WO2018162785A2 - Compuestos para el tratamiento de enfermedades causadas por la acumulación de oxalato - Google Patents

Compuestos para el tratamiento de enfermedades causadas por la acumulación de oxalato Download PDF

Info

Publication number
WO2018162785A2
WO2018162785A2 PCT/ES2018/070184 ES2018070184W WO2018162785A2 WO 2018162785 A2 WO2018162785 A2 WO 2018162785A2 ES 2018070184 W ES2018070184 W ES 2018070184W WO 2018162785 A2 WO2018162785 A2 WO 2018162785A2
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
salicylic acid
treatment
oxalate
derivatives
Prior art date
Application number
PCT/ES2018/070184
Other languages
English (en)
French (fr)
Other versions
WO2018162785A3 (es
Inventor
Mónica Díaz Gavilán
José Antonio GÓMEZ VIDAL
María Dolores Moya Garzón
Eduardo Salido Ruiz
Cristina Martín Higueras
Miguel Xavier Fernandes
Original Assignee
Universidad De Granada
Universidad De La Laguna
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada, Universidad De La Laguna filed Critical Universidad De Granada
Priority to US16/492,750 priority Critical patent/US20200197418A1/en
Priority to EP18764805.0A priority patent/EP3593803A4/en
Publication of WO2018162785A2 publication Critical patent/WO2018162785A2/es
Publication of WO2018162785A3 publication Critical patent/WO2018162785A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/04Drugs for disorders of the urinary system for urolithiasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/433Thidiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • A61K31/603Salicylic acid; Derivatives thereof having further aromatic rings, e.g. diflunisal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/60Salicylic acid; Derivatives thereof
    • A61K31/625Salicylic acid; Derivatives thereof having heterocyclic substituents, e.g. 4-salicycloylmorpholine

Definitions

  • the present invention falls in general in the field of pharmaceutical chemistry. Specifically, compounds derived from salicylic acid and their application for the treatment of diseases caused by the activity of GO and / or PRODH2 enzymes, more specifically diseases caused by the excessive production or accumulation of oxalate are described.
  • hyperoxaluria refers to a high concentration of oxalate in urine. There are different causes that can give rise to this situation. Given these causes, hyperoxalurias are divided into primary and secondary.
  • PH Primary hyperoxalurias
  • Three types of PH (PH1, PH2 and PH3) have been described, with PH1 being the most frequent and aggressive.
  • the same genetic error that gives rise to PH3 has also been related to idiopathic oxalate lithiasis.
  • Secondary hyperoxalurias may be due to excessive absorption of oxalate or its precursors at the intestinal level. This is related to a diet rich in these precursors or, in the case of enteric hyperoxaluria, with an altered absorption following intestinal dissection.
  • Type 1 primary hyperoxaluria (PH-1) is a severe and inherited disease that is due to a deficiency of the AGT enzyme (encoded by the Agxtl gene) in hepatocytes [Zhang, X .; Roe, SM; Hou, Y .; Bartlam, M .; Rao, Z .; Pearl, LH; Danpure, CJJ Mol. Biol. 2003, 331, 643-652].
  • This enzyme, AGT is responsible for the metabolism of glyoxylate in hepatic peroxisomes by transamination to glycine.
  • PH-1 a lack of AGT activity or its erroneous location in mitochondria, results in an accumulation of glyoxylate.
  • GO glycolate oxidase
  • LDH lactate dehydrogenase
  • PH-1 is a rare disease with an estimated incidence in Europe of 1: 100,000 births per year [Cochat, P .; Hulton, S.A .; Acquaviva, C; Danpure, C. J .; Daudon, M .; Marchi, M. D .; Fargue, S .; Groothoff, J .; Harambat, J .; Hoppe, B .; et al. Nephrol Dial Transplant 2012, 27, 1729-1736.] But presenting an unusually high frequency in the Canary Islands [(1) Lorenzo, V .; Alvarez, A .; Torres, A .; Torregrosa, V .; Hernandez, D .; Salido, E. Kidney Int. 2006, 70, 11 15-11 19. (2) Santana, A .; Exited, E .; Torres, A .; Shapiro, L. J. PNAS 2003, 100, 7277-7282].
  • SRT substrate reduction therapy
  • glycolate oxidase that catalyzes the oxidation of glycolate to glyoxylate (also participates in the oxidation of the latter to oxalate)
  • GO glycolate oxidase
  • proline dehydrogenase (PRODH2 or HYPDH) that exclusively catalyzes the first stage in the conversion of frans-4-hydroxy-L-proline into glyoxylate [Summitt, CB; Johnson, L. C; Jónsson, T. J .; Parsonage, D .; Holmes, R. P .; Lowther, W. T. Proline Dehydrogenase 2 (PRODH2) Is a Hydroxyproline Dehydrogenase (HYPDH) and Molecular Target for Treating Primary Hyperoxaluria. Biochemical Journal 2015, 466 (2), 273-281].
  • PRODH2 inhibition is postulated effective for the treatment of the three types of primary hyperoxaluria (PH-1, PH-2 and PH-3) while GO inhibition would be especially useful in the case of PH-1.
  • Salicylic acid is a natural product of plant origin that has multiple known targets not only in plants but also in animals, including humans. Salicylic acid derivatives have been used to treat pain, inflammatory processes and fever. There are also studies that describe the effect of salicylic acid and its derivatives in the treatment of neurodegenerative diseases, hepatitis C, cancer and dermal disorders, among others [Klessig, DF, Tian, M and Choi, HW (2016). Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animáis. Front Immunol l: 206].
  • the present invention deals with the use of compounds derived from salicylic acid as reducing agents for the excretion of oxalate and / or inhibitors of the activity of GO and PRODH2 enzymes, and therefore of their application for the treatment of diseases caused by the action of GO and / or PRODH2 and / or related to excess oxalate.
  • diseases are, among others, primary hyperoxalurias (PH-1, PH-2 and PH-3), secondary hyperoxaluria or idiopathic renal lithiasis due to calcium oxalate.
  • the invention relates to the use of salicylic acid derivatives for the treatment of patients with renal insufficiency (uremia or hyperazoemia) receiving hemodialysis or peritoneal dialysis, in particular patients treated with ascorbic acid (vitamin C), which is metabolized to Oxalate or patients with fibromyalgia and vulvar pain.
  • renal insufficiency uremia or hyperazoemia
  • peritoneal dialysis in particular patients treated with ascorbic acid (vitamin C), which is metabolized to Oxalate or patients with fibromyalgia and vulvar pain.
  • the invention relates to the use of salicylic acid derivatives; or of pharmaceutical compositions comprising one or more of those derivatives, as a medicament, or for the manufacture of a medicament, for the treatment of said diseases.
  • the invention relates to combined preparations comprising salicylic acid derivatives; or of pharmaceutical compositions comprising them, together with other compounds or drugs used for the treatment of the aforementioned diseases.
  • the present invention relates to a kit for the preparation of the aforementioned compositions or combined preparations.
  • the invention also relates to a method of treating said diseases that employs the aforementioned compounds, compositions, combined preparations or kits.
  • treatment refers to the administration of a compound or a composition according to the invention to improve or eliminate a disease, pathological condition or one or more symptoms associated with said disease or condition in a mammal, preferably in humans.
  • Treatment also covers the improvement or elimination of the physiological sequelae of the disease. Specifically, the concept “treat” can be interpreted as:
  • Inhibit the disease or pathological condition that is, stop its development
  • I. Relieve the disease or the pathological condition that is, it causes the regression of the disease or the pathological condition
  • the present invention deals with the use of salicylic acid derivatives as inhibitors of the activity of GO and / or PRODH2 enzymes and as reducing agents for oxalate excretion, in particular calcium oxalate.
  • This activity makes them useful for its application for the treatment of diseases mediated by GO enzymes activity and / or PRODH2, in particular diseases related to excess oxalate such as primary hyperoxalurias (PH-1, PH-2 or PH-3), hyperoxaluria secondary or idiopathic renal lithiasis due to calcium oxalate, among others.
  • diseases related to excess oxalate such as primary hyperoxalurias (PH-1, PH-2 or PH-3), hyperoxaluria secondary or idiopathic renal lithiasis due to calcium oxalate, among others.
  • the invention also relates to the use of salicylic acid derivatives for the treatment of patients with renal insufficiency (uremia or hyperazoemia) receiving hemodialysis or peritoneal dialysis, in particular patients treated with ascorbic acid (vitamin C), which is metabolized to oxalate or of patients with fibromyalgia and vulvar pain.
  • uremia or hyperazoemia renal insufficiency
  • vitamin C ascorbic acid
  • salts (salicylates) and by extension, prodrugs of salicylic acid derivatives will be understood to be included within the term "salicylic acid derivatives”.
  • a first aspect of the present invention relates to the use of salicylic acid derivatives, for the treatment of diseases or pathologies related to the activity of GO and / or PRODH2 enzymes, in particular in diseases related to an excess of oxalate, and for the treatment of patients with renal insufficiency (uremia or hyperazoemia) receiving hemodialysis or peritoneal dialysis, in particular patients treated with ascorbic acid (vitamin C), which is metabolized to oxalate or of patients with fibromyalgia and vulvar pain.
  • uremia or hyperazoemia renal insufficiency
  • hemodialysis or peritoneal dialysis in particular patients treated with ascorbic acid (vitamin C), which is metabolized to oxalate or of patients with fibromyalgia and vulvar pain.
  • vitamin C ascorbic acid
  • the invention relates to the use of compounds derived from salicylic acid, as a medicament or for the preparation of a medicament for the treatment of said diseases or pathologies.
  • the disease or pathology mediated with excess oxalate is selected from the group consisting of primary hyperoxaluria (PH-1, PH-2 or PH-3), secondary hyperoxaluria and idiopathic renal lithiasis by calcium oxalate.
  • the disease or pathology is primary hyperoxaluria, more preferably PH-1.
  • the salicylic acid derivatives used are general structure compounds I and II, hereinafter also referred to as “compounds /" and “compounds //", respectively.
  • R 1 -H, -CH 3 and -CH 2 CH 3 .
  • R 2 -H, - CH 3 .
  • R 3 Aromatic (substituted benzene ring) or heteroaromatic (5-membered aromatic heterocycle with oxygen, sulfur or nitrogen) cycle,
  • R 5 Halogen, -NO2, -OR 7 , -O-CH2-R 7 , -CH2-OR 7 , -CH2-O-CH2-R 7 .
  • R 6 -H, -COCH3, -COR 7 , -COOCH3, -COOR 7 , -CH2OR 7 , CH2OCH3, CH (OH) CH 3 , -CH (OH) R 7 , -CH (OH) CH 2 R 7 ; -CH3, -CHO, -, -CH2NHPh, -
  • R 7 H or an aromatic ring substituted with structure
  • R 8 -H, -CF 3 , halogen, -OCH 3 .
  • R9 -H, halogen.
  • Structures I and II comply well with the structural requirements that have been established for GO inhibitors and, in fact, have an inhibitory capacity for said enzyme.
  • the described GO inhibitors are molecules with a polar head ( ⁇ -hydroxy acid, a-keto acid, oxamate, sulfonate or heterocyclic) to which aliphatic or aromatic hydrophobic groups bind.
  • a polar head ⁇ -hydroxy acid, a-keto acid, oxamate, sulfonate or heterocyclic
  • the polar head must carry a protonated atom in ⁇ position with respect to a carboxylate.
  • the hydrophobicity of the moieties attached to the polar head plays a fundamental role in the inhibitory activity, which increases proportionally with the hydrophobic character of the side chains.
  • the salicylic acid fragment would constitute the ⁇ -hydroxy acid polar head while the hydrophobic tail would be represented by an apolar moiety which may be an aryl, heteroaryl, an amino group or a halogen group.
  • the salicylic acid derivatives used are selected from among the subgroups of compounds with general structures A, B or C (groups selected from compounds I), or D, E, or F (groups selected from among the compounds II), being:
  • R 1 -H and -CH 3 .
  • R 2 -H, - CH 3 .
  • R 4 -H, -N02, -F
  • R6 -CH3, -CHO, -COCH3 -CH20H, -CH2NHPh, -CH2-NH-C6H5 (4-Br), -CH2-NH-C6H5 [4- Bz (4-NHCOCH2CH2CH2CCH)], -CH2-NH- C6H5 (4-N02), -CH2- (piperidino), -CH2-NH-CH2- (3-pyridyl), -CH2NHCH2Ph, -CH2NHCH2CCH,
  • R1 -H, -CH3
  • R2 -H, -CH3
  • R4 -H, -N02, F
  • R5 -N02, -OH, -OCH3, -0-CH2-Ph (4-OCH3), -CH2-0-Ph (3-CF3),
  • salicylic acid derivatives used are selected from among the compounds detailed in Table 1:
  • the salicylic acid derivatives are selected from the group consisting of the compounds of general formula 73, 77, 74 and 78 (table 2).
  • compositions of the invention which comprise as an active ingredient a therapeutically effective amount of at least one salicylic acid derivative for the treatment of the mentioned diseases.
  • Said formulations may contain any other active ingredient in the treatment of patients with the aforementioned diseases or be characterized as containing only one salicylic acid derivative or a combination of salicylic acid derivatives as the active principle.
  • the salicylic acid derivative is a compound with general structure I or II, more preferably with general structure A, B, C, D, E or F, even more preferably one of the compounds detailed in Table 1 and even more preferred, one of the compounds detailed in table 2.
  • the term "therapeutically effective amount” refers to that amount of a compound that when administered to a mammal, preferably human, is sufficient to produce the treatment of diseases mediated by GO enzyme activity and / or PRODH2, in particular diseases related to excess oxalate such as PH-1, secondary hyperoxaluria, idiopathic renal lithiasis due to calcium oxalate, among others or for the treatment of patients with renal insufficiency (uremia or hyperazoemia) receiving hemodialysis or peritoneal dialysis, in particular patients treated with ascorbic acid (vitamin C), which is metabolized to oxalate or from patients with fibromyalgia and pain vulvar
  • diseases related to excess oxalate such as PH-1, secondary hyperoxaluria, idiopathic renal lithiasis due to calcium oxalate, among others or for the treatment of patients with renal insufficiency (uremia or hyperazoemia) receiving hemodialysis or peritoneal
  • the amount of a compound that constitutes a therapeutically effective amount will vary, for example, depending on the activity of the specific compound employed; the metabolic stability and duration of action of the compound; the species (preferably human), the clinical form of the human disease, age, body weight, general state of health, sex and diet of the patient; the route of administration, given the possibility of oral or systemic administration; the mode and time of administration; the rate of excretion, the combination of drugs; the severity of the particular disorder or pathological condition; and the subject who undergoes therapy, but can be determined by a specialist in the art according to their own knowledge and that description.
  • the "pharmaceutical form” is the individualized arrangement to which drugs (active ingredients) and excipients (pharmacologically inactive matter) are adapted to constitute a medicament.
  • said pharmaceutical compositions comprise one or more pharmaceutically acceptable carriers.
  • compositions of the invention are the vehicles known to those skilled in the art and commonly used in the elaboration of therapeutic compositions.
  • the pharmaceutical composition may comprise another active ingredient.
  • therapeutic efficacy which may require the use of therapeutic agents
  • therapeutic agents in addition to the compounds of the invention, there may be additional fundamental reasons that compel or strongly recommend the use of a combination of a compound of the invention and another therapeutic agent, such as in the treatment of diseases or conditions that directly or indirectly modulate the function of the substance.
  • the formulations may also contain excipients.
  • the excipients and vehicles used must be pharmaceutically and pharmacologically tolerable, so that they can be combined with other components of the formulation or preparation and do not exert adverse effects on the treated organism.
  • compositions or formulations include those that are suitable for oral or parenteral administration (including subcutaneous, intradermal, intramuscular and intravenous), although the best route of administration depends on the condition of the patient.
  • the formulations can be in the form of single doses.
  • the formulations are prepared according to methods known in the field of pharmacology.
  • the amounts of active substances to be administered may vary depending on the particularities of the therapy.
  • compositions of the invention are prepared using standard methods such as those described or referred to in the Spanish and US Pharmacopoeias and similar reference texts. Combined Preparations
  • the invention relates to a pharmaceutical composition, preparation or form, hereinafter “combined preparation of the invention", for the treatment of diseases mediated by GO enzyme activity and / or PRODH2, in particular diseases related to excess oxalate such as PH-1, secondary hyperoxaluria, idiopathic renal lithiasis due to calcium oxalate, among others; or for the treatment of patients with renal insufficiency (uremia or hyperazoemia) receiving hemodialysis or peritoneal dialysis, in particular patients treated with ascorbic acid (vitamin C), which is metabolized to oxalate or of patients with fibromyalgia and vulvar pain, comprising:
  • the disease is selected from the group consisting of primary hyperoxalurias (PH-1, PH-2 and PH-3), secondary hyperoxaluria, idiopathic renal lithiasis by calcium oxalate.
  • the disease is a primary hyperoxaluria, more preferably PH-1.
  • the salicylic acid derivative is a compound with general structure I or II, more preferably with general structure A, B, C, D, E or F, even more preferably one of the compounds detailed in Table 1 and even more preferred, one of the compounds detailed in table 2.
  • Invention kit
  • the present invention relates to a kit from English "kit of parts" for the preparation of the composition or the combined preparation of the invention.
  • kit refers to a combination of a set of components suitable for obtaining the composition or the combined preparation of the invention, which may or may not be packaged together, together with its appropriate containers and containers for commercial sale, etc.
  • suitable component for obtaining the composition or the combined preparation of the invention any compound that can be used for obtaining them, and includes, without limitation, aqueous solutions, preparations solids, buffers, syrups, preservation solutions, flavorings, pH correctors, thickeners, etc.
  • Kit components can be provided in separate vials (in the form of "kit-departments") or in a single vial. Furthermore, it is understood that the kit of the present invention is intended for the preparation of the composition or of the combined preparation or of the pharmaceutical form (for example, of the oral solution, mouthwash, rinse, gargle, elixir, etc.) of the invention. Preferably, the kit components of the present invention are ready to be used to prepare the combined composition or preparation or the pharmaceutical form of the present invention. In addition, the kit preferably contains explanatory instructions on how to prepare the combined composition or preparation or the pharmaceutical form of the present invention. Instructions can be provided to users electronically or on paper.
  • the invention provides a kit for the preparation of the composition of the invention or of the combined preparation of the invention a container comprising a container with the compound of the invention in any pharmaceutically acceptable formulation, together with components suitable for the obtaining the composition or the combined preparation of the invention.
  • the present invention relates to a method for the treatment, hereinafter "method of treatment of the invention", of patients affected by diseases mediated by GO enzyme activities and / or PRODH2, in particular diseases related to excess of oxalate as PH-1, secondary hyperoxaluria, idiopathic renal lithiasis by oxalate calcium, among others; or for the treatment of patients with renal insufficiency (uremia or hyperazoemia) receiving hemodialysis or peritoneal dialysis, in particular patients treated with ascorbic acid (vitamin C), which is metabolized to oxalate or of patients with fibromyalgia and vulvar pain, through use of salicylic acid derivatives and / or the compositions and / or the combined preparations and / or the kit of the invention.
  • uremia or hyperazoemia renal insufficiency
  • hemodialysis or peritoneal dialysis in particular patients treated with ascorbic acid (vitamin C), which is metabolized to oxa
  • the disease is selected from the group consisting of primary hyperoxalurias (PH-1, PH-2 and PH-3), secondary hyperoxaluria, idiopathic renal lithiasis by calcium oxalate.
  • the disease is a primary hyperoxaluria, more preferably PH-1.
  • the effects of this method of treatment include, but are not limited to, the effects of disease elimination, the increase in disease progression time and the survival rate.
  • the effects of treatment include longer term disease control.
  • This treatment consists in the administration to individuals affected by these diseases of therapeutically effective amounts of at least one derivative of salicylic acid, or a pharmaceutical composition that includes them.
  • salicylic acid derivatives in pure form or in an appropriate pharmaceutical composition, or in combination with other compounds, compositions or medicaments, can be carried out by means of the administration modes of agents accepted to serve similar utilities. .
  • the salicylic acid derivative is a compound with general structure I or II, more preferably with general structure A, B, C, D, E or F, even more preferably one of the compounds detailed in Table 1 and even more preferred, one of the compounds detailed in Table 2.
  • AGXT deficient mice have been previously described.
  • GO-KO mice were obtained according to the procedure described in literature.
  • Isolation and culture of hepatocytes Isolation of hepatocytes from AGT enzyme deficient mice was carried out as described in the literature. A total of 3.0 x 10 5 cells / well in Williams E medium supplemented with fetal bovine serum (5%), L-glutamine (2 mM), penicillin (100 U / mL), streptomycin were then cultured in 6-well plates (100 ⁇ g / mL), insulin (2.2 ml / mL) and hydrocortisone (0.3 ⁇ g / mL). After 5 h the medium was changed to complete Williams E (Biochrom, Cambridge, UK) without serum and the cells were treated with increasing concentrations of each drug in the presence of 5 mM glycolate. Samples of the culture medium were collected at 24, 48 and 72 h after treatment, for the quantification of oxalate.
  • Cell viability and cytotoxicity test 1.0 x 10 4 cells / well were cultured in a 96-well plate. These were treated with the same drug concentrations as in the previous trial. At 24, 48 and 72 h, 20 of the Cell Titer 96 Aqueous One Solution reagent (Promega, Madison, Wisconsin) were added and after incubation at 37 ° C for 2 h, absorbance measurements were obtained at 493 nm.
  • oxalate excreted in the medium was carried out by testing in the presence of oxalate oxidase using a commercial kit (Trinity Biotech, Co Wcklow, Ireland), following the manufacturer's instructions. GraphPad Prism 5 software was used to graphically represent the data as mean ⁇ SD.
  • the efficacy of oxalate production decrease was measured on primary hepatocyte cultures obtained from hyperoxaluric mice (Agxt1 "A ). Cultures of less than 5 days were used to avoid possible interference due to cell dedifferentiation. To increase the production of Oxalate in the cells in such a short term and to obtain detectable levels in standard enzyme assays, glycollate in 5 mM concentration was added to the culture medium. First, the viability of hepatocytes treated with increasing concentrations of each drug up to 200 ⁇ was tested.
  • the reactions were monitored by thin layer chromatography (TLC) on aluminum plates (Silicagel Merck AL 60 F254) or by liquid chromatography coupled to a mass spectrometer (LC-MS) on an Agilent 61 10 single quadrupole instrument, using a Zorbax Eclipse XDB-C18 4.6 x 150 mm column and electrospray ionization. Purification by flash chromatography was carried out on silica gel (230-400 mesh ASTM). The purity of the final products was checked by HPLC coupled to a diode-array detector (Agilent 1200), using a Zorbax Eclipse XDB-C18 4.6 x 150 mm column. Melting points are not corrected.
  • a DMF / H2O 1/1 mixture is prepared in a microwave vial in which triphenylphosphine (0.15 equiv), potassium carbonate (3.5 equiv) and palladium acetate (0.05 equiv) are dissolved.
  • triphenylphosphine (0.15 equiv)
  • potassium carbonate 3.5 equiv
  • palladium acetate 0.05 equiv
  • the corresponding halosalicylate or halosalicylic acid and the corresponding boronic acid or boronate are added sequentially.
  • the mixture is then degassed by bubbling with argon for 15 min and then sealing the vial.
  • the reaction is heated in a microwave instrument for organic synthesis at 100 ° C for 3 h while stirring throughout this time. After this time the reaction is allowed to cool and the filtrate is carried out by washing with methanol.
  • the filtrate is concentrated to dryness using a rotary evaporator and the resulting residue is purified by flash chromatography (elution with AcOEt mixtures: CH3CN: H20: CH30H).
  • the product obtained in the chromatographic separation is dissolved / suspended in acetone and a few drops of 10% HCI are added until pH 1-2, observing the appearance of a precipitate.
  • the acetone phase is removed and this is concentrated in a rotary evaporator.
  • the residue after evaporation in a rotary evaporator is dissolved in water and transferred to an eppendorf, in which it is centrifuged for 5 min at 13,000 rpm.
  • reaction is concentrated in the rotary evaporator, resuspended in acetonitrile and filtered.
  • the solid is resuspended in water and acidified with 5% HCI.
  • the solvent is evaporated and the residue obtained is purified by flash chromatography.
  • reaction crude obtained was purified by flash column chromatography using DCM / MeOH as a mobile phase (gradient 20: 1 ⁇ 9: 1) followed by AcOEt / CH 3 CN / MeOH / H 2 0 (gradient 70: 5: 2.5: 2.5 ⁇ 70: 2.5: 1.25: 1.25).
  • Compound 76 was obtained as a brown solid. Yield after purification: 34% (15 mg).
  • the mixture was degassed by argon bubbling for 10 min and reacted for 1 h at 80 ° C. After completion of the reaction, it was concentrated on a rotary evaporator and the reaction crude obtained was purified by flash column chromatography using AcOEt / Hexane as mobile phase (gradient elution 1: 4 ⁇ 1: 2).

