WO2018166138A1 - 一种氮、磷、氯共掺杂碳材料、其制备方法及用途 - Google Patents

一种氮、磷、氯共掺杂碳材料、其制备方法及用途 Download PDF

Info

Publication number
WO2018166138A1
WO2018166138A1 PCT/CN2017/095565 CN2017095565W WO2018166138A1 WO 2018166138 A1 WO2018166138 A1 WO 2018166138A1 CN 2017095565 W CN2017095565 W CN 2017095565W WO 2018166138 A1 WO2018166138 A1 WO 2018166138A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
nitrogen
chlorine
doped carbon
carbon material
Prior art date
Application number
PCT/CN2017/095565
Other languages
English (en)
French (fr)
Inventor
王舜
金辉乐
冯鑫
余小春
董小妹
王继昌
Original Assignee
温州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州大学 filed Critical 温州大学
Publication of WO2018166138A1 publication Critical patent/WO2018166138A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention belongs to the field of inorganic functional materials, in particular to a nitrogen, phosphorus and chlorine co-doped carbon material, a preparation method thereof and use thereof.
  • Supercapacitor is a new, efficient and practical energy storage device with superior performance such as large capacity, high power, long life, low cost and environmental friendliness. It is a revolutionary development in the field of energy storage and can be used in a certain These areas replace traditional batteries and take advantage of the inability of batteries. With the attention and investment in the direction of new energy sources and policy support in the 13th Five-Year Plan, supercapacitors have better room for development than ever before.
  • doping with carbon atoms by using heteroatoms can not only effectively increase the volumetric energy density of the material, but also maintain good stability and high power. density.
  • FQHuang et al. (Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage, Science, 2015, 350, 1508.) prepared mesoporous carbon doped with nitrogen using mesoporous silica as a template.
  • the specific capacitance is 855F g -1 and the energy density reaches 19.5Wh L -1 , but its synthesis is difficult and cannot be prepared in large quantities.
  • JSZhou et al. (Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres, Nat. Commun., 2015, 6, 8503) synthesizes nitrogen-fluorine co-doped carbon microspheres by hydrothermal method.
  • the ball has an excellent volumetric capacity (521F cm -3), the capacity of 10000 winds cycle does not decay, but a large current, or not over a specific capacitance.
  • the main object of the present invention is to provide a nitrogen, phosphorus, chlorine co-doped carbon material and a preparation method thereof, which have excellent electrical properties and can be used in the field of supercapacitors.
  • Another object of the present invention is to provide a use of a nitrogen, phosphorus, chlorine co-doped carbon material.
  • Another object of the present invention is to provide a capacitor electrode of a nitrogen, phosphorus, chlorine co-doped carbon material and a method of preparing the same.
  • the present invention relates to the following aspects.
  • the present invention provides a method for preparing a nitrogen, phosphorus, chlorine co-doped carbon material, comprising the following steps:
  • S3 The second product is subjected to high temperature treatment in an inert atmosphere to obtain a nitrogen, phosphorus, chlorine co-doped carbon material.
  • the reaction pressure in the step S1 is 1 to 5 MPa
  • the reaction temperature is 140 to 260 ° C
  • the sealing reaction time is 2 to 10 hours. More preferably, the reaction temperature is 200 °C.
  • the halogenated conjugated diene is hexachloro-1,3-butadiene.
  • the phosphorus source is an elemental phosphorus, an organophosphorus compound or an inorganic phosphorus compound. More preferably, the phosphorus source is an organophosphorus compound.
  • the mass ratio of the hexachloro-1,3-butadiene to the phosphorus source is 1: (1 to 3).
  • the aromatic hydrocarbon is an aromatic hydrocarbon containing a hetero atom, and preferably, the aromatic hydrocarbon is pyridine, pyrrole, thiophene, fur One or several of aniline and aniline.
  • step S1 the molar ratio of the hexachloro-1,3-butadiene to the aromatic hydrocarbon is 30: (0.01-1).
  • step S2 the obtained product is washed 2 to 4 times with deionized water, and then vacuum dried at 60 to 100 ° C for 8 to 12 hours.
  • the first product is treated at a high temperature of 600 to 1000 ° C for 1 to 3 hours. More preferably, the high temperature treatment temperature is 900 °C.
  • the inert atmosphere is a nitrogen atmosphere or an argon atmosphere.
  • the present invention also provides a nitrogen, phosphorus, chlorine co-doped carbon material prepared by the above method.
  • the present invention also provides a nitrogen, phosphorus, chlorine co-doped carbon material for use in the field of capacitors.
  • the present invention also provides a capacitor electrode comprising the nitrogen, phosphorus, chlorine co-doped carbon material.
  • the present invention also provides a method for preparing a capacitor electrode comprising the nitrogen, phosphorus, chlorine co-doped carbon material, the method comprising the steps of:
  • the PTFE (polytetrafluoroethylene) emulsion is a well-known raw material commonly used in the field of electrode preparation, and can be obtained commercially through various channels.
  • the amount of the ethanol to be added is not particularly limited, and the amount thereof is a conventional technique in the field of capacitors, and those skilled in the art can make suitable selections, which will not be repeated here.
  • 1a is a scanning electron micrograph (SEM) of the product obtained in Example 1
  • FIG. 1b is a transmission electron micrograph (TEM) of the product obtained in Example 1
  • FIG. 1c is a high-power transmission electron microscope image (HRTEM) of the product obtained in Example 1.
