CN108966669B/zh
Priority to EP18706950.5A priority patent/EP3598124A4/en
Priority to US15/916,528 priority patent/US10712318B2/en
Publication of WO2018168218A1 publication Critical patent/WO2018168218A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4454Signal recognition, e.g. specific values or portions, signal events, signatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Definitions

  • Embodiments described herein relate generally to a sensor adhesion state determination system, a sensor adhesion state determination device, and a sensor adhesion state determination method.
  • This application claims priority on March 17, 2017 based on Japanese Patent Application No. 2017-053719 for which it applied to Japan, and uses the content here.
  • AE Acoustic Emission
  • AE is an elastic wave generated with the progress of fatigue cracks in the material.
  • the deterioration inside the structure can be evaluated by detecting AE by a sensor installed on the surface of the structure and analyzing the obtained signal.
  • the sensor is bonded to the surface of a structure to be subjected to deterioration evaluation with an adhesive or the like.
  • the adhesion of the sensor may be inadequate due to poor adhesion work or changes with time. If the adhesion is inadequate, it may lead to a decrease in accuracy of deterioration evaluation of the structure or misdiagnosis.
  • a sensor with insufficient adhesion may have a risk of falling off the surface of the structure and falling, and it has to be dealt with from a safety aspect.
  • the problem to be solved by the present invention is to provide a sensor adhesion state determination system, a sensor adhesion state determination device, and a sensor adhesion state determination method that can determine the adhesion state of a sensor adhered to a structure.
  • the sensor adhesion state determination system of the embodiment includes a plurality of sensors, a calculation unit, and a determination unit.
  • the plurality of sensors detect elastic waves.
  • the calculation unit calculates a peak frequency of the elastic wave based on the elastic wave detected by the plurality of sensors.
  • the determination unit determines the adhesion state of the sensor by comparing the peak frequency with information serving as a determination criterion.
  • the flowchart which shows the flow of a process of the signal processing part in 2nd Embodiment.
  • FIG. 1 is a diagram illustrating a system configuration of a sensor adhesion state determination system 100 according to the first embodiment.
  • the sensor adhesion state determination system 100 is used to determine the adhesion state of a sensor adhered to a structure.
  • a bridge is described as an example of a structure, but the structure is not necessarily limited to a bridge.
  • the structure may be any structure as long as an elastic wave is generated due to the occurrence or development of a crack or an external impact (for example, rain, artificial rain, etc.).
  • Bridges are not limited to structures laid on rivers and valleys, but also include various structures (for example, highway viaducts) provided above the ground.
  • the sensor adhesion state determination system 100 includes a plurality of AE sensors 10-1 to 10-n (n is an integer of 2 or more) and a signal processing unit 20.
  • the AE sensors 10-1 to 10-n and the signal processing unit 20 are connected to be communicable by wire or wirelessly.
  • the AE sensors 10-1 to 10-n are referred to as AE sensors 10 when not distinguished from each other.
  • the AE sensor 10 is adhered to the surface of a structure to be evaluated for deterioration by an adhesive or the like.
  • the AE sensor 10 is bonded to a concrete floor slab 30 of a bridge.
  • the AE sensor 10 has an oscillation function that causes an elastic wave having a specific frequency and a detection function that detects an elastic wave generated from a structure. That is, the AE sensor 10 includes an oscillation unit and a detection unit as a measurement device.
  • the oscillation function is a function of generating an elastic wave pulse at an adhesion portion between the AE sensor 10 and the structure surface by oscillating at a specific frequency. The elastic wave generated when the AE sensor 10 oscillates by the oscillation function propagates through the structure.
  • the oscillation by the AE sensor 10 may be performed at a preset time, may be performed at a preset cycle, or may be performed at a timing when an instruction is given by the user.
  • the AE sensor 10 includes a piezoelectric element, detects an elastic wave generated from the structure, and converts the detected elastic wave into a voltage signal (AE source signal).
  • the AE sensor 10 performs processing such as amplification and frequency limitation on the AE source signal and outputs the signal to the signal processing unit 20.
  • An acceleration sensor may be used instead of the AE sensor 10. In this case, the acceleration sensor outputs the processed signal to the signal processing unit 20 by performing the same processing as the AE sensor 10.
  • the signal processing unit 20 receives the AE source signal processed by the AE sensor 10 as an input.
  • the signal processing unit 20 determines the adhesion state of the oscillation source AE sensor 10 based on the frequency obtained from the input AE source signal. For example, the signal processing unit 20 determines whether the adhesion of the AE sensor 10 is good or the adhesion of the AE sensor 10 is poor.
  • the signal processing unit 20 functions as a sensor adhesion state determination device.
  • the signal processing unit 20 holds identification information of all AE sensors 10 connected to the signal processing unit 20.
  • the signal processing unit 20 includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus, and executes an adhesion state determination program.
  • the signal processing unit 20 functions as an apparatus including the calculation unit 201, the reference information storage unit 202, and the determination unit 203.
  • all or part of each function of the signal processing unit 20 may be realized by using hardware such as an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA).
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the adhesion state determination program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system. Further, the adhesion state determination program may be transmitted / received via a telecommunication line.
  • the calculation unit 201 calculates a peak frequency from the input AE source signal.
  • the reference information storage unit 202 is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device.
  • the reference information storage unit 202 stores reference range information.
  • the reference range represents a range of peak frequencies that can be determined to be in a state of good adhesion.
  • the reference range may be set as appropriate.
  • the reference information storage unit 202 may store reference range information for each type of sensor.
  • the determination unit 203 determines the adhesion state of the oscillation source AE sensor 10 based on the peak frequency for each AE sensor 10 calculated by the calculation unit 201 and the reference range.
  • FIG. 2 is a diagram showing an example of data obtained by measurement.
  • the data shown in FIG. 2 is data regarding all AE sensors 10 obtained by adhering 15 AE sensors 10 to the surface of the structure and sequentially oscillating each AE sensor 10.
  • the horizontal axis represents the AE sensor 10 of each oscillation source, and the vertical axis represents the peak frequency.
  • FIG. 2 shows an example in which elastic wave pulses are emitted by the AE sensors 10 oscillating sequentially at regular intervals.
  • a dot sequence shown in the vicinity of the peak frequency of 140 kHz represents an elastic wave pulse generated by the oscillation of each AE sensor 10.
  • a point sequence indicated by peak frequencies 50 kHz to 120 kHz represents a peak frequency obtained from an AE source signal based on an elastic wave detected by another AE sensor 10.
  • R represents a reference range.