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

La presente invención se refiere al uso de derivados del ácido salicílico, para el tratamiento de enfermedades o patologías relacionadas la actividad de las enzimas GO y/o PRODH2, en particular en enfermedades relacionadas con un exceso de oxalato, y para el tratamiento de pacientes con insuficiencia renal (uremia o hiperazoemia) que reciben hemodiálisis o diálisis peritoneal, en particular pacientes tratados con ácido ascórbico (vitamina C), que se metaboliza a oxalato o de pacientes con fibromialgia y dolor vulvar.

Description

COMPUESTOS PARA EL TRATAMIENTO DE ENFERMEDADES CAUSADAS POR LA
ACUMULACIÓN DE OXALATO
SECTOR DE LA TÉCNICA
La presente invención se encuadra en general en el campo de la química farmacéutica. Concretamente, se describen compuestos derivados de ácido salicílico y su aplicación para el tratamiento de enfermedades causadas por la actividad de las enzimas GO y/o PRODH2, más concretamente enfermedades causadas por la producción excesiva o acumulación de oxalato.
ESTADO DE LA TECNICA
Hiperoxalurias
El término hiperoxaluria hace referencia a una elevada concentración de oxalato en orina. Existen distintas causas que pueden dar lugar a dicha situación. Atendiendo a estas causas, las hiperoxalurias se dividen en primarias y secundarias.
Las hiperoxalurias primarias (PH) son un grupo de alteraciones genéticas, autosómicas recesivas, que implican fallos enzimáticos conducentes a una sobreproducción endógena de oxalato. Se han descrito tres tipos de PH (PH1 , PH2 y PH3) siendo PH1 la más frecuente y agresiva. [(1) Bhasin, B. Primary and Secondary Hyperoxaluria: Understanding the Enigma. World Journal of Nephrology 2015, 4 (2), 235]. El mismo error genético que da lugar a PH3 se ha relacionado también con la litiasis idiopática por oxalato. [(1) Monico, C. G.; Rossetti, S.; Belostotsky, R.; Cogal, A. G.; Herges, R. M.; Seide, B. M.; Olson, J. B.; Bergstrahl, E. J.; Wlliams, H. J.; Haley, W. E.; et al. Primary Hyperoxaluria Type III Gene HOGA1 (Formerly DHDPSL) as a Possible Risk Factor for Idiopathic Calcium Oxalate Urolithiasis. CJASN 2011 , 6 (9), 2289-2295.]
Las hiperoxalurias secundarias pueden deberse a una absorción excesiva de oxalato o sus precursores a nivel intestinal. Esto está relacionado con una dieta rica en dichos precursores o bien, en el caso de la hiperoxaluria entérica, con una absorción alterada posterior a una disección intestinal. [(1) Cochat, P.; Rumsby, G. Primary Hyperoxaluria. New England Journal of Medicine 2013, 369 (7), 649-658. (2) Lorenz, E. C; Michet, C. J.; Milliner, D. S.; Lieske, J. C. Update on Oxalate Crystal Disease. Curr Rheumatol Rep 2013, 15 (7), 340. (3) Karaolanis, G.; Lionaki, S.; Morís, D.; Palla, V.-V.; Vernadakis, S. Secondary Hyperoxaluria: A Risk Factor for Kidney Stone Formation and Renal Failure in Native Kidneys and Renal Grafts. Transplantation Reviews 2014, 28 (4), 182-187].
Hiperoxaluria primaria tipo 1 La hiperoxaluria primaria tipo 1 (PH-1) es una enfermedad severa y hereditaria que se debe a una deficiencia de la enzima AGT (codificada por el gen Agxtl) en hepatocitos [Zhang, X.; Roe, S.M.; Hou, Y.; Bartlam, M.; Rao, Z.; Pearl, L.H.; Danpure, C.J. J. Mol. Biol. 2003, 331, 643-652].
Esta enzima, AGT, se encarga del metabolismo del glioxilato en los peroxisomas hepáticos mediante transaminación a glicina. En PH-1 , una falta de actividad AGT o su localización errónea en las mitocondrias, tiene como consecuencia una acumulación de glioxilato. Éste pasa entonces a ser metabolizado mediante oxidación a oxalato, proceso principalmente catalizado por las enzimas glicolato oxidasa (GO) en los peroxisomas y lactato deshidrogenasa (LDH) en el citoplasma. Un exceso en la producción de oxalato, que únicamente puede ser excretado en orina, tiene como consecuencia la saturación de la capacidad de renal y la precipitación del mismo en forma de cristales insolubles de oxalato cálcico. Estos cristales producen daño en el tejido renal mermando la capacidad excretora del mismo hasta enfermedad renal terminal. Al avanzar el daño renal la acumulación de oxalato se hace generalizada produciendo alteraciones en vasos sanguíneos, huesos, articulaciones, retina, piel, médula ósea, corazón y sistema nervioso central, hasta provocar la muerte de los pacientes.
PH-1 es una enfermedad rara con una incidencia estimada en Europa de 1 : 100000 nacimientos al año [Cochat, P.; Hulton, S.A.; Acquaviva, C; Danpure, C. J.; Daudon, M.; Marchi, M. D.; Fargue, S.; Groothoff, J.; Harambat, J.; Hoppe, B.; et al. Nephrol. Dial. Transplant. 2012, 27, 1729-1736.] pero que presenta una frecuencia inusualmente elevada en las Islas Canarias [(1) Lorenzo, V.; Alvarez, A.; Torres, A.; Torregrosa, V.; Hernández, D.; Salido, E. Kidney Int. 2006, 70, 11 15-11 19. (2) Santana, A.; Salido, E.; Torres, A.; Shapiro, L. J. PNAS 2003, 100, 7277-7282].
Tratamiento de Hiperoxaluria
Actualmente no existe un tratamiento farmacológico efectivo para hiperoxaluria, y en particular para PH-1. Los pacientes son tratados mediante ingestas de líquido elevadas y tratamientos con citratos para aumentar la solubilidad del oxalato en orina. Únicamente en determinados casos de PH-1 , la administración de piridoxina restaura la actividad AGT redirigiéndola a su localización correcta en peroxisomas [(1) Monico, C. G.; Rossetti, S.; Olson, J. B.; Milliner, D. S. Pyridoxine Effect in Type I Primary Hyperoxaluria Is Associated with the Most Common Mutant Alíele. Kidney Int. 2005, 67 (5), 1704-1709. (2) Fargue, S.; Rumsby, G.; Danpure, C. J. Múltiple Mechanisms of Action of Pyridoxine in Primary Hyperoxaluria Type 1. Biochimica et Biophysica Acta (BBA) - Molecular Basis ofDisease 2013, 1832 (10), 1776-1783. (3) Salido, E.; Pey, A. L.; Rodríguez, R.; Lorenzo, V. Primary Hyperoxalurias: Disorders of Glyoxylate Detoxification. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2012, 7822 (9), 1453-1464]. Es necesario llevar a cabo trasplante renal (paliativo) y/o hepático (curativo) para preservar la vida de los pacientes de PH [(1) Zhang, X.; Roe, S.M.; Hou, Y.; Bartlam, M.; Rao, Z.; Pearl, L.H.; Danpure, C.J. J. Mol. Biol. 2003, 331, 643-652. (2) Beck, B. B.; Hoyer- Kuhn, H.; Góbel, H.; Habbig, S.; Hoppe, B. Hyperoxaluria and Systemic Oxalosis: An Update on Current Therapy and Future Directions. Expert Opinión on Investigational Drugs 2013, 22 (1), 1 17-129. (3) Watts, R. W. E; Danpure, C. J.; Pauw, L. D.; Toussaint, C; 1 , E. S. G. on T. in H. T. Combined Liver-Kidney and Isolated Liver Transplantations for Primary Hyperoxaluria Type 1 : The European Experience. Nephrol. Dial. Transplant. 1991 , 6 (7), 502-51 1.]
Es por tanto evidente la necesidad de desarrollo de nuevas terapias que disminuyan de forma efectiva los niveles de oxalato, que sean aplicables de forma general en todos los casos de hiperoxalurias primarias y que no impliquen los riesgos de los tratamientos quirúrgicos antes mencionados.
Actualmente se emplea una aproximación al tratamiento consistente en la recuperación de la actividad AGT. En este respecto, uno de los enfoques que actualmente se están desarrollando es el de terapia génica utilizando agentes de transfección capaces de incorporar AGT en hepatocitos carentes de esta. Recientemente, utilizando vectores AAV, se ha conseguido con éxito la corrección a largo plazo de la PH-1 en ratones modelo de esta enfermedad. [(1) Castello, R.; Borzone, R.; D'Aria, S.; Annunziata, P.; Piccolo, P.; Brunetti-Pierri, N. Helper- Dependent Adenoviral Vectors for Liver-Directed Gene Therapy of Primary Hyperoxaluria Type 1. Gene T 7er 2016, 23 (2), 129-134. (2) Salido, E.; Rodriguez-Pena, M.; Santana, A.; Beattie, S. G.; Petry, H.; Torres, A. Phenotypic Correction of a Mouse Model for Primary Hyperoxaluria With Adeno-Associated Virus Gene Transfer. Mol Ther 2011 , 19 (5), 870-875. (3) Salido, E. C; Li, X. M.; Lu, Y.; Wang, X.; Santana, A.; Roy-Chowdhury, N.; Torres, A.; Shapiro, L. J.; Roy-Chowdhury, J. Alanine-Glyoxylate Aminotransferase-Deficient Mice, a Model for Primary Hyperoxaluria That Responds to Adenoviral Gene Transfer. Proc. Nati. Acad. Sci. U.S.A. 2006, 103 (48), 18249-18254]. Por otro lado, el uso de chaperonas farmacológicas es otra alternativa prometedora en cuanto a restauración de la actividad AGT. Las chaperonas farmacológicas son pequeños ligandos capaces de promover el plegamiento correcto de enzimas mutadas. Su uso en enfermedades derivadas de errores congénitos del metabolismo está en auge y existen algunos ejemplos ya en el mercado [Muntau, A. C; Leandro, J.; Staudigl, M.; Mayer, F.; Gersting, S. W. Innovative Strategies to Treat Protein Misfolding in Inborn Errors of Metabolism: Pharmacological Chaperones and Proteostasis Regulators. J Inherit Metab Dis 2014, 37 (4), 505-523]. Recientemente, un estudio en el que se ha identificado una molécula capaz de actuar como chaperona farmacológica para AGT, ha demostrado la viabilidad de esta técnica como posible tratamiento para PH-1 [Oppici, E.; Montioli, R.; Dindo, M.; Maccari, L; Porcari, V.; Lorenzetto, A.; Chellini, S.; Voltattorni, C. B.; Cellini, B. The Chaperoning Activity of Amino-Oxyacetic Acid on Folding-Defective Variants of Human Alanine:Glyoxylate Aminotransferase Causing Primary Hyperoxaluria Type I. ACS Chem. Biol. 2015, 10 (10), 2227-2236].
Una aproximación distinta en cuanto a búsqueda de tratamiento farmacológico para PH-1 es la estrategia de la terapia mediante reducción de sustrato (SRT). Esta aproximación es aplicable en patologías provocadas por pérdida de una función enzimática [Smid, B. E.; Aerts, J. M. F. G.; Boot, R. G.; Linthorst, G. E.; Hollak, C. E. M. Pharmacological Small Molecules for the Treatment of Lysosomal Storage Disorders. Expert Opin Investig Drugs 2010, 19 (11), 1367-1379] como es el caso de la PH-1. En estos casos tiene lugar una acumulación nociva de los sustratos enzimáticos. Mediante SRT lo que se pretende es reducir el nivel de sustrato acumulado hasta una concentración tal que pueda ser metabolizada incluso por una actividad enzimática residual.
De acuerdo con esta idea, en la actualidad se están explorando dos enzimas como dianas que se han demostrado seguras para SRT en PH-1. Por un lado, la enzima glicolato oxidasa (GO) que cataliza la oxidación de glicolato a glioxilato (también participa en la oxidación de éste último a oxalato) [Martin-Higueras, C; Luis-Lima, S.; Salido, E. Glycolate Oxidase Is a Safe and Efficient Target for Substrate Reduction Therapy in a Mouse Model of Primary Hyperoxaluria Type I. Mol Ther 2016, 24(4), 719-725], y por otro la enzima prolina deshidrogenasa (PRODH2 o HYPDH) que cataliza de forma exclusiva la primera etapa en la conversión de frans-4-hidroxi-L-prolina en glioxilato [Summitt, C. B.; Johnson, L. C; Jónsson, T. J.; Parsonage, D.; Holmes, R. P.; Lowther, W. T. Proline Dehydrogenase 2 (PRODH2) Is a Hydroxyproline Dehydrogenase (HYPDH) and Molecular Target for Treating Primary Hyperoxaluria. Biochemical Journal 2015, 466 (2), 273-281]. Para ambas enzimas, se ha documentado la existencia de individuos sanos carentes de ellas [Frishberg, Y.; Zeharia, A.; Lyakhovetsky, R.; Bargal, R.; Belostotsky, R. J. Med. Genet. 2014, 57(8), 526-529]. Además, para la enzima GO se han generado ratones knock-out (KO) que igualmente se han desarrollado sin evidencia de efectos fenotípicos nocivos.
La inhibición de PRODH2 se postula efectiva para el tratamiento de los tres tipos de hiperoxaluria primaria (PH-1 , PH-2 y PH-3) mientras que la inhibición GO resultaría especialmente útil en el caso de PH-1.
Aunque se han encontrado algunas moléculas pequeñas inhibidoras de PRODH2, no se ha comprobado aún su efectividad en la disminución de oxalato, y por tanto en la mejora del fenotipo PH, en cultivos celulares o in vivo. Por el contrario, recientemente se ha comprobado la efectividad de un inhibidor de GO (CCPST) para disminuir los niveles de oxalato en ratones con PH-1 (Agxt1-KO). Con este estudio se demuestra el potencial de la inhibición farmacológica de GO en el desarrollo de un tratamiento para PH-1 en humanos y establece un cabeza de serie para la preparación de nuevos inhibidores. En bibliografía puede encontrarse diversos ejemplos de inhibidores de GO, los cuales han podido ser co- cristalizados con GO de espinaca (sGO) [Stenberg, K.; Lindqvist, Y. Three-Dimensional Structures of Glycolate Oxidase with Bound Active-Site Inhibitors. Protein Science 1997, 6 (5), 1009-1015] y humana (hGO) [Murray, M.S.; Holmes, R.P.; Lowther, W.T. Biochem. 2008, 47, 2439-2449].
Figure imgf000006_0001
Dentro de la estrategia SRT y de forma alternativa a la inhibición enzimática utilizando pequeñas moléculas, se están dedicando esfuerzos al desarrollo de siRNA para GO y PRODH2 [(1) Dutta Chaitali; Salido Eduardo. Inhibition of Glycolate Oxidase with Dicer- Substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type llnhibition of Glycolate Oxidase with Dicer-Substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type I. Molecular therapy: the journal of the American Society of Gene Therapy Journal 2016 (DOI: 10.1038/mt.2016.4). (2) Li, X.; Knight, J.; Fargue, S.; Buchalski, B.; Guan, Z.; Inscho, E. W.; Liebow, A.; Fitzgerald, K.; Querbes, W.; Todd Lowther, W.; et al. Metabolism of 13C5- Hydroxyproline in Mouse Models of Primary Hyperoxaluria and Its Inhibition by RNAi Therapeutics Targeting Liver Glycolate Oxidase and Hydroxyproline Dehydrogenase. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2016, 7862 (2), 233-239. (3) Querbes, W. ; Fitzgerald, K.; Bettencourt, B.; Liebow, A.; Erbe, D. Compositions and Methods for Inhibition of Hao1 (hydroxyacid Oxidase 1 (glycolate Oxidase)) Gene Expression. WO2016057893 (A1), April 14, 2016]. Estudios en ratones Agxt1-KO a los que se ha inyectado siRNA dirigido a silenciar la expresión de cada una de estas enzimas han evidenciado una disminución del oxalato excretado en orina, apuntando de nuevo a un posible tratamiento para PH-1. Derivados de ácido salicílico
El ácido salicílico es un producto natural de origen vegetal que tiene múltiples dianas conocidas no solo en plantas sino también en animales, incluyendo humanos. Los derivados del ácido salicílico se han utilizado para tratar el dolor, los procesos inflamatorios y la fiebre. Además existen estudios que describen el efecto del ácido salicílico y sus derivados en el tratamiento de enfermedades neurodegenerativas, hepatitis C, cáncer y alteraciones dérmicas, entre otras [Klessig, DF, Tian, M and Choi, HW (2016). Múltiple Targets of Salicylic Acid and Its Derivatives in Plants and Animáis. Front Immunol l: 206]. No se han encontrado referencias que relacionen el ácido salicílico ni sus derivados con la capacidad de disminuir el oxalato en células carentes de AGT, ni tampoco referencias al uso de este tipo de compuestos, en el tratamiento de enfermedades debidas a la acumulación de oxalato ni, en particular, en el tratamiento de hiperoxaluria.