  • 1d is the transmission electron microscopy energy spectrum (EDS) of the product obtained in Example 1.
  • Example 2 is an XRD pattern of the product obtained in Example 1.
  • Figure 3 is an XPS chart of the product obtained in Example 1.
  • Figures 4a and 4b are cyclic voltammograms of capacitor electrodes prepared using the product obtained in Example 1 at different scan rates.
  • Figures 5a and 5b are constant current charge and discharge diagrams of capacitor electrodes prepared using the product obtained in Example 1 at different current densities.
  • Figures 6a and 6b are Ragone plots of symmetric capacitor electrodes prepared using the product obtained in Example 1 at different current densities.
  • Figure 7 is a graph showing the cycle stability of capacitor electrodes prepared using the product obtained in Example 1 at different current densities.
  • the reaction temperature of the step S1 in the first embodiment is sequentially changed from 200 ° C to 180 ° C, 220 ° C, 160 ° C, 240 ° C, 140 ° C, and 260 ° C, and the other operations are unchanged, thereby obtaining an example.
  • the product of 2-7, the products are named as CL2, CL3, CL4, CL5, CL6, CL7.
  • Examples 8-11 are the steps of sequentially replacing the treatment temperature of step S3 in Example 1 from 900 ° C to 600 ° C, 700 ° C, 800 ° C, and 1000 ° C, and the other operations are unchanged, thereby obtaining the products of Examples 8-11.
  • the products were named as CL8, CL9, CL10, CL11 in order.
  • the capacitor electrode is prepared by the following steps:
  • Example 1 The product obtained in Example 1 was microscopically characterized. It can be seen from the SEM image and the TEM image that the product obtained in Example 1 achieved N/P/Cl and carbon pellet doping, and the HRTEM image shows that the ball is a solid ball. From the EDS diagram, it is seen that there are phosphorus, nitrogen, carbon, oxygen and chlorine in the product. It can be seen from the XRD pattern that the corresponding peaks are mainly carbon materials and have no crystal form of other substances. It can be seen from the XPS diagram that the product contains carbon, nitrogen, phosphorus, chlorine and oxygen.
  • Figure 4a is a cyclic voltammogram at different scan rates, in which the rate of each closed curve from top to bottom (ie, arranged downward from the highest point of the left half) is 1 mv/s 10 mv/s, 50 mv. /s, 80mv/s
  • Figure 4b is a cyclic voltammogram at different scan rates, in which the rate of each closed curve from top to bottom (ie, the highest point of the left half is downward) is 100mv /s, 200mv/s, 400mv/s, 800mv/s, 1000mv/s, 2000mv/s.
  • the electrode still has a good pattern at a rate of 2000 mv/s under an alkaline electrolyte, and a small rectangular charge and discharge has a good rectangular shape.
  • the formula is calculated to have a capacity of 50.2 F/g at 1000 mv/s.
  • 5a and 5b are graphs of constant current charge and discharge of capacitor electrodes prepared by using the product obtained in Example 1, and the current densities from right to left in Fig. 5a are 0.125 A/g, 0.5 A/g, respectively. 1A/g, 2A/g, and 4A/g; in Figure 5b, the current densities from right to left are 10A/g, 20A/g, 40A/g, 60A/g, and 80A/g, respectively.
  • the electrode has a calculated capacitance of 471 F/g (934 F/cm 3 ) at a current density of 0.125 A/g, thereby demonstrating that the product CL1 is charged and discharged at a low current density, exhibiting Excellent volumetric capacity.
  • Figures 6a and 6b are Ragone plots of symmetric capacitor electrodes prepared using the product obtained in Example 1 at different current densities. It can be seen from the figure that at a current density of 1 A/g (top five stars), the material The energy density can reach 18Wh/L. At a current density of 80 A/g (the rightmost five-pointed star), the power density can reach 104 kW/L.
  • the materials of the present invention have higher energy density and power density than the already reported heteroatom doped carbon materials.
  • Figure 7 is a graph showing the cycle stability of a capacitor electrode prepared by using the product obtained in Example 1 at different current densities. It can be seen from the figure that the material has very good cycle stability at a large current density, and the capacity is after a cycle of 60,000 cycles. There is almost no attenuation and excellent cycle stability is achieved.
  • capacitor electrodes made by CL2-CL11 were tested for charge and discharge at different current densities, and compared with the test results of capacitor electrodes made by CL1 (Fig. 5).
  • Table 2 compares the currents of 1A/g and 80A/g. Capacitance at density.
  • CL2-CL11 produces the optimum energy density and power density of the capacitor electrode and compares it with the result of the capacitor electrode made by CL1 ( Figure 6), see Table 3.
  • the capacitor electrode made by CL2-CL11 was cyclically tested and compared with the test result of the capacitor electrode made by CL1.
  • the amount of change after 60,000 cycles of 80A/g was defined as 0, that is, no attenuation. Table 4.
  • the reaction temperature in the step S1 and the high temperature treatment temperature in the step S3 have a significant influence on the electrical properties of the nitrogen, phosphorus and chlorine co-doped carbon materials.
  • the optimal reaction temperature of step S1 is 200 ° C, and the more the temperature deviates from the temperature, the more obvious the decline in electrical performance.
  • the optimum processing temperature of step S3 is 900 ° C, and the more the temperature deviates from this, the more obvious the decline in electrical performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种氮、磷、氯共掺杂碳材料、其制备方法及用途。所述氮、磷、氯共掺杂碳材料通过以下步骤制备:S1:将卤代共轭二烯、磷源和芳杂烃混合,于高压、密闭条件下反应,得到第一产物;S2:对所述第一产物进行冷却、洗涤、干燥,得到第二产物;S3:将所述第二产物在惰性气氛中进行高温处理,得到氮、磷、氯共掺杂碳材料。该氮、磷、氯共掺杂碳材料具有优良的电学性能,可用于超级电容器领域。