  • the AE source signal has a peak frequency of approximately 60 kHz, but varies due to the influence of the positional relationship of the AE sensor 10 and the like.
  • the AE sensor 10 indicated by “5” and the AE sensor 10 indicated by “6” are in a state where signals can be detected, but are not sufficiently bonded.
  • the elastic wave generated by the oscillation of the AE sensor 10 in a poor adhesion state has a peak frequency lower than the reference range R based on the elastic wave detected by another AE sensor 10. I understand that. In this way, the state of the oscillation source AE sensor 10 can be determined by using the peak frequency when the elastic wave generated by the oscillation of the AE sensor 10 is detected by another AE sensor 10.
  • the distribution data shown in FIG. 2 is a frequency distribution.
  • FIG. 3 is a sequence diagram illustrating a processing flow of the sensor adhesion state determination system 100 according to the first embodiment.
  • a case where there are four AE sensors 10 will be described as an example.
  • the four AE sensors 10 will be described as a first sensor, a second sensor, a third sensor, and a fourth sensor, respectively.
  • the first sensor oscillates at a specific frequency (step S101). Vibration is transmitted to the structure by the oscillation of the first sensor, and an elastic wave pulse is generated from the structure by the vibration. A pulse (elastic wave) generated from the structure propagates through the structure and is detected by the second sensor to the fourth sensor.
  • the second sensor converts the detected elastic wave into an AE source signal, performs processing, and outputs it to the signal processing unit 20 (step S102).
  • the third sensor converts the detected elastic wave into an AE source signal, performs processing, and outputs the signal to the signal processing unit 20 (step S103).
  • the fourth sensor converts the detected elastic wave into an AE source signal, performs processing, and outputs the processed signal to the signal processing unit 20 (step S104).
  • the calculation unit 201 inputs the AE source signal output from each sensor.
  • the calculation unit 201 calculates peak frequencies f2, f3, and f4 from each of the input AE source signals (step S105).
  • the peak frequency f2 represents the peak frequency of the AE source signal output from the second sensor.
  • the peak frequency f3 represents the peak frequency of the AE source signal output from the third sensor.
  • the peak frequency f4 represents the peak frequency of the AE source signal output from the fourth sensor.
  • the calculation unit 201 outputs the calculated peak frequencies f2, f3, and f4 to the determination unit 203.
  • the determination unit 203 generates a frequency distribution based on the peak frequencies f2, f3, and f4 output from the calculation unit 201 (step S106).
  • the determination unit 203 generates a frequency distribution having the horizontal axis as the first sensor and the vertical axis as the peak frequency.
  • the determination unit 203 plots the peak frequencies corresponding to the peak frequencies f2, f3, and f4 output from the calculation unit 201.
  • the determination unit 203 performs the same processing a plurality of times. By this processing, the determination unit 203 generates a frequency distribution as shown in FIG.
  • the determination unit 203 determines that the peak frequencies f2, f3, and f4 in the frequency distribution are within the reference range based on the generated frequency distribution and the reference range information stored in the reference information storage unit 202. It is determined whether or not there is (step S107). When the peak frequencies f2, f3, and f4 are within the reference range (step S107—YES), the determination unit 203 determines that the first sensor is in good adhesion (step S108). That is, the determination unit 203 determines that the adhesion of the first sensor is good.
  • the determination unit 203 determines that the first sensor is defective in adhesion (step S109). That is, the determination unit 203 determines that the adhesion of the first sensor is poor.
  • the process of FIG. For example, when the second sensor emits a pulse, the signal processing unit 20 determines the adhesion state of the second sensor based on the elastic waves detected by the first sensor, the third sensor, and the fourth sensor. .
  • the method for determining the adhesion state is the same as described above.
  • the signal processing unit 20 calculates the peak frequency from the AE source signal based on the elastic wave detected by each AE sensor 10, and the calculated peak frequency is When it is within the reference range, the adhesion state of the oscillation source AE sensor 10 is determined to be good, and when it is not within the reference range, the adhesion state of the oscillation source AE sensor 10 is determined to be defective. Therefore, it becomes possible to determine the adhesion state of the sensor adhered to the structure.
  • the determination unit 203 is configured to generate a frequency distribution, but the determination unit 203 may not generate a frequency distribution.
  • the determination unit 203 determines whether or not the peak frequency is within the reference range based on the peak frequency calculated by the calculation unit 201 and the reference range.
  • the determination unit 203 determines that the oscillation source AE sensor 10 has poor adhesion when a specific number (for example, two, three, etc.) of peak frequencies out of the plurality of peak frequencies is not within the reference range. May be. By being configured in this way, it is not determined that the adhesion failure is caused only by one value not being within the reference range due to noise mixing or the like. Therefore, the determination can be performed more accurately.
  • the determination unit 203 may determine the adhesion state based on the statistical value of the peak frequency.
  • the statistical value is, for example, an average value, a mode value, a median value, or the like.
  • the reference information storage unit 202 stores information on the reference range of the average value.
  • the determination unit 203 compares the average value of the peak frequency with the reference range of the average value, and when the average value of the peak frequency is within the reference range of the average value, the oscillation source AE sensor 10 If the average value of the peak frequencies is not within the reference range of the average value, the oscillation source AE sensor 10 determines that the adhesion is poor.
  • the determination unit 203 calculates the frequency distribution of the detection signal of each AE sensor 10 obtained by the oscillation of each AE sensor 10, compares them, and the deviation from the distribution of the values of the other AE sensors 10 is determined. You may determine with the AE sensor 10 more than a threshold value being adhesion failure.
  • the signal processing unit 20 may be configured to output a determination result. When configured in this way, the signal processing unit 20 further includes a display unit.
  • the display unit displays the determination result by the determination unit 203. For example, the display unit may display information on the poorly bonded AE sensor 10, or may display the frequency distribution shown in FIG. With this configuration, the user of the sensor adhesion state determination system 100 can easily find the AE sensor 10 with poor adhesion.
  • FIG. 4 is a diagram illustrating a system configuration of a sensor adhesion state determination system 100a according to the second embodiment.
  • the sensor adhesion state determination system 100a is used to determine the adhesion state of a sensor adhered to a structure.
  • a bridge is described as an example of a structure, but the structure is not necessarily limited to a bridge.
  • the sensor adhesion state determination system 100a includes a plurality of AE sensors 10a-1 to 10a-n and a signal processing unit 20a.
  • the AE sensors 10a-1 to 10a-n and the signal processing unit 20a are communicably connected by wire or wirelessly.
