WO2018166510A1 - 高性能包装用复合薄膜 - Google Patents

高性能包装用复合薄膜 Download PDF

Info

Publication number
WO2018166510A1
WO2018166510A1 PCT/CN2018/079204 CN2018079204W WO2018166510A1 WO 2018166510 A1 WO2018166510 A1 WO 2018166510A1 CN 2018079204 W CN2018079204 W CN 2018079204W WO 2018166510 A1 WO2018166510 A1 WO 2018166510A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bridge
poy
composite film
cohesive energy
Prior art date
Application number
PCT/CN2018/079204
Other languages
English (en)
French (fr)
Inventor
夏嘉良
高学文
夏瑜
唐敏艳
Original Assignee
嘉浦薄膜新材料(昆山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉浦薄膜新材料(昆山)有限公司 filed Critical 嘉浦薄膜新材料(昆山)有限公司
Priority to US16/614,037 priority Critical patent/US11904576B2/en
Publication of WO2018166510A1 publication Critical patent/WO2018166510A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Definitions

  • the invention relates to the technical field of multi-layer composite films, in particular to a composite film for high-performance packaging, which can be applied to vacuum packaging, air-filled packaging, modified atmosphere packaging, high-temperature cooking packaging, aseptic packaging, coating, printing, Composite substrate, etc.
  • the multi-layer co-extruded composite film refers to a film which is compounded by a plurality of different polymers by a co-extrusion blow molding method, a co-extrusion casting method or a co-extrusion stretching method.
  • this film is widely used in food, processed meat products, daily necessities, cosmetics, chemical products, pesticides, military products, etc., and can be used to seal soft packaging of products and meet inflation or vacuum, thermoforming, and air conditioning.
  • Various packaging functions such as packaging, high-temperature cooking packaging, aseptic packaging, etc., have various barrier properties such as high moisture resistance, oxygen barrier, oil resistance, and fragrance retention in various environments.
  • vacuum packaging In the food packaging industry, vacuum packaging, pneumatic packaging, modified atmosphere packaging, high temperature cooking packaging, aseptic packaging and coating, printing composite substrates are widely used, vacuum packaging is to put food into the packaging bag, pull out the packaging bag The air is sealed after reaching a predetermined degree of vacuum, and its main function is to remove oxygen to prevent food from deteriorating.
  • the air-filled package is pumped into a single gas of nitrogen, carbon dioxide, oxygen or a mixture of two or three gases.
  • the modified atmosphere packaging adopts modified atmosphere gas (mixing of 2 to 4 kinds of gases according to the characteristics of food characteristics), replacing the air in the packaging bag, changing the external environment of the food in the packaging bag, inhibiting the growth and reproduction of bacteria, and slowing down the fresh food.
  • Aseptic packaging refers to the sterilization of products that have reached commercial sterility (liquid milk and dairy products, beverages, etc.), enclosed in sterilized containers, and filled in a sterile environment. After filling, the packaging containers are kept.
  • a method of packaging for sealing Synchronized with vacuum packaging, pneumatic packaging, modified atmosphere packaging and high temperature cooking packaging, aseptic packaging and coating, printing, and composite substrate technology, composite flexible packaging film, vacuum packaging, pneumatic packaging, modified atmosphere packaging and high temperature cooking packaging,
  • the key to aseptic packaging and coating and printing of composite substrate technology is to maintain the barrier properties of the packaging film and excellent heat sealing properties.
  • the multi-layer co-extrusion process is used to achieve zero emission of VOCs.
  • the biaxial stretching process is used to make the film thin to a certain extent and its strength can still be guaranteed.
  • the multi-layer high barrier film has different processing characteristics of each layer material, and the molding technology for coextrusion and biaxial stretching under the same process conditions is limited by the prior art, and the interlayer peeling strength and heat sealing performance of the film are both Unable to get protection.
  • the prior art has the following problems: 1.
  • the material of each layer in the multilayer composite film is different, and the stretching ratios of different materials are different, when the material layer having a small stretching ratio is stretched to the same magnification as the material layer having a large stretching ratio.
  • the peeling strength between layers is sharply decreased or even delaminated, and the material with small stretching ratio is likely to be torn;
  • the heat sealing property after stretching is decreased; 3.
  • a heat seal layer is further laminated on the stretched film, but the dry composite solvent used in the composite is contaminated, which is unsafe for food and environmentally friendly.
  • the first technical solution adopted by the present invention is: a composite film for high performance packaging, the innovation is that the structure of the composite film is as follows:
  • PO2 denotes an outer layer, also called a PO2 layer, which is made of any one or a mixture of at least two of polyethylene, polypropylene, modified polyethylene and modified polypropylene;
  • POY denotes a tensile transition bridge, also known as a POY bridge, the material of which is any one of polyethylene, polypropylene, modified polyethylene and modified polypropylene or a mixture of at least two; Y represents the number of layers, and Y is 2, 3, 4...;
  • PO1 denotes a main tensile layer, also known as a PO1 layer, which is made of a polyamide or an ethylene vinyl alcohol copolymer or a polyester;
  • POX denotes a tensile transition bridge, also known as a POX bridge, which is made of any one or a mixture of at least two of polyethylene, polypropylene, modified polyethylene and modified polypropylene; X represents the number of layers, and X is 2, 3, 4...;
  • PO3 denotes an inner layer, also referred to as a PO3 layer, which is made of any one or a mixture of at least two of polyethylene, polypropylene, modified polyethylene and modified polypropylene;
  • the composite film of the formula (1) is obtained by one-time coextrusion and biaxial stretching molding, wherein the biaxial stretching is carried out by a two-step stretching method of longitudinal stretching and transverse stretching;
  • the total thickness of the composite film is 8 micrometers to 100 micrometers, the thickness of the PO2 layer is 8-20% of the total thickness of the composite film; the thickness of the POY bridge is 10-20% of the total thickness of the composite film; the PO1 layer The thickness of the composite film is 30-50% of the total thickness of the composite film; the thickness of the POX bridge is 10-20% of the total thickness of the composite film; the thickness of the PO3 layer is 8-20% of the total thickness of the composite film;
  • the density selection of the materials of the PO2 layer, the POY bridge, the PO1 layer, the POX bridge and the PO3 layer is as follows: when the PO1 layer is a polyamide, the density of the PO1 layer is 1.12 to 1.14 g/cm 3 ; when the PO1 layer is ethylene In the case of a vinyl alcohol copolymer, the density of the PO1 layer is 1.16 to 1.19 g/cm 3 ; when the PO1 layer is a polyester, the density of the PO1 layer is 1.3 to 1.4 g/cm 3 ; and the density of the PO 2 layer is 0.87 to 0.97 g / cm 3; POY bridge density is 0.86 ⁇ 0.97g / cm 3; POX bridge density of 0.86 ⁇ 0.97g / cm 3; PO3 density layer is 0.87 ⁇ 0.97g / cm 3;
  • the absolute value of the difference between the solubility parameters of the PO1 layer and the PO2 layer material is greater than 0.5 (J ⁇ cm -3 ) 1/2 , and the absolute value of the difference of the cohesive energy density of the PO1 layer and the PO2 layer material is greater than 5 J/cm.
  • the absolute value of the difference between the solubility parameters between the PO1 layer and the adjacent layer in the POY bridge to the PO2 layer is less than or equal to 0.1 (J ⁇ cm -3 ) 1/2 , and the cohesive energy between adjacent layers
  • the absolute value of the difference in density is less than or equal to 3 J/cm 3 ;
  • the material of the first adhesive layer is a maleic anhydride graft copolymer supported by an adjacent layer, and the carrier is at least one of materials in the POY bridge that are in direct contact with the first adhesive layer;
  • the absolute value of the difference between the solubility parameters of the PO1 layer and the PO3 layer material is greater than 0.5 (J ⁇ cm -3 ) 1/2 , and the absolute value of the difference between the cohesive energy densities of the PO1 layer and the PO3 layer material is greater than 5 J/cm.