Description

一种氮、磷、氯共掺杂碳材料、其制备方法及用途 技术领域
本发明属于无机功能材料领域,尤其涉及一种氮、磷、氯共掺杂碳材料、其制备方法及用途。
背景技术
超级电容器是一种新型、高效、实用的能量储存装置,具有大容量、高功率、长寿命、成本低廉、环境友好等优越的性能,是能量储存领域的一项革命性发展,并可在某些领域取代传统蓄电池、发挥电池不能发挥的优势,随着十三五国家对新能源方向的重视和投入以及政策支持,超级电容器有比以往更好的发展空间。
资源丰富、结构多样、成本适中的碳材料是目前应用最广的超级电容器电极材料。但还存在能量密度特别是体积能量密度偏低等缺陷,这极大地限制了超级电容器的大规模商业化应用。
目前,利用杂原子(氮、硼、磷、氟、氧、硫等)掺杂到碳材料中,不仅能有效的提高材料的体积能量密度,而且还能保持良好的稳定性和较高的功率密度。
近日,F.Q.Huang等人(Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage,Science,2015,350,1508.)利用介孔二氧化硅为模板,制备合成了氮掺杂的介孔碳,该材料比电容为855F g-1,能量密度达到19.5Wh L-1,但其合成困难,不能大批量制备。
J.S.Zhou等人(Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres,Nat.Commun.,2015,6,8503)通过水热法合成了氮氟共掺杂的碳微球,该碳微球拥有优异的体积容量(521F cm-3),循环10000圈后容量不衰减,但是大电流下,比电容还是不理想。
Q.H.Yang等人(A Metal-Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800F cm-3,Adv.Mater.2015,27,8082.)利用石墨烯和聚苯胺进行复合,制备了高密度氮掺杂的碳材料,其体积比电容达到800F cm-3,并且具有很好的稳定性。
如上所述,现有技术中公开了各种通过杂原子掺杂制备高体积能量密度碳材料的方法,并且由此得到了多种具有高性能的新型碳材料,但这些碳材料,在高倍率条件下通常会发生迅速衰减,此外这些合成方法还存在成本高、宏量制备困难,这严重限制了其实际的应用和工业化生产。
因此,基于目前超级电容器的缺陷以及改进方式,如何利用新的合成方法,在保持高功率密度、长寿命的前提下获得高体积能量密度的碳材料,应用于超级电容器领域,具有十分重要的意义,也是目前电化学能量领域的研究热点和重点,而这也正是本发明得以完成的基础所在和动力所倚。
发明内容
本发明的主要目的在于提供一种氮、磷、氯共掺杂碳材料及其制备方法,该材料具有优良的电学性能,可用于超级电容器领域。
本发明的另一个目的在于提供一种氮、磷、氯共掺杂碳材料的用途。
本发明的另一个目的在于提供一种氮、磷、氯共掺杂碳材料的电容器电极及其制备方法。
为达到以上目的,本发明涉及如下多个方面。
第一个方面,本发明提供一种氮、磷、氯共掺杂碳材料的制备方法,包括以下步骤:
S1:将卤代共轭二烯、磷源和芳杂烃混合,于高压、密闭条件下反应,得到第一产物;
S2:对所述第一产物进行冷却、洗涤、干燥,得到第二产物;
S3:将所述第二产物在惰性气氛中进行高温处理,得到氮、磷、氯共掺杂碳材料。
优选地,步骤S1中反应压力为1~5MPa,反应温度为140~260℃,密闭反应的时间为2~10小时。更优选地,反应温度为200℃。
优选地,步骤S1中,卤代共轭二烯为六氯-1,3-丁二烯。
优选地,所述磷源单质磷、有机磷化合物或无机磷化合物。更优选地,所述磷源为有机磷化合物。
优选地,在步骤S1中,所述六氯-1,3-丁二烯与所述磷源的质量比为1:(1~3)。
所述芳杂烃为含有杂原子的芳烃,优选地,所述芳杂烃为吡啶、吡咯、噻吩、呋 喃、苯胺中的一种或几种。