  • the AE sensors 10a-1 to 10a-n are referred to as AE sensors 10a when they are not distinguished.
  • the AE sensor 10a is adhered to the surface of the structure to be evaluated for deterioration with an adhesive or the like.
  • the AE sensor 10a is bonded to a concrete floor slab 30 of a bridge.
  • the AE sensor 10a has a detection function of detecting elastic waves generated from the structure.
  • the AE sensor 10a has a piezoelectric element, detects an elastic wave generated from a structure, and converts the detected elastic wave into a voltage signal (AE source signal).
  • the AE sensor 10a performs processing such as amplification and frequency limitation on the AE source signal and outputs the signal to the signal processing unit 20a.
  • An acceleration sensor may be used instead of the AE sensor 10a. In this case, the acceleration sensor outputs the processed signal to the signal processing unit 20a by performing the same processing as the AE sensor 10a.
  • the signal processing unit 20a receives an AE source signal processed by the AE sensor 10a as an input.
  • the signal processing unit 20a determines the adhesion state of the AE sensor 10a based on the frequency obtained from the input AE source signal.
  • the signal processing unit 20a functions as a sensor adhesion state determination device.
  • the signal processing unit 20a holds identification information of all AE sensors 10a connected to itself.
  • the signal processing unit 20a includes a CPU, a memory, an auxiliary storage device, and the like connected by a bus, and executes an adhesion state determination program.
  • the signal processing unit 20a functions as an apparatus including the calculation unit 201, the reference information storage unit 202a, and the determination unit 203a.
  • all or part of each function of the signal processing unit 20a may be realized using hardware such as an ASIC, a PLD, or an FPGA.
  • the adhesion state determination program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system. Further, the adhesion state determination program may be transmitted / received via a telecommunication line.
  • the signal processing unit 20a is different from the signal processing unit 20 in that it includes a reference information storage unit 202a and a determination unit 203a instead of the reference information storage unit 202 and the determination unit 203.
  • the signal processing unit 20a is the same as the signal processing unit 20 in other configurations. Therefore, description of the entire signal processing unit 20a is omitted, and the reference information storage unit 202a and the determination unit 203a will be described.
  • the reference information storage unit 202a is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device.
  • the reference information storage unit 202a stores information on the resonance frequency of the sensor and a reference value.
  • the reference information storage unit 202a may store information on the resonance frequency of the sensor for each type of sensor.
  • the reference value represents a reference value that can be determined as being in a good state of adhesion.
  • the reference value may be set as appropriate.
  • the determination unit 203a determines the adhesion state of the AE sensor 10a based on the peak frequency for each AE sensor 10a calculated by the calculation unit 201, the resonance frequency of the sensor, and the reference value.
  • FIG. 5 is a diagram showing an example of data obtained by measurement.
  • the data shown in FIG. 5 is obtained when two AE sensors 10a (sensor 1 and sensor 2) are bonded to the surface of the structure, and the elastic wave generated by the impact applied to the structure is detected by the sensor 1 and sensor 2. It is data of.
  • the horizontal axis represents time
  • the vertical axis represents peak frequency.
  • FIG. 5 is a plot of the peak frequency of the AE source signal obtained when an impact is intermittently applied to the structure.
  • the sensor 1 is in a good adhesion state
  • the sensor 2 is in a poor adhesion state.
  • the distribution of peak frequencies is different between sensor 1 and sensor 2.
  • the AE sensor 10a used here has a resonance frequency of 60 kHz.
  • the resonance component of only the AE sensor 10a is dominant, and the peak frequency of the elastic wave is concentrated around 60 kHz, which is the resonance frequency of the AE sensor 10a.
  • the signal processing unit 20a compares the peak frequency indicated by the distribution of the peak frequency of the elastic wave detected by the AE sensor 10a with the resonance frequency of the AE sensor 10a that has detected the elastic wave, and the comparison result is substantially the same.
  • the AE sensor 10a can be determined as an adhesion failure.
  • substantially coincidence represents a case where a difference between values to be compared (for example, a peak frequency and a resonance frequency) is ⁇ several KHz (for example, ⁇ 5 kHz).
  • FIG. 6A and 6B show the results of taking out one waveform of each of sensor 1 and sensor 2 in FIG. 5 and performing wavelet transform. 6A and 6B, the horizontal axis represents time, and the vertical axis represents frequency.
  • FIG. 6A is a diagram illustrating a result of wavelet transform performed on one waveform of the sensor 1 having a good adhesion state.
  • FIG. 6B is a diagram illustrating a result of wavelet transform performed on one waveform of the sensor 2 having a poor adhesion state. As shown in FIG.
  • the determination unit 203a determines that the AE when the ratio of the elastic waves whose peak frequency substantially matches the resonance frequency in a time equal to or higher than a predetermined ratio among the elastic waves detected by the AE sensor 10a is equal to or higher than the reference value.
  • the sensor 10a can be determined to be an adhesion failure.
  • the structure demonstrated in FIG.5 and FIG.6 is concrete.
  • FIG. 7 is a flowchart showing a processing flow of the signal processing unit 20a in the second embodiment.
  • FIG. 7 illustrates an example in which an elastic wave detected by one AE sensor 10a among a plurality of AE sensors 10a is used.
  • one AE sensor 10a is described as a first sensor.
  • the calculation unit 201 calculates a peak frequency from the elastic wave obtained by the first sensor (step S201).
  • the calculation unit 201 outputs the calculated peak frequency to the determination unit 203a.
  • the determination unit 203a compares the calculated peak frequency with the resonance frequency of the AE sensor 10a.
  • the determination unit 203a determines whether or not the difference between the calculated peak frequency and the resonance frequency of the sensor is equal to or less than a predetermined allowable value ⁇ (for example, several kHz). Further, the determination unit 203a calculates the frequency of the elastic wave having a frequency difference of ⁇ or less with respect to the obtained elastic wave (step S202).
  • a predetermined allowable value ⁇ for example, several kHz.
  • the determination unit 203a compares the calculated frequency with a reference value stored in the reference information storage unit 202a to determine whether the frequency is less than the reference value (step S203).
  • the determination unit 203a determines that the first sensor has good adhesion (step S204). That is, the determination unit 203a determines that the adhesion of the first sensor is good.
  • the determination unit 203a determines that the first sensor is defective in adhesion (step S205). That is, the determination unit 203a determines that the first sensor is in a poorly bonded state.
  • the AE sensor 10a used in the second embodiment is desirably an AE sensor 10a having a resonance frequency different from the peak frequency of the elastic wave dominant in the structure to be measured.