  • the absolute value of the difference between the solubility parameters between the PO1 layer and the adjacent layer in the POX bridge to the PO3 layer is less than or equal to 0.1 (J ⁇ cm -3 ) 1/2 , and the cohesive energy between adjacent layers
  • the absolute value of the difference in density is less than or equal to 3 J/cm 3 ;
  • the material of the second adhesive layer is a maleic anhydride graft copolymer supported on an adjacent layer, the carrier being at least one of materials in the POX bridge that are in direct contact with the second adhesive layer.
  • the second technical solution adopted by the present invention is: a composite film for high performance packaging, and the innovation is that the structure of the composite film is as follows:
  • PO2 denotes an outer layer, also called a PO2 layer, which is made of any one or a mixture of at least two of polyethylene, polypropylene, modified polyethylene and modified polypropylene;
  • POY denotes a tensile transition bridge, also known as a POY bridge, the material of which is any one of polyethylene, polypropylene, modified polyethylene and modified polypropylene or a mixture of at least two; Y represents the number of layers, and Y is 2, 3, 4...;
  • PO1 denotes a main tensile layer, also known as a PO1 layer, which is made of a polyamide or an ethylene vinyl alcohol copolymer or a polyester;
  • TIE2 denotes a second adhesive layer, the material of which is a maleic anhydride graft copolymer supported by an adjacent layer, the carrier being at least one of PO3 layer materials;
  • PO3 denotes an inner layer, also called a PO3 layer, which functions as a heat seal layer, and the material thereof is any one of polyethylene, polypropylene, modified polyethylene and modified polypropylene or a mixture of at least two;
  • the composite film of the formula (1) is obtained by one-time coextrusion and biaxial stretching molding, wherein the biaxial stretching is carried out by a two-step stretching method of longitudinal stretching and transverse stretching;
  • the total thickness of the composite film is 8 micrometers to 100 micrometers, the thickness of the PO2 layer is 8-20% of the total thickness of the composite film; the thickness of the POY bridge is 10-20% of the total thickness of the composite film; the PO1 layer The thickness of the composite film accounts for 30 to 50% of the total thickness of the composite film;
  • the density selection of the material of the PO2 layer, the POY bridge and the PO1 layer is as follows: when the PO1 layer is a polyamide, the density of the PO1 layer is 1.12 to 1.14 g/cm 3 ; when the PO1 layer is an ethylene vinyl alcohol copolymer, The density of the PO1 layer is 1.16 to 1.19 g/cm 3 ; when the PO1 layer is a polyester, the density of the PO1 layer is 1.3 to 1.4 g/cm 3 ; the density of the PO 2 layer is 0.87 to 0.97 g/cm 3 ; The density is 0.86 ⁇ 0.97g/cm 3 ;
  • the absolute value of the difference between the solubility parameters of the PO1 layer and the PO2 layer material is greater than 0.5 (J ⁇ cm -3 ) 1/2 , and the absolute value of the difference of the cohesive energy density of the PO1 layer and the PO2 layer material is greater than 5 J/cm.
  • the absolute value of the difference between the solubility parameters between the PO1 layer and the adjacent layer in the POY bridge to the PO2 layer is less than or equal to 0.1 (J ⁇ cm -3 ) 1/2 , and the cohesive energy between adjacent layers
  • the absolute value of the difference in density is less than or equal to 3 J/cm 3 ;
  • the material of the first adhesive layer is a maleic anhydride graft copolymer supported on an adjacent layer, and the carrier is at least one of materials in the POY bridge that are in direct contact with the first adhesive layer.
  • the solubility parameter and the cohesive energy density of the POY bridge material are based on one of a PO1 layer material and a PO2 layer material, and the transition is increased or decreased to the other. .
  • the cohesive energy density and the cohesive energy density of the POX bridge material are based on one of a PO1 layer material and a PO3 layer material, and the transition is increased or decreased to the other.
  • the solubility parameter and the cohesive energy density of the POY bridge material are based on one of a PO1 layer material and a PO2 layer material, and a V-shaped gradient is applied to the other. transition.
  • the cohesive energy density and the cohesive energy density of the POX bridge material are based on one of a PO1 layer material and a PO3 layer material, and a V-shaped gradient is transitioned to the other. .
  • the solubility parameter and the cohesive energy density of the POY bridge material are based on one of a PO1 layer material and a PO2 layer material, and a W-shaped gradient is applied to the other. transition.
  • the cohesive energy density and the cohesive energy density of the POX bridge material are based on one of a PO1 layer material and a PO3 layer material, and a W-shaped gradient is transitioned to the other. .
  • the solubility parameter and the cohesive energy density of the POY bridge material are based on one of a PO1 layer material and a PO2 layer material, and an M-shaped gradient to the other transition.
  • the cohesive energy density and the cohesive energy density of the POX bridge material are based on one of a PO1 layer material and a PO3 layer material, and the M-shaped gradient is transitioned to the other. .
  • the solubility parameter (SP) is a physical constant for measuring the compatibility of a polymer material under processing conditions, including liquid state under rubber and plastic processing conditions.
  • the cohesive energy density is the energy E (cohesive energy) required for 1 mol of aggregates per unit volume V to overcome vaporization by intermolecular forces. It is a physical quantity that evaluates the magnitude of the intermolecular forces and mainly reflects the interaction between the groups. In general, the greater the polarity of the groups contained in the molecule, the greater the force between the molecules, and the greater the corresponding cohesive energy density; and vice versa.
  • mastering the solubility parameter is to grasp the degree of compatibility between different polymers, and provide a basis for success and use.
  • the role of the solubilizer is to reduce the surface tension of the two phases so that the surface at the interface is aggravated, thereby increasing the degree of compatibility.
  • Solubilizers are often a polymer that acts as a bridge intermediary. In the present invention, the tensile transition bridge acts as a solubilizing agent and a bridge intermediary.
  • the cohesive energy density is the cohesive energy per unit volume of the material, the cohesive energy density and the material density and the melting point of the material.
  • the softening temperature is proportional to the relationship.
  • the cohesive energy density and the solubility parameter of the polymer are the same or similar, that is, according to the basic rule of similar organic compatibility, as the basis for setting the tensile transition bridge (such as POY bridge), The closer the solubility parameter and the cohesive energy density of the polymer material are, the better the blending effect is.
  • the tension bridge is used to reduce the difference between the solubility parameter of the interlayer material and the cohesive energy density, and the structure layer is eliminated or weakened.
  • the internal stress increases the peel strength and heat seal strength, and realizes the biaxial stretching of the multilayer coextruded film.
  • the absolute value of the difference between the solubility parameters between the PO1 layer and the PO2 layer and between the PO1 layer and the PO3 layer is greater than 0.5 (J ⁇ cm -3 ) 1/2 , and the absolute value of the difference in cohesive energy density is More than 5J/cm 3 .
  • the present invention provides a first adhesive layer at one end of the POY bridge, and uses a chemical connection to separate the solubility.
  • the absolute value is adjusted to a range of 0.1 to 0.5 (J ⁇ cm -3 ) 1/2 while the absolute value of the difference in cohesive energy density is adjusted to a range of 3 to 5 J/cm 3 , and then the first adhesive layer in the POY bridge
  • the solubility parameter and the cohesive energy density of the material with the PO2 layer are based on one of the first adhesive layer material and the PO2 layer material, and transition to the other in a gradient.
  • the principle of the POX bridge is the same as that of the POY bridge.