优选地,在步骤S1中,所述六氯-1,3-丁二烯与芳杂烃的摩尔比为30:(0.01~1)。
优选地,步骤S2中,所得的产物用去离子水洗涤2~4次,然后于60~100℃下真空干燥8~12小时。
优选地,步骤S3中,将所述第一产物于600~1000℃的高温下处理1~3小时。更优选地,高温处理温度为900℃。
优选地,步骤S3中,所述惰性气氛为氮气气氛或氩气气氛。
第二个方面,本发明还提供一种通过上述方法制得的氮、磷、氯共掺杂碳材料。
第三个方面,本发明还提供一种氮、磷、氯共掺杂碳材料在电容器领域的应用。
第四个方面,本发明还提供一种包含所述氮、磷、氯共掺杂碳材料的电容器电极。
第五个方面,本发明还提供一种包含所述氮、磷、氯共掺杂碳材料的电容器电极的制备方法,所述方法包括以下步骤:
(1)称取氮、磷、氯共掺杂碳材料,乙炔黑和PTFE(聚四氟乙烯)乳液,加入适量乙醇,混合均匀,不断搅拌成浆糊状时,涂到泡沫镍和不锈钢网上;
(2)将涂好氮、磷、氯共掺杂的碳材料的泡沫镍和不锈钢网进行干燥、烘干、压片,得到所述电容器电极。
值得一提的是,所述PTFE(聚四氟乙烯)乳液是电极制备领域常用的公知原料,可通过多种渠道而商业获得。所加入的乙醇的用量并没有特别的限定,其用量属于电容器领域的常规技术,本领域技术人员可进行合适的选择,在此不一一赘述。
附图说明
图1a是实施例1获得产物的扫描电镜图(SEM)、图1b是实施例1获得产物的透射电镜图(TEM)、图1c是实施例1获得产物的高倍透射电镜图(HRTEM)、图1d是实施例1获得产物的透射电镜中能谱(EDS)。
图2是实施例1获得产物的XRD图。
图3是实施例1获得产物的XPS图。
图4a和4b是利用实施例1得到的产物制备的电容器电极在不同扫描速率下的循环伏安图。
图5a和5b是利用实施例1得到的产物制备的电容器电极在不同电流密度下的恒流充放电图。
图6a和6b是利用实施例1得到的产物制备的对称电容器电极在不同电流密度下的Ragone图。
图7是利用实施例1得到的产物制备的电容器电极在不同电流密度下的循环稳定性图。
具体实施方式
下面通过具体的实施例对本发明进行详细说明,但这些例举性实施方式的用途和目的仅用来例举本发明,并非对本发明的实际保护范围构成任何形式的任何限定,更非将本发明的保护范围局限于此。
实施例1
S1:将六氯1,3-丁二烯、三聚氯化磷腈与吡啶在3MPa的反应压力和200℃下进行密闭反应6小时,其中,六氯1,3-丁二烯与三聚氯化磷腈的质量比为1:2,六氯1,3-丁二烯与吡啶的摩尔比为30:0.1;
S2:反应结束后,泄压至常压,并自然冷却至室温,将所得固体用去离子水充分洗涤3次、在80℃下真空干燥10小时,得到干燥样品;
S3:将上述干燥样品在氮气保护下,于900℃下高温处理2小时,从而得到氮、磷、氯共掺杂碳材料。
将实施例1得到的产物计为CL1。
实施例2-7
实施例2-7是依次将实施例1中步骤S1的反应温度由200℃替换为180℃、220℃、160℃、240℃、140℃、260℃,其他操作均不变,从而得到实施例2-7的产物,将产物依次命名为CL2、CL3、CL4、CL5、CL6、CL7。
实施例8-11
实施例8-11是依次将实施例1中步骤S3的处理温度由900℃替换为600℃、700℃、800℃、1000℃,其他操作均不变,从而得到实施例8-11的产物,将产物依次命名为CL8、CL9、CL10、CL11。
电容器电极通过以下步骤制备:
(1)称取氮、磷、氯共掺杂碳材料、乙炔黑、PTFE(聚四氟乙烯)乳液(三者质量比为80:10:10),加入适量乙醇,混合均匀,不断搅拌成浆糊状时,涂到泡沫镍和不锈钢上;
(2)将涂好氮、磷、氯共掺杂的碳材料的泡沫镍和不锈钢网上进行干燥、烘干、压 片,即得到所述电容器电极。
将实施例1-11制得的产物分别通过上述方法制备成电容器电极,以便进行相应的测试。