  • the signal processing unit 20a calculates the peak frequency from the AE source signal based on the elastic wave detected by each AE sensor 10a. Thereafter, the signal processing unit 20a compares the calculated peak frequency with the resonance frequency of the AE sensor 10a, and the frequency of the elastic wave at which the difference between the peak frequency and the resonance frequency of the AE sensor 10a is ⁇ or less is a reference value. If it is less than the threshold value, the adhesion state of the AE sensor 10a that detected the elastic wave is determined to be good, and if it is equal to or greater than the reference value, the adhesion state of the AE sensor 10a that detected the elastic wave is determined to be defective. Therefore, it becomes possible to determine the adhesion state of the sensor adhered to the structure.
  • a plurality of sensors that detect elastic waves generated from a structure, and a calculation unit that calculates the peak frequency of the elastic waves based on the elastic waves detected by the plurality of sensors. And a determination unit that determines the adhesion state of the sensor by comparing the peak frequency and information that is a criterion for determining whether or not the adhesion of the sensor is good. The adhesion state of the sensor can be determined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

実施形態のセンサ接着状態判定システム(100)は、複数のセンサ(10-1・・・10-n)と、算出部(201)と、判定部(203)とを持つ。前記複数のセンサは、弾性波を検出する。算出部は、前記複数のセンサによって検出された前記弾性波に基づいて、前記弾性波のピーク周波数を算出する。判定部は、前記ピーク周波数と、判定基準となる情報とを比較することによって、前記センサの接着状態を判定する。

Description

センサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法
 本発明の実施形態は、センサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法に関する。
 本願は、2017年3月17日に、日本に出願された特願2017-053719号に基づき優先権を主張し、その内容をここに援用する。
 構造物内部のき裂の進展や摩擦などによりAE(Acoustic Emission)が発生する。AEは、材料の疲労亀裂の進展に伴い発生する弾性波である。構造物表面に設置したセンサによりAEを検出し、得られた信号を分析することで構造物内部の劣化評価ができる。通常、センサは、接着剤等で劣化評価の対象となる構造物表面に接着される。しかしながら、接着作業不良や経時変化等によりセンサの接着が不十分な状態となることがあり得る。接着が不十分な状態である場合、構造物の劣化評価の精度低下や誤診に繋がる場合があり得る。また、接着が不十分な状態のセンサは、構造物表面からはがれて落下する危険があり得、安全面からも対処の必要があった。
特開2005-83752号公報
 本発明が解決しようとする課題は、構造物に接着したセンサの接着状態を判定することができるセンサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法を提供することである。
 実施形態のセンサ接着状態判定システムは、複数のセンサと、算出部と、判定部とを持つ。複数のセンサは、弾性波を検出する。算出部は、前記複数のセンサによって検出された前記弾性波に基づいて、前記弾性波のピーク周波数を算出する。判定部は、前記ピーク周波数と、判定基準となる情報とを比較することによって、前記センサの接着状態を判定する。
第1の実施形態におけるセンサ接着状態判定システムのシステム構成を示す図。 計測により得られたデータの一例を示す図。 第1の実施形態におけるセンサ接着状態判定システムの処理の流れを示すシーケンス図。 第2の実施形態におけるセンサ接着状態判定システムのシステム構成を示す図。 計測により得られたデータの一例を示す図。 ウェーブレット変換を行った結果を示す図。 ウェーブレット変換を行った結果を示す図。 第2の実施形態における信号処理部の処理の流れを示すフローチャート。
 以下、実施形態のセンサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法を、図面を参照して説明する。
 (第1の実施形態)
 図1は、第1の実施形態におけるセンサ接着状態判定システム100のシステム構成を示す図である。センサ接着状態判定システム100は、構造物に接着されたセンサの接着状態の判定に用いられる。本実施形態では、構造物の一例として橋梁を例に説明するが、構造物は橋梁に限定される必要はない。例えば、構造物は、亀裂の発生または進展、あるいは外的衝撃(例えば雨、人工雨など)に伴い弾性波が発生する構造物であればどのようなものであってもよい。なお、橋梁は、河川や渓谷などの上に架設される構造物に限らず、地面よりも上方に設けられる種々の構造物(例えば高速道路の高架橋)なども含む。
 センサ接着状態判定システム100は、複数のAEセンサ10-1~10-n(nは2以上の整数)及び信号処理部20を備える。AEセンサ10-1~10-nと、信号処理部20とは、有線又は無線により通信可能に接続される。なお、以下の説明では、AEセンサ10-1~10-nについて区別しない場合にはAEセンサ10と記載する。
 AEセンサ10は、劣化評価の対象となる構造物表面に接着剤等により接着される。例えば、AEセンサ10は、橋梁のコンクリート床版30に接着される。AEセンサ10は、特定の周波数を持つ弾性波を引き起こす発振機能と、構造物から発生する弾性波を検出する検出機能とを有する。すなわち、AEセンサ10は、測定装置として、発振部と、検出部とを持つ。発振機能は、特定の周波数で発振することによって、AEセンサ10と構造物表面との接着部で弾性波のパルスを発生させる機能である。AEセンサ10が、発振機能により発振することによって発生した弾性波は構造物を伝搬する。
 なお、AEセンサ10による発振は、予め設定された時刻に行われてもよいし、予め設定された周期で行われてもよいし、ユーザによる指示がなされたタイミングに行われてもよい。AEセンサ10は、圧電素子を有し、構造物から発生する弾性波を検出し、検出した弾性波を電圧信号(AE源信号)に変換する。AEセンサ10は、AE源信号に対して増幅、周波数制限などの処理を施して信号処理部20に出力する。なお、AEセンサ10に代えて加速度センサが用いられてもよい。この場合、加速度センサは、AEセンサ10と同様の処理を行うことによって、処理後の信号を信号処理部20に出力する。