  • the invention arranges the molecules in order by the biaxial stretching process, and increases the strength.
  • Embodiments 1 to 6 are embodiments of the first technical solution of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • PO2 is polypropylene in composite film structure
  • POY is high density polyethylene / high density polyethylene + ethylene-octene copolymer / linear low density polyethylene + low density polyethylene / maleic anhydride grafted linear low density polyethylene , the number of layers is four
  • PO1 is polyamide
  • POX is maleic anhydride grafted linear low density polyethylene / linear low density polyethylene + low density polyethylene / high density polyethylene + ethylene - octene copolymer / high Density polyethylene, the number of layers is four
  • PO3 is polypropylene, see Table 1:
  • the density, solubility parameter and cohesive energy density of each polymer can be seen in Table 1.
  • the absolute value of the difference between the solubility parameters of the PO1 layer and the PO2 layer material is 5.7 (J ⁇ cm -3 ) 1/2 , 5.7 (J ⁇ cm -3 ) 1/2 >5 (J ⁇ cm -3 ) 1/2 , in which a first adhesive layer maleic anhydride grafted linear low density polyethylene is disposed in the POY bridge, the first adhesive layer and PO1 The layer is in contact, and the absolute value of the difference between the solubility parameters of the first adhesive layer and the PO2 layer material is 0.2 (J ⁇ cm -3 ) 1/2 , 0.1 (J ⁇ cm -3 ) 1/2 ⁇ 0.2 (J ⁇ cm -3 ) 1/2 ⁇ 0.5(J ⁇ cm -3 ) 1/2 , at the same time, the absolute value of the difference in cohesive energy density between the first adhesive layer and the PO2 layer material is 3.2 J/cm 3 , 3J/cm 3 ⁇ 3.2
  • the absolute value of the difference between the solubility parameters between the PO1 layer and the adjacent layer in the POY bridge to the PO2 layer is less than or equal to 0.1 (J ⁇ cm -3 ) 1/2 , and the cohesive energy between adjacent layers
  • the absolute value of the difference in density is less than 3 J/cm 3 .
  • the material of the first adhesive layer is a maleic anhydride graft copolymer supported on an adjacent layer, which is a material (linear low density polyethylene) in the POY bridge that is in direct contact with the first adhesive layer.
  • the absolute value of the difference between the solubility parameters of the PO1 layer and the PO3 layer material is 5.7 (J ⁇ cm -3 ) 1/2 , 5.7 (J ⁇ cm -3 ) 1/2 >5 (J ⁇ cm -3 ) 1/2
  • the second adhesive layer is in contact with the PO1 layer, and the solubility parameters of the second adhesive layer and the PO3 layer material are
  • the absolute value of the difference is 0.2 (J ⁇ cm -3 ) 1/2 , 0.1 (J ⁇ cm -3 ) 1/2 ⁇ 0.2 (J ⁇ cm -3 ) 1/2 ⁇ 0.5 (J ⁇ cm -3 ) 1 /2
  • the absolute value of the difference in cohesive energy density between the second adhesive layer and the PO3 layer material is 3.2 J/cm 3 , 3 J/cm 3 ⁇ 3.2 J/cm 3 ⁇ 5 J/cm 3 ,
  • the solubility parameter and the cohesive energy density is 3.2 J/cm 3 , 3 J/cm 3 ⁇ 3.2 J/cm 3
  • the absolute value of the difference between the solubility parameters between the PO1 layer and the adjacent layer in the POX bridge to the PO3 layer is less than or equal to 0.1 (J ⁇ cm -3 ) 1/2 , and the cohesive energy between adjacent layers
  • the absolute value of the difference in density is less than 3 J/cm 3 .
  • the material of the second adhesive layer is a maleic anhydride graft copolymer supported on an adjacent layer, which is a material (linear low density polyethylene) in the POX bridge that is in direct contact with the second adhesive layer.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the solubility parameter and the cohesive energy density of the material between the first adhesive layer and the PO2 layer in the POY bridge are incrementally transitioned to the PO2 layer based on the first adhesive layer material; the second bond in the POX bridge The solubility parameter and the cohesive energy density of the material between the layer and the PO3 layer are incrementally transitioned to the PO3 layer based on the second bonding layer material.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the solubility parameter and the cohesive energy density of the material between the first adhesive layer and the PO2 layer in the POY bridge are incrementally transitioned to the PO2 layer based on the first adhesive layer material; the second bond in the POX bridge The solubility parameter and the cohesive energy density of the material between the layer and the PO3 layer are reduced to the PO3 layer based on the second adhesive layer material.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the solubility parameter and the cohesive energy density of the material between the first adhesive layer and the PO2 layer in the POY bridge are incrementally transitioned to the PO2 layer based on the first adhesive layer material; the second bond in the POX bridge
  • the solubility parameter and the cohesive energy density of the material between the layer and the PO3 layer are V-shaped to the PO3 layer based on the second adhesive layer material.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the solubility parameter and the cohesive energy density of the material between the first adhesive layer and the PO2 layer in the POY bridge are incrementally transitioned to the PO2 layer based on the first adhesive layer material; the second bond in the POX bridge The solubility parameter and the cohesive energy density of the material between the layer and the PO3 layer are reduced to the PO3 layer based on the second adhesive layer material.
  • the solubility parameter and the cohesive energy density of the material between the first adhesive layer and the PO2 layer in the POY bridge are W-shaped to the PO2 layer based on the first adhesive layer material; the second in the POX bridge The solubility parameter and the cohesive energy density of the material between the adhesive layer and the PO3 layer are incrementally transitioned to the PO3 layer based on the second adhesive layer material.
  • the solubility parameter and the cohesive energy density of the material between the first adhesive layer and the PO2 layer in the POY bridge are a transition to the PO2 layer based on the first adhesive layer material; the second bonding in the POX bridge The solubility parameter and the cohesive energy density of the material between the layer and the PO3 layer are reduced to the PO3 layer based on the second adhesive layer material.
  • Embodiment 8 and Embodiment 9 are embodiments of the second technical solution of the present invention.
  • the PO2 layer in the composite film structure is LDPE+ modified polyethylene;
  • the POY layer is high density polyethylene + modified polyethylene / high density polyethylene + ethylene-octene copolymer / low density polyethylene LDPE / maleic anhydride graft Low density polyethylene, the number of layers is four;
  • PO1 layer is ethylene-vinyl alcohol copolymer;
  • second adhesive layer TIE2 is maleic anhydride grafted low density polyethylene;
  • PO3 layer is LDPE+ modified low density polyethylene, specific See Form 8:
  • the absolute value of the difference between the solubility parameters of the PO1 layer and the PO2 layer material is 4.76 (J ⁇ cm -3 ) 1/2 , 4.76 (J ⁇ cm -3 ) 1/2 >0.5 (J ⁇ cm -3 ) 1 /2
  • the absolute value of the difference in cohesive energy density between the PO1 layer and the PO2 layer material is 100.15 J/cm 3 , 100.15 J/cm 3 >5 J/cm 3
  • the first adhesive layer is disposed in the POY bridge
  • the first adhesive layer is in contact with the PO1 layer, and the absolute value of the difference between the solubility parameters of the first adhesive layer and the PO2 layer material is 0.24 (J ⁇ cm -3 ) 1/2 , and at the same time, the first adhesive is made
  • the absolute value of the difference in cohesive energy density between the layered and PO2 layer materials is 3.85 J/cm 3 , 3 J/cm 3 ⁇ 3.85 J/cm 3 ⁇ 5 J/cm 3
  • the material of the first adhesive layer is a maleic anhydride graft copolymer supported on an adjacent layer, which is a material (low density polyethylene) in the POY bridge that is in direct contact with the first adhesive layer.
  • the solubility parameter and the cohesive energy density of the material between the first adhesive layer and the PO2 layer in the POY bridge are a decreasing transition to the PO2 layer based on the first adhesive layer material.
  • the solubility parameter and the cohesive energy density of the material between the first adhesive layer and the PO2 layer in the POY bridge are V-shaped to the PO2 layer based on the first adhesive layer material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