No se conocen referencias que relacionen el ácido salicílico ni sus derivados con una capacidad inhibitoria de GO o PRODH2.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención trata sobre el uso de compuestos derivados del ácido salicílico como agentes reductores de la excreción de oxalato y/o inhibidores de la actividad de las enzimas GO y PRODH2, y por tanto de su aplicación para el tratamiento de enfermedades cursadas por la acción de GO y/o PRODH2 y/o relacionadas con el exceso de oxalato. Entre estas enfermedades se encuentran, entre otras, las hiperoxalurias primarias (PH-1 , PH-2 y PH-3), la hiperoxaluria secundaria o la litiasis renal idiopática por oxalato cálcico.
Adicionalmente, la invención está relacionada con el uso de derivados de ácido salicílico para el tratamiento de pacientes con insuficiencia renal (uremia o hiperazoemia) que reciben hemodiálisis o diálisis peritoneal, en particular pacientes tratados con ácido ascórbico (vitamina C), que se metaboliza a oxalato o de pacientes con fibromialgia y dolor vulvar.
En otro aspecto, la invención se refiere al uso de derivados del ácido salicílico; o de composiciones farmacéuticas que comprenden uno o más de esos derivados, como medicamento, o para la fabricación de un medicamento, para el tratamiento de dichas enfermedades.
En otro aspecto, la invención se refiere a preparaciones combinadas que comprenden derivados del ácido salicílico; o de composiciones farmacéuticas que los comprenden, junto con otros compuestos o fármacos empleados para el tratamiento de las enfermedades previamente mencionadas.
En otro aspecto, la presente invención se refiere a un kit para la preparación de las composiciones o de las preparaciones combinadas mencionadas.
En un último aspecto, la invención también se refiere a un método de tratamiento de dichas enfermedades que emplea los mencionados compuestos, composiciones, preparaciones combinadas o kits. DESCRIPICION DETALLADA DE LA INVENCIÓN
Definiciones
Se entenderá que un sujeto o paciente "posee un exceso de oxalato" cuando la cantidad de este compuesto (sales o ésteres del ácido oxálico) en el organismo del individuo, en particular en sangre u orina, supera los valores normales ya sea por producción excesiva o acumulación.
El término "tratamiento" o "tratar" en el contexto de este documento se refiere a la administración de un compuesto o una composición según la invención para mejorar o eliminar una enfermedad, condición patológica o uno o más síntomas asociados con dicha enfermedad o condición en un mamífero, preferentemente en humanos. "Tratamiento" también abarca la mejora o eliminación de las secuelas fisiológicas de la enfermedad. Concretamente, el concepto "tratar" se puede interpretar como:
i. Inhibir la enfermedad o condición patológica, es decir, detener su desarrollo; ¡i. Aliviar la enfermedad o la condición patológica, es decir, causa la regresión de la enfermedad o la condición patológica;
Ni. Estabilizar la enfermedad o la condición patológica.
A lo largo de la descripción y las reivindicaciones el término "comprende", que también podrá interpretarse como "consiste en", y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. En este contexto, la presente invención trata sobre el uso de derivados de ácido salicílico como inhibidores de la actividad de las enzimas GO y/o PRODH2 y como agentes reductores de la excreción de oxalato, en particular de oxalato cálcico. Esta actividad los hace útiles para su aplicación para el tratamiento de enfermedades mediadas por la actividad enzimas GO y/o PRODH2, en particular enfermedades relacionadas con exceso de oxalato como hiperoxalurias primarias (PH-1 , PH-2 o PH-3), hiperoxaluria secundaria o litiasis renal idiopática por oxalato cálcico, entre otras.
La invención también se refiere al uso de derivados de ácido salicílico para el tratamiento de pacientes con insuficiencia renal (uremia o hiperazoemia) que reciben hemodiálisis o diálisis peritoneal, en particular pacientes tratados con ácido ascórbico (vitamina C), que se metaboliza a oxalato o de pacientes con fibromialgia y dolor vulvar. A lo largo de la invención se entenderán incluidos dentro del término "derivados de ácido salicílico" sus sales (salicilatos) y por extensión, los profármacos de derivados de ácido salicílico. Así, un primer aspecto de la presente invención se refiere al uso de derivados del ácido salicílico, para el tratamiento de enfermedades o patologías relacionadas la actividad de las enzimas GO y/o PRODH2, en particular en enfermedades relacionadas con un exceso de oxalato, y para el tratamiento de pacientes con insuficiencia renal (uremia o hiperazoemia) que reciben hemodiálisis o diálisis peritoneal, en particular pacientes tratados con ácido ascórbico (vitamina C), que se metaboliza a oxalato o de pacientes con fibromialgia y dolor vulvar.
En particular, la invención se refiere al uso de compuestos derivados del ácido salicílico, como medicamento o para la elaboración de un medicamento para el tratamiento de dichas enfermedades o patologías.
En una realización más particular, la enfermedad o patología mediada con exceso de oxalato se selecciona del grupo formado por hiperoxaluria primaria (PH-1 , PH-2 o PH-3), hiperoxaluria secundaria y litiasis renal idiopática por oxalato cálcico. En una realización preferente, la enfermedad o patología es hiperoxaluria primaria, más preferentemente PH-1.
En una realización preferente los derivados del ácido salicílico empleados son compuestos estructuras generales I y II, en adelante también referenciados como "compuestos /" y "compuestos //", respecti
Figure imgf000009_0001
R1 = -H, -CH3 y -CH2CH3.
R2 = -H, - CH3.
R3 = Ciclo aromático (anillo de benceno sustituido) o heteroaromático (heterociclo aromático de 5 miembros con oxígeno, azufre o nitrógeno),
Figure imgf000009_0002
y
Figure imgf000010_0001
Donde, a su vez:
R5 = Halógeno, -NO2, -O-R7, -O-CH2-R7, -CH2-O-R7, -CH2-O-CH2-R7. R6 = -H, -COCH3, -COR7, -COOCH3, -COOR7, -CH2OR7, CH2OCH3, CH(OH)CH3, -CH(OH)R7, -CH(OH)CH2R7; -CH3, -CHO, - , -CH2NHPh, -
CH2-NH-C6H5(4-Br), -CH2-NH-C6H5[4-Bz(4-NHCOCH2CH2CH2CCH)], - CH2-NH-C6H5(4-N02), -CH2-(piperidino), -CH2-NH-CH2-(3-piridilo), - CH2NHCH2Ph, -CH2NHCH2CCH,
R7 = H o bien un anillo aromático sustituido con estructura
Figure imgf000010_0002
Donde, a su vez:
R8 = -H, -CF3, halógeno, -OCH3.
R9 = -H, halógeno.
y
Figure imgf000010_0003
Las estructuras I y II cumplen bien con los requisitos estructurales que se han establecido para los inhibidores GO y, de hecho-presentan capacidad inhibidora de dicha enzima. Los inhibidores de GO descritos son moléculas con una cabeza polar (α-hidroxiácido, a-cetoácido, oxamato, sulfonato o heterocíclica) a la que se unen grupos hidrofóbicos alifáticos o aromáticos. En bibliografía se refiere que la cabeza polar debe portar un átomo protonado en posición β respecto a un carboxilato. Según se ha descrito, la hidrofobicidad de los restos unidos a la cabeza polar juega un papel fundamental en la actividad inhibidora, que incrementa proporcionalmente con el carácter hidrofóbico de las cadenas laterales.
En los compuestos de la invención, el fragmento de ácido salicílico constituiría la cabeza polar de β-hidroxiácido mientras que la cola hidrofóbica estaría representada por un resto apolar que puede ser un grupo arilo, heteroarilo, un grupo amino o un halógeno. En una realización más particular, los derivados del ácido salicílico empleados se seleccionan de entre los subgrupos de compuestos con estructuras generales A, B o C (grupos seleccionados de entre los compuestos I), o bien D, E, o F (grupos seleccionados de entre los com uestos II), siendo:
Figure imgf000011_0001
A B D E
Donde:
Y = NH4
R1 = -H y -CH3.
R2 = -H, - CH3.
R4 = -H, -N02, -F
3 = Heterociclo aromático con oxígeno, azufre o nitrógeno, según las estructuras:
Figure imgf000011_0002
Donde a su vez,
X = 0, S;
y
R6 = -CH3, -CHO, -COCH3 -CH20H, -CH2NHPh, -CH2-NH-C6H5(4-Br), -CH2-NH-C6H5[4- Bz(4-NHCOCH2CH2CH2CCH)], -CH2-NH-C6H5(4-N02), -CH2-(piperidino), -CH2-NH-CH2- (3-piridilo), -CH2NHCH2Ph, -CH2NHCH2CCH,
y
Figure imgf000011_0003
C F
Donde:
R1 = -H, -CH3
R2 = -H, -CH3 R4 = -H, -N02, F
y
R5 = -N02, -OH, -OCH3, -0-CH2-Ph(4-OCH3), -CH2-0-Ph(3-CF3),
-OCH2Ph, -CH2-0-Ph(3,5-F,F), 2-furilo, F, Cl, Br, I.
De forma más particular, los derivados de ácido salicílico empleados se seleccionan de entre los compuestos detallados en la tabla 1 :
Figure imgf000012_0001
c 94 H H H o-[3-
(trifluorometil)feniloxi metilo]
c 96 H H - H p-(benciloxi) c 98 H H H o-(3,5- difluorofeniloximetilo) c MDMG- H H H p-(2-furilo)
943
D 73 H H 2-furilo H -
D 77 H H 5-formil-2-furilo H -
D 75 H H 3-furilo H -
D 79 CH CH 5-formil-2-furilo H
3 3
D 80 H CH 5-formil-2-furilo H
3
D 81 H H 5- h i d roxi m eti l-2-f u ri I o H -
D 83 H H 5-fenilaminometil-2-furilo H -
D 84 H H 2-furilo NO
2
D 85 H H 2-tienilo H -
D 87 H H 3-tienilo H -
D 89 H H 5-formil-2-tienilo H -
D 302 H H 5-acetil-2-tienilo H -
D 306 H H 5-metil-2-tienilo H -
D 309 H H 1-metil-1 H-pirazol-5-ilo H -
D 310 H H 4-piridilo H -
F 91 H H H p-(4- metoxifenilmetoxi)
F 93 H H H o-[3-
(trifluorometil)feniloxi metilo]
F 95 H H - H p-(benciloxi)
F 97 H H H o-(3,5- difluorofeniloximetilo)
F 99 H H - H p-OH
F 100 H H - H m-(OCH3) F 101 H H - H p-(N02)
Tabla 1 : Selección particular de derivados de ácido salicílico
En una realización preferente, los derivados del ácido salicílico se seleccionan del grupo formado por los compuestos de fórmula general 73, 77, 74 y 78 (tabla 2).
Figure imgf000014_0001
Tabla 2: Derivados de ácido salicílico de uso preferente. Composiciones farmacéuticas
En un segundo aspecto, la invención proporciona formulaciones, formas o composiciones farmacéuticas, en adelante "composiciones de la invención" que comprenden como ingrediente activo una cantidad terapéuticamente efectiva de al menos un derivado de ácido salicílico para el tratamiento de las enfermedades mencionadas. Dichas formulaciones puede contener cualquier otro ingrediente activo en el tratamiento de pacientes con las enfermedades mencionadas o bien caracterizarse por contener como principio activo únicamente un derivado de ácido salicílico o una combinación de derivados de ácido salicílico.
En distintas realizaciones preferentes, el derivado de ácido salicílico es un compuesto con estructura general I o II, más preferentemente con estructura general A, B, C, D, E o F, aún más preferentemente uno de los compuestos detallados en la tabla 1 y aún más preferente, uno de los compuestos detallados en la tabla 2.
En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a aquella cantidad de un compuesto que cuando se administra a un mamífero, preferentemente humanos, es suficiente para producir el tratamiento de enfermedades mediadas por la actividad enzimas GO y/o PRODH2, en particular enfermedades relacionadas con exceso de oxalato como PH-1 , hiperoxaluria secundaria, litiasis renal idiopática por oxalato cálcico, entre otras o para el tratamiento de pacientes con insuficiencia renal (uremia o hiperazoemia) que reciben hemodiálisis o diálisis peritoneal, en particular pacientes tratados con ácido ascórbico (vitamina C), que se metaboliza a oxalato o de pacientes con fibromialgia y dolor vulvar.
La cantidad de un compuesto que constituye una cantidad terapéuticamente efectiva variará, por ejemplo, según la actividad del compuesto específico empleado; la estabilidad metabólica y duración de la acción del compuesto; la especie (preferentemente humana), la forma clínica de la enfermedad humana, la edad, el peso corporal, el estado general de salud, el sexo y la dieta del paciente; la vía de administración, dada la posibilidad de administración oral o sistémica; el modo y el tiempo de administración; la velocidad de excreción, la combinación de fármacos; la gravedad del trastorno o la condición patológica particulares; y el sujeto que se somete a terapia, pero puede ser determinada por un especialista en la técnica según su propio conocimiento y esa descripción.
Po otro lado, de acuerdo con la presente invención, la "forma farmacéutica" es la disposición individualizada a la que se adaptan los fármacos (principios activos) y excipientes (materia farmacológicamente inactiva) para constituir un medicamento. Así, dichas composiciones farmacéuticas comprenden uno o más vehículos farmacéuticamente aceptables.
Los "vehículos farmacéuticamente aceptables" que pueden ser utilizados en las formulaciones de la invención son los vehículos conocidos por los técnicos en la materia y utilizados habitualmente en la elaboración de composiciones terapéuticas.
Opcionalmente la composición farmacéutica puede comprender otro principio activo. Además del requerimiento de la eficacia terapéutica, que puede necesitar el uso de agentes terapéuticos, además de los compuestos de la invención, pueden existir razones fundamentales adicionales que obligan o recomiendan en gran medida el uso de una combinación de un compuesto de la invención y otro agente terapéutico, tal y como en el tratamiento de enfermedades o afecciones que directa o indirectamente modulan la función de la sustancia. Las formulaciones pueden contener además excipientes. Los excipientes y los vehículos empleados tienen que ser farmacéutica y farmacológicamente tolerables, de modo que puedan ser combinados con otros componentes de la formulación o preparación y no ejerzan efectos adversos en el organismo tratado. Las composiciones farmacéuticas o formulaciones incluyen aquellas que son adecuadas para la administración oral o parenteral (incluyendo subcutánea, intradérmica, intramuscular e intravenosa), aunque la mejor vía de administración depende del estado del paciente. Las formulaciones pueden ser en forma de dosis sencillas. Las formulaciones se preparan de acuerdo con métodos conocidos en el campo de la farmacología. Las cantidades de sustancias activas para administrarse pueden variar en función de las particularidades de la terapia.