对实施例1所得的产物进行微观表征,从SEM图和TEM图可以看出实施例1获得的产物实现了N/P/Cl与碳小球掺杂,从HRTEM图看出小球为实心球,从EDS图看出产物中存在磷元素、氮元素、碳元素、氧元素和氯元素。从XRD图可以看出,对应的峰主要为碳材料,没有其他物质的晶型。从XPS图可以看出产物中含有碳、氮、磷、氯和氧元素。
对利用实施例1得到的产物制备的电容器电极进行电化学性能测试。图4a是在不同扫描速率下的循环伏安图,该图中自上而下的各个封闭曲线(即左半部分的最高点起向下排列)的速率依次为1mv/s 10mv/s、50mv/s、80mv/s,图4b是在不同扫描速率下的循环伏安图,该图中自上而下的各个封闭曲线(即左半部分的最高点起向下排列)的速率依次为100mv/s、200mv/s、400mv/s、800mv/s、1000mv/s、2000mv/s。从图4a和4b可以看出,该电极在碱性电解质下2000mv/s的速率下仍有较好的图形,小速率充放电有很好的矩形。经过公式计算在1000mv/s容量为50.2F/g。
图5a和5b是利用实施例1得到的产物制备的电容器电极在不同电流密度下的恒流充放电图,图5a中,自右而左的电流密度依次为0.125A/g、0.5A/g、1A/g、2A/g和4A/g;在图5b中,自右而左的电流密度依次为10A/g、20A/g、40A/g、60A/g和80A/g。从图5a和5b中可以看出,该电极在0.125A/g的电流密度下经计算电容为471F/g(934F/cm3),从而证明了产物CL1在低电流密度下充放电,表现出了优异的体积容量。
图6a和6b是利用实施例1得到的产物制备的对称电容器电极在不同电流密度下的Ragone图,从图中可以看出,在1A/g的电流密度(最上面五角星)下,该材料的能量密度能够达到18Wh/L。在80A/g的电流密度(最右侧五角星)下,功率密度能够达到104kW/L。本发明的材料与已经报道的杂原子掺杂碳材料相比,有更高的能量密度和功率密度。
图7是利用实施例1得到的产物制备的电容器电极在不同电流密度下的循环稳定性图,由图可见,该材料在大电流密度下有非常好的循环稳定性,在循环60000圈后容量几乎没有任何衰减,变现出了优异的循环稳定性。
对CL2-CL11制得的电容器电极进行电化学性能测试,并与CL1制得的电容器电极的测试结果(图4)进行对比,经过计算,各个材料在1000mv/s的容量分别如表1所 示。
表1:不同材料在1000mv/s下的比电容
测试样品 比电容(F/g) 测试样品 比电容(F/g)
CL1 76.7 - -
CL2 75.2 CL3 76.4
CL4 65.8 CL5 67.1
CL6 51.3 CL7 53.6
CL8 76.4 CL9 77.1
CL10 67.3 CL11 66.2
对CL2-CL11制得的电容器电极进行不同电流密度下的充放电测试,并与CL1制得的电容器电极的测试结果(图5)进行对比,表2比较了1A/g和80A/g的电流密度下的电容。
表2:不同材料充放电测试数据
Figure PCTCN2017095565-appb-000001
CL2-CL11制得电容器电极的最佳能量密度与功率密度,并与CL1制得的电容器电极的结果(图6)进行对比,见表3。
表3:不同材料的能量密度与功率密度
Figure PCTCN2017095565-appb-000002
Figure PCTCN2017095565-appb-000003
对CL2-CL11制得的电容器电极进行循环性测试,并与CL1制得的电容器电极的测试结果进行对比,将80A/g下循环60000次后的改变量定义为0,即无衰减,结果见表4。
表4:不同材料的循环稳定性
Figure PCTCN2017095565-appb-000004
综合分析表1-4可以看出步骤S1中的反应温度和步骤S3中的高温处理温度对于氮、磷、氯共掺杂碳材料的电学性能有显著的影响。其中,步骤S1的最佳反应温度为200℃,偏离该温度越多,则电学性能下降越明显。步骤S3的最佳处理温度为900℃,偏离该温度越多,则电学性能下降越明显。

