WO2018164197A1 - 多結晶シリコン加工品の製造方法 - Google Patents

多結晶シリコン加工品の製造方法 Download PDF

Info

Publication number
WO2018164197A1
WO2018164197A1 PCT/JP2018/008827 JP2018008827W WO2018164197A1 WO 2018164197 A1 WO2018164197 A1 WO 2018164197A1 JP 2018008827 W JP2018008827 W JP 2018008827W WO 2018164197 A1 WO2018164197 A1 WO 2018164197A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline silicon
carbon member
silicon rod
rod
coating material
Prior art date
Application number
PCT/JP2018/008827
Other languages
English (en)
French (fr)
Inventor
彩生 秋吉
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to EP18763924.0A priority Critical patent/EP3578514A4/en
Priority to KR1020197024686A priority patent/KR102361373B1/ko
Priority to CN201880013910.XA priority patent/CN110352177B/zh
Priority to JP2019504647A priority patent/JP6998936B2/ja
Priority to SG11201907860QA priority patent/SG11201907860QA/en
Priority to US16/488,960 priority patent/US11332377B2/en
Publication of WO2018164197A1 publication Critical patent/WO2018164197A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process

Definitions

  • the present invention relates to a novel method for producing a processed polycrystalline silicon product. Specifically, when handling a polycrystalline silicon rod obtained by the Siemens method, a process for preventing polycrystalline silicon rod contamination by a carbon member present at the end of the polycrystalline silicon rod is included.
  • the present invention provides a novel method for manufacturing a product.
  • Polycrystalline silicon used as a raw material for semiconductor or solar cell wafers is usually a Siemens method, as shown in FIG. 1, a silicon core wire assembled in an inverted U-shape as a seed rod in a reactor 1. 2 is held by the carbon member 4 connected to the electrode 3, and polycrystalline silicon is deposited on the surface of the silicon core wire to obtain a polycrystalline silicon rod 5. Thereafter, the polycrystalline silicon rod is removed from the electrode in a state where the carbon member is present at the end thereof, and, for example, as shown in FIG. Disconnect. After that, if necessary, the polycrystalline silicon rod is crushed to an appropriate size, and washed to remove contaminants attached to the surface of the polycrystalline silicon, resulting in a processed product such as a nugget or cut rod. Turn into.
  • the carbon member is naturally accommodated in the plastic bag.
  • the broken pieces of the carbon member may come into contact with the surface of the polycrystalline silicon rod in the plastic bag, thereby causing carbon contamination.
  • the rod may be housed in a plastic bag, but when the carbon member is removed, part of the carbon is scattered and reacted. May contaminate the vessel and rod.
  • an object of the present invention is to prevent a carbon contamination on the surface of the polycrystalline silicon rod by the carbon member existing at the end of the polycrystalline silicon rod when handling the polycrystalline silicon rod obtained by the Siemens method.
  • Another object of the present invention is to provide a novel method for producing a processed polycrystalline silicon product.
  • the inventors of the present invention have intensively studied to achieve the above object. As a result, the inventors have found that the above object can be achieved by coating the carbon member existing at the end of the polycrystalline silicon rod with a coating material, and have completed the present invention.
  • the present invention provides a polycrystalline silicon rod obtained by depositing polycrystalline silicon on a silicon core wire held by a carbon member connected to an electrode in a reactor by a Siemens method, and the carbon member at the end thereof.
  • the carbon member present at the end of the polycrystalline silicon rod is removed using the coating material until the polycrystalline silicon rod is removed from the electrode and processed.
  • a method for producing a processed polycrystalline silicon product comprising a step of handling the polycrystalline silicon rod and the carbon member in a separated state by coating.
  • the lower part of the polycrystalline silicon rod is preferably covered with a covering material together with the carbon member. In this case, it is preferable to cover a region of 200 mm or less from the end of the polycrystalline silicon rod.
  • the lower part of the polycrystalline silicon rod is covered with a coating material together with the carbon member, and the upper part or the whole of the polycrystalline silicon rod is covered with another coating material.
  • the processing method of the present invention includes a step of removing the carbon member from the polycrystalline silicon rod, and in this case, it is preferable to remove the carbon member in a state where the carbon member is covered with a coating material.
  • the covering material is preferably a resin covering material, and more preferably a polyethylene film or a bag.
  • the processed polycrystalline silicon product of the present invention is obtained by the above-described method, and is preferably a crushed product of polycrystalline silicon called chunk, nugget, chip or the like.
  • the manufacturing method of the present invention includes a step of handling the carbon member with a coating material so that the polycrystalline silicon rod and the carbon member are isolated from each other.