Las composiciones de la invención se preparan utilizando métodos habituales tales como aquéllos descritos o a los que se hace referencia en las Farmacopeas Española y Estadounidense y textos de referencia similares. Preparaciones combinadas
Así, en otro aspecto, la invención se refiere a una composición, preparación o forma farmacéutica, de ahora en adelante "preparación combinada de la invención", para el tratamiento de enfermedades mediadas por la actividad enzimas GO y/o PRODH2, en particular enfermedades relacionadas con exceso de oxalato como PH-1 , hiperoxaluria secundaria, litiasis renal idiopática por oxalato cálcico, entre otras; o para el tratamiento de pacientes con insuficiencia renal (uremia o hiperazoemia) que reciben hemodiálisis o diálisis peritoneal, en particular pacientes tratados con ácido ascórbico (vitamina C), que se metaboliza a oxalato o de pacientes con fibromialgia y dolor vulvar, que comprende:
a) un derivado de ácido salicílico,
b) otro principio activo, incluyendo otro derivado de ácido salicílico distinto al anterior.
En una realización particular la enfermedad se selecciona del grupo formado por hiperoxalurias primarias (PH-1 , PH-2 y PH-3), hiperoxaluria secundaria, litiasis renal idiopática por oxalato cálcico. En una realización preferente, la enfermedad es una hiperoxaluria primaria, más preferentemente PH-1.
En distintas realizaciones preferentes, el derivado de ácido salicílico es un compuesto con estructura general I o II, más preferentemente con estructura general A, B, C, D, E o F, aún más preferentemente uno de los compuestos detallados en la tabla 1 y aún más preferente, uno de los compuestos detallados en la tabla 2. Kit de la invención
En otro aspecto, la presente invención se refiere a un kit
Figure imgf000017_0001
del inglés "kit of parts") para la preparación de la composición o de la preparación combinada de la invención. El término "kit", tal como se utiliza en el presente documento, se refiere a una combinación de un conjunto de componentes adecuados para la obtención de la composición o de la preparación combinada de la invención, que pueden estar o no empaquetados juntos, junto con sus contenedores y envases apropiados para su venta comercial, etc. En la presente invención, se entiende como "componente adecuado para la obtención de la composición o de la preparación combinada de la invención", a cualquier compuesto que puede usarse para la obtención de las mismas, e incluye, sin limitación, soluciones acuosas, preparados sólidos, tampones, jarabes, soluciones de preservación, aromatizantes, correctores de pH, espesantes, etc.
Los componentes del kit se pueden proporcionar en viales separados (en forma de "kit- departes") o en un único vial. Además, se entiende que el kit de la presente invención está destinado a la preparación de la composición o de la preparación combinada o de la forma farmacéutica (por ejemplo, de la solución oral, colutorio, enjuague, gargarismo, elixir, etc.) de la invención. Preferiblemente, los componentes del kit de la presente invención están listos para ser usados para preparar la composición o la preparación combinada o la forma farmacéutica de la presente invención. Además, el kit contiene preferiblemente instrucciones explicativas acerca de cómo preparar la composición o la preparación combinada o la forma farmacéutica de la presente invención. Las instrucciones se pueden proporcionar a los usuarios en forma electrónica o en papel.
Por lo tanto, la invención proporciona un kit para la preparación de la composición de la invención o de la preparación combinada de la invención un recipiente que comprende un envase con el compuesto de la invención en cualquier formulación farmacéuticamente aceptable, junto con componentes adecuados para la obtención de la composición o de la preparación combinada de la invención.
Método de tratamiento de la invención
En otro aspecto, la presente invención se refiere a un método para el tratamiento, en adelante "método de tratamiento de la invención", de pacientes afectados por enfermedades mediadas por la actividad enzimas GO y/o PRODH2, en particular enfermedades relacionadas con exceso de oxalato como PH-1 , hiperoxaluria secundaria, litiasis renal idiopática por oxalato cálcico, entre otras; o para el tratamiento de pacientes con insuficiencia renal (uremia o hiperazoemia) que reciben hemodiálisis o diálisis peritoneal, en particular pacientes tratados con ácido ascórbico (vitamina C), que se metaboliza a oxalato o de pacientes con fibromialgia y dolor vulvar, mediante el uso de derivados de ácido salicílico y/o las composiciones y/o las preparaciones combinadas y/o el kit de la invención.
En una realización particular la enfermedad se selecciona del grupo formado por hiperoxalurias primarias (PH-1 , PH-2 y PH-3), hiperoxaluria secundaria, litiasis renal idiopática por oxalato cálcico. En una realización preferente, la enfermedad es una hiperoxaluria primaria, más preferentemente PH-1.
Los efectos de este método de tratamiento incluyen, pero no se limitan, a los efectos de eliminación de la enfermedad, el incremento del tiempo de progresión de la enfermedad y al índice de supervivencia. Los efectos del tratamiento incluyen a más largo plazo el control de la enfermedad.
Este tratamiento consiste en la administración a los individuos afectados por estas enfermedades de cantidades terapéuticamente efectivas de al menos un derivado de ácido salicílico, o una composición farmacéutica que los incluya.
La administración de los derivados de ácido salicílico, en forma pura o en una composición farmacéutica apropiada, o en combinación con otros compuestos, composiciones o medicamentos, se puede llevar a cabo por medio de los modos de administración de agentes aceptados para servir a similares utilidades.
En distintas realizaciones preferentes, el derivado de ácido salicílico es un compuesto con estructura general I o II, más preferentemente con estructura general A, B, C, D, E o F, aún más preferentemente uno de los compuestos detallados en la Tabla 1 y aún más preferente, uno de los compuestos detallados en la Tabla 2.
MODOS DE REALIZACIÓN
Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Una selección de compuestos que se han preparado y/o evaluado biológicamente se indican en la Tabla 3. En la tabla 4 se indica además la EC50 encontrada en cuanto a disminución de la producción de oxalato en cultivos de hepatocitos de ratón Agxt1-KO. Evaluación biológica.
Métodos de evaluación biológica
Desarrollo de ratones deficientes en enzima AGXT y GO: Los ratones deficientes en AGXT han sido descritos previamente. Los ratones GO-KO se obtuvieron de acuerdo al procedimiento descrito en bibliografía.
Aislamiento y cultivo de hepatocitos: El aislamiento de hepatocitos a partir de ratones deficientes en enzima AGT se llevó a cabo según descrito en bibliografía. Se cultivaron a continuación en placas de 6 pocilios un total de 3.0 x 105 células/pocilio en medio Williams E suplementado con suero bovino fetal (5%), L-glutamina (2 mM), penicilina (100 U/mL), estreptomicina (100 μg/mL), insulina (2.2 mlll/mL) e hidrocortisona (0.3 μg/mL). Tras 5 h se cambió el medio a Williams E completo (Biochrom, Cambridge, UK) sin suero y las células se trataron con concentraciones crecientes de cada uno de los fármacos en presencia de glicolato 5 mM. Se recogieron muestras del medio de cultivo a las 24, 48 y 72 h tras el tratamiento, para la cuantificación de oxalato.
Ensayo de viabilidad celular y citotoxicidad: En una placa de 96 pocilios se cultivaron 1.0 x 104 células/pocilio. Éstas se trataron con las mismas concentraciones de fármacos que en el ensayo anterior. A las 24, 48 y 72 h se añadieron 20 del reactivo Cell Titer 96 Aqueous One Solution (Promega, Madison, Wsconsin) y tras incubar a 37 °C durante 2 h se obtuvieron medidas de absorbancia a 493 nm.
Determinación de oxalato: La determinación del oxalato excretado al medio se llevó a cabo mediante ensayo en presencia de oxalato oxidasa utilizando un kit comercial (Trinity Biotech, Co Wcklow, Ireland), siguiendo las indicaciones del fabricante. Se utilizó el software GraphPad Prism 5 para la representación gráfica de los datos como media ± SD.
La eficacia de disminución de la producción de oxalato se midió sobre cultivos primarios de hepatocitos obtenidos a partir de ratones hiperoxalúricos (Agxt1"A). Se utilizaron cultivos de menos de 5 días para evitar posibles interferencias debidas a desdiferenciación celular. Para aumentar la producción de oxalato en las células a tan corto plazo y obtener niveles detectables en los ensayos enzimáticos estándar, se añadió al medio de cultivo glicolato en concentración 5 mM. En primer lugar se testó la viabilidad de los hepatocitos tratados con concentraciones crecientes de cada fármaco hasta 200 μΜ en presencia de glicolato, en ensayos comparativos con hepatocitos control no tratados con fármaco y a distintos tiempos. A continuación se llevaron a cabo los ensayos de disminución de oxalato. Se tomaron muestras del medio de cultivo cada 24 horas después del tratamiento con cada uno de los compuestos en evaluación. En cada una de estas muestras se midió la concentración de oxalato excretada al medio por los hepatocitos Agxt1_ \ La determinación de oxalato en las muestras se llevó a cabo utilizando un ensayo enzimático colorimétrico basado en dos reacciones consecutivas catalizadas por las enzimas oxalato oxidasa y peroxidasa, respectivamente. La presencia de oxalato da lugar a la formación de un derivado de indamina coloreado. Las posibles interferencias debidas a interacción entre los compuestos en evaluación y las enzimas del kit fueron descartadas en ensayos previos sobre disoluciones estándar de oxalato. Los resultados de estos ensayos pueden observarse en las tablas 3 y 4.
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
a a : esu ta os o ten os para compuestos representat vos. Se presenta el valor medio de oxalato relativo a 10 μΜ ± su desviación típica.
Figure imgf000023_0002
o su actividad biológica encontrada. Compuesto de referencia: CCPST (ECso(24 h) = 25.26 μΜ, EC50(48 h) =32.94 μΜ, ECso (72 h) = 33.85 μΜ)
Ejemplos de síntesis de compuestos
Generalidades: Los reactivos fueron obtenidos comercialmente y se utilizaron sin purificar. El metanol (MeOH) anhidro se obtuvo de fuentes comerciales. El diclorometano (DCM) anhidro fue obtenido mediante destilación sobre hidruro cálcico. Las reacciones facilitadas por microondas se realizaron en un Biotage Initiator Microwave con un brazo de 8 posiciones. Los espectros de RMN se obutvieron en instrumentos de 300 MHz (Varían INOVA UNITY), 400 MHz (Varían DIRECT DRIVE) o 500 MHz (Varían DIRECT DRIVE). Los desplazamientos químicos (δ) están expresados en ppm y las constantes de acoplamiento (J) en Hz. En los espectros, las abreviaturas corresponden a singlete (s), singlete ancho (bs), doblete (d), doblete ancho (bd), doble doblete (dd), triple triplete (tt), multiplete (m). Los espectros de masas de alta resolución se registraron en un instrumento Waters LCT Premier™ utilizando un analizador de tiempo de vuelo (TOF) con ionización por electrospray (ESI) y se midieron en modo positivo o negativo. Las reacciones se controlaron mediante cromatografía en capa fina (TLC) sobre placas de aluminio (Merck AL de Silicagel 60 F254) o bien mediante cromatografía líquida acoplada a un espectrómetro de masas (LC-MS) en un instrumento Agilent 61 10 con cuadrupolo simple, utilizando una columna Zorbax Eclipse XDB-C18 4.6 x 150 mm e ionización por electrospray. La purificación mediante cromatografía flash se llevó a cabo sobre silicagel (230-400 mesh ASTM). La pureza de los productos finales se comprobó mediante HPLC acoplado a un detector diodo-array (Agilent 1200), utilizando una columna Zorbax Eclipse XDB-C18 4.6 x 150 mm. Los puntos de fusión no están corregidos.
Preparación de derivados de ácido salicílico mediante acoplamiento carbono-carbono catalizado por paladio:
a) Compuestos 73, 87, 91 , 92, 93, 95, 99, 100 y 101 :
Procedimiento general: En un vial para microondas se prepara una mezcla DMF/H2O 1/1 en la que se disuelven trifenilfosfina (0.15 equiv), carbonato potásico (3.5 equiv) y acetato de paladio (0.05 equiv). A continuación se adicionan secuencialmente el halosalicilato o ácido halosalicílico y el ácido borónico o boronato correspondientes. La mezcla se desgasifica entonces mediante burbujeo con argón durante 15 min para proceder a continuación al sellado del vial. La reacción se calienta en un instrumento de microondas para síntesis orgánica a 100 °C durante 3 h manteniendo agitación durante todo este tiempo. Transcurrido este tiempo se deja enfriar la reacción y se procede al filtrado de la misma realizando lavados con metanol. El filtrado se concentra a sequedad utilizando un rotavapor y el residuo resultante se purifica mediante cromatografía flash (elución con mezclas AcOEt: CH3CN:H20:CH30H). El producto obtenido en la separación cromatográfica se disuelve/suspende en acetona y se adicionan unas gotas de HCI 10% hasta pH 1-2, observándose la aparición de un precipitado. La fase de acetona se retira y ésta se concentra en rotavapor. Posteriormente el residuo tras la evaporación en rotavapor se disuelve en agua y se transfiere a un eppendorf, en el que se centrifuga 5 min a 13000 rpm. Se desecha el sobrenadante, se vuelve a adicionar agua al eppendorf y se repite esta operación 3 veces más. Ácido 4-(2-furil)-2-hidroxibenzoico (73): Se utilizaron ácido 2-hidroxi-4-yodobenzoico (50 mg, 0.189 mmol), ácido 2-furilborónico (38.6 mg, 0.227 mmol), PPh3 (7.4 mg, 0.028 mmol), K2CO3 (91.4 mg, 0.662 mmol), Pd(AcO)2 (2.12 mg, 0.0095 mmol), DMF:H20 1 : 1 (2 ml_). Fase móvil para elución en cromatografía flash AcOEt: CH3CN: H20:CH30H 70:5:2.5:2.5.
Rendimiento tras purificación: 50 % (25 mg).
1 H NMR (400 MHz, acetona-de) δ 1 1.19 (bs, 1 H), 7.92 (d, J = 8.3 Hz, 1 H), 7.72 (m, 1 H), 7.31 (dd, J = 8.3, 1.6 Hz, 1 H), 7.27 (d, J = 1.6 Hz, 1 H), 7.07 (d, J = 3.4 Hz, 1 H), 6.61 (dd, J = 3.5, 1.8 Hz, 1 H).
13C NMR (101 MHz, acetona-de) δ 172.4 (CO), 163.4 (C), 153.2 (C), 144.8 (CH), 138.4
(C), 131.9 (CH), 115.4 (CH), 113.1 (CH), 1 12.2 (CH), 1 11.8 (C), 109.4 (CH).
HRMS (TOF, ES"): Calculado para C11 H7O4 (M-H)": m/z 203.0344. Encontrado 203.0350 (desviación 3.0 ppm).
P.f. (°C) > 220.
Ácido 4-(3-tienil)-2-hidroxibenzoico (87): Se utilizaron ácido 2-hidroxi-4-yodobenzoico