Claims (12)

  1. 一种氮、磷、氯共掺杂碳材料的制备方法,其特征在于,包括以下步骤:
    S1:将卤代共轭二烯、磷源和芳杂烃混合,于高压、密闭条件下反应,得到第一产物;
    S2:对所述第一产物进行冷却、洗涤、干燥,得到第二产物;
    S3:将所述第二产物在惰性气氛中进行高温处理,得到氮、磷、氯共掺杂碳材料。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中反应压力为1~5MPa,反应温度为140~260℃,密闭反应的时间为2~10小时。
  3. 根据权利要求2所述的方法,其特征在于,步骤S1中反应温度为200℃。
  4. 根据权利要求1或2或3所述的方法,其特征在于,步骤S1中,卤代共轭二烯为六氯-1,3-丁二烯。
  5. 根据权利要求4所述的方法,其特征在于,步骤S1中,所述六氯-1,3-丁二烯与所述磷源的质量比为1:(1~3)。
  6. 根据权利要求5所述的方法,其特征在于,所述芳杂烃为吡啶、吡咯、噻吩、呋喃、苯胺中的一种或几种。
  7. 根据权利要求6所述的方法,其特征在于,所述六氯-1,3-丁二烯与所述芳杂烃的摩尔比为30:(0.01~1)。
  8. 根据权利要求2-7任一所述的方法,其特征在于,步骤S3中,高温处理温度为900℃。
  9. 根据权利要求1-8任一所述的方法制得的氮、磷、氯共掺杂碳材料。
  10. 权利要求9所述的氮、磷、氯共掺杂碳材料在电容器领域的应用。
  11. 一种包含权利要求9所述的氮、磷、氯共掺杂碳材料的电容器电极。
  12. 根据权利要求11所述的电容器电极的制备方法,其特征在于,包括以下步骤:
    (1)称取氮、磷、氯共掺杂碳材料,乙炔黑和聚四氟乙烯乳液,加入适量乙醇,混合均匀,不断搅拌成浆糊状,然后涂到泡沫镍和不锈钢网上;
    (2)将涂好氮、磷、氯共掺杂的碳材料的泡沫镍和不锈钢网进行干燥、烘干、压片,得到所述电容器电极。
PCT/CN2017/095565 2017-03-15 2017-08-02 一种氮、磷、氯共掺杂碳材料、其制备方法及用途 WO2018166138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710152745.3A CN106997810B (zh) 2017-03-15 2017-03-15 一种氮、磷、氯共掺杂碳材料、其制备方法及用途
CN201710152745.3 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018166138A1 true WO2018166138A1 (zh) 2018-09-20