  • Carbon contamination on the surface of the crystalline silicon rod specifically, when the polycrystalline silicon rod is taken out of the reactor or loaded on the carriage, the carbon member existing at the end directly contacts the surface of the neighboring polycrystalline silicon rod Carbon contamination caused by the operation, or while the polycrystalline silicon rod is being transported by the carriage, a part of the carbon member is broken down, and the broken pieces of the carbon member are brought into contact with the surface of the polycrystalline silicon rod on the carriage.
  • the resulting carbon contamination can be effectively avoided, resulting in stable and clean polycrystalline silicon It is possible to obtain the processed goods.
  • the polycrystalline silicon rod is a polycrystalline silicon columnar product obtained using a Siemens reactor as shown in FIG. 1, and is made of polycrystalline silicon deposited on the surface of the silicon core wire. According to the Siemens method, an inverted U-shaped shape can be obtained.
  • the polycrystalline silicon rod of the present invention may have an L-shaped shape lacking a part of the inverted U-shaped shape or a rod shape. May be.
  • the end portion of the polycrystalline silicon rod is a portion in contact with the upper end portion of the carbon member.
  • the rod at the end portion and the vicinity thereof may be referred to as a “lower portion” of the rod.
  • the upper part of the polycrystalline silicon rod means a part other than the lower part, and means a part away from the carbon member.
  • the polycrystalline silicon rod and the carbon member at the end thereof may be collectively referred to as “the whole”.
  • the polycrystalline silicon rod obtained by the Siemens method is obtained by depositing polycrystalline silicon on the surface of the silicon core wire held by the carbon member as described above. At this time, polycrystalline silicon is partially deposited not only on the surface of the silicon core wire but also on the surface of the carbon member, and the carbon member and the polycrystalline silicon rod are integrated. Therefore, after the precipitation reaction, in the reactor, the polycrystalline silicon rod is removed from the electrode in a state including a carbon member at the end thereof.
  • the removed polycrystalline silicon rod is an inverted U-shaped object (FIG. 3 (a)), and is an inverted L-shaped that is broken from the portions corresponding to the upper ends of the silicon core wire assembled in an inverted U-shape. It is a shaped object (FIG. 3B) or a rod-shaped object (FIG. 3C).
  • the greatest feature of the present invention is that the polycrystalline silicon rod and the carbon member are coated with a coating material after the precipitation reaction until the polycrystalline silicon rod is removed from the electrode and processed. And a process of handling them in an isolated state.
  • the period from when the polycrystalline silicon rod is removed from the electrode and processed until the polycrystalline silicon rod includes a carbon member at the end in the reactor. It refers to the period from immediately after removal from the electrode until the carbon member is separated from the polycrystalline silicon rod and is not in contact. In order to fully exhibit the effects of the present invention, it is preferable to coat the carbon member that causes carbon contamination on the surface of the polycrystalline silicon rod at an early stage because the contamination can be avoided.
  • the time of the coating is as follows: when the polycrystalline silicon rod is removed from the electrode in the reactor, when the polycrystalline silicon rod is taken out of the reactor, when the polycrystalline silicon rod is lowered onto the carriage, The rod is loaded on a carriage, and the most preferable is immediately after removing the polycrystalline silicon rod from the electrode in the reactor.
  • the aspect in which the carbon member present at the end of the polycrystalline silicon rod is coated with a coating material is used to isolate the polycrystalline silicon rod from the carbon member. All aspects that result in the above state are included.
  • the “isolated state” refers to a state where the surface of a certain rod and the carbon member at the other end of the rod are not in direct contact. For example, it includes a mode of covering at least the entire surface of the carbon member and covering the broken pieces of the carbon member so that they do not scatter and come into contact with the surface of the polycrystalline silicon rod. Therefore, the aspect which coat
  • the material of the covering material is not particularly limited, and may be made of resin, cloth, or paper.
  • a resin coating material that is low in contamination, flexible, and easy to handle is preferably used.
  • an example of using the resin coating material will be described.
  • a cloth or paper coating material may be used.
  • Specific embodiments of covering the carbon member with the resin coating material include (1) an embodiment in which a carbon film is covered with a resin film or a resin bag, and (2) a resin cap is used. Then, an aspect of mounting on a carbon member, (3) an aspect of immersing the carbon member in a resin solution, and forming a film on the surface of the carbon member, and the like.