(50 mg, 0.189 mmol), ácido 3-tienilborónico (29.0 mg, 0.227 mmol), PPh3 (7.4 mg, 0.028 mmol), K2CO3 (91.4 mg, 0.662 mmol), Pd(AcO)2 (2.12 mg, 0.0095 mmol), DMF:H20 1 : 1 (2 ml_). En este caso, de forma previa a la purificación cromatográfica, el residuo procedente de la evaporación del filtrado se resuspendió en acetonitrilo. El precipitado se separó de la fase líquida y ésta última se descartó. Se procedió entonces a la purificación del sólido mediante cromatografía flash (elución con mezcla AcOEt: CH3CN:H20:CH30H 70: 10:5:5). Se obtuvo 87 en forma de sólido marrón.
Rendimiento tras purificación: 87 % (36 mg).
1 H NMR (500 MHz, metanol-d4) δ 7.78 (dd, J = 8.4, 4.0 Hz, 1 H), 7.61 (dd, J = 2.9, 1.4 Hz, 1 H), 7.37 (qd, J = 5.1 , 2.2 Hz, 2H), 7.09-7.03 (m, 2H).
13C NMR (126 MHz, metanol-d4) δ 161.82, 141.51 , 141.16, 130.82, 126.08, 125.71 , 121.53, 116.41 , 113.53.
HRMS (TOF, ES"): Calculado para Cu H7O3S (M-H)": m/z 219.01 16. Encontrado 219.0122 (desviación 2.7 ppm).
P.f. (°C) > 300.
Ácido 4-[4'-(4"-metoxibenciloxi)fenil]-2-hidroxibenzoico (91 ): Se utilizaron ácido 2- hidroxi-4-yodobenzoico (50 mg, 0.189 mmol), ácido 4-(4'-metoxibenciloxi)fenilborónico (58.6 mg, 0.227 mmol), PPh3 (7.4 mg, 0.028 mmol) , K2CO3 (91.4 mg, 0.662 mmol), Pd(AcO)2 (2.12 mg, 0.0095 mmol), DMF:H20 1 : 1 (2 ml_). La purificación se llevó a cabo mediante cromatografía flash (elución en gradiente utilizando mezcla AcOEt:
CH3CN:H20:CH3OH desde 70:5:2.5:2.5 hasta 60: 10: 10: 10) para obtener el compuesto 91 como un sólido. Rendimiento tras purificación: 17 % (11.3 mg).
1 H NMR (300 MHz, metanol-d4) δ 7.81 - 7.71 (m, 1 H), 7.50 - 7.42 (m, 2H), 7.28 (d, J = 8.5 Hz, 2H), 6.99 - 6.88 (m, 4H), 6.88 - 6.80 (m, 2H), 4.95 (s, 2H, CH2), 3.70 (s, 3H, CH3). 13C NMR (151 MHz, metanol-d4) δ 131.8, 130.3, 129.4, 117.6, 116.3, 114.9, 114.8, 70.8 (CH2), 55.7 (CH3).
HRMS (TOF, ES"): Calculado para C21 H17O5 (M-H)": m/z 349.1076. Encontrado 349.1071 (desviación 1.4 ppm).
P.f. (°C) = 199.8.
Ácido 5-[4'-(4"-metoxibenciloxi)fenil]-2-hidroxibenzoico (92): Se utilizaron 5- yodosalicilato de metilo (50 mg, 0.180 mmol), 4-(4'-metoxibenciloxi)fenilborónico (45 mg,
0.216 mmol), PPh3 (7.1 mg, 0.027 mmol) , K2CO3 (87.1 mg, 0.63 mmol), Pd(AcO)2 (2 mg, 0.009 mmol), DMF:H20 1 : 1 (2 mL). En este caso, de forma previa a la purificación cromatográfica, el residuo procedente de la evaporación del filtrado se resuspendió en metanol. El precipitado se separó de la fase líquida y ésta última se descartó. Se procedió entonces a la purificación del sólido mediante cromatografía flash (elución en gradiente con mezclas AcOEt: CH3CN:H20:CH3OH desde 70:10:5:5 hasta 60:10: 10: 10). Se obtuvo 92 en forma de sólido amarillento.
Rendimiento tras purificación: 20 % (13 mg).
1 H NMR (400 MHz, acetona-de) δ 8.10 (d, J = 2.4 Hz, 1 H), 7.80 (dd, J = 8.7, 2.5 Hz, 1 H), 7.57 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 7.09 (d, J = 8.8 Hz, 2H), 7.04 (d, J = 8.6
Hz, Hz, 1 H), 6.96 (d, J = 8.7 Hz, 2H), 5.09 (s, 2H), 3.81 (s, 3H).
13C NMR (101 MHz, acetona-de) δ 172.6 (CO), 159.4 (C), 135.0 (CH), 133.2 (C), 132.9 (C), 130.2 (CH), 128.6 (CH), 128.4 (CH), 126.8 (C), 1 18.6 (CH), 1 16.2 (CH), 1 14.7 (CH), 1 13.3 (C), 70.3 (CH2), 55.6 (CH3).
HRMS (TOF, ES"): Calculado para C21 H17O5 (M-H)": m/z 349.1076. Encontrado 349.1084
(desviación 2.3 ppm).
P.f. (°C) = 177.8.
Ácido 4-{2'-[3"-(trifluorometil)fenoximetil]fenil}-2-hidroxibenzoico (93): Se utilizaron ácido 2-hidroxi-4-yodobenzoico (50 mg, 0.189 mmol), ácido 2-[3'- (trifluorometil)fenoximetil]fenilborónico (67.2 mg, 0.227 mmoL), PPh3 (7.4 mg, 0.028 mmol) , K2CO3 (91.4 mg, 0.662 mmol), Pd(AcO)2 (2.12 mg, 0.0095 mmol), DMF:H20 1 : 1 (2 mL). La purificación se llevó a cabo mediante cromatografía flash utilizando elución en gradiente con mezclas AcOEt: CH3CN:H20:CH3OH desde 70:2.5:2.5: 1.25 hasta 70: 10:5:5. El compuesto 93 se obtuvo como un simpo.
Rendimiento tras purificación: 79 % (58 mg). 1 H NMR (400 MHz, acetona-cfe) δ 7.91 (d, J = 8.5 Hz, 1 H), 7.68 (m, 1 H), 7.51-7.45 (m, 3H), 7.39 (m, 1 H), 7.25 (d, J = 8.0 Hz, 1 H), 7.22-7.18 (m, 2H), 7.03-7.00 (m, 2H), 5.14 (s, 2H).
13C NMR (101 MHz, acetona-cfe) δ 172.3 (CO), 162.6 (C), 159.8 (C), 149.3 (C), 141.9 (C), 134.5 (C), 132.1 (c, JC-F = 32.0 Hz, C), 131.3 (CH), 131.2 (CH), 130.8 (CH), 130.5 (CH),
129.4 (CH), 129.2 (CH), 125.1 (c, JC-F = 271.6 Hz, CF3), 121.1 (CH), 1 19.6 (CH), 1 18.5 (CH), 1 18.3 (c, JC-F = 3.9 Hz, CH), 112.4 (c, JC-F = 3.9 Hz, CH), 1 12.1 (C), 69.2 (CH2). HRMS (TOF, ES . Calculado para C21 H14O4F3 (M-H)": m/z 387.0844. Encontrado 387.0845 (desviación 0.3 ppm).
Ácido 4-[4'-(benciloxi)fenil]-2-hidroxibenzoico (95): Se utilizaron ácido 2-hidroxi-4- yodobenzoico (50 mg, 0.189 mmol), ácido 4-(benciloxi)fenilborónico (51.8 mg, 0.227 mmoL), PPh3 (7.4 mg, 0.028 mmol) , K2CO3 (91.4 mg, 0.662 mmol), Pd(AcO)2 (2.12 mg, 0.0095 mmol), DMF:H20 1 :1 (2 ml_). En este caso, de forma previa a la purificación cromatográfica, el residuo procedente de la evaporación del filtrado se resuspendió en acetonitrilo. El precipitado se separó de la fase líquida y ésta última se descartó. Se procedió entonces a la purificación del sólido mediante cromatografía flash (elución con mezcla AcOEt: CH3CN:H20:CH3OH 60: 10:10: 10). Se obtuvo 95 en forma de sólido blanco.
Rendimiento tras purificación: 100 % (62 mg).
1 H NMR (400 MHz, acetona-de) δ 7.93 (d, J = 8.3 Hz, 1 H), 7.70 (m, 2H), 7.51 (m, 2H),
7.41 (m, 2H), 7.34 (m, 1 H), 7.23 (dd, J = 8.28, 1.82 Hz, 1 H), 7.19 (d, J = 1.8 Hz, 1 H), 7.14 (m, 2H), 5.21 (s, 2H).
13C NMR (101 MHz, acetona-de) δ 172.5 (CO), 163.3 (C), 160.4 (C), 149.0 (C), 138.2 (C), 132.7 (C), 131.8(CH), 129.3 (CH), 129.2 (CH), 128.7 (CH), 128.5 (CH), 118.3 (CH), 1 16.2 (CH), 1 15.2 (CH), 1 11.4 (C), 70.6 (CH2).
HRMS (TOF, ES"): Calculado para C20H15O4: (M-H)": m/z 319.0970. Encontrado 319.0964 (desviación 1.9 ppm).
Ácido 4-(4-hidroxifenil)-2-hidroxibenzoico (99): Se utilizaron ácido 2-hidroxi-4- yodobenzoico (50 mg, 0.189 mmol), ácido 4-hidroxifenilborónico (31.3 mg, 0.227 mmoL), PPh3 (7.4 mg, 0.028 mmol) , K2CO3 (91.4 mg, 0.662 mmol), Pd(AcO)2 (2.12 mg, 0.0095 mmol), DMF:H20 1 : 1 (2 ml_). La purificación se llevó a cabo mediante cromatografía flash eluyendo con mezcla AcOEt: CH3CN:H20:CH3OH (gradiente desde 70:5:2.5:2.5 hasta
60: 10: 10: 10). El compuesto 99 se obtuvo en forma de sólido.
Rendimiento tras purificación: 100 % (44 mg).
1 H NMR (500 MHz, metanol-d4) δ 7.86 (d, J = 8.6 Hz, 1 H), 7.48 (m, 2H), 7.07-7.05 (m,
2H), 6.89-6.85 (m, 2H). 13C NMR (126 MHz, metanol-d4) δ 174.5 (CO), 163.0 (C), 158.9 (C), 148.6 (C), 132.3 (C), 131.9 (CH), 129.2 (CH), 1 18.0 (CH), 116.6 (CH), 1 14.9 (CH), 1 13.8 (C).
HRMS (TOF, ES . Calculado para Ci3H904: (M-H)": m/z 229.0501. Encontrado 229.0510 (desviación 3.9 ppm).
P.f. (°C) = 265.8.
Ácido 4-(3-metoxifenil)-2-hidroxibenzoico (100): Se utilizaron ácido 2-hidroxi-4- yodobenzoico (50 mg, 0.189 mmol), ácido 3-metoxifenilborónico (34.5 mg, 0.227 mmoL), PPh3 (7.4 mg, 0.028 mmol) , K2C03 (91.4 mg, 0.662 mmol), Pd(AcO)2 (2.12 mg, 0.0095 mmol), DMF:H20 1 : 1 (2 ml_). En este caso, de forma previa a la purificación cromatográfica, el residuo procedente de la evaporación del filtrado se resuspendió en acetonitrilo. El precipitado se separó de la fase líquida y ésta última se descartó. Se procedió entonces a la purificación del sólido mediante cromatografía flash (elución en gradiente con mezcla AcOEt: CH3CN:H20:CH3OH 70:5:2.5:2.5 hasta 60: 10:10: 10). Se obtuvo 100 en forma de sólido marrón.
Rendimiento tras purificación: 86 % (25 mg).
1 H NMR (500 MHz, metanol-d4) δ 7.92 (d, J = 8.0 Hz, 1 H), 7.33 (t, J = 7.9 Hz, 1 H), 7.19- 7.16 (m, 1 H), 7.13 (m, 1 H), 7.09 (bs, 1 H), 7.08 (m, 1 H), 6.92 (dd, J = 8.3, 2.6 Hz, 1 H), 3.82 (s, 3H, OCH3).
13C NMR (126 MHz, metanol-d4) δ 174.7 (CO), 163.0 (C), 161.4 (C), 148.3 (C), 142.8 (C), 132.2 (CH), 130.9 (CH), 120.4 (CH), 118.5 (CH), 115.8 (CH), 115.7 (C), 114.5 (CH), 113.7
(CH), 55.7 (CH3).
HRMS (TOF, ES"): Calculado para Ci4Hn04: (M-H)": m/z 243.0657. Encontrado 243.0659 (desviación 0.8 ppm).
P.f. (°C): 185.1.
Ácido 4-(4-nitrofenil)-2-hidroxibenzoico (101 ): Se utilizaron ácido 2-hidroxi-4- yodobenzoico (50 mg, 0.189 mmol), ácido 4-nitrobencenborónico (38 mg, 0.227 mmoL), PPh3 (7.4 mg, 0.028 mmol) , K2C03 (91.4 mg, 0.662 mmol), Pd(AcO)2 (2.12 mg, 0.0095 mmol), DMF:H20 1 : 1 (2 ml_). En este caso, de forma previa a la purificación cromatográfica, el residuo procedente de la evaporación del filtrado se resuspendió en acetonitrilo. El precipitado se separó de la fase líquida y ésta última se descartó. Se procedió entonces a la purificación del sólido mediante cromatografía flash (elución con mezcla AcOEt: CH3CN:H20:CH3OH 70: 10:5:5). El compuesto 101 se obtuvo como sólido amarillento.
Rendimiento tras purificación: 69.5% (34 mg).
1 H NMR (500 MHz, metanol-d4) δ 8.31 (d, J = 8.9 Hz, 2H), 7.96 (d, J = 7.94 Hz, 1 H), 7.87
(d, J = 8.9 Hz, 2H), 7.17-7.13 (m, 2H). 13C NMR (126 MHz, metanol-d4) δ 175.2 (CO), 163.1 (C), 148.7 (C), 148.2 (C), 144.5 (C), 132.4 (CH), 129.1 (2CH), 124.9 (2CH), 119.5 (C), 1 18.1 (CH), 1 16.1 (CH).
HRMS (TOF, ES . Calculado para Ci3H8N05: (M-H)": m/z 258.0402. Encontrado 258.041 1 (desviación 3.5 ppm).
P.f. (°C) > 300
b) Ácido 5-(2-furil)-2-hidroxibenzoico (74):
En un vial de microondas se preparó una disolución de carbonato potásico (74.63 mg, 0.540 mmol) en agua (1 mL) sobre la que se añadió 0.5 mL de DMF. A continuación se adicionaron 2-hidroxi-5-yodobenzoato de metilo (50 mg, 0.180 mmol), ácido 2- furanborónico (24.2 mg, 0.216 mmol), PPh3 (7.1 mg, 0.027 mmol), Pd(OAc)2 (2.02 mg,
0.009 mmol) y 0.5 mL de DMF. La mezcla se desgasificó mediante burbujeo con argón durante 10 min y se cerró el vial. La reacción se programó en un instrumento de microondas para síntesis orgánica a 100 °C durante 3 h. Una vez finalizada la reacción, se filtró lavando con MeOH para eliminar impurezas y se concentró el filtrado en el rotavapor. Se acidificó el residuo con HCI 10% y se purificó mediante cromatografía flash
(fase móvil AcOEt/CH3CN/MeOH/H20 70: 10:5:5). Se obtuvo el compuesto 74 como un sólido marrón.
Rendimiento tras purificación: 83 % (30 mg).
1 H NMR (400 MHz, metanol-d4) δ 8.18 (s, 1 H), 7.65 (d, J = 7.9 Hz, 1 H), 7.48-7.41 (s, 1 H), 6.85 (d, J = 8.5 Hz, 1 H), 6.55 (d, J = 3.3 Hz, 1 H), 6.43 (dd, J = 1.8, 3.4 Hz, 1 H).
HRMS (TOF, ES"): Calculado para Cn H704 (M-H)": m/z 203.0344. Encontrado 203.0350 (desviación 3.0 ppm).
c) Compuestos 75, 76, 85, 86 y 88:
Procedimiento general: En un tubo sellado se prepara una disolución de carbonato potásico (3 equiv) en agua (2 mL/mmol de compuesto halosalicilato) sobre la que se añade un volumen igual de DMF. A continuación se adicionan el compuesto ácido halosalicílico o halosalicilato (1 equiv), el ácido borónico o boronato (1.2 equiv), trifenilfosfina (0.15 equiv) y acetato de paladio (0.05 equiv). La mezcla se desgasifica mediante burbujeo con argón durante 10 min y se cierra el tubo. Se deja reaccionar en baño de aceite a 100 °C durante 24 h. Una vez finalizada la reacción, se concentra en el rotavapor, se resuspende en acetonitrilo y se filtra. El sólido se resuspende en agua y se acidifica con HCI 5%. Se evapora el disolvente y el residuo obtenido se purifica mediante cromatografía flash.
Ácido 4-(3-furil)-2-hidroxibenzoico (75): Se utilizaron 60 mg de ácido 2-hidroxi-4- yodobenzoico (0.227 mmol), 52.77 mg de 2-furanboronato de pinacolilo (0.272 mmol),
94.12 mg de K2C03 (0.681 mmol), 8.92 mg de PPh3 (0.034 mmol), 2.47 mg de Pd(OAc)2 (0.011 mmol), DMF:H20 1 : 1 (2 mL). El crudo de reacción obtenido se purificó mediante cromatografía flash en columna utilizando como fase móvil DCM/MeOH (gradiente 20: 1→9:1) seguida de AcOEt/CH3CN/MeOH/H20 (gradiente 70:5:2.5:2.5→ 70:2.5: 1.25: 1.25). Se obtuvo el compuesto 75 como un sólido marrón.
Rendimiento tras purificación: 47 % (21 mg).
Punto de fusión >300 °C
1 H NMR (400 MHz, acetona-de) δ 8.14 (s, 1 H), 7.93 (d, J = 6.8 Hz, 1 H), 7.66 (s, 1 H), 7.14 (s, 2H), 6.93 (s, 1 H).
13C NMR (101 MHz, acetona-de) δ 166.92, 162.56, 144.67, 140.88, 139.61 , 131.63, 126.02, 116.68, 1 13.74, 110.38, 108.92.
HRMS (TOF, ES"): Calculado para Cn H704 (M-H)": m/z 203.0344. Encontrado 203.0347
(desviación 1.5 ppm).
Ácido 5-(3-furil)-2-hidroxibenzoico (76): Se utilizaron 60 mg de 2-hidroxi-5- yodobenzoato de metilo (0.216 mmol), 50.25 mg de 3-furanboronato de pinacolilo (0.259 mmol), 89.56 mg de K2C03 (0.648 mmol), 8.39 mg de PPh3 (0.032 mmol), 2.47 mg de Pd(OAc)2 (0.011 mmol), DMF:H20 1 : 1 (2 ml_). El crudo de reacción obtenido se purificó mediante cromatografía flash en columna utilizando como fase móvil DCM/MeOH (gradiente 20: 1→9:1) seguida de AcOEt/CH3CN/MeOH/H20 (gradiente 70:5:2.5:2.5→70:2.5: 1.25: 1.25). Se obtuvo el compuesto 76 como un sólido marrón. Rendimiento tras purificación: 34 % (15 mg).
Punto de fusión: >300 °C
1 H NMR (500 MHz, metanol-d4) δ 8.03 (s, 1 H), 7.8 (s, 1 H), 7.55 (dd, J = 8.5, 1.8 Hz, 1 H), 7.51 (t, J = 1.7 Hz, 1 H), 6.87 (d, J = 8.5 Hz, 1 H), 6.73 (d, J = 1.8 Hz, 1 H).
13C NMR (126 MHz, metanol-d4) δ 161.8 (C), 144.9 (CH), 144.5 (C), 139.0 (CH), 138.6 (C), 132.4 (CH), 128.7 (CH), 127.3 (C), 124.4 (C), 1 18.0 (CH), 109.5 (CH).
HRMS (TOF, ES"): Calculado para Cn H704 (M-H)": m/z 203.0344. Encontrado 203.0345
(desviación 0.5 ppm).
Ácido 2-hidroxi-4-(2-tienil)benzoico (85): Se utilizaron 70 mg de ácido 2-hidroxi-4- yodobenzoico (0.265 mmol), 40.69 mg de ácido 2-tienilborónico (0.318 mmol), 109.89 mg de K2C03 (0.795 mmol), 10.49 mg de PPh3 (0.040 mmol), 2.91 mg de Pd(OAc)2 (0.013 mmol), DMF:H20 1 :1 (2 ml_). La purificación mediante mediante cromatografía flash se hizo utilizando como fase móvil DCM/MeOH (elución en gradiente 20: 1→9:1). Se obtuvo el compuesto 85 como un sólido amarillo.
Rendimiento tras purificación: 51 % (30 mg).
Punto de fusión = 225 °C
1 H NMR (400 MHz, DMSO-cfe) δ 7.74 (d, J = 8.4 Hz, 1 H), 7.57 (dd, J = 5.1 , 1.1 Hz, 1 H),
7.54 (dd, J = 3.6, 1.2 Hz, 1 H), 7.13 (dd, J = 5.1 , 3.7 Hz, 1 H), 7.05-6.99 (m, 2H). 13C NMR (101 MHz, DMSO-cfe) δ 172.01 (CO), 162.95 (C), 143.33 (C), 138.30 (C), 131.33 (CH), 128.50 (CH), 126.72 (CH), 124.89 (CH), 1 17.40 (C), 1 14.95 (CH), 1 12.94 (CH). HRMS (TOF, ES"): Calculado para C11 H7O3S (M-H)": m/z 219.0116. Encontrado 219.0105 (desviación -5.0 ppm).
Ácido 2-hidroxi-5-(2-tienil)benzoico (86): Se utilizaron 60 mg de 2-hidroxi-5- yodobenzoato de metilo (0.216 mmol), 33.14 mg de ácido 2-tienilborónico (0.259 mmol), 89.56 mg de K2CO3 (0.648 mmol), 8.40 mg de PPh3 (0.032 mmol), 2.47 mg de Pd(OAc)2 (0.011 mmol), DMF:H20 1 :1 (2 mL). La purificación mediante mediante cromatografía flash se hizo utilizando como fase móvil DCM/MeOH (elución en gradiente 20: 1→9:1) seguida de AcOEt/CH3CN/MeOH/H20 (elución en gradiente