 信号処理部20は、AEセンサ10による処理が施されたAE源信号を入力とする。信号処理部20は、入力したAE源信号から得られる周波数に基づいて、発振元のAEセンサ10の接着状態を判定する。例えば、信号処理部20は、AEセンサ10の接着が良好な状態であるかAEセンサ10の接着が不良な状態であるかを判定する。信号処理部20は、センサ接着状態判定装置として機能する。なお、信号処理部20は、自身に接続している全てのAEセンサ10の識別情報を保持する。
 次に、信号処理部20の機能構成について説明する。
 信号処理部20は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、接着状態判定プログラムを実行する。接着状態判定プログラムの実行によって、信号処理部20は、算出部201、基準情報記憶部202、判定部203を備える装置として機能する。なお、信号処理部20の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。また、接着状態判定プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。また、接着状態判定プログラムは、電気通信回線を介して送受信されてもよい。
 算出部201は、入力されたAE源信号からピーク周波数を算出する。
 基準情報記憶部202は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。基準情報記憶部202は、基準範囲の情報を記憶する。基準範囲は、接着が良好な状態であると判定可能なピーク周波数の範囲を表す。基準範囲は、適宜設定されてもよい。基準情報記憶部202は、センサの種類毎に、基準範囲の情報を記憶していてもよい。
 判定部203は、算出部201によって算出されたAEセンサ10毎のピーク周波数と、基準範囲とに基づいて、発振元のAEセンサ10の接着状態を判定する。
 図2は、計測により得られたデータの一例を示す図である。図2に示すデータは、構造物表面に15個のAEセンサ10を接着し、各AEセンサ10が順次発振することによって得られた全AEセンサ10に関するデータである。横軸は各発振元のAEセンサ10を表し、縦軸はピーク周波数を表す。図2では、一定の間隔で、各AEセンサ10が順次発振することによって弾性波のパルスが放出された例を示している。ピーク周波数140kHz付近に示す点列は、各AEセンサ10の発振により発生した弾性波のパルスを表す。ピーク周波数50kHz~120kHzに示す点列は、他のAEセンサ10で検出された弾性波に基づくAE源信号から得られたピーク周波数を表す。また、図2においてRは基準範囲を表す。AE源信号は、概ね60kHzのピーク周波数を持っているが、AEセンサ10の位置関係等の影響でばらつきをもっている。
 図2に示すAEセンサ10のうち、“5”で示されるAEセンサ10と、“6”で示されるAEセンサ10は、信号の検出はできる状態ではあるが、接着が不十分な状態である。図2に示すように、接着不良の状態にあるAEセンサ10の発振により発生した弾性波は、他のAEセンサ10で検出された弾性波に基づくピーク周波数が基準範囲Rよりも下方になっていることが分かる。このように、AEセンサ10の発振により生じる弾性波を他のAEセンサ10で検出したときのピーク周波数を用いることで、発振元のAEセンサ10の状態を判定することができる。以下の説明では、図2に示す分布のデータを周波数分布とする。
 図3は、第1の実施形態におけるセンサ接着状態判定システム100の処理の流れを示すシーケンス図である。図3では、AEセンサ10が4つの場合を例に説明する。なお、図4では、4つのAEセンサ10をそれぞれ第1センサ、第2センサ、第3センサ及び第4センサとして説明する。
 第1センサは、特定の周波数で発振する(ステップS101)。第1センサの発振により振動が構造物に伝わり、振動により構造物から弾性波のパルスが発生する。構造物から発生したパルス(弾性波)は、構造物内を伝搬して第2センサ~第4センサで検出される。第2センサは、検出した弾性波をAE源信号に変換し、処理を施して信号処理部20に出力する(ステップS102)。第3センサは、検出した弾性波をAE源信号に変換し、処理を施して信号処理部20に出力する(ステップS103)。第4センサは、検出した弾性波をAE源信号に変換し、処理を施して信号処理部20に出力する(ステップS104)。
 算出部201は、各センサから出力されたAE源信号を入力する。算出部201は、入力したAE源信号それぞれからピーク周波数f2、f3及びf4を算出する(ステップS105)。ピーク周波数f2は、第2センサから出力されたAE源信号のピーク周波数を表す。ピーク周波数f3は、第3センサから出力されたAE源信号のピーク周波数を表す。ピーク周波数f4は、第4センサから出力されたAE源信号のピーク周波数を表す。算出部201は、算出したピーク周波数f2、f3及びf4を判定部203に出力する。判定部203は、算出部201から出力されたピーク周波数f2、f3及びf4に基づいて、周波数分布を生成する(ステップS106)。すなわち、判定部203は、横軸を第1センサとし、縦軸をピーク周波数とする周波数分布を生成する。この場合、判定部203は、算出部201から出力されたピーク周波数f2、f3及びf4に該当するピーク周波数の位置にプロットする。なお、第1センサから複数回パルスの放出がなされている場合、判定部203は複数回同様の処理を行う。この処理により、判定部203は、図2に示すような周波数分布を生成する。
 その後、判定部203は、生成した周波数分布と、基準情報記憶部202に記憶されている基準範囲の情報とに基づいて、周波数分布内のピーク周波数f2、f3及びf4が基準範囲内に収まっているか否か判定する(ステップS107)。ピーク周波数f2、f3及びf4が基準範囲内に収まっている場合(ステップS107-YES)、判定部203は第1センサを接着良好と判定する(ステップS108)。すなわち、判定部203は、第1センサの接着が良好な状態であると判定する。
 一方、ピーク周波数f2、f3及びf4が基準範囲内に収まっていない場合(ステップS107-NO)、判定部203は第1センサを接着不良と判定する(ステップS109)。すなわち、判定部203は、第1センサの接着が不良な状態であると判定する。
 センサ接着状態判定システム100では、図3の処理を各AEセンサ10に対して行う。例えば、第2センサがパルスを放出する場合には、信号処理部20は、第1センサ、第3センサ及び第4センサで検出された弾性波に基づいて、第2センサの接着状態を判定する。接着状態の判定方法は、上記と同様である。
 以上のように構成されたセンサ接着状態判定システム100によれば、信号処理部20は、各AEセンサ10で検出された弾性波に基づくAE源信号からピーク周波数を算出し、算出したピーク周波数が基準範囲内に収まっている場合に発振元のAEセンサ10の接着状態を良好と判定し、基準範囲内に収まっていない場合に発振元のAEセンサ10の接着状態を不良と判定する。そのため、構造物に接着したセンサの接着状態を判定することが可能になる。
 以下、センサ接着状態判定システム100の変形例について説明する。
 本実施形態では、判定部203が、周波数分布を生成する構成を示したが、判定部203は周波数分布を生成しなくてもよい。このように構成される場合、判定部203は、算出部201によって算出されたピーク周波数と、基準範囲とに基づいてピーク周波数が基準範囲内に収まっているか否か判定する。
 判定部203は、複数のピーク周波数のうち、特定の数(例えば、2つ、3つ等)のピーク周波数が、基準範囲内に収まっていない場合に発振元のAEセンサ10が接着不良と判定してもよい。
 このように構成されることによって、ノイズの混入等により1つの値が基準範囲内に収まっていないだけで接着不良と判定されてしまうことが無くなる。そのため、より正確に判定を行うことができる。