  • the end of the polycrystalline silicon rod on the side where the carbon member is present is placed in the center of the substantially square resin film, and the opposite ends of the resin film are raised.
  • a bag formed from a resin film is covered from the end of the polycrystalline silicon rod.
  • the resin film may be in close contact with the carbon member, or there may be a gap between the resin film and the carbon member.
  • a mode in which a belt-shaped resin film is covered around a carbon member is also exemplified.
  • the resin film is not particularly limited as long as it has mechanical properties that do not cause breakage during the removal or transportation.
  • the resin film is made of polyethylene having a thickness of 100 to 1000 ⁇ m. Examples include films and polyethylene bags.
  • the resin cap (2) is made of a material having elasticity such as rubber, for example, and is a molded body formed in accordance with the shape of the end of the polycrystalline silicon rod on the side where the carbon member is present. One end is closed and the other end forms an opening.
  • the inner surface the surface in contact with the carbon member
  • the washing is preferably acid washing.
  • a rubber material selected from urethane rubber, latex rubber, butadiene resin, polyvinyl alcohol, liquid butyl rubber, liquid rubber, natural rubber, nitrile rubber, chloroprene rubber, vinyl acetate rubber, etc.
  • organic solvents such as tetrahydrofuran, acetonitrile, a trichloroethane, a trichloroethylene, a methylene chloride, toluene, xylene, is mentioned.
  • the length L of the covered region of the rod is set to the polycrystalline silicon rod as shown in the figure. It is preferably 200 mm or less from the end, and more preferably 100 mm or less, in the region wrapped with the coating material, carbon member fragments and the like are generated inside, and the rod is easily subjected to carbon contamination.
  • the yield of polycrystalline silicon with little carbon contamination can be increased by reducing the length L of the coating region, and the rod in the region wrapped in the coating material can be used for applications where carbon contamination is not a problem. Can be used.
  • the manner of covering with the covering material is not limited to these, and in order to avoid the polycrystalline silicon rod from directly contacting various members or the like, the lower portion of the polycrystalline silicon rod, While covering with a carbon member with a coating material, you may coat
  • a bag made of a resin film is placed on the end of the polycrystalline silicon rod on the side where the carbon member exists, and another resin bag is placed on the top of the polycrystalline silicon rod or the carbon member and the polycrystal.
  • a mode of covering the whole including the silicon rod is also adopted.
  • the processing method of the present invention preferably includes a step of removing the carbon member in a state where the carbon member is covered with the covering material.
  • a preferred method for producing a processed polycrystalline silicon product of the present invention as described above, after the polycrystalline silicon rods in which the carbon member is coated with a coating material are transported together to the processing chamber by a carriage or the like, the above-mentioned The carbon member is removed.
  • the removal of the carbon member is performed, for example, by cutting off the lower end portion of the rod or by knocking off the carbon member with a high hardness tool such as a hammer.
  • the polycrystalline silicon rod is transported to the processing chamber in a state where the carbon member is covered with the covering material, and the carbon member is removed in the covered state. It is preferable to remove the carbon member in a state where the carbon member is entirely covered with a covering material. Furthermore, it is preferable to remove the carbon member in a state where the lower part of the polycrystalline silicon rod is covered with a covering material and all the carbon member is covered with the covering material. By doing so, it is possible to prevent the carbon member from being broken and the fragments from being scattered due to an impact when the carbon member is separated or an impact when the separated carbon member falls on the ground. For this reason, for example, secondary contamination of the surface of the polycrystalline silicon rod caused by the above-mentioned fragments scattered throughout the processing chamber can be prevented.
  • the coating material is detached from the carbon member as necessary after separating the carbon member from the polycrystalline silicon rod so as not to contact.
  • the method of the present invention carbon contamination of the surface of the polycrystalline silicon rod by the carbon member can be effectively avoided, and as a result, a polycrystalline silicon processed product having a stable and high cleanliness can be obtained.
  • the processed polycrystalline silicon product include a crushed polycrystalline silicon obtained by crushing a polycrystalline silicon rod. This crushed material is sometimes called a chunk, nugget, chip or the like depending on its size. Further, a cut rod obtained by cutting a polycrystalline silicon rod into a columnar shape may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Silicon Polymers (AREA)