70:5:2.5:2.5→70:2.5: 1.25: 1.25). Se obtuvo el compuesto 86 como un sólido amarillo. Rendimiento tras purificación: 64 % (30 mg).
Punto de fusión > 300 °C
1 H NMR (400 MHz, acetona-de) δ 8.19 (s, 1 H), 7.79 (d, J = 6.5 Hz, 1 H), 7.37 (s, 2H), 7.07 (s, 1 H), 6.99 (d, J = 8.4 Hz, 1 H).
13C NMR (101 MHz, acetona-de) δ 172.9 (CO), 162.0 (C), 143.8 (C), 133.4 (CH), 128.9 (CH), 128.1 (CH), 126.4 (C), 124.9 (CH), 123.3 (CH), 118.5 (CH).
HRMS (TOF, ES"): Calculado para Cu H7O3S (M-H)": m/z 219.01 16. Encontrado 219.0100 (desviación -7.3 ppm).
Ácido 2-hidroxi-5-(3-tienil)benzoico (88): Se utilizaron 70 mg de 2-hidroxi-5- yodobenzoato de metilo (0.252 mmol), 38.69 mg de ácido 3-tienilborónico (0.302 mmol), 104.49 mg de K2CO3 (0.756 mmol), 9.97 mg de PPh3 (0.038 mmol), 2.92 mg de Pd(OAc)2 (0.013 mmol), DMF:H2Ü 1 : 1 (2 mL). La purificación con cromatografia flash se llevó a cabo usando como fase móvil DCM/MeOH (elución en gradiente 20: 1→9:1) seguida de AcOEt/CH3CN/MeOH/H20 (elución en gradiente 70:5:2.5:2.5→70:2.5: 1.25: 1.25). Se obtuvo el compuesto 88 como un sólido marrón.
Rendimiento tras purificación: 72 % (40 mg).
Punto de fusión = 222 °C
1 H NMR (400 MHz, acetona-de) δ 11.04 (s, 1 H), 8.15 (d, J = 2.4 Hz, 1 H), 7.84 (dd, J = 8.6, 2.3 Hz, 1 H), 7.67 - 7.61 (m, 1 H), 7.51 (dd, J = 5.0, 2.9 Hz, 1 H), 7.48 - 7.43 (m, 1 H), 6.98
(d, J = 8.7 Hz, 1 H).
13C NMR (101 MHz, acetona-de) δ 172.4, 162.0, 141.6, 134.6, 128.3, 128.1 , 127.3, 126.6, 120.3, 118.5, 1 13.1.
HRMS (TOF, ES"): Calculado para Cn H703S (M-H)": m/z 219.01 16. Encontrado 219.0104 (desviación -5.5 ppm).
4-(5-Formil-2-furil)-2-metoxibenzoato de metilo (79). Se disolvieron en un matraz 142.2 mg de K2CO3 (1.029 mmol) en 1 ml_ de H2O y se añadieron 0.5 ml_ de DMF. A continuación se adicionaron 60 mg de 5-bromofuraldehído (0.343 mmol), 86.31 mg de ácido 3-metoxi-4-metoxicarbonilbencen borónico (0.41 1 mmol), 13.37 mg de PPh3 (0.051 mmol), 3.82 mg de Pd(OAc)2 (0.017 mmol) y 0.5 mi de DMF. La mezcla se desgasificó mediante burbujeo con argón durante 10 min y se hizo reaccionar durante 1 h a 80 °C. Una vez finalizada la reacción, se concentró en rotavapor y el crudo de reacción obtenido se purificó mediante cromatografía flash en columna utilizando como fase móvil AcOEt/Hexano (elución en gradiente 1 :4→1 :2).
Rendimiento tras purificación: 57 % (51 mg).
P.f.: 126°C
1 H NMR (400 MHz, CDC ) 5 9.69 (s, 1 H), 7.86 (d, J = 8.0 Hz, 1 H), 7.41 (s, 1 H), 7.39 (dd, J = 8.1 , 1.5 Hz, 1 H), 7.34 (d, J = 3.8 Hz, 1 H), 6.94 (d, J = 3.7 Hz, 1 H), 4.00 (s, 3H), 3.91 (s, 3H).
13C NMR (101 MHz, CDCb) δ 177.53, 166.16, 159.78, 158.01 , 152.60, 133.68, 132.55, 123.35, 120.87, 1 17.24, 109.58, 108.47, 56.45, 52.32.
HRMS (TOF, ES+): Calculado para CnH^NaOsNa (M+Na)+:(m/z) 283.0582. Encontrado 283.0591 (desviación 3.2 ppm).
Ácido 2-hidroxi-4-(5-formil-2-tienil)benzoico (89): En un tubo sellado se preparó una disolución con 110 mg de K2CO3 (0.795 mmol) en 1 mL de H2O sobre la que se añadieron 0.5 mL de DMF. A continuación se adicionaron 70 mg de ácido 2-hidroxi-4-yodobenzoico
(0.265 mmol), 40.62 mg de ácido 5-formil-2-tienilborónico (0.318 mmol), 10.49 mg de PPh3 (0.040 mmol), 2.91 mg de Pd(OAc)2 (0.013 mmol) y 0.5 mL de DMF. La mezcla se desgasificó mediante burbujeo con argón durante 10 min y se procedió a sellar el tubo. Se dejó entonces reaccionar en baño a 100 °C durante 24 h. Una vez finalizada la reacción, se concentró ésta en el rotavapor, el residuo se resuspendió en MeOH y el sólido resultante se lavó con metanol y acetonitrilo. El sólido final se resuspendió en agua y se acidificó con HCI 5%. Se llevó a cabo la purificación del residuo resultante de evaporación mediante cromatografía flash utilizando como fase móvil DCM/MeOH (gradiente 20: 1→9: 1). Se obtuvo el compuesto 89 como un sólido marrón.
Rendimiento tras la purificación: 56 % (30 mg).
Punto de fusión = 250 °C.
1 H NMR (400 MHz, DMSO-cfe) δ 9.91 (s, 1 H), 8.03 (d, J = 4.0 Hz, 1 H), 7.79 (t, J = 6.2 Hz, 2H), 7.21 (d, J = 1.6 Hz, 1 H), 7.19 (dd, J = 8.0, 1.7 Hz, 1 H).
13C NMR (101 MHz, DMSO-cfe) δ 184.19, 171.08, 162.45, 151.77, 142.46, 139.09, 136.90, 131.14, 126.20, 1 17.58, 115.53, 113.69.
HRMS (TOF, ES"): Calculado para C12H7O4S (M-H)": m/z 247.0065. Encontrado 247.0060 (desviación -2.0 ppm). Compuestos 97 y 98:
Procedimiento general: En un tubo cerrado se prepara una disolución de carbonato potásico (4 equiv) en agua que previamente se ha desgasificado mediante burbujeo con argón (15 min). Se mantiene el burbujeo con argón durante 5 min más, tras los cuales se añade dimetilformamida (DMF) (en proporción 1 :1 con el agua). Sobre la mezcla se añaden el ácido halosalicílico o el halosalicilato correspondiente (1 equiv), el ácido borónico (1.2 equiv), trifenilfosfina (0.12 equiv) y acetato de paladio (0.04 equiv), en ese orden. A continuación la reacción se calienta a 100 °C (baño de aceite) durante 24 h. Tras dicho tiempo, se detiene la reacción mediante enfriamiento y se evaporan los disolventes en rotavapor. El residuo se resuspende en HCI 5 %, se filtra y el sólido resultante se lava con pequeños volúmenes de acetonitrilo. Finalmente se purifica mediante cromatografía flash.
Ácido 4-[2'-(3",5"-Difluorofenoximetil)fenil]-2-hidroxibenzoico (97): Se utilizaron ácido 2-hidroxi-4-yodobenzoico (50 mg, 0.19 mmol), ácido 2-[(3',5'- difluorofenoxi)metil]fenilborónico (60 mg, 1.2 mmol), K2CO3 (104 mg, 0.76 mmol), Pd(AcO)2 (2.1 mg, 0.01 mmol), PPh3 (7.45 mg, 0.03 mmol) y DMF:H20 1 : 1 (2 ml_). La purificación en columna se llevó a cabo mediante elución en gradiente (mezcla MeOH:AcOEt desde 1 : 10 hasta 1 :9). Se obtuvo el compuesto 97 como un sólido blanco. Rendimiento tras purificación: 65 % (44 mg).
1 H NMR (500 MHz, DMSO-cfe) δ 7.77 (d, J = 3.4 Hz, 1 H), 7.57 (dd, J = 7.5, 1.6 Hz, 1 H), 7.46-7.38 (m, 3H), 7.32 (dd, J = 7.6, 1.5 Hz, 1 H), 6.86 (d, J = 8.4 Hz, 1 H), 6.75 (tt, J = 9.4, 2.3 Hz, 1 H), 6.70-6.65 (m, 2H), 4.93 (s, 2H).
13C NMR (101 MHz, acetona-de) δ 175.2 (CO), 164.5 (dd, JC-F = 244.6, 16 Hz, 2C-F), 162.1 (C), 161.7 (t, JC-F = 13.9 Hz, C), 146.6 (C), 142.5 (C), 134.1 (C), 132.4 (CH), 130.6 (CH), 130.3 (CH), 129.2 (CH), 128.7 (CH), 120.0 (CH), 1 17.9 (CH), 117.3 (C), 99.6 (dd, JC-F = 20.5, 7.9 Hz, 2-CH), 96.8 (t, JC-F = 26.3 Hz, CH), 69.5 (CH2).
19F NMR (376 MHz, DMSO-cfe) -109.35 (m, 2F).
HRMS (TOF, ES"): Calculado para C20H13O4F2 (M-H)": m/z 355.0782. Encontrado 355.0796 (desviación 3.9 ppm).
Ácido 5-[2'-(3",5"-Difluorofenoximetil)fenil]-2-hidroxibenzoico (98): Se utilizaron 2- hidroxi-4-yodobenzoato de metilo (50 mg, 0.19 mmol), ácido 2-[(3',5'- difluorofenoxi)metil]fenilborónico (57 mg, 0.21 mmol), K2CO3 (99 mg, 0.72 mmol), Pd(AcO)2 (0.2 mg, 0.01 mmol), PPh3 (7.10 mg, 0.27 mmol) y DMF:H20 1 : 1 (2 ml_). La purificación en columna se llevó a cabo mediante elución en gradiente (mezcla MeOH:AcOEt desde 1 : 10 hasta 1 :9). Se obtuvo el compuesto 98 en forma de sólido blanco.
Rendimiento tras purificación: 62 % (40 mg). 1 H NMR (500 MHz, DMSO-cfe) δ 7.70 (d, J = 7.8 Hz, 1 H), 7.56 (dd, J = 7.0, 3.0 Hz, 1 H), 7.46-7.39 (m, 2H), 7.33 (m, 1 H), 6.75 (tt, J = 9.4, 2.3 Hz, 1 H), 6.70-6.64 (m, 4H), 4.97 (s, 2H).
13C NMR (101 MHz, acetona-cfe) δ 183.1 (CO), 164.5 (dd, JC-F = 244.5, 16 Hz, 2C-F), 162.1 (C), 161.7 (t, JC-F = 13.8 Hz, C), 142.4 (C), 141.4 (C), 136.9 (C), 134.3 (C), 131.8 (CH),
131.1 (CH), 129.5 (CH), 128.4 (CH), 117.8 (CH), 99.5 (dd, JC-F = 20.3, 8.0 Hz, 2-CH), 96.8 (t, JC-F = 26.3 Hz, CH), 69.8 (CH2).
19F NMR (376 MHz, DMSO-cfe) -109.29 (m, 2F).
HRMS (TOF, ES . Calculado para C20H13O4F2 (M-H)": m/z 355.0782. Encontrado 355.0796 (desviación 3.9 ppm).
Ácido 4-(5-formil-2-furil)-2-metoxibenzoico (80):
Se disolvieron en un matraz 22 mg de 79 (0.084 mmol) en 0.42 mL de THF y se adicionaron 0.42 mL de una solución de NaOH 1 N. Se dejó reaccionar durante 2 h a 60 °C. Una vez finalizada la reacción se concentró en rotavapor para eliminar el THF. Se adicionaron 10 mL H2O y se acidificó con HCI 10%, con lo que precipitó el producto anaranjado. Se filtró lavando con H2O y se recogió el sólido obtenido. Tras concentrar en rotavapor, el crudo obtenido se purificó mediante cromatografía flash en columna utilizando como fase móvil DCM/MeOH 20: 1→9: 1 y AcOEt/CH3CN/MeOH/H20 70:10:5:5. Se obtuvo 80 como un sólido anaranjado. Rendimiento tras purificación: 30% (6 mg).
1 H NMR (300 MHz, (CD3)2CO) δ 9.72 (s, 1 H), 7.99 (d, J = 8.3 Hz, 1 H), 7.67 (s, 1 H), 7.65-7.55 (m, 2H), 7.38 (s, 1 H), 4.11 (s, 3H).
HRMS (TOF, ES"): Calculado para C13H9O5 (M-H)":(m/z) 245.0450. Encontrado 245.0436 (desviación -5.7 ppm).
Ácido 4-(5-hidroximetil-2-furil)-2-hidroxibenzoico (81):
En un matraz de fondo redondo, se preparó una disolución del ácido 4-(5-formil-2-furil)-2- hidroxibenzoico (77) (33mg, 0.142 mmol) en metanol (2-3 mi) que se enfrío a 0°C utilizando un baño de hielo. A continuación se adicionó de forma lenta borohidruro sódico (10.8 mg, 0.284 mmol) y la reacción se mantuvo en agitación a temperatura ambiente hasta la completa desaparición del producto de partida (seguimiento mediante TLC) (1 h). Se acidificó entonces la reacción hasta pH 5.0 mediante adición de HCI (5%) y se procedió al filtrado de la misma. El filtrado se concentró en rotavapor y el residuo se purificó mediante cromatografía flash (elución con mezcla AcOEt: CH3CN: H20: CH3OH en gradiente desde 70:5:2.5:2.5 hasta 60: 10: 10:10) para obtener el compuesto 81 como un solido amarillento.
Rendimiento tras purificación: 37.5 % (12.5 mg). 1 H NMR (400 MHz, metanol-d4) δ 7.86 (d, J = 8.5 Hz, 1 H), 7.16-7.09 (m, 2H), 6.76 (d, J = 3.3 Hz, 1 H), 6.40 (d, J = 3.3 Hz, 1 H), 4.58 (s, CH2, 2H).
HRMS (TOF, ES") Calculado para C12H9O5: (M-H)": m/z 233.0450. Encontrado 233.0450 (desviación 0 ppm).
P.f. (°C) > 300.
Ácido 5-(5-hidroximetil-2-furil)-2-hidroxibenzoico (82):
En un matraz de fondo redondo, se preparó una disolución del ácido 5-(5-formil-2-furil)-2- hidroxibenzoico (78) (40 mg, 0.172 mmol) en metanol (2-3 mi) que se enfrío a 0°C utilizando un baño de hielo. A continuación se adicionó de forma lenta borohidruro sódico (13.0 mg, 0.344 mmol) y la reacción se mantuvo en agitación a temperatura ambiente hasta la completa desaparición del producto de partida (seguimiento mediante TLC) (3.5 h). Se acidificó entonces la reacción hasta pH 5.0 mediante adición de HCI (5%) y se procedió al filtrado de la misma. El filtrado se concentró en rotavapor el crudo se purificó mediante cromatografía flash (elución con mezcla AcOEt: CH3CN: H20: CH3OH 60: 10: 10:10). Se obtuvo así 82 (25.6 mg, 63.6 %) como sólido amarillento.
1 H NMR (400 MHz, metanol-d4) δ 8.32 - 7.90 (m, 1 H), 7.73 (dd, J = 8.7, 2.3 Hz, 1 H), 6.92 (d, J = 8.7 Hz, 1 H), 6.54 (d, J = 3.3 Hz, 1 H), 6.20 (dd, J = 3.3, 0.9 Hz, 1 H), 4.10 (s, 2H).
13C NMR (101 MHz, metanol-d4) δ 171.82 (CO), 160.81 (Cq), 152.02 (Cq), 150.83 (Cq), 134.34 (Cq), 130.41 (CH arom), 124.72 (CH arom), 122.70 (Cq), 117.26 (CH arom), 108.21 (CH arom), 104.37 (CH arom), 26.78 (CH2).
HRMS (TOF, ES") Calculado para Ci2H905 (M-H)": 233,0450. Encontrado 233.0442.
P.f. (°C): > 300.
Ácido 4-(5-fenilaminometil-2-furil)-2-hidroxibenzoico (83):
Se preparó una disolución de ácido 4-(5-formil-2-furil)-2-hidroxibenzoico (77) (30 mg, 0.129 mmol) en una mezcla anhidra de metanol:diclorometano 1 :1 (4 mL). A continuación se añadieron tamiz molecular activado y anilina (17.7 μί, 0.194 mmol) y la reacción se mantuvo en agitación, protegida de la luz y a temperatura ambiente durante 1 h. La desaparición en ese tiempo del compuesto de partida se comprobó mediante TLC. El matraz de reacción se enfrió a continuación a 0 °C para la adición de triacetoxi borohidruro sódico (68.3 mg, 0.323 mmol) en una única porción. La reacción se dejó alcanzar la temperatura ambiente tras lo que se mantuvo en agitación durante 2 h. A continuación se retiró el tamiz molecular mediante filtración y se acidificó la mezcla hasta pH 5.0 con HCI (5%). El disolvente se evaporó entonces en rotavapor y el crudo se purificó mediante cromatografía flash (elución en gradiente con mezclas CH2CI2: CH3OH desde 20: 1 hasta 6: 1) para la obtención de 83 como un sólido. Rendimiento tras purificación: 15 % (6.1 mg).
HRMS (TOF, ES") Calculado para Ci8Hi4N04 (M-H)": 308.0923. Encontrado 308.0922. P.f. (°C) > 300.
Ácido 4-(2-furil)-2-hidroxi-5-nitrobenzoico (84):
Ácido 2-hidroxi-4-yodo-5-nitrobenzoico (103): Se disolvieron 30 mg de ácido 2-hidroxi-4- yodobenzoico (0.114 mmol) en 3 ml_ de ácido acético. En frío, se adicionaron 8 μΙ_ de H NO3 (60 %) (0.1 14 mmol) y 12 μΙ_ de H2S04 (95-97 %) (0.227 mmol). Se dejó reaccionar a temperatura ambiente durante 48 h. Tras ese tiempo la reacción se concentró y purificó mediante cromatografía flash en columna empleando como fase móvil CH2Cl2-(CH3)2CO (gradiente 2: 1→1 :1), (CH3)2CO y AcOEt/ACN/MeOH/H20 (6:2:2:2). Se obtuvo el compuesto 84 como un sólido amarillo.
Rendimiento tras purificación: 74 % (26 mg).
1 H NMR (300 MHz, acetona-de) δ 8.51 (s, 1 H), 7.41 (s, 1 H).
HRMS (TOF, ES"): Calculado para C7H3NO5I (M-H)": m/z 307.9076. Encontrado 307.9076 (desviación 6.5 ppm).
Ácido 4-(2-furil)-2-hidroxi-5-nitrobenzoico (84): Se disolvieron en un tubo sellado 55.15 mg de K2CO3 (0.399 mmol) en 1 ml_ de H2O y se añadieron 0.5 ml_ de DMF. A continuación se adicionaron 41 mg del compuesto 103 (0.132 mmol), 17.79 mg de 2-furanboronato de pinacolilo (0.159 mmol), 4.98 mg de PPh3 (0.019 mmol), 1.34 mg de Pd(OAc)2 (0.006 mmol) y 0.5 ml_ de DMF. La mezcla se desgasificó mediante burbujeo con argón durante 10 min. y se selló el tubo. Se dejó reaccionar en baño a 100 °C durante 32 h. Una vez finalizada la reacción, se concentró en el rotavapor. El residuo se disolvió en H2O y se acidificó con HCI 5%. El crudo de reacción obtenido se purificó mediante cromatografía flash en columna utilizando como fase móvil DCM/MeOH (gradiente 15:1→9: 1) seguida de AcOEt/CH3CN/MeOH/H20 (gradiente 70:5:2.5:2.5→70: 10:10: 10). Se obtuvo el compuesto 84 como un sólido marrón. Rendimiento tras purificación: 50 % (16 mg).
Punto de fusión > Descomposición a 187 °C.
1 H NMR (400 MHz, acetona-de) δ 8.40 (s, 1 H), 7.63 (bd, J = 1.2 Hz, 1 H), 6.99 (s, 1 H), 6.76 (d, J = 3.5 Hz, 1 H), 6.56 (dd, J = 3.4, 1.8 Hz, 1 H).
13C NMR (101 MHz, acetona-de) δ 172.8 (CO), 166.4 (C), 150.4 (C), 144.8 (CH), 139.1 (C), 129.7 (C), 129.0 (CH), 1 19.0 (C), 117.6 (CH), 1 12.6 (CH), 110.7 (CH).
HRMS (TOF, ES"): Calculado para Cn He NOe (M-H)": m/z 248.0195. Encontrado 248.0206 (desviación 4.4 ppm).