一种高性能包装用复合薄膜,该复合薄膜的结构如下:PO2/POY/PO1/POX/PO3以及PO2/POY/PO1/TIE2/PO3;复合薄膜通过多层共挤出及双向拉伸成型一次获得,薄膜总厚度为8微米~100微米;PO1层与PO2层之间以及PO1层与PO3层之间的溶解度参数之差的绝对值大于0.5(J•cm -3) 1/2,且内聚能密度之差的绝对值大于5J/cm 3。为了满足相溶性、双向拉伸以及拉伸过渡桥厚度占复合薄膜总厚度的10~20%要求,在POY桥的一端设置第一粘合层,采用化学连接方式,将溶解度之差的绝对值调整到0.1~0.5(J•cm -3) 1/2范围,同时将内聚能密度之差的绝对值调整到3~5J/cm 3范围,POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料和PO2层材料两者中的一者为基准,呈梯度向另一者过渡。

Description

高性能包装用复合薄膜 技术领域
本发明涉及多层复合薄膜技术领域,特别涉及一种高性能包装用复合薄膜,该复合薄膜可应用于真空包装、充气包装、气调包装、高温蒸煮包装、无菌包装以及涂覆、印刷、复合基材等。
背景技术
多层共挤复合薄膜是指由多种不同聚合物,采用共挤出吹塑方法、共挤出流延方法或共挤出拉伸方法复合而成的薄膜。这种薄膜作为塑料包装材料广泛应用于食品、加工肉类产品、日用品、化妆品、化工产品、农药、军工产品等等,并且可以实现产品的密封软包装以及满足充气或抽真空、热成型、气调包装、高温蒸煮包装、无菌包装等各种包装功能、在各种环境下具有高阻湿、阻氧、阻油、保香等各种阻隔性能。
在食品包装行业,真空包装、充气包装、气调包装、高温蒸煮包装、无菌包装及涂覆、印刷复合基材的应用非常广泛,真空包装是将食品放入包装袋内,抽出包装袋内的空气,达到预定真空度后将其封口,其主要作用是除氧,以防止食品变质。充气包装是在抽真空后再冲入氮气、二氧化碳、氧气单一气体或两三种气体的混合。气调包装是采用气调保鲜气体(2~4种气体根据食品特性配比混合),对包装袋内的空气进行置换,改变包装袋内食品的外部环境,抑制细菌的生长繁衍,减缓新鲜食品新陈代谢的速度,从而延长食品的保鲜期或货架期。无菌包装是指将经过杀菌、已达到商业无菌状态的产品(液态奶及奶制品、饮料等),封闭在已杀菌的容器中,在无菌环境下进行灌注,灌装后包装容器保持密封的一种包装方法。与真空包装、充气包装、气调包装及高温蒸煮包装、无菌包装及涂覆、印刷、复合基材技术同步发展的是复合软包装薄膜,真空包装、充气包装、气调包装及高温蒸煮包装、无菌包装及涂覆、印刷复合基材技术的关键是保持包装薄膜的阻隔功能性和优良的热封性能。为了达到环保和减量的目标,采用多层共挤出成型工艺方法实现了VOCs的零排放,采用双向拉伸成型工艺使薄膜薄到一定程度以后其强度仍可得到保障。
但多层高阻隔薄膜因各层材料的加工特性不同,同时在相同的工艺条件下完成共挤和双向拉伸的成型技术受现有技术的限制,薄膜的层间剥离强度、热封性能均无法得到保障。
现有技术存在如下问题:1、多层复合薄膜中各层材料不同,不同材料的拉伸倍率不同,当拉伸倍率小的材料层被拉伸至与拉伸倍率大的材料层相同倍率时,层间剥离强度急剧下降甚至脱层,二拉伸倍率小的材料极可能被撕裂;2、拉伸后热封性能下降;3、为了使拉伸后的薄膜具备足够热封性,通常在拉伸后的薄膜上再复合一热封层,但是复合使用 的干式复合溶剂存在污染,对食品不安全,不环保。
本发明目的是提供一种高性能包装用复合薄膜。
为达到上述目的,本发明采用的第一技术方案是:一种高性能包装用复合薄膜,其创新在于:该复合薄膜的结构如下:
PO2/POY/PO1/POX/PO3     式(1)
式(1)中,从左往右依次表示的含义是:
PO2表示外层,亦称PO2层,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;
POY表示拉伸过渡桥,亦称POY桥,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;Y表示层数,且Y为2、3、4……;
PO1表示主拉伸层,亦称PO1层,其材料为聚酰胺或乙烯乙烯醇共聚物或聚酯;
POX表示拉伸过渡桥,亦称POX桥,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;X表示层数,且X为2、3、4……;
PO3表示内层,亦称PO3层,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;
所述式(1)的复合薄膜通过多层共挤出及双向拉伸成型一次获得,其中,所述双向拉伸采用先纵向拉伸,再横向拉伸的两步拉伸方法来实现;
所述复合薄膜的总厚度为8微米~100微米,PO2层的厚度占所述复合薄膜总厚度的8~20%;POY桥的厚度占所述复合薄膜总厚度的10~20%;PO1层的厚度占所述复合薄膜总厚度的30~50%;POX桥的厚度占所述复合薄膜总厚度的10~20%;PO3层的厚度占所述复合薄膜总厚度的8~20%;
所述PO2层、POY桥、PO1层、POX桥及PO3层的材料的密度选择要求如下:当PO1层为聚酰胺时,PO1层的密度为1.12~1.14g/cm 3;当PO1层为乙烯乙烯醇共聚物时,PO1层的密度为1.16~1.19g/cm 3;当PO1层为聚酯时,PO1层的密度为1.3~1.4g/cm 3;PO2层的密度为0.87~0.97g/cm 3;POY桥的密度为0.86~0.97g/cm 3;POX桥的密度为0.86~0.97g/cm 3;PO3层的密度为0.87~0.97g/cm 3
所述PO1层和PO2层材料的溶解度参数之差的绝对值大于0.5(J·cm -3) 1/2,且PO1层和PO2层材料的内聚能密度之差的绝对值大于5J/cm 3,在所述POY桥中设置第一粘合层,该第一粘合层与PO1层接触,并且使得第一粘合层和PO2层材料的溶解度参数之差的绝对值大于或等于0.1(J·cm -3) 1/2,且小于或等于0.5(J·cm -3) 1/2,同时,使得第一粘合层和PO2层材料的内聚能密度之差的绝对值大于或等于3J/cm 3,且小于或等于5J/cm 3,所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料和PO2层材料两 者中的一者为基准,呈梯度向另一者过渡;
所述PO1层至POY桥至PO2层中各相邻层之间的溶解度参数之差的绝对值小于或等于0.1(J·cm -3) 1/2,各相邻层之间的内聚能密度之差的绝对值小于或等于3J/cm 3
所述第一粘合层的材料是以相邻层为载体的马来酸酐接枝共聚物,所述载体为POY桥中与第一粘合层直接接触的材料中的至少一种;
所述PO1层和PO3层材料的溶解度参数之差的绝对值大于0.5(J·cm -3) 1/2,且PO1层和PO3层材料的内聚能密度之差的绝对值大于5J/cm 3,在所述POX桥中设置第二粘合层,该第二粘合层与PO1层接触,并且使得第二粘合层和PO3层材料的溶解度参数之差的绝对值大于或等于0.1(J·cm -3) 1/2,且小于或等于0.5(J·cm -3) 1/2,同时,使得第二粘合层和PO3层材料的内聚能密度之差的绝对值大于或等于3J/cm 3,且小于或等于5J/cm 3,所述POX桥中从第二粘合层与PO3层之间材料的溶解度参数及内聚能密度是以第二粘合层材料和PO3层材料两者中的一者为基准,呈梯度向另一者过渡;
所述PO1层至POX桥至PO3层中各相邻层之间的溶解度参数之差的绝对值小于或等于0.1(J·cm -3) 1/2,各相邻层之间的内聚能密度之差的绝对值小于或等于3J/cm 3
所述第二粘合层的材料是以相邻层为载体的马来酸酐接枝共聚物,所述载体为POX桥中与第二粘合层直接接触的材料中的至少一种。
为达到上述目的,本发明采用的第二技术方案是:一种高性能包装用复合薄膜,其创新在于:该复合薄膜的结构如下:
PO2/POY/PO1/TIE2/PO3      式(2)
式(2)中,从左往右依次表示的含义是:
PO2表示外层,亦称PO2层,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;