Abstract

【課題】ジーメンス法により得られた多結晶シリコンロッドを取り扱う際に、上記多結晶シリコンロッド端部に存在するカーボン部材による、多結晶シリコンロッド表面のカーボン汚染を防止する工程を含む、多結晶シリコン加工品の新規な製造方法を提供する。 【解決手段】 ジーメンス法による反応器内で電極に接続したカーボン部材に保持されたシリコン芯線に多結晶シリコンを析出せしめて得られた多結晶シリコンロッドを、その端部に上記カーボン部材を含む状態で取り出し、これを加工する方法において、上記多結晶シリコンロッドを上記電極から取り外し、加工するまでの間に、上記多結晶シリコンロッドの端部に存在するカーボン部材を、被覆材を用いて被覆することにより、多結晶シリコンロッドとカーボン部材とを隔離した状態で取り扱う工程を含むことを特徴とする、多結晶シリコン加工品の製造方法を提供する。

Description

多結晶シリコン加工品の製造方法
 本発明は、多結晶シリコン加工品の新規な製造方法に関する。詳しくは、ジーメンス法により得られた多結晶シリコンロッドを取り扱う際に、多結晶シリコンロッド端部に存在するカーボン部材による、多結晶シリコンロッド表面のカーボン汚染を防止する工程を含む、多結晶シリコン加工品の新規な製造方法を提供するものである。
 半導体あるいは太陽電池用ウェハーの原料として使用する多結晶シリコンは、通常ジーメンス法を用いて、図1に示すように、反応器1内に、種棒となる逆U字型に組まれたシリコン芯線2が、電極3に接続したカーボン部材4に保持され、該シリコン芯線表面に多結晶シリコンを析出せしめて、多結晶シリコンロッド5として得られる。その後、上記多結晶シリコンロッドを、その端部にカーボン部材が存在する状態で上記電極から取り外し、例えば図2に示すように、数本まとめて台車6で加工室まで運搬した後、上記カーボン部材を切り離す。その後、必要に応じて、多結晶シリコンロッドを適当な大きさに破砕し、また、多結晶シリコン表面に付着した汚染物を取り除くために洗浄することによって、ナゲット、カットロッド等の加工品として製品化する。
 近年、多結晶シリコンの表面に対する清浄度への要求が高まっている。こうした状況を受けて、本発明者らは、多結晶シリコン加工品の製造方法においてどの操作が多結晶シリコン表面の汚染の原因となるのか調査した。その結果、多結晶シリコンロッドを反応器外へ取り出す際や台車により運搬する際等に生じる前記カーボン部材による汚染が大きな要因であることを見出した。例えば、該カーボン部材が近隣の多結晶シリコンロッド表面に直接接触する、また、ある時には、該カーボン部材が種々の部材等との接触によりその一部が割れ落ち、割れ落ちたカーボン部材の破片が多結晶シリコンロッド表面に接触することによって、その箇所にカーボンが付着してカーボン汚染を生じることが、本発明者等の確認により明らかとなった。
 一方、多結晶シリコン表面におけるフッ素成分や金属等の汚染レベルを低下させる方法として、反応器内でジーメンス法による合成直後の多結晶シリコンロッドの上部からプラスチック製袋を被せ、そのまま反応器外に取り出した後、上記多結晶シリコンロッドの下部が上記プラスチック製袋からはみ出さないように密封してクリーンルームに運搬し、その後、クリーンルーム内で上記多結晶シリコンロッドを破砕し製品化する方法が提案されている(特許文献1)。こうすることによって、反応器外への取り出しの際や台車による運搬等の際における上記多結晶シリコンロッドと種々の部材等との直接的な接触を回避し、その結果、多結晶シリコンロッドの表面清浄度を維持することができるとされている。
 しかしながら、前記方法のように端部にカーボン部材を含む状態で多結晶シリコンロッドを密封すると、当然カーボン部材も上記プラスチック製袋に収容されることになる。この状態で多結晶シリコンロッドを台車等により運搬すると、前記割れ落ちたカーボン部材の破片が上記プラスチック製袋内で多結晶シリコンロッド表面に接触し、カーボン汚染を生じる虞があった。また、多結晶シリコンロッド端部のカーボン部材を反応器内で除去した後に、ロッドをプラスチック製袋に収容することもあるが、カーボン部材の除去の際に、カーボンの一部が飛散し、反応器およびロッドを汚染することもある。
特開2015-229604号公報
 従って、本発明の目的は、ジーメンス法により得られた多結晶シリコンロッドを取り扱う際に、上記多結晶シリコンロッド端部に存在するカーボン部材による、多結晶シリコンロッド表面のカーボン汚染を防止する工程を含む、多結晶シリコン加工品の新規な製造方法を提供することにある。
 本発明者等は、上記目的を達成すべく鋭意研究を重ねた。その結果、多結晶シリコンロッドの端部に存在するカーボン部材を被覆材により被覆することにより、上記目的を達成し得ることを見出し、本発明を完成するに至った。
 即ち、本発明は、ジーメンス法による反応器内で電極に接続したカーボン部材に保持されたシリコン芯線に多結晶シリコンを析出せしめて得られた多結晶シリコンロッドを、その端部に上記カーボン部材を含む状態で取り出し、これを加工する方法において、上記多結晶シリコンロッドを上記電極から取り外し、加工するまでの間に、上記多結晶シリコンロッドの端部に存在するカーボン部材を、被覆材を用いて被覆することにより、多結晶シリコンロッドとカーボン部材とを隔離した状態で取り扱う工程を含むことを特徴とする、多結晶シリコン加工品の製造方法である。
 また本発明では、前記多結晶シリコンロッドの下部を、カーボン部材とともに被覆材で被覆することが好ましい。この際には、多結晶シリコンロッドの端部から200mm以下までの領域を被覆することが好ましい。