Claims

REIVINDICACIONES
1. - Derivados de ácido salicílico para el tratamiento de enfermedades mediadas por la actividad enzimas GO y/o PRODH2.
2. - Derivados de ácido salicílico según reivindicación anterior para el tratamiento de enfermedades o patologías relacionadas con un exceso de oxalato.
3. - Derivados de ácido salicílico según reivindicación anterior para el tratamiento de una enfermedad seleccionada del grupo formado por hiperoxaluria primaria (PH-1), hiperoxaluria secundaria, litiasis renal idiopática por oxalato cálcico.
4. - Derivados de ácido salicílico según la reivindicación anterior para el tratamiento de hiperoxaluria primaria.
5. - Derivados de ácido salicílico según cualquiera de las reivindicaciones anteriores, con estructura general I.
6. - Derivados de ácido salicílico, según reivindicación anterior, con estructura general A, B o C.
7. - Derivados de ácido salicílico, según reivindicación anterior, con fórmula general 74 o 78.
8. - Derivados de ácido salicílico, según reivindicación 6, con fórmula general MDMG-907, MDMG-91 1 o MDMG-915.
9. - Derivados de ácido salicílico, según cualquiera de las reivindicaciones 1 a 3, con estructura general II.
10.- Derivados de ácido salicílico, según reivindicación anterior, con estructura general D, E o F.
1 1.- Derivados de ácido salicílico, según reivindicación anterior, con fórmula general 73 o 77.
12.- Composición farmacéutica que comprende uno o más derivados de ácido salicílico según cualquiera de las reivindicaciones 1 a 1 1 , para el tratamiento de enfermedades mediadas por la actividad enzimas GO y/o PRODH2.
13. - Preparación combinadas que comprende derivados del ácido salicílico según cualquiera de las reivindicaciones 1 a 1 1 o una composición farmacéutica según reivindicación anterior, junto con otros compuestos o fármacos empleados para el tratamiento de las enfermedades mediadas por la actividad enzimas GO y/o PRODH2.
14. - Kit para la preparación de una composición según reivindicación 12 o de la preparación combinada según reivindicación 13.
15.- Método de tratamiento de enfermedades o patologías relacionadas con un exceso de oxalato que comprende mediante el uso de derivados de ácido salicílico según reivindicaciones 1 a 10, y/o las composición según reivindicación 12 y/o las preparaciones combinadas según reivindicación 13 y/o el kit según reivindicación 14.
PCT/ES2018/070184 2017-03-10 2018-03-12 Compuestos para el tratamiento de enfermedades causadas por la acumulación de oxalato WO2018162785A2 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/492,750 US20200197418A1 (en) 2017-03-10 2018-03-12 Compounds for the treatment of diseases caused by oxalate accumulation
EP18764805.0A EP3593803A4 (en) 2017-03-10 2018-03-12 COMPOUNDS FOR TREATING DISEASES CAUSED BY OXALATE ACCUMULATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201730326 2017-03-10
ES201730326A ES2639863B1 (es) 2017-03-10 2017-03-10 Compuestos para el tratamiento de enfermedades causadas por la acumulación de oxalato