POY表示拉伸过渡桥,亦称POY桥,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;Y表示层数,且Y为2、3、4……;
PO1表示主拉伸层,亦称PO1层,其材料为聚酰胺或乙烯乙烯醇共聚物或聚酯;
TIE2表示第二粘合层,其材料为以相邻层为载体的马来酸酐接枝共聚物,所述载体为PO3层材料中的至少一种;
PO3表示内层,亦称PO3层,其功能为热封层,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;
所述式(1)的复合薄膜通过多层共挤出及双向拉伸成型一次获得,其中,所述双向拉伸采用先纵向拉伸,再横向拉伸的两步拉伸方法来实现;
所述复合薄膜的总厚度为8微米~100微米,PO2层的厚度占所述复合薄膜总厚度的8~20%; POY桥的厚度占所述复合薄膜总厚度的10~20%;PO1层的厚度占所述复合薄膜总厚度的30~50%;
所述PO2层、POY桥及PO1层的材料的密度选择要求如下:当PO1层为聚酰胺时,PO1层的密度为1.12~1.14g/cm 3;当PO1层为乙烯乙烯醇共聚物时,PO1层的密度为1.16~1.19g/cm 3;当PO1层为聚酯时,PO1层的密度为1.3~1.4g/cm 3;PO2层的密度为0.87~0.97g/cm 3;POY桥的密度为0.86~0.97g/cm 3
所述PO1层和PO2层材料的溶解度参数之差的绝对值大于0.5(J·cm -3) 1/2,且PO1层和PO2层材料的内聚能密度之差的绝对值大于5J/cm 3,在所述POY桥中设置第一粘合层,该第一粘合层与PO1层接触,并且使得第一粘合层和PO2层材料的溶解度参数之差的绝对值大于或等于0.1(J·cm -3) 1/2,且小于或等于0.5(J·cm -3) 1/2,同时,使得第一粘合层和PO2层材料的内聚能密度之差的绝对值大于或等于3J/cm 3,且小于或等于5J/cm 3,所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料和PO2层材料两者中的一者为基准,呈梯度向另一者过渡;
所述PO1层至POY桥至PO2层中各相邻层之间的溶解度参数之差的绝对值小于或等于0.1(J·cm -3) 1/2,各相邻层之间的内聚能密度之差的绝对值小于或等于3J/cm 3
所述第一粘合层的材料是以相邻层为载体的马来酸酐接枝共聚物,所述载体为POY桥中与第一粘合层直接接触的材料中的至少一种。
上述技术方案中的有关内容解释如下:
1、上述第一及第二方案中,所述POY桥材料的溶解度参数和内聚能密度是以PO1层材料和PO2层材料两者中的一者为基准,向另一者递增或递减过渡。
2、上述第一方案中,所述POX桥材料的内聚能密度和内聚能密度是以PO1层材料和PO3层材料两者中的一者为基准,向另一者递增或递减过渡。
3、上述第一及第二方案中,所述POY桥材料的溶解度参数和内聚能密度是以PO1层材料和PO2层材料两者中的一者为基准,呈V字形梯度向另一者过渡。
4、上述第一方案中,所述POX桥材料的内聚能密度和内聚能密度是以PO1层材料和PO3层材料两者中的一者为基准,呈V字形梯度向另一者过渡。
5、上述第一及第二方案中,所述POY桥材料的溶解度参数和内聚能密度是以PO1层材料和PO2层材料两者中的一者为基准,呈W字形梯度向另一者过渡。
6、上述第一方案中,所述POX桥材料的内聚能密度和内聚能密度是以PO1层材料和PO3层材料两者中的一者为基准,呈W字形梯度向另一者过渡。
7、上述第一及第二方案中,所述POY桥材料的溶解度参数和内聚能密度是以PO1层材料和PO2层材料两者中的一者为基准,呈M字形梯度向另一者过渡。
8、上述第一方案中,所述POX桥材料的内聚能密度和内聚能密度是以PO1层材料和PO3层材料两者中的一者为基准,呈M字形梯度向另一者过渡。
本发明的技术原理及优点:所述溶解度参数(solubility parameter,简称SP)是衡量聚合物材料在加工条件下(包括橡胶和塑料加工条件下呈液态)相溶性的一项物理常数。
所述内聚能密度(cohesive energy density)就是单位体积V内1mol凝聚体为克服分子间作用力汽化时所需要的能量E(内聚能)。是评价分子间作用力大小的一个物理量,主要反映基团间的相互作用。一般来说,分子中所含基团的极性越大,分子间的作用力就越大,则相应的内聚能密度就越大;反之亦然。
溶解度参数其物理意义是材料单位体积内聚能密度的开平方:SP=(E/V) 1/2,其中,SP是溶解度参数,E是内聚能,V是体积,E/V是内聚能密度。
本发明的技术原理及优点:掌握溶解度参数,就是掌握了不同聚合物之间的相溶程度,为能否成功并用提供依据。两种高分子材料的溶解度参数越相近,则共混效果越好。如果两者的差值超过了0.5(J·cm -3) 1/2,则一般难以共混均匀,需要增加增溶剂才可以。增溶剂的作用是降低两相的表面张力,使得界面处的表面被激化,从而提高相溶的程度。增溶剂往往是一种聚合物,起到桥梁中介的作用。在本发明中,拉伸过渡桥起到了增溶剂以及桥梁中介的作用。
影响复合薄膜多层共挤出双向拉伸的两个重要因素是层间材料的溶解度参数和密度,内聚能密度是材料单位体积的内聚能,内聚能密度与材料密度及材料熔点/软化温度成正比的关系,本发明依据聚合物内聚能密度及溶解度参数相同或相近,即符合有机物相似相溶的基本规则,作为设定拉伸过渡桥(如POY桥)的依据,两种高分子材料的溶解度参数及内聚能密度越相近,则共混效果越好,通过拉伸过渡桥来缩小层间材料溶解度参数及内聚能密度之间的差异,消除或减弱了结构层间的内应力,提高了剥离强度、热封强度,实现多层共挤薄膜的双向拉伸。
本发明中,PO1层与PO2层之间以及PO1层与PO3层之间的溶解度参数之差的绝对值大于0.5(J·cm -3) 1/2,且内聚能密度之差的绝对值大于5J/cm 3。为了满足相溶性、双向拉伸以及拉伸过渡桥厚度占复合薄膜总厚度的10~20%要求,本发明在POY桥的一端设置第一粘合层,采用化学连接方式,将溶解度之差的绝对值调整到0.1~0.5(J·cm -3) 1/2范围,同时将内聚能密度之差的绝对值调整到3~5J/cm 3范围,然后,POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料和PO2层材料两者中的一者为基准,呈梯度向另一者过渡。POX桥的原理与POY桥的原理相同。
本发明通过双向拉伸工艺使分子有序排列,增加了强度。
具体实施方式
下面结合实施例对本发明作进一步描述:
实施例一至实施例六为本发明第一技术方案的实施例。
实施例一:
复合薄膜结构中PO2为聚丙烯;POY为高密度聚乙烯/高密度聚乙烯+乙烯-辛烯的共聚物/线性低密度聚乙烯+低密度聚乙烯/马来酸酐接枝线性低密度聚乙烯,层数为四层;PO1为聚酰胺;POX为马来酸酐接枝线性低密度聚乙烯/线性低密度聚乙烯+低密度聚乙烯/高密度聚乙烯+乙烯-辛烯的共聚物/高密度聚乙烯,层数为四层;PO3为聚丙烯,具体参见表格一:
表格一:
Figure PCTCN2018079204-appb-000001
表格一中可见各聚合物的密度、溶解度参数以及内聚能密度,PO1层和PO2层材料的溶解度参数之差的绝对值为5.7(J·cm -3) 1/2,5.7(J·cm -3) 1/2>5(J·cm -3) 1/2,在所述POY桥中设置第一粘合层马来酸酐接枝线性低密度聚乙烯,该第一粘合层与PO1层接触,并且使得第一粘合层和PO2层材料的溶解度参数之差的绝对值为0.2(J·cm -3) 1/2,0.1(J·cm -3) 1/2<0.2(J·cm -3) 1/2<0.5(J·cm -3) 1/2,同时,使得第一粘合层和PO2层材料的内聚能密度之差的绝对值为3.2J/cm 3,3J/cm 3<3.2J/cm 3<5J/cm 3,所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料为基准,向PO2层递增过渡;
所述PO1层至POY桥至PO2层中各相邻层之间的溶解度参数之差的绝对值小于或等于0.1(J·cm -3) 1/2,各相邻层之间的内聚能密度之差的绝对值小于3J/cm 3