 さらに、前記多結晶シリコンロッドの下部を、カーボン部材とともに被覆材で被覆するとともに、該多結晶シリコンロッドの上部または全体を他の被覆材で被覆することが好ましい。
 また、本発明の加工方法は、カーボン部材を多結晶シリコンロッドから除去する工程を含み、この際には、カーボン部材が被覆材により被覆された状態で、カーボン部材を除去することが好ましい。
 前記被覆材は、好ましくは樹脂製被覆材であり、さらに好ましくはポリエチレン製フィルムまたはバッグである。
 本発明の多結晶シリコン加工品は、上記の方法により得られ、好ましくはチャンク、ナゲット、チップなどと呼ばれる多結晶シリコンの破砕品である。
 本発明の製造方法は、前記カーボン部材を、被覆材を用いて被覆することにより、多結晶シリコンロッドとカーボン部材とを隔離した状態で取り扱う工程を含み、そうすることによって、前記カーボン部材による多結晶シリコンロッド表面のカーボン汚染、具体的には、多結晶シリコンロッドを反応器外へ取り出す際や台車に積載する際、その端部に存在するカーボン部材が近隣の多結晶シリコンロッド表面に直接接触することによって生じるカーボン汚染、また、多結晶シリコンロッドを台車で運搬中、上記カーボン部材の一部が割れ落ち、割れ落ちたカーボン部材の破片が台車上の多結晶シリコンロッド表面に接触することによって生じるカーボン汚染、を効果的に回避することができ、その結果、安定して清浄度の高い多結晶シリコン加工品を得ることができる。
ジーメンス法による反応器の概略図である。 台車に積載された多結晶シリコンロッドの概略図である。 反応器内において取り外された直後の多結晶シリコンロッドの概略図である。 カーボン部材を被覆材により被覆した状態の多結晶シリコンロッドの概略図である。
 以下、本発明の実施形態をさらに詳細に説明する。まず、本明細書で使用する主な用語を概説する。
 多結晶シリコンロッドとは、図1に示すようなジーメンス反応炉を用いて得られる多結晶シリコンの柱状物であり、シリコン芯線の表面に析出した多結晶シリコンからなる。ジーメンス法によれば、逆U字型形状で得られるが、本発明の多結晶シリコンロッドは、逆U字型形状の一部が欠けたL字型形状であってもよく、また棒状であってもよい。
 また、多結晶シリコンロッドの端部とは、カーボン部材の上端部に接する部分である。この端部およびその近傍領域のロッドを、ロッドの「下部」と表記することもある。
 多結晶シリコンロッドの上部とは、前記下部以外の部分を示し、カーボン部材からの離れた部分をいう。
 また、多結晶シリコンロッドと、その端部のカーボン部材とを合わせて、「全体」と呼ぶことがある。
 本発明の多結晶シリコン加工品の製造方法において、ジーメンス法により得られた多結晶シリコンロッドは、前記したように、カーボン部材に保持されたシリコン芯線表面に多結晶シリコンを析出せしめて得られる。このとき、上記シリコン芯線表面だけでなく前記カーボン部材表面にも一部多結晶シリコンが析出し、前記カーボン部材と多結晶シリコンロッドとが一体となる。そのため、析出反応後、反応器内において、上記多結晶シリコンロッドは、その端部にカーボン部材を含む状態で電極から取り外される。上記取り外された多結晶シリコンロッドは、逆U字状物(図3(a))であり、また、逆U字型に組まれたシリコン芯線の上部両端に対応する部分から割れた逆L字状物(図3(b))や、棒状物(図3(c))である。
 本発明の最大の特徴は、析出反応後、前記多結晶シリコンロッドを電極から取り外し、加工するまでの間に、前記カーボン部材を被覆材により被覆することにより、該多結晶シリコンロッドと上記カーボン部材とを隔離した状態で取り扱う工程を含むことである。
 本発明の多結晶シリコン加工品の製造方法において、多結晶シリコンロッドを電極から取り外し、加工するまでの間とは、反応器内において多結晶シリコンロッドをその端部にカーボン部材を含んだ状態で電極から取り外した直後から、多結晶シリコンロッドからカーボン部材が分離され接触しない状態になるまでの間を指す。本発明の効果を十分発揮するためには、多結晶シリコンロッド表面におけるカーボン汚染の原因となるカーボン部材を早い時期に被覆するほど上記汚染を回避することができるため好ましい。従って、該被覆の時期としては、反応器内において電極から多結晶シリコンロッドを取り外した時、反応器外に多結晶シリコンロッドを取り出した時、多結晶シリコンロッドを台車に降ろす時、多結晶シリコンロッドを台車上に積載した時などが挙げられるが、中でも反応器内において電極から多結晶シリコンロッドを取り外した直後が最も好ましい。
 本発明の多結晶シリコン加工品の製造方法において、該多結晶シリコンロッドの端部に存在するカーボン部材を、被覆材を用いて被覆する態様は、該多結晶シリコンロッドと上記カーボン部材とを隔離した状態となる態様が全て含まれる。ここで、「隔離した状態」とは、あるロッドの表面と、他のロッド端部のカーボン部材とが直接接触しない状態を言う。たとえば、少なくともカーボン部材の表面全体を覆うとともに、前記割れ落ちたカーボン部材の破片が飛散して多結晶シリコンロッド表面に接触しないように被覆する態様が含まれる。従って、カーボン部材を、被覆材を用いて被覆する態様は、カーボン部材のみを被覆する態様(図4(a))、カーボン部材が存在する側の多結晶シリコンロッド下部を一部含んだ状態(図4(b))で被覆する態様が挙げられる。
 被覆材の材質は特に限定はされず、樹脂製、布製、紙製であってもよい。特に汚染が低く、柔軟で取扱いの容易な樹脂製被覆材が好ましく用いられる。以下では樹脂製被覆材の使用例を説明するが、樹脂製被覆材に代えて、布製、紙製の被覆材を用いてもよい。前記樹脂製被覆材を用いて前記カーボン部材を被覆する具体的な態様としては、(1)樹脂製フィルムや樹脂製バッグを使用して、カーボン部材を覆う態様、(2)樹脂製キャップを使用して、カーボン部材に装着する態様、(3)樹脂溶解液にカーボン部材を浸漬して該カーボン部材表面に被膜を形成する態様、などが挙げられる。