 判定部203は、ピーク周波数の統計値に基づいて接着状態の判定を行ってもよい。統計値は、例えば平均値、最頻値、中央値等である。ピーク周波数の平均値に基づいて接着状態の判定を行う場合、基準情報記憶部202は平均値の基準範囲の情報を記憶する。この場合、判定部203は、ピーク周波数の平均値と、平均値の基準範囲とを比較して、ピーク周波数の平均値が平均値の基準範囲内に収まっている場合に発振元のAEセンサ10が接着良好と判定し、ピーク周波数の平均値が平均値の基準範囲内に収まっていない場合に発振元のAEセンサ10が接着不良と判定する。
 判定部203は、各AEセンサ10それぞれの発振により得られる各AEセンサ10の検出信号の周波数の分布をそれぞれ算出し、それらを比較して、他のAEセンサ10の値の分布からの乖離が閾値以上であるAEセンサ10を接着不良と判定してもよい。
 信号処理部20は、判定結果を出力するように構成されてもよい。このように構成される場合、信号処理部20は、表示部をさらに備える。表示部は、判定部203による判定結果を表示する。例えば、表示部は、接着不良のAEセンサ10の情報を表示してもよいし、図2に示す周波数分布を表示してもよい。
 このように構成されることによって、センサ接着状態判定システム100の利用者は、接着不良のAEセンサ10を容易に見つけることができる。
 (第2の実施形態)
 第2の実施形態では、AEセンサが発振機能を有さず、外部からの衝撃や荷重により構造物から発生する弾性波をAEセンサで検出する。
 図4は、第2の実施形態におけるセンサ接着状態判定システム100aのシステム構成を示す図である。センサ接着状態判定システム100aは、構造物に接着されたセンサの接着状態の判定に用いられる。本実施形態では、構造物の一例として橋梁を例に説明するが、構造物は橋梁に限定される必要はない。
 センサ接着状態判定システム100aは、複数のAEセンサ10a-1~10a-n及び信号処理部20aを備える。AEセンサ10a-1~10a-nと、信号処理部20aとは、有線又は無線により通信可能に接続される。なお、以下の説明では、AEセンサ10a-1~10a-nについて区別しない場合にはAEセンサ10aと記載する。
 AEセンサ10aは、劣化評価の対象となる構造物表面に接着剤等により接着される。例えば、AEセンサ10aは、橋梁のコンクリート床版30に接着される。AEセンサ10aは、構造物から発生する弾性波を検出する検出機能を有する。AEセンサ10aは、圧電素子を有し、構造物から発生する弾性波を検出し、検出した弾性波を電圧信号(AE源信号)に変換する。AEセンサ10aは、AE源信号に対して増幅、周波数制限などの処理を施して信号処理部20aに出力する。なお、AEセンサ10aに代えて加速度センサが用いられてもよい。この場合、加速度センサは、AEセンサ10aと同様の処理を行うことによって、処理後の信号を信号処理部20aに出力する。
 信号処理部20aは、AEセンサ10aによる処理が施されたAE源信号を入力とする。信号処理部20aは、入力したAE源信号から得られる周波数に基づいて、AEセンサ10aの接着状態を判定する。信号処理部20aは、センサ接着状態判定装置として機能する。なお、信号処理部20aは、自身に接続している全てのAEセンサ10aの識別情報を保持する。
 次に、信号処理部20aの機能構成について説明する。
 信号処理部20aは、バスで接続されたCPUやメモリや補助記憶装置などを備え、接着状態判定プログラムを実行する。接着状態判定プログラムの実行によって、信号処理部20aは、算出部201、基準情報記憶部202a、判定部203aを備える装置として機能する。なお、信号処理部20aの各機能の全て又は一部は、ASICやPLDやFPGA等のハードウェアを用いて実現されてもよい。また、接着状態判定プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。また、接着状態判定プログラムは、電気通信回線を介して送受信されてもよい。
 信号処理部20aは、基準情報記憶部202及び判定部203に代えて基準情報記憶部202a及び判定部203aを備える点で信号処理部20と構成が異なる。信号処理部20aは、他の構成については信号処理部20と同様である。そのため、信号処理部20a全体の説明は省略し、基準情報記憶部202a及び判定部203aについて説明する。
 基準情報記憶部202aは、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。基準情報記憶部202aは、センサの共振周波数の情報と、基準値とを記憶する。基準情報記憶部202aは、センサの種類毎に、センサの共振周波数の情報を記憶していてもよい。基準値は、接着が良好な状態であると判定可能な基準となる値を表す。基準値は、適宜設定されてもよい。
 判定部203aは、算出部201によって算出されたAEセンサ10a毎のピーク周波数と、センサの共振周波数と、基準値とに基づいて、AEセンサ10aの接着状態を判定する。
 図5は、計測により得られたデータの一例を示す図である。図5に示すデータは、構造物の表面に2つのAEセンサ10a(センサ1及びセンサ2)を接着して、構造物に与えた衝撃により発生した弾性波をセンサ1及びセンサ2で検出した際のデータである。図5において、横軸は時間を表し、縦軸はピーク周波数を表す。図5は、構造物に間欠的に衝撃を与えた際に得られるAE源信号のピーク周波数をプロットしたものである。図5に示す例では、センサ1は接着が良好な状態であり、センサ2は接着が不良な状態となっている。
 図5に示されるように、センサ1とセンサ2でピーク周波数の分布が異なっている。ここで用いたAEセンサ10aは、共振周波数が60kHzである。接着状態が良好なセンサ1では構造物内を伝搬する弾性波の主な周波数である20~30kHzの範囲内のピーク周波数を有する弾性波が多く見られるのに対して、接着状態が不良なセンサ2ではAEセンサ10aのみの共振成分が支配的になり、弾性波のピーク周波数がAEセンサ10aの共振周波数である60kHz付近に集中している。信号処理部20aは、AEセンサ10aで検出される弾性波のピーク周波数の分布で示されるピーク周波数と、弾性波を検出したAEセンサ10aの共振周波数とを比較して、比較結果が略一致している弾性波の割合が基準値以上である場合に、当該AEセンサ10aを接着不良と判定することができる。ここで、略一致とは、比較対象となる値(例えば、ピーク周波数と、共振周波数)同士の差が±数KHz(例えば、±5kHz)の場合を表す。
 また、ウェーブレット解析を行うことで、より正確に接着不良を検出することができる。図6A及び図6Bに、図5におけるセンサ1とセンサ2それぞれの1波形を取り出し、ウェーブレット変換を行った結果を示す。図6A及び図6Bにおいて、横軸は時間を表し、縦軸は周波数を表す。図6Aは接着状態が良好なセンサ1の1波形について、ウェーブレット変換を行った結果を示す図である。図6Bは接着状態が不良なセンサ2の1波形について、ウェーブレット変換を行った結果を示す図である。図6Aに示すように、接着状態が良好なセンサ1では、構造物内を伝搬する弾性波の主な周波数である20~30kHzの範囲を含む、様々な周波数成分を持った領域が見られる(図6Aの円31)。これに対して、図6Bに示すように、接着不良のセンサ2では、全体を通して、センサの共振周波数である60kHz付近でピーク周波数の位置が安定している(図6Bの円32)。信号処理部20aは、AEセンサ10aで検出された弾性波をウェーブレット変換した場合に、ピーク周波数がセンサの共振周波数付近で安定している弾性波が基準値以上検出される場合に、当該AEセンサ10aを接着不良と判定することができる。すなわち、判定部203aは、AEセンサ10aで検出された弾性波のうち予め定めた割合以上の時間でピーク周波数が共振周波数と略一致する弾性波の割合が基準値以上である場合に、当該AEセンサ10aを接着不良と判定することができる。なお、図5及び図6で説明した構造物は、コンクリートである。
 図7は、第2の実施形態における信号処理部20aの処理の流れを示すフローチャートである。なお、図7では、複数のAEセンサ10aのうち1つのAEセンサ10aにより検出された弾性波を用いた場合を例に説明する。なお、図7では、1つのAEセンサ10aを第1センサとして説明する。