所述第一粘合层的材料是以相邻层为载体的马来酸酐接枝共聚物,所述载体为POY桥中与第一粘合层直接接触的材料(线性低密度聚乙烯)。
PO1层和PO3层材料的溶解度参数之差的绝对值为5.7(J·cm -3) 1/2,5.7(J·cm -3) 1/2>5(J ·cm -3) 1/2,在所述POX桥中设置第二粘合层马来酸酐接枝线性低密度聚乙烯,该第二粘合层与PO1层接触,并且使得第二粘合层和PO3层材料的溶解度参数之差的绝对值为0.2(J·cm -3) 1/2,0.1(J·cm -3) 1/2<0.2(J·cm -3) 1/2<0.5(J·cm -3) 1/2,同时,使得第二粘合层和PO3层材料的内聚能密度之差的绝对值为3.2J/cm 3,3J/cm 3<3.2J/cm 3<5J/cm 3,所述POX桥中第二粘合层与PO3层之间材料的溶解度参数及内聚能密度是以第二粘合层材料为基准,向PO3层递增过渡;
所述PO1层至POX桥至PO3层中各相邻层之间的溶解度参数之差的绝对值小于或等于0.1(J·cm -3) 1/2,各相邻层之间的内聚能密度之差的绝对值小于3J/cm 3
所述第二粘合层的材料是以相邻层为载体的马来酸酐接枝共聚物,所述载体为POX桥中与第二粘合层直接接触的材料(线性低密度聚乙烯)。
以下实施例通过表格的方式呈现,为了节省篇幅,不再通过文字赘述。
实施例二:
具体参见表格二:
表格二:
Figure PCTCN2018079204-appb-000002
所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料为基准,向PO2层递增过渡;所述POX桥中第二粘合层与PO3层之间材料的溶解度参数及内聚能密度是以第二粘合层材料为基准,向PO3层递增过渡。
实施例三:
具体参见表格三:
表格三:
Figure PCTCN2018079204-appb-000003
所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料为基准,向PO2层递增过渡;所述POX桥中第二粘合层与PO3层之间材料的溶解度参数及内聚能密度是以第二粘合层材料为基准,向PO3层递减过渡。
实施例四:
具体参见表格四:
表格四:
Figure PCTCN2018079204-appb-000004
所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料为基准,向PO2层递增过渡;所述POX桥中第二粘合层与PO3层之间材料的溶解度参数及内聚能密度是以第二粘合层材料为基准,呈V字形向PO3层过渡。
实施例五:
具体参见表格五:
表格五:
Figure PCTCN2018079204-appb-000005
所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料为基准,向PO2层递增过渡;所述POX桥中第二粘合层与PO3层之间材料的溶解度参数及内聚能密度是以第二粘合层材料为基准,向PO3层递减过渡。
实施例六:
具体参见表格六:
表格六:
Figure PCTCN2018079204-appb-000006
所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料为基准,呈W字形向PO2层过渡;所述POX桥中第二粘合层与PO3层之间材料的溶解度参数及内聚能密度是以第二粘合层材料为基准,向PO3层递增过渡。
实施例七:
具体参见表格七:
表格七:
Figure PCTCN2018079204-appb-000007
所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料为基准,向PO2层递减过渡;所述POX桥中第二粘合层与PO3层之间材料的溶解度参数及内聚能密度是以第二粘合层材料为基准,向PO3层递减过渡。
实施例八、实施例九和实施例十为本发明第二技术方案的实施例。
实施例八:
复合薄膜结构中PO2层为LDPE+改性聚乙烯;POY层为高密度聚乙烯+改性聚乙烯/高密度聚乙烯+乙烯-辛烯的共聚物/低密度聚乙烯LDPE/马来酸酐接枝低密度聚乙烯,层数为四层;PO1层为乙烯-乙烯醇共聚物;第二粘合层TIE2为马来酸酐接枝低密度聚乙烯;PO3层为LDPE+改性低密度聚乙烯,具体参见表格八:
表格八:
Figure PCTCN2018079204-appb-000008
所述PO1层和PO2层材料的溶解度参数之差的绝对值为4.76(J·cm -3) 1/2,4.76(J·cm -3) 1/2>0.5(J·cm -3) 1/2,且PO1层和PO2层材料的内聚能密度之差的绝对值为100.15J/cm 3,100.15J/cm 3>5J/cm 3,在所述POY桥中设置第一粘合层,该第一粘合层与PO1层接触,并且使得第一粘合 层和PO2层材料的溶解度参数之差的绝对值为0.24(J·cm -3) 1/2,同时,使得第一粘合层和PO2层材料的内聚能密度之差的绝对值为3.85J/cm 3,3J/cm 3<3.85J/cm 3<5J/cm 3,所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料为基准,向PO2层递增过渡;所述PO1层至POY桥至PO2层中各相邻层之间的溶解度参数之差的绝对值小于0.1(J·cm -3) 1/2,各相邻层之间的内聚能密度之差的绝对值小于3J/cm 3
所述第一粘合层的材料是以相邻层为载体的马来酸酐接枝共聚物,所述载体为POY桥中与第一粘合层直接接触的材料(低密度聚乙烯)。
实施例九:
具体参见表格九:
表格九:
Figure PCTCN2018079204-appb-000009
所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料为基准,向PO2层递减过渡。
实施例十:
具体参见表格十:
表格十:
Figure PCTCN2018079204-appb-000010
所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材 料为基准,呈V字形向PO2层过渡。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,本领域技术人员可在上述实施例的基础上做出其他变化,比如选择各材料的不同密度、选择添加不同的活化剂等,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种高性能包装用复合薄膜,其特征在于:该复合薄膜的结构如下:
    PO2/POY/PO1/POX/PO3  式(1)
    式(1)中,从左往右依次表示的含义是:
    PO2表示外层,亦称PO2层,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;
    POY表示拉伸过渡桥,亦称POY桥,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;Y表示层数,且Y为2、3、4……;
    PO1表示主拉伸层,亦称PO1层,其材料为聚酰胺或乙烯乙烯醇共聚物或聚酯;
    POX表示拉伸过渡桥,亦称POX桥,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;X表示层数,且X为2、3、4……;
    PO3表示内层,亦称PO3层,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;
    所述式(1)的复合薄膜通过多层共挤出及双向拉伸成型一次获得,其中,所述双向拉伸采用先纵向拉伸,再横向拉伸的两步拉伸方法来实现;
    所述复合薄膜的总厚度为8微米~100微米,PO2层的厚度占所述复合薄膜总厚度的8~20%;POY桥的厚度占所述复合薄膜总厚度的10~20%;PO1层的厚度占所述复合薄膜总厚度的30~50%;POX桥的厚度占所述复合薄膜总厚度的10~20%;PO3层的厚度占所述复合薄膜总厚度的8~20%;