 そのうち、(1)の態様においては、例えば、略正方形の樹脂製フィルムの中央にカーボン部材が存在する側の多結晶シリコンロッド端部を立てて置き、該樹脂製フィルムの向かい合う端同士をもちあげることでカーボン部材を包む態様、樹脂製フィルムから形成されるバッグを上記多結晶シリコンロッド端部側から被せる態様等が挙げられる。このとき、上記樹脂製フィルムをカーボン部材に密着するようにしてもよいし、樹脂製フィルムとカーボン部材との間に隙間があってもよい。ただし、樹脂製フィルムとカーボン部材との間に開口が存在する場合は、その開口から前記割れ落ちたカーボン部材の破片が飛散する虞があるため、ひもやベルト、粘着テープ等を使用して樹脂製被覆材の外側から巻き付けてカーボン部材に固定することで、上記開口を閉塞することが好ましい。その他に、帯状の樹脂製フィルムをカーボン部材に巻き付ける様にして覆う態様も挙げられる。
 いずれの方法においても、前記樹脂製フィルムとしては、前記取り出しや運搬等の際に破損しない程度の機械的特性を有していれば特に限定されず、例えば、厚さが100~1000μmのポリエチレン製フィルム、ポリエチレン製バッグなどが挙げられる。
 また、(2)の樹脂製キャップとしては、例えば、ゴムのような弾性を有する材料からなり、前記カーボン部材が存在する側の多結晶シリコンロッド端部の形状に合わせて成形された成形体であって、一端は閉塞されているとともに、他端は開口を形成するものである。
 被覆材として、樹脂製フィルム、バッグ、キャップを使用する際には、被覆材の内面(カーボン部材に接する面)および外面を予め洗浄しておくことが好ましい。洗浄は酸洗浄が好ましい。酸洗浄により、被覆材由来の汚染を低減できる。 
 さらに、(3)の樹脂溶解液としては、ウレタンゴム、ラテックスゴム、ブタジエン樹脂、ポリビニルアルコール、液状ブチルゴム、液状ゴム、天然ゴム、ニトリルゴム、クロロプレンゴム、酢酸ビニルゴム等から選択されるゴム素材を、テトラヒドロフラン、アセトニトリル、トリクロロエタン、トリクロロエチレン、メチレンクロライド、トルエン、キシレン等の有機溶媒に溶解したものが挙げられる。
 カーボン部材が存在する側の多結晶シリコンロッド下部を一部含んだ状態(図4(b)で被覆する場合には、図示したように、ロッドの被覆領域の長さLを、多結晶シリコンロッド端部から200mm以下とすることが好ましく、100mm以下とすることがさらに好ましい。被覆材により包まれた領域では、その内部でカーボン部材の破片などが発生し、ロッドがカーボン汚染を受けやすい。したがって、被覆領域の長さLを小さくすることで、カーボン汚染の少ない多結晶シリコンの収率が高められる。なお、カーボン汚染を問題としない用途であれば、被覆材に包まれた領域のロッドも使用できる。
 また、前記被覆材を用いて被覆する態様は、これらに限定されるものではなく、多結晶シリコンロッドが種々の部材等に直接接触することを回避するために、多結晶シリコンロッドの下部を、カーボン部材とともに被覆材で被覆するとともに、該多結晶シリコンロッドの上部あるいは全体を他の被覆材で被覆してもよい。例えば、樹脂製フィルムから形成されるバッグを前記カーボン部材が存在する側の多結晶シリコンロッド端部に被せるとともに、さらに別の樹脂製バッグを、多結晶シリコンロッドの上部あるいは前記カーボン部材と多結晶シリコンロッドとを含む全体に被せる態様も採用される。
 本発明の加工方法は、カーボン部材が被覆材により被覆された状態で、カーボン部材を除去する工程を含むことが好ましい。本発明の多結晶シリコン加工品の好ましい製造方法において、前記カーボン部材が被覆材により被覆された多結晶シリコンロッドを、前記したように、数本まとめて台車等で加工室まで運搬した後、上記カーボン部材を除去する。カーボン部材の除去は、たとえばロッドの下端部を切り落としたり、あるいはハンマー等の高硬度工具でカーボン部材を叩き落とすことで行う。このとき、上記多結晶シリコンロッドを、そのカーボン部材を上記被覆材により被覆した状態で加工室まで運搬し、その被覆した状態のまま上記カーボン部材を除去することが好ましい。カーボン部材が全て被覆材で被覆された状態で、上記カーボン部材を除去することが好ましい。さらに多結晶シリコンロッドの下部が被覆材により被覆され、かるカーボン部材が全て被覆材で被覆された状態で、上記カーボン部材を除去することが好ましい。こうすることにより、上記カーボン部材を切り離す時の衝撃や、上記切り離したカーボン部材が地面に落下する時の衝撃等により、上記カーボン部材が割れてその破片が飛散することを未然に防ぐことができるため、例えば、上記破片が加工室全体に飛散することによって生じる、多結晶シリコンロッド表面の二次的な汚染を防止することができる。
 その後、上記被覆材は、多結晶シリコンロッドからカーボン部材を分離し接触しない状態にした後、必要に応じて該カーボン部材から取り外すことが好ましい。
 このように、本発明の方法によれば、前記カーボン部材による多結晶シリコンロッド表面のカーボン汚染を効果的に回避することができ、その結果、安定して清浄度の高い多結晶シリコン加工品を得ることができる。
 多結晶シリコン加工品としては、多結晶シリコンロッドを破砕して得られる多結晶シリコンの破砕物が挙げられる。この破砕物は、そのサイズに応じてチャンク、ナゲット、チップなどと呼ばれることがある。また多結晶シリコンロッドを柱状に切断して得られるカットロッドであってもよい。
1 反応器
2 シリコン芯線
3 電極
4 カーボン部材
5 多結晶シリコンロッド
6 台車
7 被覆材