 算出部201は、第1センサで得られた弾性波からピーク周波数を算出する(ステップS201)。算出部201は、算出したピーク周波数を判定部203aに出力する。次に、判定部203aは、算出されたピーク周波数と、AEセンサ10aの共振周波数とを比較する。例えば、判定部203aは、算出されたピーク周波数とセンサの共振周波数との差が予め定められた許容値δ(例えば、数kHz)以下であるか否かを判定する。さらに、判定部203aは、得られた弾性波に対して、周波数差がδ以下である弾性波の頻度を算出する(ステップS202)。
 そして、判定部203aは、算出した頻度と、基準情報記憶部202aに記憶されている基準値とを比較して、頻度が基準値未満であるか否か判定する(ステップS203)。頻度が基準値未満である場合(ステップS203-YES)、判定部203aは第1センサを接着良好と判定する(ステップS204)。すなわち、判定部203aは、第1センサの接着が良好な状態であると判定する。
 一方、頻度が基準値未満である場合(ステップS203-NO)、判定部203aは第1センサを接着不良と判定する(ステップS205)。すなわち、判定部203aは、第1センサの接着が不良な状態であると判定する。
 本実施形態において、AEセンサ10aの共振周波数と、計測対象となる構造物内で支配的な弾性波のピーク周波数が略一致する場合、センサ接着の良否によるピーク周波数の違いが小さい。そのため、第2の実施形態において使用するAEセンサ10aは、計測対象となる構造物内で支配的な弾性波のピーク周波数とは異なる共振周波数を持つAEセンサ10aであることが望ましい。
 以上のように構成されたセンサ接着状態判定システム100aによれば、信号処理部20aは、各AEセンサ10aで検出された弾性波に基づくAE源信号からピーク周波数を算出する。その後、信号処理部20aは、算出したピーク周波数と、AEセンサ10aの共振周波数とを比較し、ピーク周波数と、AEセンサ10aの共振周波数との差がδ以下となる弾性波の頻度が基準値未満である場合に当該弾性波を検出したAEセンサ10aの接着状態を良好と判定し、基準値以上である場合に当該弾性波を検出したAEセンサ10aの接着状態を不良と判定する。そのため、構造物に接着したセンサの接着状態を判定することが可能になる。
 以上説明した少なくともひとつの実施形態によれば、構造物より発生した弾性波を検出する複数のセンサと、複数のセンサによって検出された弾性波に基づいて、弾性波のピーク周波数を算出する算出部と、ピーク周波数と、センサの接着が良好な状態であるか否かの判定基準となる情報とを比較することによって、センサの接着状態を判定する判定部とを持つことにより、構造物に接着したセンサの接着状態を判定することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (8)

  1.  弾性波を検出する複数のセンサと、
     前記複数のセンサによって検出された前記弾性波に基づいて、前記弾性波のピーク周波数を算出する算出部と、
     前記ピーク周波数と、判定基準となる情報とを比較することによって、前記センサの接着状態を判定する判定部と、
     を備えるセンサ接着状態判定システム。
  2.  前記複数のセンサは、特定の周波数で発振する発振機能を備え、
     前記算出部は、発振により発生した弾性波を検出したセンサから出力された前記弾性波に基づいて、前記弾性波のピーク周波数を算出する、請求項1に記載のセンサ接着状態判定システム。
  3.  前記判定部は、前記弾性波のピーク周波数の一部又は全てが、前記判定基準となるピーク周波数の範囲内に収まらない場合に発振元のセンサを接着不良と判定する、請求項2に記載のセンサ接着状態判定システム。
  4.  前記判定部は、前記ピーク周波数が、予め定めた頻度以上で前記センサの共振周波数と略一致する場合に、前記センサを接着不良と判定する、請求項1に記載のセンサ接着状態判定システム。
  5.  前記判定部は、前記センサで検出された弾性波のうち予め定めた割合以上の時間でピーク周波数が共振周波数と略一致する弾性波の割合が基準値以上である場合に、前記センサを接着不良と判定する、請求項1又は4に記載のセンサ接着状態判定システム。
  6.  前記センサは、構造物内で伝搬する弾性波の主要な周波数とは異なる共振周波数を持つ、請求項4又は5に記載のセンサ接着状態判定システム。
  7.  弾性波を検出する複数のセンサによって検出された前記弾性波に基づいて、前記弾性波のピーク周波数を算出する算出部と、
     前記ピーク周波数と、判定基準となる情報とを比較することによって、前記センサの接着状態を判定する判定部と、
     を備えるセンサ接着状態判定装置。
  8.  弾性波を検出する複数のセンサによって検出された前記弾性波に基づいて、前記弾性波のピーク周波数を算出する算出ステップと、
     前記ピーク周波数と、判定基準となる情報とを比較することによって、前記センサの接着状態を判定する判定ステップと、
     を有するセンサ接着状態判定方法。
PCT/JP2018/002486 2017-03-17 2018-01-26 センサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法 WO2018168218A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880000153.2A CN108966669B (zh) 2017-03-17 2018-01-26 传感器粘接状态判定系统、传感器粘接状态判定装置以及传感器粘接状态判定方法
EP18706950.5A EP3598124A4 (en) 2017-03-17 2018-01-26 SENSOR ADHERENCE STATE DETERMINATION SYSTEM, SENSOR ADHERENCE STATE DETERMINATION DEVICE AND SENSOR ADHESION STATE DETERMINATION METHOD
US15/916,528 US10712318B2 (en) 2017-03-17 2018-03-09 Sensor adhesion state determination system, sensor adhesion state determination device, and sensor adhesion state determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-053719 2017-03-17
JP2017053719A JP6710653B2 (ja) 2017-03-17 2017-03-17 センサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/916,528 Continuation US10712318B2 (en) 2017-03-17 2018-03-09 Sensor adhesion state determination system, sensor adhesion state determination device, and sensor adhesion state determination method

Publications (1)

Publication Number Publication Date
WO2018168218A1 true WO2018168218A1 (ja) 2018-09-20

Family

ID=63523079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002486 WO2018168218A1 (ja) 2017-03-17 2018-01-26 センサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法

Country Status (4)

Country Link