Family

ID=59431395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095565 WO2018166138A1 (zh) 2017-03-15 2017-08-02 一种氮、磷、氯共掺杂碳材料、其制备方法及用途

Country Status (2)

Country Link
CN (1) CN106997810B (zh)
WO (1) WO2018166138A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106997810B (zh) * 2017-03-15 2019-11-15 温州大学 一种氮、磷、氯共掺杂碳材料、其制备方法及用途
CN108039283B (zh) * 2017-11-09 2019-05-07 温州大学 一种基于原位聚合的富氮掺杂多级孔碳材料及其制备方法与应用
CN110504450B (zh) * 2019-07-17 2022-08-12 温州大学新材料与产业技术研究院 一种杂原子掺杂的多级孔碳材料的制备方法及在锂电池负极浆料中的应用
CN113816375B (zh) * 2021-10-20 2023-03-21 温州大学 一种含p三吡啶类配体衍生碳材料及其应用
CN114188537B (zh) * 2021-11-18 2024-03-22 长沙矿冶研究院有限责任公司 一种氮磷氯共掺杂碳材料及其制备方法和其在锂电池中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964414A (zh) * 2014-04-30 2014-08-06 中国科学院上海高等研究院 高度有序介孔碳材料的固相合成方法
CN104556014A (zh) * 2015-01-08 2015-04-29 复旦大学 一种非金属表面低温制备掺杂石墨烯的方法
CN104992846A (zh) * 2015-06-29 2015-10-21 温州大学 一种杂原子掺杂钛复合材料及其制备方法与用途
CN105692580A (zh) * 2014-11-28 2016-06-22 中国科学院大连化学物理研究所 一种多孔碳材料及其制备和应用
CN105731437A (zh) * 2016-01-26 2016-07-06 苏州大学 一种异原子掺杂石墨烯及其制备方法与应用
CN106000438A (zh) * 2016-06-03 2016-10-12 兰州交通大学 一种氮磷共掺杂孔状碳材料的制备方法及其应用
US20170058193A1 (en) * 2015-09-02 2017-03-02 Korea Institute Of Science And Technology Carbon nanostructure and method for preparing the same
CN106997810A (zh) * 2017-03-15 2017-08-01 温州大学 一种氮、磷、氯共掺杂碳材料、其制备方法及用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919014B2 (en) * 2006-11-27 2011-04-05 Universal Supercapacitors Llc Electrode for use with double electric layer electrochemical capacitors having high specific parameters
CN102709534B (zh) * 2012-06-19 2015-04-15 武汉大学 一种钠离子电池负极材料
CN104003368B (zh) * 2014-05-06 2016-05-11 北京理工大学 一种多孔磷-氮共掺杂碳材料及其制备方法
CN104201001B (zh) * 2014-07-14 2017-02-15 上海应用技术学院 一种棒状的氮磷共掺杂介孔碳材料及其制备方法和应用
CN105006375B (zh) * 2015-06-04 2017-09-29 郑州大学 一种氮、磷共掺杂多孔碳纳米管、制备方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964414A (zh) * 2014-04-30 2014-08-06 中国科学院上海高等研究院 高度有序介孔碳材料的固相合成方法
CN105692580A (zh) * 2014-11-28 2016-06-22 中国科学院大连化学物理研究所 一种多孔碳材料及其制备和应用
CN104556014A (zh) * 2015-01-08 2015-04-29 复旦大学 一种非金属表面低温制备掺杂石墨烯的方法
CN104992846A (zh) * 2015-06-29 2015-10-21 温州大学 一种杂原子掺杂钛复合材料及其制备方法与用途
US20170058193A1 (en) * 2015-09-02 2017-03-02 Korea Institute Of Science And Technology Carbon nanostructure and method for preparing the same
CN105731437A (zh) * 2016-01-26 2016-07-06 苏州大学 一种异原子掺杂石墨烯及其制备方法与应用
CN106000438A (zh) * 2016-06-03 2016-10-12 兰州交通大学 一种氮磷共掺杂孔状碳材料的制备方法及其应用
CN106997810A (zh) * 2017-03-15 2017-08-01 温州大学 一种氮、磷、氯共掺杂碳材料、其制备方法及用途