Claims (9)

  1.  ジーメンス法による反応器内で電極に接続したカーボン部材に保持されたシリコン芯線に多結晶シリコンを析出せしめて得られた多結晶シリコンロッドを、その端部に上記カーボン部材を含む状態で取り出し、これを加工する方法において、上記多結晶シリコンロッドを上記電極から取り外し、加工するまでの間に、上記多結晶シリコンロッドの端部に存在するカーボン部材を、被覆材を用いて被覆することにより、多結晶シリコンロッドとカーボン部材とを隔離した状態で取り扱う工程を含むことを特徴とする、多結晶シリコン加工品の製造方法。
  2.  前記多結晶シリコンロッドの下部を、カーボン部材とともに被覆材で被覆する請求項1に記載の多結晶シリコン加工品の製造方法。
  3.  前記多結晶シリコンロッドの下部を、カーボン部材とともに被覆材で被覆する際に、該多結晶シリコンロッドの端部から200mm以下までの領域を被覆する、請求項1に記載の多結晶シリコン加工品の製造方法。
  4.  前記多結晶シリコンロッドの下部を、カーボン部材とともに被覆材で被覆するとともに、該多結晶シリコンロッドの上部または全体を他の被覆材で被覆する請求項1に記載の多結晶シリコン加工品の製造方法。
  5.  カーボン部材が被覆材により被覆された状態で、カーボン部材を除去する工程を含む請求項1~4のいずれかに記載の多結晶シリコン加工品の製造方法。
  6.  前記被覆材が樹脂製被覆材である請求項1~5のいずれかに記載の多結晶シリコン加工品の製造方法。
  7.  前記樹脂製被覆材が、ポリエチレン製フィルムまたはバッグである請求項6に記載の多結晶シリコン加工品の製造方法。
  8.  請求項1~7のいずれかに記載の方法により得られる多結晶シリコン加工品。
  9.  多結晶シリコンの破砕品である、請求項8に記載の多結晶シリコン加工品。
PCT/JP2018/008827 2017-03-08 2018-03-07 多結晶シリコン加工品の製造方法 WO2018164197A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18763924.0A EP3578514A4 (en) 2017-03-08 2018-03-07 METHOD OF MANUFACTURING A POLYCRYSTALLINE SILICON PROCESSED ARTICLE
KR1020197024686A KR102361373B1 (ko) 2017-03-08 2018-03-07 다결정 실리콘 가공품의 제조방법
CN201880013910.XA CN110352177B (zh) 2017-03-08 2018-03-07 多晶硅加工品的制造方法
JP2019504647A JP6998936B2 (ja) 2017-03-08 2018-03-07 多結晶シリコン加工品の製造方法
SG11201907860QA SG11201907860QA (en) 2017-03-08 2018-03-07 Method for producing polycrystalline silicon processed article
US16/488,960 US11332377B2 (en) 2017-03-08 2018-03-07 Method for producing polycrystalline silicon processed article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-044202 2017-03-08
JP2017044202 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018164197A1 true WO2018164197A1 (ja) 2018-09-13

Family

ID=63448681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008827 WO2018164197A1 (ja) 2017-03-08 2018-03-07 多結晶シリコン加工品の製造方法

Country Status (8)