    所述PO2层、POY桥、PO1层、POX桥及PO3层的材料的密度选择要求如下:当PO1层为聚酰胺时,PO1层的密度为1.12~1.14g/cm 3;当PO1层为乙烯乙烯醇共聚物时,PO1层的密度为1.16~1.19g/cm 3;当PO1层为聚酯时,PO1层的密度为1.3~1.4g/cm 3;PO2层的密度为0.87~0.97g/cm 3;POY桥的密度为0.86~0.97g/cm 3;POX桥的密度为0.86~0.97g/cm 3;PO3层的密度为0.87~0.97g/cm 3
    所述PO1层和PO2层材料的溶解度参数之差的绝对值大于0.5(J·cm -3) 1/2,且PO1层和PO2层材料的内聚能密度之差的绝对值大于5J/cm 3,在所述POY桥中设置第一粘合层,该第一粘合层与PO1层接触,并且使得第一粘合层和PO2层材料的溶解度参数之差的绝对值大于或等于0.1(J·cm -3) 1/2,且小于或等于0.5(J·cm -3) 1/2,同时,使得第一粘合层和PO2层材料的内聚能密度之差的绝对值大于或等于3J/cm 3,且小于或等于5J/cm 3,所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料和PO2层材料两者中的一者为基准,呈梯度向另一者过渡;
    所述PO1层至POY桥至PO2层中各相邻层之间的溶解度参数之差的绝对值小于或等于 0.1(J·cm -3) 1/2,各相邻层之间的内聚能密度之差的绝对值小于或等于3J/cm 3
    所述第一粘合层的材料是以相邻层为载体的马来酸酐接枝共聚物,所述载体为POY桥中与第一粘合层直接接触的材料中的至少一种;
    所述PO1层和PO3层材料的溶解度参数之差的绝对值大于0.5(J·cm -3) 1/2,且PO1层和PO3层材料的内聚能密度之差的绝对值大于5J/cm 3,在所述POX桥中设置第二粘合层,该第二粘合层与PO1层接触,并且使得第二粘合层和PO3层材料的溶解度参数之差的绝对值大于或等于0.1(J·cm -3) 1/2,且小于或等于0.5(J·cm -3) 1/2,同时,使得第二粘合层和PO3层材料的内聚能密度之差的绝对值大于或等于3J/cm 3,且小于或等于5J/cm 3,所述POX桥中从第二粘合层与PO3层之间材料的溶解度参数及内聚能密度是以第二粘合层材料和PO3层材料两者中的一者为基准,呈梯度向另一者过渡;
    所述PO1层至POX桥至PO3层中各相邻层之间的溶解度参数之差的绝对值小于或等于0.1(J·cm -3) 1/2,各相邻层之间的内聚能密度之差的绝对值小于或等于3J/cm 3
    所述第二粘合层的材料是以相邻层为载体的马来酸酐接枝共聚物,所述载体为POX桥中与第二粘合层直接接触的材料中的至少一种。
  2. 一种高性能包装用复合薄膜,其特征在于:该复合薄膜的结构如下:
    PO2/POY/PO1/TIE2/PO3  式(2)
    式(2)中,从左往右依次表示的含义是:
    PO2表示外层,亦称PO2层,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;
    POY表示拉伸过渡桥,亦称POY桥,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;Y表示层数,且Y为2、3、4……;
    PO1表示主拉伸层,亦称PO1层,其材料为聚酰胺或乙烯乙烯醇共聚物或聚酯;
    TIE2表示第二粘合层,其材料为以相邻层为载体的马来酸酐接枝共聚物,所述载体为PO3层材料中的至少一种;
    PO3表示内层,亦称PO3层,其功能为热封层,其材料为聚乙烯、聚丙烯、改性聚乙烯和改性聚丙烯中的任意一种或至少两种的混合物;
    所述式(1)的复合薄膜通过多层共挤出及双向拉伸成型一次获得,其中,所述双向拉伸采用先纵向拉伸,再横向拉伸的两步拉伸方法来实现;
    所述复合薄膜的总厚度为8微米~100微米,PO2层的厚度占所述复合薄膜总厚度的8~20%;POY桥的厚度占所述复合薄膜总厚度的10~20%;PO1层的厚度占所述复合薄膜总厚度的30~50%;
    所述PO2层、POY桥及PO1层的材料的密度选择要求如下:当PO1层为聚酰胺时,PO1层的密度为1.12~1.14g/cm 3;当PO1层为乙烯乙烯醇共聚物时,PO1层的密度为1.16~1.19 g/cm 3;当PO1层为聚酯时,PO1层的密度为1.3~1.4g/cm 3;PO2层的密度为0.87~0.97g/cm 3;POY桥的密度为0.86~0.97g/cm 3
    所述PO1层和PO2层材料的溶解度参数之差的绝对值大于0.5(J·cm -3) 1/2,且PO1层和PO2层材料的内聚能密度之差的绝对值大于5J/cm 3,在所述POY桥中设置第一粘合层,该第一粘合层与PO1层接触,并且使得第一粘合层和PO2层材料的溶解度参数之差的绝对值大于或等于0.1(J·cm -3) 1/2,且小于或等于0.5(J·cm -3) 1/2,同时,使得第一粘合层和PO2层材料的内聚能密度之差的绝对值大于或等于3J/cm 3,且小于或等于5J/cm 3,所述POY桥中第一粘合层与PO2层之间材料的溶解度参数及内聚能密度是以第一粘合层材料和PO2层材料两者中的一者为基准,呈梯度向另一者过渡;
    所述PO1层至POY桥至PO2层中各相邻层之间的溶解度参数之差的绝对值小于或等于0.1(J·cm -3) 1/2,各相邻层之间的内聚能密度之差的绝对值小于或等于3J/cm 3
    所述第一粘合层的材料是以相邻层为载体的马来酸酐接枝共聚物,所述载体为POY桥中与第一粘合层直接接触的材料中的至少一种。
  3. 根据权利要求1或2所述的高性能包装用复合薄膜,其特征在于:所述POY桥材料的溶解度参数和内聚能密度是以PO1层材料和PO2层材料两者中的一者为基准,向另一者递增或递减过渡。
  4. 根据权利要求1所述的高性能包装用复合薄膜,其特征在于:所述POX桥材料的内聚能密度和内聚能密度是以PO1层材料和PO3层材料两者中的一者为基准,向另一者递增或递减过渡。
  5. 根据权利要求1或2所述的高性能包装用复合薄膜,其特征在于:所述POY桥材料的溶解度参数和内聚能密度是以PO1层材料和PO2层材料两者中的一者为基准,呈V字形梯度向另一者过渡。
  6. 根据权利要求1所述的高性能包装用复合薄膜,其特征在于:所述POX桥材料的内聚能密度和内聚能密度是以PO1层材料和PO3层材料两者中的一者为基准,呈V字形梯度向另一者过渡。
  7. 根据权利要求1或2所述的高性能包装用复合薄膜,其特征在于:所述POY桥材料的溶解度参数和内聚能密度是以PO1层材料和PO2层材料两者中的一者为基准,呈W字形梯度向另一者过渡。
  8. 根据权利要求1所述的高性能包装用复合薄膜,其特征在于:所述POX桥材料的内聚能密度和内聚能密度是以PO1层材料和PO3层材料两者中的一者为基准,呈W字形梯度向另一者过渡。
  9. 根据权利要求1或2所述的高性能包装用复合薄膜,其特征在于:所述POY桥材料的溶解度参数和内聚能密度是以PO1层材料和PO2层材料两者中的一者为基准,呈M字形 梯度向另一者过渡。
  10. 根据权利要求1所述的高性能包装用复合薄膜,其特征在于:所述POX桥材料的内聚能密度和内聚能密度是以PO1层材料和PO3层材料两者中的一者为基准,呈M字形梯度向另一者过渡。
PCT/CN2018/079204 2017-03-15 2018-03-15 高性能包装用复合薄膜 WO2018166510A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/614,037 US11904576B2 (en) 2017-03-15 2018-03-15 High-performance multilayer film for packaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710154185.5 2017-03-15
CN201710154185.5A CN106976290B (zh) 2017-03-15 2017-03-15 高性能包装用复合薄膜