Also Published As

Publication number Publication date
CN106997810A (zh) 2017-08-01
CN106997810B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2018166138A1 (zh) 一种氮、磷、氯共掺杂碳材料、其制备方法及用途
Jiang et al. Hollow-tubular porous carbon derived from cotton with high productivity for enhanced performance supercapacitor
Qian et al. Revealing the double‐edged behaviors of heteroatom sulfur in carbonaceous materials for balancing K‐storage capacity and stability
US10889497B2 (en) Sheet-shaped nitrogen-phosphorus co-doped porous carbon material and method for preparation thereof and use thereof
Li et al. Hierarchical micro-/mesoporous carbon derived from rice husk by hydrothermal pre-treatment for high performance supercapacitor
CN107758641B (zh) 一种三维氮硫共掺杂多孔碳材料及制备方法与用途
Li et al. Nitrogen/sulphur dual-doped hierarchical carbonaceous fibers boosting potassium-ion storage
Li et al. Anchoring MoSe2 nanosheets on N-doped carbon nanotubes as high performance anodes for potassium-ion batteries
Ahmad et al. Extraction of nano-silicon with activated carbons simultaneously from rice husk and their synergistic catalytic effect in counter electrodes of dye-sensitized solar cells
CN105118688A (zh) 一种细菌纤维素/活性碳纤维/石墨烯膜材料的制备方法及其应用
Pang et al. Transition‐Metal Oxides Anchored on Nitrogen‐Enriched Carbon Ribbons for High‐Performance Pseudocapacitors
Wang et al. Fabrication of porous carbon with controllable nitrogen doping as anode for high‐performance potassium‐ion batteries
Wang et al. Multi-forks hierarchical porous amorphous carbon with N-Doping for high-performance potassium-ion batteries
Devi et al. Development of activated carbon by bio waste material for application in supercapacitor electrodes
Yang et al. Ultrahigh Rate Capability and Lifespan MnCo2O4/Ni‐MOF Electrode for High Performance Battery‐Type Supercapacitor
CN114156093A (zh) N/o共掺杂的硫化钼@多孔碳复合电极材料及其制备方法和应用
Xue et al. A layered triazinyl-COF linked by− NH− linkage and resulting N-doped microporous carbons: preparation, characterization and application for supercapacitance
CN106006746B (zh) 低温水热法制备二氧化锰纳米片的方法
Li et al. Facile synthesis of superthin Co3O4 porous nanoflake for stable electrochemical supercapacitor
Ma et al. Fabrication of Porous Mesh‐Like FeCo2S4 Nanosheet Arrays on Ni Foam for High Performance all Solid‐State Supercapacitors and Water Splitting
Xie et al. Heteroatom tuning in agarose derived carbon aerogel for enhanced potassium ion multiple energy storage
CN108039283B (zh) 一种基于原位聚合的富氮掺杂多级孔碳材料及其制备方法与应用
CN112967890A (zh) 一种拓扑电极材料及其制备方法和应用
Ji et al. Reconstruction of Co/Ni metal-organic-framework based electrode materials with excellent conductivity and integral stability via extended hydrothermal treatment toward improved performance of supercapacitors
Wang et al. Three-dimensional activated graphite paper for high-performance supercapacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900741

Country of ref document: EP

Kind code of ref document: A1