Publications (2)

Publication Number Publication Date
WO2018162785A2 true WO2018162785A2 (es) 2018-09-13
WO2018162785A3 WO2018162785A3 (es) 2018-11-08

Family

ID=60151157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070184 WO2018162785A2 (es) 2017-03-10 2018-03-12 Compuestos para el tratamiento de enfermedades causadas por la acumulación de oxalato

Country Status (4)

Country Link
US (1) US20200197418A1 (es)
EP (1) EP3593803A4 (es)
ES (1) ES2639863B1 (es)
WO (1) WO2018162785A2 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293606A (zh) * 2018-11-20 2019-02-01 西华大学 2,5-双取代呋喃衍生物及其作为sirt蛋白抑制剂在药物制备中的用途
CN109748789A (zh) * 2018-12-26 2019-05-14 中国药科大学 水杨酸类化合物及其医药用途
CN110934867A (zh) * 2019-12-25 2020-03-31 南方医科大学 Hao1抑制剂在制备抑制肿瘤肺转移前微环境形成及防治肿瘤肺转移的药物中的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022035805A1 (en) * 2020-08-10 2022-02-17 Dana-Farber Cancer Institute, Inc. Substituted 1,2,4-oxadiazoles as small molecule inhibitors of ubiquitin-specific protease 28

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057893A1 (en) 2014-10-10 2016-04-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3558641A (en) * 1967-10-06 1971-01-26 Merck & Co Inc Certain pyridyl salicylic acid derivatives
JPH111464A (ja) * 1997-06-13 1999-01-06 Mitsui Chem Inc ジカルボン酸類化合物及びその製造方法
DE602005027228D1 (de) * 2004-10-21 2011-05-12 Burnham Inst La Jolla Zusammensetzungen und verfahren zur behandlung von krankheiten, die durch infektion mit yersinia spp ausgelöst sind
AU2008239018B2 (en) * 2007-04-11 2013-09-05 Kissei Pharmaceutical Co., Ltd. 5-membered heterocyclic derivative and use thereof for medical purposes
DK3344604T3 (da) * 2015-09-02 2020-12-07 Sunshine Lake Pharma Co Ltd Carboxy-substituerede (hetero) aromatiske ringderivater og fremstillingsfremgangsmåde og anvendelser deraf

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057893A1 (en) 2014-10-10 2016-04-14 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibition of hao1 (hydroxyacid oxidase 1 (glycolate oxidase)) gene expression

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
BECK, B. B.HOYER-KUHN, H.GOBEL, H.HABBIG, S.HOPPE, B.: "Hyperoxaluria and Systemic Oxalosis: An Update on Current Therapy and Future Directions", EXPERT OPINION ON INVESTIGATIONAL DRUGS, vol. 22, no. 1, 2013, pages 117 - 129, XP055464044, doi:10.1517/13543784.2013.741587
BHASIN, B.: "Primary and Secondary Hyperoxaluria: Understanding the Enigma", WORLD JOURNAL OF NEPHROLOGY, vol. 4, no. 2, 2015, pages 235
CASTELLO, R.BORZONE, R.D'ARIA, S.ANNUNZIATA, P.PICCOLO, P.BRUNETTI-PIERRI, N.: "Helper-Dependent Adenoviral Vectors for Liver-Directed Gene Therapy of Primary Hyperoxaluria Type 1", GENE THER, vol. 23, no. 2, 2016, pages 129 - 134, XP055464040, doi:10.1038/gt.2015.107
COCHAT, P.HULTON, S.A.ACQUAVIVA, C.DANPURE, C. J.DAUDON, M.MARCHI, M. D.FARGUE, S.GROOTHOFF, J.HARAMBAT, J.HOPPE, B. ET AL., NEPHROL. DIAL. TRANSPLANT., vol. 27, 2012, pages 1729 - 1736
COCHAT, P.RUMSBY, G.: "Primary Hyperoxaluria", NEW ENGLAND JOURNAL OF MEDICINE, vol. 369, no. 7, 2013, pages 649 - 658
DUTTA CHAITALISALIDO EDUARDO: "Inhibition of Glycolate Oxidase with Dicer-Substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type I", MOLECULAR THERAPY: THE JOURNAL OF THE AMERICAN SOCIETY OF GENE THERAPY JOURNAL, 2016
FARGUE, S.RUMSBY, G.DANPURE, C. J.: "Multiple Mechanisms of Action of Pyridoxine in Primary Hyperoxaluria Type 1", BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR BASIS OF DISEASE, vol. 1832, no. 10, 2013, pages 1776 - 1783, XP055548543, doi:10.1016/j.bbadis.2013.04.010
FRISHBERG, Y.ZEHARIA, A.LYAKHOVETSKY, R.BARGAL, R.BELOSTOTSKY, R., J. MED. GENET., vol. 51, no. 8, 2014, pages 526 - 529
KARAOLANIS, G.LIONAKI, S.MORIS, D.PALLA, V.-V.VERNADAKIS, S.: "Secondary Hyperoxaluria: A Risk Factor for Kidney Stone Formation and Renal Failure in Native Kidneys and Renal Grafts", TRANSPLANTATION REVIEWS, vol. 28, no. 4, 2014, pages 182 - 187
KLESSIG, DFTIAN, MCHOI, HW: "Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals", FRONT IMMUNOL, vol. 7, 2016, pages 206
LI, X.KNIGHT, J.FARGUE, S.BUCHALSKI, B.GUAN, Z.INSCHO, E. W.LIEBOW, A.FITZGERALD, K.QUERBES, W.TODD LOWTHER, W. ET AL.: "Metabolism of 13C5- Hydroxyproline in Mouse Models of Primary Hyperoxaluria and Its Inhibition by RNAi Therapeutics Targeting Liver Glycolate Oxidase and Hydroxyproline Dehydrogenase", BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR BASIS OF DISEASE, vol. 1862, no. 2, 2016, pages 233 - 239, XP029375493, doi:10.1016/j.bbadis.2015.12.001
LORENZ, E. C.MICHET, C. J.MILLINER, D. S.LIESKE, J. C.: "Update on Oxalate Crystal Disease", CURR RHEUMATOL REP, vol. 15, no. 7, 2013, pages 340
LORENZO, V.ALVAREZ, A.TORRES, A.TORREGROSA, V.HERNANDEZ, D.SALIDO, E., KIDNEY INT., vol. 70, 2006, pages 1115 - 1119
MARTIN-HIGUERAS, C.LUIS-LIMA, S.SALIDO, E.: "Glycolate Oxidase Is a Safe and Efficient Target for Substrate Reduction Therapy in a Mouse Model of Primary Hyperoxaluria Type I", MOL THER, vol. 24, no. 4, 2016, pages 719 - 725, XP055307346, doi:10.1038/mt.2015.224
MONICO, C. G.ROSSETTI, S.BELOSTOTSKY, R.COGAL, A. G.HERGES, R. M.SEIDE, B. M.OLSON, J. B.BERGSTRAHL, E. J.WILLIAMS, H. J.HALEY, W.: "Primary Hyperoxaluria Type III Gene HOGA1 (Formerly DHDPSL) as a Possible Risk Factor for Idiopathic Calcium Oxalate Urolithiasis", CJASN, vol. 6, no. 9, 2011, pages 2289 - 2295
MONICO, C. G.ROSSETTI, S.OLSON, J. B.MILLINER, D. S.: "Pyridoxine Effect in Type I Primary Hyperoxaluria is Associated with the Most Common Mutant Allele", KIDNEY INT., vol. 67, no. 5, 2005, pages 1704 - 1709
MUNTAU, A. C.LEANDRO, J.STAUDIGL, M.MAYER, F.GERSTING, S. W.: "Innovative Strategies to Treat Protein Misfolding in Inborn Errors of Metabolism: Pharmacological Chaperones and Proteostasis Regulators", J INHERIT METAB DIS, vol. 37, no. 4, 2014, pages 505 - 523
MURRAY, M.S.HOLMES, R.P.LOWTHER, W.T., BIOCHEM., vol. 47, 2008, pages 2439 - 2449
OPPICI, E.MONTIOLI, R.DINDO, M.MACCARI, L.PORCARI, V.LORENZETTO, A.CHELLINI, S.VOLTATTORNI, C. B.CELLINI, B.: "The Chaperoning Activity of Amino-Oxyacetic Acid on Folding-Defective Variants of Human Alanine:Glyoxylate Aminotransferase Causing Primary Hyperoxaluria Type I", ACS CHEM. BIOL., vol. 10, no. 10, 2015, pages 2227 - 2236
SALIDO, E. C.LI, X. M.LU, Y.WANG, X.SANTANA, A.ROY-CHOWDHURY, N.TORRES, A.SHAPIRO, L. J.ROY-CHOWDHURY, J.: "Alanine-Glyoxylate Aminotransferase-Deficient Mice, a Model for Primary Hyperoxaluria That Responds to Adenoviral Gene Transfer", PROC. NATL. ACAD. SCI. U.S.A., vol. 103, no. 48, 2006, pages 18249 - 18254
SALIDO, E.PEY, A. L.RODRIGUEZ, R.LORENZO, V.: "Primary Hyperoxalurias: Disorders of Glyoxylate Detoxification", BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR BASIS OF DISEASE, vol. 1822, no. 9, 2012, pages 1453 - 1464, XP028432536, doi:10.1016/j.bbadis.2012.03.004
SALIDO, E.RODRIGUEZ-PENA, M.SANTANA, A.BEATTIE, S. G.PETRY, H.TORRES, A.: "Phenotypic Correction of a Mouse Model for Primary Hyperoxaluria With Adeno-Associated Virus Gene Transfer", MOL THER, vol. 19, no. 5, 2011, pages 870 - 875
SANTANA, A.SALIDO, E.TORRES, A.SHAPIRO, L., J. PNAS, vol. 100, 2003, pages 7277 - 7282
See also references of EP3593803A4
SMID, B. E.AERTS, J. M. F. G.BOOT, R. G.LINTHORST, G. E.HOLLAK, C. E. M.: "Pharmacological Small Molecules for the Treatment of Lysosomal Storage Disorders", EXPERT OPIN INVESTIG DRUGS, vol. 19, no. 11, 2010, pages 1367 - 1379, XP008160487, doi:10.1517/13543784.2010.524205
STENBERG, K.LINDQVIST, Y.: "Three-Dimensional Structures of Glycolate Oxidase with Bound Active-Site Inhibitors", PROTEIN SCIENCE, vol. 6, no. 5, 1997, pages 1009 - 1015, XP055548586, doi:10.1002/pro.5560060506
SUMMITT, C. B.JOHNSON, L. C.JONSSON, T. J.PARSONAGE, D.HOLMES, R. P.LOWTHER, W. T.: "Proline Dehydrogenase 2 (PRODH2) Is a Hydroxyproline Dehydrogenase (HYPDH) and Molecular Target for Treating Primary Hyperoxaluria", BIOCHEMICAL JOURNAL, vol. 466, no. 2, 2015, pages 273 - 281, XP055548563, doi:10.1042/BJ20141159
WATTS, R. W. E.DANPURE, C. J.PAUW, L. D.TOUSSAINT, C.: "1, E. S. G. on T. in H. T. Combined Liver-Kidney and Isolated Liver Transplantations for Primary Hyperoxaluria Type 1: The European Experience", NEPHROL. DIAL. TRANSPLANT., vol. 6, no. 7, 1991, pages 502 - 511
ZHANG, X.ROE, S.M.HOU, Y.BARTLAM, M.RAO, Z.PEARL, L.H.DANPURE, C.J., J. MOL. BIOL., vol. 331, 2003, pages 643 - 652

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109293606A (zh) * 2018-11-20 2019-02-01 西华大学 2,5-双取代呋喃衍生物及其作为sirt蛋白抑制剂在药物制备中的用途
CN109293606B (zh) * 2018-11-20 2022-07-12 西华大学 2,5-双取代呋喃衍生物及其作为sirt蛋白抑制剂在药物制备中的用途
CN109748789A (zh) * 2018-12-26 2019-05-14 中国药科大学 水杨酸类化合物及其医药用途
CN110934867A (zh) * 2019-12-25 2020-03-31 南方医科大学 Hao1抑制剂在制备抑制肿瘤肺转移前微环境形成及防治肿瘤肺转移的药物中的应用
CN110934867B (zh) * 2019-12-25 2022-10-21 南方医科大学 Hao1抑制剂在制备抑制肿瘤肺转移前微环境形成及防治肿瘤肺转移的药物中的应用

Also Published As

Publication number Publication date
EP3593803A2 (en) 2020-01-15
EP3593803A4 (en) 2020-04-08
ES2639863A1 (es) 2017-10-30
US20200197418A1 (en) 2020-06-25
ES2639863B1 (es) 2018-09-20
WO2018162785A3 (es) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2018162785A2 (es) Compuestos para el tratamiento de enfermedades causadas por la acumulación de oxalato
US20060189682A1 (en) Water soluble prodrugs of COX-2 inhibitors
ES2663789T3 (es) Compuesto de pirazol-amida y usos medicinales del mismo
ES2409406T3 (es) Uso de lactoles de rosuvastatina como medicamentos
ES2751922T3 (es) Donadores de nitroxilo con índice terapéutico mejorado
CN104640841A (zh) 用于治疗剂递送制剂的脂质
BR112015001211B1 (pt) Ácidos 5-aminotetra-hidroquinolina-2-carboxílicos, processos para a sua preparação, seus usos no tratamento e/ou prevenção de doenças e seus medicamentos
WO2013112699A2 (en) Proteasome activity enhancing compounds
AU2013202373A1 (en) Proteasome activity enhancing compounds
Li et al. Rapid generation of novel benzoic acid–based xanthine derivatives as highly potent, selective and long acting DPP-4 inhibitors: scaffold-hopping and prodrug study
EP2806875B1 (en) Proteasome activity modulating compounds
ES2704064T3 (es) Formulaciones orales de antioxidantes dirigidos mitocondrialmente y su preparación y uso
EP3712147A1 (en) Sglts inhibitor and application thereof
AU2013202368A1 (en) Proteasome activity modulating compounds
ES2910003T3 (es) Compuestos y composiciones de cocristal iónico de litio de anión orgánico
WO2012061958A1 (zh) 黄酮衍生物、制备方法及其医药用途
Ma et al. Formononetin Inhibits Hepatic I/R‐Induced Injury through Regulating PHB2/PINK1/Parkin Pathway
JP6890132B2 (ja) 抗ウイルス用ウリジン類ホスホラミド、その調製方法およびその医薬における使用
WO2012078909A1 (en) Thiazolpyrimidine proteostasis regulators
ES2290921T3 (es) Sal de sodio monohidrato del s-tenatoprazol y aplicacion como inhibidor de la bomba de protones.
ES2385472T3 (es) Nueva sal de benzoilguanidina
Xu et al. Design, synthesis and biological evaluation of novel substituted benzoylguanidine derivatives as potent Na+/H+ exchanger inhibitors
WO2015044470A1 (es) Nuevos antiinflamatorios basados en polifenoles del olivo
EP3814336A1 (en) Proteasome activity enhancing compounds
US9580379B2 (en) Xanthine oxidase inhibitors and methods of use

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018764805

Country of ref document: EP

Effective date: 20191010

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764805

Country of ref document: EP

Kind code of ref document: A2