Publications (1)

Publication Number Publication Date
WO2018166510A1 true WO2018166510A1 (zh) 2018-09-20

Family

ID=59338764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079204 WO2018166510A1 (zh) 2017-03-15 2018-03-15 高性能包装用复合薄膜

Country Status (3)

Country Link
US (1) US11904576B2 (zh)
CN (1) CN106976290B (zh)
WO (1) WO2018166510A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106976290B (zh) * 2017-03-15 2019-01-04 嘉浦薄膜新材料(昆山)有限公司 高性能包装用复合薄膜
CN109591415A (zh) * 2018-11-29 2019-04-09 烟台丰福莱薄膜科技有限公司 一种多层共挤出吹膜在线纵向拉伸的高阻隔薄膜及制备方法
CN110303740A (zh) * 2019-07-18 2019-10-08 江苏嘉浦特种薄膜有限公司 一种多层可热封共挤出双向拉伸复合薄膜
CN112223876B (zh) * 2020-09-03 2023-06-06 青岛中集创赢复合材料科技有限公司 一种复合片材和复合片材生产系统
CN115257107B (zh) * 2022-07-25 2023-07-21 湖北航天化学技术研究所 一种具有抗菌功能的高阻隔pe膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571260A2 (fr) * 1992-05-19 1993-11-24 Société à Responsabilité Limitée DACRY Complexe polymères multicouches destiné, notamment, à constituer une enveloppe thermoretractable et procédé pour l'obtention
CN102029754A (zh) * 2010-09-21 2011-04-27 昆山加浦包装材料有限公司 高阻隔共挤出拉伸薄膜
CN103112226A (zh) * 2013-02-19 2013-05-22 黄山永新股份有限公司 七层共挤高阻隔透明膜及其制备方法
CN106976290A (zh) * 2017-03-15 2017-07-25 嘉浦薄膜新材料(昆山)有限公司 高性能包装用复合薄膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2395044T3 (pl) * 2009-02-04 2016-03-31 Mitsubishi Gas Chemical Co Folia termokurczliwa
JP2010194984A (ja) * 2009-02-27 2010-09-09 Mitsui Chemicals Inc 積層構造体
EP2578639B1 (en) * 2010-05-28 2019-08-07 LG Chem, Ltd. Resin blend for melt-processing, pellet, method for manufacturing resin-molded product using same and resin-molded product
EP2578393B1 (en) * 2010-05-28 2019-07-24 LG Chem, Ltd. Melt-processed molded resin article
EP2397325A1 (en) * 2010-06-18 2011-12-21 Cryovac, Inc. Multilayer film for packaging fluid products
CN103443231A (zh) * 2011-03-25 2013-12-11 三井化学株式会社 粘合性树脂组合物及使用其的多层结构体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571260A2 (fr) * 1992-05-19 1993-11-24 Société à Responsabilité Limitée DACRY Complexe polymères multicouches destiné, notamment, à constituer une enveloppe thermoretractable et procédé pour l'obtention
CN102029754A (zh) * 2010-09-21 2011-04-27 昆山加浦包装材料有限公司 高阻隔共挤出拉伸薄膜
CN103112226A (zh) * 2013-02-19 2013-05-22 黄山永新股份有限公司 七层共挤高阻隔透明膜及其制备方法
CN106976290A (zh) * 2017-03-15 2017-07-25 嘉浦薄膜新材料(昆山)有限公司 高性能包装用复合薄膜

Also Published As

Publication number Publication date
US20210170725A1 (en) 2021-06-10
US11904576B2 (en) 2024-02-20
CN106976290B (zh) 2019-01-04
CN106976290A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
WO2018166510A1 (zh) 高性能包装用复合薄膜
JP6731951B2 (ja) 積層構造体及びそれから作製されるスタンドアップパウチ
WO2018166509A1 (zh) 一种高性能包装用复合薄膜
CN101780855B (zh) 一种五层共挤输液药品包装用膜及其制造方法
TW201221357A (en) Co-extrusion film and bag using the same
KR20080046083A (ko) 포장 필름용 박리가능 복합 열가소성 밀봉재
CN102225644B (zh) 热封膜及其制备方法
FI98900C (fi) Lihaan tarttuva, kypsentämisen kestävä kutistuskalvo
JP2008150539A (ja) 樹脂組成物、バリア性シーラントフィルム及びバリア性シーラントフィルムの製造方法
CN111114075B (zh) 无菌包装膜及其制备方法
JP6264092B2 (ja) 易引裂性多層フィルム及び包装材
CN105172287A (zh) 一种流延聚丙烯膜
RU2193973C2 (ru) Прозрачная многослойная пленка и способ ее изготовления
US20140295076A1 (en) Low seal initiation lid for rigid substrates
JP2006143303A (ja) 麺包装用共押出多層フィルム、麺包装用ラミネートフィルムおよび麺包装方法
CN114889266B (zh) 一种petg流延膜
CN107521191A (zh) 高阻隔食品保鲜袋膜
CN218023043U (zh) 一种冷冻食品包装袋
JP7399006B2 (ja) 共押出フィルムおよび包装体
JP6018754B2 (ja) レトルトパウチ用包装材料
JP2009149013A (ja) 積層体
JP6816584B2 (ja) 離型性積層フィルム及び包装体
WO2023008364A1 (ja) 積層フィルム及び包装袋
CN112959785A (zh) 一种高阻隔性PET-Al-PA-PE复合膜及其制备方法
JP2022179043A (ja) ヒートシール性積層フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768117

Country of ref document: EP

Kind code of ref document: A1