Country Link
US (1) US11332377B2 (ja)
EP (1) EP3578514A4 (ja)
JP (1) JP6998936B2 (ja)
KR (1) KR102361373B1 (ja)
CN (1) CN110352177B (ja)
SG (1) SG11201907860QA (ja)
TW (1) TWI781986B (ja)
WO (1) WO2018164197A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373724B2 (ja) * 2014-11-04 2018-08-15 株式会社トクヤマ 芯線ホルダ及びシリコンの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051837A (ja) * 2009-09-02 2011-03-17 Toyo Tanso Kk シード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法
JP2011063471A (ja) * 2009-09-16 2011-03-31 Shin-Etsu Chemical Co Ltd 多結晶シリコン塊および多結晶シリコン塊の製造方法
JP2013159504A (ja) * 2012-02-02 2013-08-19 Shin-Etsu Chemical Co Ltd 多結晶シリコン棒搬出冶具および多結晶シリコン棒の刈取方法
JP2015229604A (ja) 2014-06-03 2015-12-21 信越化学工業株式会社 多結晶シリコンロッドの製造方法、多結晶シリコンロッド、および、多結晶シリコン塊
JP2017503747A (ja) * 2014-01-22 2017-02-02 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG 多結晶シリコンの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1246735B (it) 1990-06-27 1994-11-26 Union Carbide Coatings Service Mandrino di grafie per un filamento iniziatore nella fabbricazione di silicio policristallino e metodo di protezione.
DE69208303D1 (de) 1991-08-29 1996-03-28 Ucar Carbon Tech Mit glasigem Kohlenstoff überzogene Graphit-Spannvorrichtung zum Gebrauch bei der Erzeugung von polykristallinem Silizium
KR100768147B1 (ko) 2006-05-11 2007-10-18 한국화학연구원 혼합된 코어수단을 이용한 다결정 실리콘 봉의 제조방법과그 제조장치
CN201598183U (zh) 2009-12-03 2010-10-06 江苏中能硅业科技发展有限公司 一种半导体材料棒材的洁净出料装置
DE102010003064A1 (de) * 2010-03-19 2011-09-22 Wacker Chemie Ag Graphitelektrode
DE102011084372A1 (de) * 2011-10-12 2012-02-09 Wacker Chemie Ag Vorrichtung für die Abscheidung von polykristallinem Silicium auf Dünnstäben
DE102011089449A1 (de) * 2011-12-21 2013-06-27 Wacker Chemie Ag Polykristalliner Siliciumstab und Verfahren zur Herstellung von Polysilicium
DE102014222883A1 (de) * 2014-11-10 2016-05-12 Wacker Chemie Ag Polykristallines Siliciumstabpaar und Verfahren zur Herstellung von polykristallinem Silicium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051837A (ja) * 2009-09-02 2011-03-17 Toyo Tanso Kk シード保持部材及びそのシード保持部材を用いた多結晶シリコン製造方法
JP2011063471A (ja) * 2009-09-16 2011-03-31 Shin-Etsu Chemical Co Ltd 多結晶シリコン塊および多結晶シリコン塊の製造方法
JP2013159504A (ja) * 2012-02-02 2013-08-19 Shin-Etsu Chemical Co Ltd 多結晶シリコン棒搬出冶具および多結晶シリコン棒の刈取方法
JP2017503747A (ja) * 2014-01-22 2017-02-02 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG 多結晶シリコンの製造方法
JP2015229604A (ja) 2014-06-03 2015-12-21 信越化学工業株式会社 多結晶シリコンロッドの製造方法、多結晶シリコンロッド、および、多結晶シリコン塊

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578514A4

Also Published As

Publication number Publication date
KR20190120758A (ko) 2019-10-24
JP6998936B2 (ja) 2022-01-18
CN110352177B (zh) 2023-08-01
EP3578514A1 (en) 2019-12-11
SG11201907860QA (en) 2019-09-27
JPWO2018164197A1 (ja) 2020-01-23
US20200010327A1 (en) 2020-01-09
KR102361373B1 (ko) 2022-02-10
TW201836979A (zh) 2018-10-16
TWI781986B (zh) 2022-11-01
CN110352177A (zh) 2019-10-18
EP3578514A4 (en) 2020-10-07
US11332377B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
US11440804B2 (en) Process for producing polycrystalline silicon mass
US9421583B2 (en) Rinsing apparatus and rinsing method for polycrystalline silicon lump
TWI398384B (zh) 石英玻璃坩堝用蓋、石英玻璃坩堝及其使用處理方法
JP6165994B2 (ja) シリコンロッドの受け取りおよび運搬のための装置、ならびに多結晶シリコンを作製するための方法
CN109153574B (zh) 多晶硅棒及其制造方法
KR101955079B1 (ko) 다결정 실리콘의 제조 방법
US9260795B2 (en) Closure for silica glass crucible, silica glass crucible and method of handling the same
US20090060824A1 (en) Washing method, washing apparatus for polycrystalline silicon and method of producing polycrystalline silicon
WO2018164197A1 (ja) 多結晶シリコン加工品の製造方法
KR102090983B1 (ko) 다결정 실리콘의 제조 방법
JPH11265875A (ja) 半導体部片材料の真空乾燥装置および真空乾燥方法
JP6217140B2 (ja) 多結晶シリコン材料の製造方法
TWI657044B (zh) 多晶矽棒對和製造多晶矽的方法
CN113348149B (en) Polycrystalline silicon chunk, package thereof, and method for manufacturing same
KR20160132189A (ko) 다결정 실리콘 제조용 카본 부품과 실리콘의 분리방법
JP2005028846A (ja) ウエーハ収納容器の製造方法及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504647

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024686

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018763924

Country of ref document: EP

Effective date: 20190905