EP (1) EP3598124A4 (ja)
JP (1) JP6710653B2 (ja)
CN (1) CN108966669B (ja)
WO (1) WO2018168218A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7349971B2 (ja) * 2020-11-16 2023-09-25 芝浦機械株式会社 予知保全判定装置、予知保全判定方法及びプログラム
CN113219067B (zh) * 2021-05-27 2023-04-07 北京钛方科技有限责任公司 一种弹性波传感器粘贴状态判断方法、装置和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235560A (ja) * 1986-04-07 1987-10-15 Sogo Keibi Hoshiyou Kk 破壊振動検出器
JPS62235559A (ja) * 1986-04-07 1987-10-15 Sogo Keibi Hoshiyou Kk 破壊振動検出器
JP2000002691A (ja) * 1998-06-17 2000-01-07 Ishikawajima Harima Heavy Ind Co Ltd 構造物表面の溶射被膜剥離検出方法及び装置
JP2002350409A (ja) * 2001-05-29 2002-12-04 Mitsubishi Heavy Ind Ltd 打撃点検装置
JP2005083752A (ja) 2003-09-04 2005-03-31 Taiheiyo Cement Corp 破断音センサ
JP2016061701A (ja) * 2014-09-18 2016-04-25 株式会社東芝 検知システム及び検知方法
WO2017018112A1 (ja) * 2015-07-24 2017-02-02 Ntn株式会社 異常診断装置およびセンサ外れ検知方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135459A (ja) * 2001-10-31 2003-05-13 Ge Medical Systems Global Technology Co Llc 超音波プローブ状態判断方法および超音波診断装置
JP3653668B2 (ja) * 2001-12-04 2005-06-02 独立行政法人科学技術振興機構 超音波センサの接触状態の確認方法、超音波センサの接触状態の確認機能を備えたプラズマ異常放電監視装置、及び、プラズマ処理装置
JP2006153801A (ja) * 2004-12-01 2006-06-15 Denso Corp 接触状態検出装置
CN103703793B (zh) * 2012-06-26 2015-02-18 本多电子株式会社 机电转换元件及其制造方法
CN103591972B (zh) * 2013-11-21 2014-12-10 济南大学 一种传感器的固定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235560A (ja) * 1986-04-07 1987-10-15 Sogo Keibi Hoshiyou Kk 破壊振動検出器
JPS62235559A (ja) * 1986-04-07 1987-10-15 Sogo Keibi Hoshiyou Kk 破壊振動検出器
JP2000002691A (ja) * 1998-06-17 2000-01-07 Ishikawajima Harima Heavy Ind Co Ltd 構造物表面の溶射被膜剥離検出方法及び装置
JP2002350409A (ja) * 2001-05-29 2002-12-04 Mitsubishi Heavy Ind Ltd 打撃点検装置
JP2005083752A (ja) 2003-09-04 2005-03-31 Taiheiyo Cement Corp 破断音センサ
JP2016061701A (ja) * 2014-09-18 2016-04-25 株式会社東芝 検知システム及び検知方法
WO2017018112A1 (ja) * 2015-07-24 2017-02-02 Ntn株式会社 異常診断装置およびセンサ外れ検知方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3598124A4 *

Also Published As

Publication number Publication date
EP3598124A1 (en) 2020-01-22
CN108966669A (zh) 2018-12-07
CN108966669B (zh) 2021-10-01
JP2018155661A (ja) 2018-10-04
EP3598124A4 (en) 2020-12-16
JP6710653B2 (ja) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2017199542A1 (ja) 構造物評価システム、構造物評価装置及び構造物評価方法
JP6486739B2 (ja) 検知システム、検知方法及び信号処理装置
WO2019167137A1 (ja) 構造物評価システム及び構造物評価方法
US10352912B2 (en) Structure evaluation system, structure evaluation apparatus, and structure evaluation method
US20180266999A1 (en) Position location system, position location method, and non-transitory computer readable storage medium
US10578587B2 (en) Deterioration diagnosis method, a deterioration diagnosis system, and a sensor
JP6386174B2 (ja) 構造物評価システム、構造物評価装置及び構造物評価方法
CN108966667B (zh) 位置标定系统、位置标定方法及计算机可读取记录介质
WO2018139193A1 (ja) 超音波装置
WO2018168218A1 (ja) センサ接着状態判定システム、センサ接着状態判定装置及びセンサ接着状態判定方法
WO2020054026A1 (ja) 構造物評価システム、構造物評価装置及び構造物評価方法
US10458954B2 (en) Structure evaluation system, structure evaluation apparatus, and structure evaluation method
JP2017166953A (ja) 複合材料の損傷評価方法と装置
JPWO2020188640A1 (ja) 構造物評価システム、構造物評価装置及び構造物評価方法
US10712318B2 (en) Sensor adhesion state determination system, sensor adhesion state determination device, and sensor adhesion state determination method
JP2021117123A (ja) 検出装置、収束部材及びノイズキャンセルシステム
KR20200096616A (ko) 전기화학 발전기에 결합된 음향 센서의 오작동을 검출하기 위한 방법 및 이 방법을 구현하는 장치
PL227021B1 (pl) Układ dodetekcji imonitorowania rozwoju uszkodzen elementów struktury, zwłaszcza statku powietrznego

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18706950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE