WO2015044470A1 - Nuevos antiinflamatorios basados en polifenoles del olivo - Google Patents

Nuevos antiinflamatorios basados en polifenoles del olivo Download PDF

Info

Publication number
WO2015044470A1
WO2015044470A1 PCT/ES2014/000154 ES2014000154W WO2015044470A1 WO 2015044470 A1 WO2015044470 A1 WO 2015044470A1 ES 2014000154 W ES2014000154 W ES 2014000154W WO 2015044470 A1 WO2015044470 A1 WO 2015044470A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
inflammatory
group
compounds
food
Prior art date
Application number
PCT/ES2014/000154
Other languages
English (en)
French (fr)
Inventor
José María FERNÁNDEZ-BOLAÑOS GUZMÁN
Inés MAYA CASTILLA
Alejandro GONZÁLEZ BENJUMEA
Mª Ángeles LÓPEZ GARCÍA
Catalina ALARCÓN DE LA LASTRA ROMERO
Mª Isabel VILLEGAS LAMA
Susana SÁNCHEZ FIDALGO
Marina APARICIO SOTO
Original Assignee
Unviersidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unviersidad De Sevilla filed Critical Unviersidad De Sevilla
Publication of WO2015044470A1 publication Critical patent/WO2015044470A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring monocyclic with no unsaturation outside the aromatic ring
    • C07C39/08Dihydroxy benzenes; Alkylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/095Sulfur, selenium, or tellurium compounds, e.g. thiols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/222Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin with compounds having aromatic groups, e.g. dipivefrine, ibopamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/255Esters, e.g. nitroglycerine, selenocyanates of sulfoxy acids or sulfur analogues thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • C07C37/055Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
    • C07C37/0555Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group being esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • C07C69/21Acetic acid esters of hydroxy compounds with more than three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/22Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
    • C07C69/33Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with hydroxy compounds having more than three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety

Definitions

  • the present invention refers to products based on olive polyphenols that provide applications with notable advantages based on their antioxidant and anti-inflammatory properties.
  • This invention is applicable in the Food, Cosmetic and Pharmaceutical Industry.
  • HT hydroxytyrosol
  • NOS inducible nitric oxide synthase
  • COX-2 cyclooxygenase. 2
  • IL-10 interleukin-10
  • TNF- ⁇ tumor necrosis factor alpha
  • HT and oleuropein extracted from olive leaves show anti-inflammatory and analgesic activities (E. Haloui; B. Marzouk; Z. Marzouk; A. Bouraoui; N. Fenina, J. Food Agr. Environ. 9, 2011, 128-133 ). It has been shown that HT is the main anti-inflammatory compound in aqueous olive extracts and that reduces the production of cytokines and chemokines in macrophages (N. Richard; S. Arnold; U. Hoeller; C. Kilpert; K. Wertz, Karin; J. Schwager, Planta Medica, 77 , 2011, 1890-1897).
  • alkyl ethers in the side chain exert anti-inflammatory effects superior to those presented by HT (JJ Reyes, JP De La Cruz, J. Mu ⁇ oz-Main, A. Guerrero, JA López-Villodres, A. Madrona, JL Espartero , JA González-Correa, Eur. J. Nutr. 52, 2013, 591-599).
  • the anti-inflammatory properties of oleocantal, a tyrosyl ester of the elenolic acid dialdehyde, p-HPEA-EDA S. Cicerale; LJ Lucas; RSJ Keast, (Ed.) D.
  • the invention “New anti-inflammatory based on olive polyphenols” provides significant advantages in the prevention and treatment of diseases associated with inflammatory and autoimmune processes such as rheumatoid arthritis, osteoarthritis, lupus erythematosus and inflammatory bowel disease.
  • the present invention includes the anti-inflammatory properties of 3,4-dihydroxyphenyl glycol present in the olive pulp, in extra virgin olive oil and in lupine. That is, the present invention also highlights the anti-inflammatory activity of 3,4-dihydroxyphenyl glycol (6), of the 4- (1,2-diacyloxyethyl) benzene-1,2-diol (12), of hydroxytyrosyl alkanoates (13 ), and of the thioderivatives of HT 14-16 in mouse peritoneal macrophages stimulated with bacterial lipopolysaccharide (LPS) compared with HT (1).
  • LPS bacterial lipopolysaccharide
  • Fig. 1 Effect of hydroxytyrosyl acetate (13), 3,4-dihydroxyphenyl glycol (6) and its derivatives 4- (1,2-dratanoyloxyethyl) benzene-1,2-diol (12a) and 4- (1, 2-dilauroyloxyethyl) benzene-1,2-diol (12b), as well as HT thio derivatives, thioacetylated (14), thiohydroxytyrosol (15) and hydroxytyrosol disulfide (16) in the production of nitrites in the macrophage model mouse peripherals.
  • HT has been used as a reference product. The cells were previously treated with the different compounds and after 30 minutes stimulated with LPS.
  • FIG. 3 Effect of (13), (6), (12a), (12b), (14), (15) and (16), on the expression of COX-2 in the mouse peritoneal macrophage model.
  • the cells were previously treated with the different compounds and after 30 minutes stimulated with LPS. After 18 h the cells were collected for protein determination by western blot.
  • HT has been used as a reference product and western blots have been normalized to the ⁇ -actin loading pattern. The values are expressed in arbitrary units after measuring the intensity of the signals by densitometry. * (P ⁇ 0.05) and ** (p ⁇ 0.01) significant differences with respect to the LPS control group.
  • FIG. 4 Effect of (13), (6), (12a), (12b), (14), (15) and (16) on IkappaB expression in the mouse peritoneal macrophage model.
  • the cells were previously treated with the different compounds and after 30 minutes stimulated with LPS. After 18 h the cells were collected for protein determination by western blot.
  • HT has been used as a reference product and western blots have been normalized to the ⁇ -actin loading pattern. The values are expressed in arbitrary units after measuring the intensity of the signals by densitometry. *** (p ⁇ 0.001) significant differences with respect to the LPS control group; ++ ( ⁇ ⁇ 0.01) and +++ (p ⁇ 0.001) significant differences with respect to the HT group.
  • Fig. 5 Evolution of the weight of experimental animals from the beginning of treatment with DSS at 3% w / v in drinking water (DO) until the end of the study.
  • Fig. 7. Colon length obtained from experimental animals, expressed in centimeters. * p ⁇ 0.05 vs Control.
  • Fig. 8 Colon weight / length ratio, expressed in grams per centimeters (g / cm). * p ⁇ 0.05 vs Control and +++ p ⁇ 0.001 vs Control-DSS.
  • Fig. 9 disease activity index (DAI), expressed as the average of the scales of weight loss, stool consistency and presence of blood in them. *** p ⁇ 0.001 vs Control and +++ p ⁇ 0.001 vs Control-DSS.
  • DAI disease activity index
  • MPO Myeloperoxidase activity
  • FIG. 11 Histological evaluation of colonic tissue after administration of a diet supplemented with hydroxytyrosyl acetate (13).
  • the images are representative of the colonic section of the groups tested (control, DSS control, DSS + (13)), after staining with hematoxylin / eosin at a 10X magnification.
  • Fig. 12 Effect of diet supplemented with 13 on the expression of ⁇ NOS and COX-2 in the in vivo model of DSS-induced ulcerative colitis. The values are expressed in arbitrary units after measuring the intensity of the signals by densitometry. * p ⁇ 0.05 vs Control and + p ⁇ 0.05 vs Control-DSS.
  • Fig. 13 Effect of diet supplemented with 13 on the expression of p-p38 and JNK MAPKs in the in vivo model of DSS-induced ulcerative colitis. The values are expressed in arbitrary units after measuring the intensity of the signals by densitometry. * p ⁇ 0.05 vs Control and + p ⁇ 0.05 vs Control-DSS. Fig. 14. Effect of diet supplemented with hydroxytyrosyl acetate (13) on IkappaB expression in the in vivo model of DSS-induced ulcerative colitis. The values are expressed in arbitrary units after measuring the intensity of the signals by densitometry. * p ⁇ 0.05 vs Control.
  • the acylating agent (3 mmol) is added to a solution of the protected glycol (1 mmol) in pyridine previously cooled to 0 ° C. After stirring 10-20 minutes in the cold, it is left under stirring, and at room temperature, for 12-72 hours until complete reaction. A few drops of water are added and subsequently the solution is diluted with CH 2 CI 2 and the following washings are performed: first with 1 M HCI until acidic pH, then with 1 M NaHC0 3 until basic pH and, finally, with water until neutral pH It is concentrated to dryness and the residue is purified by column chromatography on AcOEt-hexane (1: 5 ⁇ 1: 1).
  • Peritoneal macrophage stimulation is one of the best characterized models for the production of pro-inflammatory mediators.
  • Bacterial lipopolysaccharide LPS is a component present in the outer membrane of Gram-negative bacteria, which induces a severe inflammatory response by initiating cellular signals that include the synthesis of multiple mediators involved in the inflammatory process such as nitric oxide (NO) , PGE 2 (prostaglandin E 2 ) and cytokines such as TNF- ⁇ among others.
  • NO nitric oxide
  • PGE 2 prostaglandin E 2
  • cytokines such as TNF- ⁇ among others.
  • To obtain mouse peritoneal macrophages 1 ml_ of 10% sodium thioglycolate (w / v) was injected into the peritoneal cavity of the mice, allowing free access to food and water for 4 days.
  • sterile 1x PBS was injected into the peritoneal cavity, after which the cell suspension was collected. Subsequently, it was centrifuged 5 minutes at 1200 rpm and 4 o C and after centrifugation the samples contaminated with blood were discarded. All cell manipulations were performed in vertical laminar flow cabinets and in sterile conditions.
  • the suspended cells extracted from the peritoneal cavity of the mice were seeded at a density of 1x10 4 cells per well in 96-well plates (NUNC, Roskilde, Danmark) and treated with the different polyphenols studied.
  • the results were compared with those obtained from cells treated with DMSO (vehicle), and with a control group consisting of untreated cells.
  • Cellular survival was measured as the percentage of absorbance compared to a control group (untreated cells) according to the methodology described by Skehan et al., Nati. Cancer Inst. 82, 1990, 1107-1112. Production of nitric oxide (NO).
  • the cells are incubated with the compounds to be tested in 24-well plates for half an hour (37 ° C, 95% air, 5% C0 2 ), after which LPS (5Mg / mL) is added in each well and incubated 18 hours (37 ° C, 95% air, 5% C0 2 ). Finally, the supernatants obtained are collected and in sterile 96-well plates each of our supernatant samples to be analyzed in triplicate and 100 ⁇ of blank is added [medium used in cell culture: RPMI-1640 at 5% SFB (v / v)].
  • the cells were seeded at a concentration of 1x10 6 cells / ml, incubated in the presence or absence of the different compounds to be tested and stimulated with LPS at a concentration of 5 g / ml.
  • the results were compared with an unstimulated cell group, used as a negative control and with a group of cells stimulated only with LPS and another group stimulated with LPS to which the vehicle (DMSO) is added, as positive controls.
  • DMSO vehicle
  • After 18 hours of incubation (37 ° C, 95% air, 5% C0 2 ) the cells were collected with a scraper in sterile 1x PBS containing protease and phosphatase inhibitors and processed as described (Sánchez-Hidalgo et al. , Biochem. Pharmacol. 69, 2005, 1733-1744).
  • Protein content was measured using the Bradford colorimetric method (Bradford MM, Anal. Biochem. 7, 1976, 248-254), based on the colorimetric quantification of the total protein concentration in each one of the samples using ⁇ -globulin (Bio-Rad®) as standard.
  • the samples denatured by heat (100 ° C, 10 minutes) and containing the same amount of proteins (20 g), were separated by 10% polyacrylamide-SDS gel electrophoresis.
  • the proteins were electrophoretically transferred from the gel to a nitrocellulose membrane and finally incubated with specific primary antibodies: anti-rabbit COX-2, anti-rabbit ⁇ NOS (Cayman®, Ann Arbor, MI, USA) (1: 2500 and 1: 1000 respectively), anti-rabbit ⁇ (Cell Signalling®, Danvers, MA, USA) (1: 1000) and anti-mouse ⁇ -actin ( Sigma-Aldrich® St. Louis, MO, USA) and incubated overnight at 4 ° C with stirring.
  • specific primary antibodies anti-rabbit COX-2, anti-rabbit ⁇ NOS (Cayman®, Ann Arbor, MI, USA) (1: 2500 and 1: 1000 respectively), anti-rabbit ⁇ (Cell Signalling®, Danvers, MA, USA) (1: 1000) and anti-mous
  • the membranes were incubated with their corresponding secondary antibodies: anti-rabbit HRP conjugated (Cayman Chemical®, Ann Arbor, MI, USA) (1: 50000) or anti-mouse (Dako®, Atlanta, GA , USA) (1: 2000) in blocking solution for 1-2 h at room temperature.
  • anti-rabbit HRP conjugated Cayman Chemical®, Ann Arbor, MI, USA
  • anti-mouse Dako®, Atlanta, GA , USA
  • the membranes were introduced into the transilluminator (LAS-3000 Imaging System of Fujifilm Image Reader (Stamford, USA)), a device that allowed us to obtain an image of the emitted signal.
  • the densitometry data were studied following a normalization with the ⁇ -actin control, and the obtained signals were analyzed and quantified by the Java software (Image J, Softonic®) and expressed in relation to the DMSO-LPS control group.
  • results have been expressed as the arithmetic mean ⁇ the standard error, and the significance of the differences between the different groups has been evaluated using the analysis of variance (ANOVA test) followed by the Tukey test for parametric data. Values of p ⁇ 0.05 were considered statistically significant. Statistical analysis was performed using the Graph Pad Prism® 2.01 software.
  • nitric oxide Production of nitric oxide (Fig. 1). Hydroxytyrosyl acetate (13), 3,4-dihydroxyphenyl glycol (6) and its derivatives 4- (1,2-dratanoyloxyethyl) benzene-1,2-diol (12a) as well as the three thioderivatives (14, 15 and 16) presented a statistically significant decrease in nitrite production at the same levels as the HT reference standard. Moreover, the higher concentration of compound 13 significantly decreased nitrite levels relative to HT. Compound 12b was able to decrease only slightly metabolite production at the concentrations tested.
  • Proinflammatory enzyme expression ⁇ NOS (Fig. 2).
  • the treatment of the cells with LPS induced an important overexpression of the iNOS protein.
  • incubation with the compounds hydroxytyrosyl acetate (13) and 3,4-dihydroxyphenyl glycol (6), and the three thioderivatives (14, 15 and 16) managed to statistically significantly reduce their expression at levels parallel to HT.
  • COX-2 protein expression was markedly increased after treatment of the cells with LPS.
  • cells previously treated with hydroxytyrosyl acetate (13), 3,4-dihydroxyphenyl glycol (6) and the HT reference compound decreased the overexpression of the COX-2 protein after administration of LPS.
  • 4- (1,2-drawtanoyloxy) benzene-1,2-diol (12a) and 4- (1,2-dilauroyloxyethyl) benzene-1,2-diol (12b) no observed statistically significant results.
  • the highest concentration of thioderivatives (15) and (16) show a significant decrease in enzyme overexpression.
  • the disease model used is based on the administration of sodium dextran sulfate (DSS) to mice, a model selected for presenting morphological, clinical and analytical characteristics similar to that of patients who manifest an inflammatory bowel disease of the type of ulcerative colitis or Crohn's disease (Melgar et al. Am. J. Physiol. Gastrointest. Liver Physiol. 288, 2005, G1328-1338.
  • DSS sodium dextran sulfate
  • Each group of animals (n 14) was fed a standard diet, which was supplemented with 0.1% of the hydroxytyrosyl acetate compound (13) in the group of corresponding study.
  • This dose assumes the intake per mouse (with an average weight of 25 grams, and assuming a daily intake of 3 g of diet) of 120 mg of product (13) / day x kg (animal weight).
  • the in vivo experimentation protocol consisted of administering a preventive diet for 35 days. As a drink, all animals consumed water during the first 25 days, followed by 5 days of DSS added water consumption (3% w / v; MW: 40,000) and another 5 days of water only.
  • the experimentation groups were the following: control group (standard diet + water for 35 days), control group- DSS (standard diet + DSS in drinking water for 5 days) and group A (standard diet supplemented with product A + DSS in drinking water for 5 days).
  • Length of the colon once the animals were slaughtered, this organ was removed, cleaned and extended to obtain said parameter by direct measurement.
  • DAI disease activity index
  • ⁇ Myeloperoxidase activity in colonic mucosa it was evaluated to determine the degree of neutrophilic infiltration, by spectrophotometry (at 655 nm) and according to the method described by Grisham (Grisham et al., Meth. Enzymol. 186, 1990, 729-742). The results were expressed as units of enzymatic activity per milligram of tissue (U / mg tissue). Colonic expression of COX-2, ⁇ NOS, IkappaB, JNK and p-p38 proteins, using the western blot technique
  • the samples denatured by heat (100 ° C, 10 minutes) and containing the same amount of proteins (50 ⁇ g), were separated by 10% polyacrylamide-SDS gel electrophoresis according to their molecular weight.
  • the proteins were electrophoretically transferred from the gel to a nitrocellulose membrane and finally incubated with specific primary antibodies: anti-rabbit COX-2, anti-rabbit iNOS (Cayman®, Ann Arbor, Ml, USA) ( 1: 2500 and 1: 1000 respectively), anti-rabbit ⁇ (Cell Signalling®, Danvers, MA, USA) (1: 1000) and anti-mouse ⁇ -actin (Sigma-Aldrich® St.
  • the membranes were introduced into the transilluminator (LAS-3000 Imaging System of Fujifiim Image Reader (Stamford, USA)), a device that allowed us to obtain an image of the emitted signal.
  • the densitometry data were studied following a normalization with the ⁇ -actin control and the signals obtained were analyzed and quantified using the Java software (Image J, Softonic®) and expressed in relation to the DMSO-LPS control group.
  • the blocks After the formation of the blocks, to be, they were sectioned in cuts 5-7 m thick with a glass blade following the plane perpendicular to the surface of the mucosa, and the cuts were stained with hematoxylin / eosin and visualized in a optical microscope.
  • results have been expressed as the arithmetic mean ⁇ the standard error, and the significance of the differences between the different groups has been evaluated using the analysis of variance (ANOVA test) followed by the Tukey test for parametric data and the U of Mann-Whitney for non-parametric data. Values of p ⁇ 0.05 were considered statistically significant.
  • Statistical analysis was performed using the Graph Pad Prism® 2.01 software.
  • mice of the control-DSS lot experienced a shortening of the colon that was significant (p ⁇ 0.05) with respect to the healthy animals corresponding to the control group.
  • the mice that received the diet supplemented with hydroxytyrosyl acetate (13) preserved the colonic length in healthy control values (Fig. 7).
  • MPO activity in colonic mucosa (Fig. 10).
  • the MPO as a neutrophilic infiltration index experienced a statistically significant increase (p ⁇ 0.001) compared to the results obtained from the intestines from healthy animals.
  • a statistically significant reduction of said parameter was observed in samples from animals that consumed a diet supplemented with hydroxytyrosyl acetate (13).
  • NF- ⁇ is a transcriptional regulatory factor for the expression of numerous genes that encode molecules involved in the inflammatory process, among which we can include COX-2, NOS and certain proinflammatory cytokines.
  • This factor is found in the cytoplasm as a dimer formed by two identical subunits (homodimer) or different (heterodimers) and attached to its inhibitors ⁇ ( ⁇ - ⁇ , ⁇ ⁇ - ⁇ and ⁇ - ⁇ ) preventing its entry into the nucleus.
  • ⁇ - ⁇ the stimulation of receptors as the receptor of tumor necrosis factor (TNFR), TLR receptors or T-lymphocyte receptor (TCR) activates NFKB through the route known as "canonical", which through the activation of IKK phosphorylates ⁇ ⁇ , being subsequently ubiquitinated and degraded by the proteasome, releasing NFKB.
  • TFR tumor necrosis factor
  • TLR TLR receptors
  • TCR T-lymphocyte receptor
  • the ⁇ - ⁇ protein expression levels of the colonic samples of animals of the DSS group were statistically lower (p ⁇ 0.01) than those quantified in the colonic samples from healthy animals.
  • the expression levels of said protein were similar to those obtained in the animals of the DSS control group (Fig. 14).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Rheumatology (AREA)
  • Communicable Diseases (AREA)
  • Pain & Pain Management (AREA)
  • Nutrition Science (AREA)
  • Obesity (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

El objeto de la invención se centra en la síntesis por dos rutas alternativas del (3,4-dihidroxifenil) glicol (6), producto natural presente en el olivo, y en la síntesis de (3,4-dihidroxifenil)diacilglicoles (12). Tanto (6) como (12) son útiles como antiiflamatorios no esteroideos. De igual manera, los alcanoatos de hidroxitirosilo y diversos tioderivados del hidroxitirsol poseen propiedades antiinflamatorias. Por último, el acetato de hidroxitirosilo reduce el daño provocado en el colón de ratones en un modelo de colitis aguda inducida por dextrano sulfato sódico (DSS).

Description

DESCRIPCIÓN
Nuevos antiinflamatorios basados en polifenoles del olivo. OBJETO DE LA INVENCIÓN
La presente invención, según se expresa en el enunciado de esta memoria descriptiva, se refiere a productos basados en polifenoles del olivo que proporcionan aplicaciones con notables ventajas en base a sus propiedades antioxidantes y antiinflamatorias.
Esta invención es de aplicación en la Industria Alimentaria, Cosmética y Farmacéutica.
ANTECEDENTES EN EL ESTADO DE LA TÉCNICA
Atendiendo al estado de la técnica, no existen antecedentes de la síntesis del compuestro natural 3,4-dihidroxifenilglicol, el cual ha sido aislado del alperujo (J. Fernández-Bolaños Guzmán; G. Rodríguez Gutiérrez; A. Lama Muñoz; F. Senent Rubio; J. M. Fernández- Bolanos Guzmán; I. Maya Castilla; O. López López; A. Marset Castro, PCT Int. Appl. (2013), WO 2013007850 A1 20130117) o de aceitunas de mesa (G. Rodríguez; A. Lama; S. Jaramillo; J.M. Fuentes-Alventosa; R. Guillén; A. Jimenez-Araujo; R. Rodríguez-Arcos; J. Fernandez-Bolanos, J. Agr. Food Chem. 57, 2009, 6298-6304). Tampoco existen antecedentes de derivados adiados del 3,4-dihidroxifenilglicol.
Algunos polifenoles presentes en el olivo presentan propiedades antiinflamatorias que han sido descritas, bien como productos puros o como extractos. Así, el aceite de oliva virgen extra suplementado con hidroxitirosol (HT) ejerce un papel beneficioso sobre la colitis crónica inducida por DSS gracias a su capacidad de reducir la expresión de proteínas inflamatorias como la óxido nítrico sintasa inducible (¡NOS) y la ciclooxigensa-2 (COX-2) y modular la interleucina-10 (IL-10) y el factor de necrosis tumoral alfa (TNF-α) (S. Sánchez- Fidalgo, L. Sánchez de Ibargüen, A. Cárdeno, C. Alarcón de la Lastra, Eur. J. Nutr. 51 , 2012, 497-506). El HT y la oleuropeína extraídos de hojas de olivo presentan actividades antiinflamatorias y analgésicas (E. Haloui; B. Marzouk; Z. Marzouk; A. Bouraoui; N. Fenina, J. Food Agr. Environ. 9, 2011 , 128-133). Se ha demostrado que el HT es el principal compuesto antiinflamatorio en extractos acuosos de aceitunas y que reduce la producción de citocinas y quimiocinas en macrófagos (N. Richard; S. Arnold; U. Hoeller; C. Kilpert; K. Wertz, Karin; J. Schwager, Planta Medica, 77, 2011 , 1890-1897). Se ha demostrado la actividad antiinflamatoria del HT y la inhibición de producción de citocinas en un modelo de neuroinflamación asociado al Parkinson (R. Crea; C. M. Bitle.; L. M. Bolin; P. Pontoniere, Agro Food Ind. Hi-Tec. 23, 2012, 26-29).
Se ha descrito que alquil éteres en la cadena lateral ejercen efectos antiinflamatorios superiores a los que presenta el HT (J. J. Reyes, J. P. De La Cruz, J. Muñoz-Main, A. Guerrero, J. A. López-Villodres, A. Madrona, J. L. Espartero, J. A. González-Correa, Eur. J. Nutr. 52, 2013, 591-599). También se han descrito las propiedades antiinflamatorias del oleocantal, un tirosil ester del dialdehído del ácido elenólico, p-HPEA-EDA (S. Cicerale; L. J. Lucas; R. S. J. Keast, (Ed.) D. Boskou, Olive Oil, 2012, 357-374; L. Lucas; S. Cicerale; R. Keast, Anti-lnflamm. Anti-Allergy Agents Med. Chem. 10, 2011 , 399-406; M. Scotece; R. Gómez; J. Conde; V. López; J. Gómez-Reino; F. Lago; A. B Smith; O. Gualillo, Life Sci. 91 , 2012, 1229-1235). También se ha demostrado la capacidad de fenoles del olivo, incluyendo HT, tirasol, y sus derivados secoiroideos, en la modulación de la producción de mediadores inflamatorios en monocitos humanos recién aislados de donadores sanos. (P. Rosignoli, R. Fuccelli, R. Fabiani, M. Servili, G. Morozzi, J. Nutr. Biochem. 24, 2013, 1513- 1519).
No existe ningún antecedente que describa las propiedades antiinflamatorias del3,4- dihidroxifenilglicol, ni de sus derivados adiados, ni de los alcanoatos de hidroxitirosilo. Tampoco existen datos sobre las propiedades antiinflamatorias de los tio derivados del HT.
Así, a luz de los antecedentes descritos, la invención "Nuevos antiinflamatorios basados en polifenoles del olivo" aporta notables ventajas en la prevención y tratamiento de enfermedades asociadas a procesos inflamatorios y autoinmunes como artritis reumatoide, osteoartritis, lupus eritematoso y enfermedad inflamatoria intestinal.
Así mismo, dentro de la Industria Alimentaria puede ser útil para la formulación de alimentos funcionales o como aditivos para prevenir el deterioro del alimento mejorando sus propiedades organolépticas o nutricionales. En la Industria Farmacéutica el uso de estos compuestos estaría encaminado a la obtención de nuevos fármacos antiinflamatorios o formulaciones que lo contengan, para su administración por vía oral, tópica o rectal. En la Industria Cosmética estos compuestos podrán utilizarse como componentes de cremas solares y antienvejecimiento por su capacidad de captación de radicales libres.
EXPLICACIÓN DE LA INVENCIÓN
A modo explicación de la invención "Nuevos antiinflamatorios basados en polifenoles del olivo", el mismo consiste en dos procedimientos para obtener 3,4-dihidroxifenilglicol 6.
Opción 1 Procedimiento de síntesis del 3,4-dihidroxifenilglicol a partir del HT
Se parte de HT 1 , a la vista del Esquema 1 que se expondrá a continuación, y se protegen los hidroxilos fenólicos con grupos tales como grupos bencilos o un grupo oxilileno par a dar 2. La halogenación de la cadena lateral de 2 por sustitución del hidroxilo alifático por halógeno y posterior deshidrohalogenación de 3 conduce al vinilcatecol O-protegido 4 que es dihidroxilado para dar 5, usando por ejemplo tetróxido de osmio. Por último la desprotección del fragmento de catecol conduce a 6.
Figure imgf000005_0001
Esquema 1. Opción 2 Procedimiento de síntesis del 3,4-dihidroxifenilglicol a partir de cloruro de 3,4-dihidroxifenacilo.
El segundo procedimiento de preparación de 3,4-dihidroxifenilglicol 6 a la vista del Esquema 2 que se expondrá a continuación parte de haluro de 3,4-dihidroxifenacilo 7 que se transforma en la triacetoxiacetofenona 8 siguiendo una modificación del procedimiento de H. Voswinckel, Ber. Dtsch. Chem. Ges.42, 1910, 4651-4654. La hidrogenación de 8 se puede llevar a cabo con distintos catalizadores tales como Pd/C, Pd(OH)2/C, Nickel Raney, en disolventes como etanol, metanol, THF, conteniendo o no anhídrido acético. Se forma en dichas condiciones mezclas de 9 y 10 que se convierten en 10 por acetilación convencional, con rendimiento de 10 del 80% calculado a partir de 8. También obtenemos 9 por reducción de 8 con hidruros de boro como el triacetoxiborohidruro, en presencia o en ausencia de tricloruro de cerio. La hidrólisis de 9, de 10 o de mezclas de 9 y 10 para dar 6 se lleva a cabo en medio acuoso y catálisis ácida o básica.
Figure imgf000006_0001
Esquema 2.
Procedimiento de síntesis de (3,4-dihidroxifenil)diacilqlicoles
Consistente en la preparación de (3,4-dihidroxifenil)diacilglicoles 12 mediante el procedimiento descrito en el Esquema 3 que se expondrá a continuación. El intermedio clave es el glicol 5 al que se puede acceder desde el HT (Esquema 1 ), o por protección de 6, sintético o extraído de diversas fuentes naturales, con reactivos como haluro de bencilo o dihaluro de o-xilileno. La acilación exhaustiva de 11 conduce a los diacil derivados 11 cuya desprotección conduce a 12.
Figure imgf000007_0001
Esquema 3.
Así mismo, la presente invención incluye las propiedades antiinflamatorias del 3,4- dihidroxifenilglicol presente en la pulpa de aceituna, en el aceite de oliva virgen extra y en alperujo. Es decir, la presente invención también remarca la actividad antiinflamatoria del 3,4-dihidroxifenilglicol (6), de los 4-(1 ,2-diaciloxietil)benceno-1 ,2-diol (12), de los alcanoatos de hidroxitirosilo (13), y de los tioderivados de HT 14-16 en macrófagos peritoneales de ratón estimulados con lipopolisacárido bacteriano (LPS) comparándolos con HT (1).
Figure imgf000007_0002
B 12 I
Figure imgf000007_0003
14 IB IB Es decir, se recalcan las propiedades antiinflamatorias de los derivados lipófilos del HT y del3,4-dihidroxifenilglicol, conteniendo grupos acilo en la cadena lateral. Gracias a la lipofilia aportada por los grupos acilo los nuevos antiinflamatorios puede ser añadidos a matrices lipídicas como por ejemplo aceites vegetales y de pescado, con lo que se obtendrían alimentos funcionales con propiedades antiinflamatorias potenciadas. Además, mostramos las propiedades anti-inflamatorias de tio derivados deHT.
Otro aspecto de la presente invención se refiere a un método de tratamiento o prevención de inflamaciones en un mamífero, preferiblemente un humano, que comprende la ingesta dietética de una cantidad terapéuticamente efectiva del acetato de hidroxitirosilo (13, R = Me) y de esta forma poner de manifiesto los beneficios de la terapia nutricional a base de 13 en la prevención de la enfermedad inflamatoria intestinal, mediante su incorporación a diferentes formas de soporte nutricional útiles en patología digestiva como la nutrición oral, parenteral total, dietas entérales o suplementos nutricionales.
Descripción de las figuras
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de figuras en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Fig. 1. Efecto del acetato de hidroxitirosilo (13), del 3,4-dihidroxifenilglicol (6) y sus derivados 4-(1 ,2-dibutanoiloxietil)benceno-1 ,2-diol (12a) y 4-(1 ,2-dilauroiloxietil)benceno- 1 ,2-diol (12b), así como de los tioderivados del HT, el tioacetilado (14), tiohidroxitirosol (15) y disulfuro de hidroxitirosol (16) en la producción de nitritos en el modelo de macrófagos perifonéales de ratón. HT ha sido usado como producto de referencia. Las células fueron previamente tratadas con los diferentes compuestos y tras 30 minutos estimuladas con LPS. Después de 18 h los sobrenadantes fueron recogidos para la evaluación de nitritos por el método de Griess. ***(p<0.001) diferencias significativas respecto al grupo control LPS; +(p<0.05) diferencias significativas respecto al grupo HT. Fig. 2. Efecto de (13), (6), (12a), (12b), (14), (15) y (16) en la expresión de ¡NOS en el modelo de macrófagos peritoneales de ratón. Las células fueron previamente tratadas con los diferentes compuestos y tras 30 minutos estimuladas con LPS. Después de 18 h las células fueron recogidas para la determinación proteica por western blot. HT ha sido usado como producto de referencia y los western blots han sido normalizados al patrón de carga β-actina. Los valores son expresados en unidades arbitrarias tras medir la intensidad de las señales por densitometría.*(p<0.05), ** (p<0.01) y ***(p<0.001) diferencias significativas respecto al grupo control LPS.
Fig. 3. Efecto de (13), (6), (12a), (12b), (14), (15) y (16), en la expresión de COX-2 en el modelo de macrófagos peritoneales de ratón. Las células fueron previamente tratadas con los diferentes compuestos y tras 30 minutos estimuladas con LPS. Después de 18 h las células fueron recogidas para la determinación proteica por western blot. HT ha sido usado como producto de referencia y los western blots han sido normalizados al patrón de carga β-actina. Los valores son expresados en unidades arbitrarias tras medir la intensidad de las señales por densitometría.*(p<0.05) y **(p<0.01 ) diferencias significativas respecto al grupo control LPS.
Fig. 4. Efecto de (13), (6), (12a), (12b), (14), (15) y (16) en la expresión de IkappaB en el modelo de macrófagos peritoneales de ratón. Las células fueron previamente tratadas con los diferentes compuestos y tras 30 minutos estimuladas con LPS. Después de 18 h las células fueron recogidas para la determinación proteica por western blot. HT ha sido usado como producto de referencia y los western blots han sido normalizados al patrón de carga β-actina. Los valores son expresados en unidades arbitrarias tras medir la intensidad de las señales por densitometría. ***(p<0.001) diferencias significativas respecto al grupo control LPS; ++(ρ<0.01) y +++(p<0.001) diferencias significativas respecto al grupo HT.
Fig. 5. Evolución del peso de los animales de experimentación desde el comienzo de tratamiento con DSS al 3 % p/v en el agua de bebida (DO) hasta el final del estudio. Fig. 6. Pérdida de peso experimentada por los animales de experimentación, expresada en porcentaje, durante todo el período experimental. ***p<0.001 vs Control y ++p<0.01 vs Control-DSS.
Fig. 7. Longitud del colon obtenido de los animales de experimentación, expresado en centímetros. *p<0.05 vs Control.
Fig. 8. Relación peso/longitud del colon, expresada en gramos por centímetros (g/cm). *p<0.05 vs Control y +++p<0.001 vs Control-DSS.
Fig. 9. índice de actividad de la enfermedad (DAI), expresada como promedio de las escalas de pérdida de peso, consistencia de las heces y presencia de sangre en las mismas. ***p<0.001 vs Control y +++p<0.001 vs Control-DSS.
Fig. 10. Actividad mieloperoxidasa (MPO) como medida de la infiltración neutrofílica en el tejido colónico, expresada en unidades de actividad enzimática por miligramo de tejido (U/mg tejido). ***p<0.001 vs Control y +p<0.05 vs Control-DSS.
Fig 11. Evaluación histológica del tejido colónico tras la administración de una dieta suplementada con acetato de hidroxitirosilo (13). Las imágenes son representativas de la sección colónica de los grupos ensayados (control, control DSS, DSS + (13)), tras la tinción con hematoxilina/eosina a un aumento 10X.
Fig. 12. Efecto de la dieta suplementada con 13 en la expresión de ¡NOS y COX-2 en el modelo in vivo de colitis ulcerosa inducida por DSS. Los valores son expresados en unidades arbitrarias tras medir la intensidad de las señales por densitometría. *p<0.05 vs Control y +p<0.05 vs Control-DSS.
Fig. 13. Efecto de la dieta suplementada con 13 en la expresión de la p-p38 y JNK MAPKs en el modelo in vivo de colitis ulcerosa inducida por DSS. Los valores son expresados en unidades arbitrarias tras medir la intensidad de las señales por densitometría. *p<0.05 vs Control y +p<0.05 vs Control-DSS. Fig. 14. Efecto de la dieta suplementada con acetato de hidroxítirosilo (13) en la expresión de IkappaB en el modelo in vivo de colitis ulcerosa inducida por DSS. Los valores son expresados en unidades arbitrarias tras medir la intensidad de las señales por densitometría. *p<0.05 vs Control.
EJEMPLO DE REALIZACIÓN PREFERENTE
En una realización preferida de la invención "Nuevos basados en polifenoles del olivo" se incluye a continuación un primer apartado a modo de ejemplo de síntesis de los compuestos principales, seguido de dos apartados donde se presentan resultados a modo de evaluación de sus aplicaciones.
A. SÍNTESIS DE COMPUESTOS
2-r3'.4'-(o-Xililenodioxi)feninetanol (2)
Figure imgf000011_0001
A una disolución de 1 (200 mg, 1.30 mmol) en H20-EtOH 1 :5 (12 mL) se añadió K2C03 (358 mg, 2.60 mmol), ascorbato sódico (260 mg, 1.30 mmol) y α,α'-dibromo-o-xileno (342 mg, 1.30 mmol) y se agitó a 55 °C durante 5 h bajo atmósfera de argón. A continuación, se concentró a sequedad, el residuo se disolvió en AcOEt y se lavó con H20 y la fase acuosa se extrajo tres veces con AcOEt. El conjunto de las fases orgánicas se secó con MgS04 anhidro, se filtró y se concentró a sequedad y el crudo se purificó mediante cromatografía en columna (AcOEt:hexano 1 :3). El compuesto 2 se obtuvo como un sólido incoloro.
Rendimiento: 67%; p.f.: 100-102 °C. H-RMN (300 MHz, CDCI3): δ 7.28-7.12 (m 4H), 6.93 (d 1 H, J= 8.1 Hz), 6.83 (d 1 H, J= 2.1 Hz), 6.74 (dd 1 H), 5.39 (s 2H), 5.36 (s 2H), 3.74 (t 2H, J= 6.6 Hz), 2.70 (t 2H), 1.71 (s.a. 1 H). 1 ,2-(o-Xililenodioxi)-4-(2-yodoetil)benceno (3)
Figure imgf000012_0001
A una disolución de 2 (300 mg, 1.18 mmol) en THF seco (10 mL) y atmósfera inerte, se añadió PPh3 (308 mg, 1.18 mmol), imidazol (160 mg, 2.36 mmol), l2 (448 mg, 1.76 mmol) y tamiz molecular 4A y se calentó a reflujo durante 2.5 h. A continuación, se filtró la mezcla de reacción, se evaporó el disolvente, y el residuo resultante se disolvió en AcOEt (40 mL), añadiéndose una disolución saturada de NaHC03 ac. (10 mL) y una disolución saturada de Na2S203 ac. (10 mL). Se agitó durante unos minutos hasta desaparición del color amarillento y se separó la fase orgánica de la acuosa, extrayéndose esta última con AcOEt (3 x 30 mL). El conjunto de las fases orgánicas se secó con MgS04 anhidro, se filtró y se concentró a sequedad. El producto se purificó mediante cromatografía en columna (AcOEt-hexano 1 :30) y se obtuvo 3 como un sólido. Rendimiento: 80%; p.f.: 57-
59 °C. 1H-RMN (300 MHz, CDCI3): δ 7.30-7.16 (m 4H), 6.94 (d 1 H, J= 8.1 Hz), 6.82 (d 1 H, J= 1.9 Hz), 6.73 (dd 1 H), 5.41 (s 2H), 5.39 (s 2H), 3.27 (m 2H), 3.04 (t 2H, J= 7.8 Hz).
1 ,2-(o-Xililenodioxi)-4-vinilbenceno (4)
Figure imgf000012_0002
A una disolución de 3 (300 mg, 0.82 mmol) en DMF (5 mL) y mantenida en frío (0 °C) se añadió NaH (29 mg, 1.23 mmol) y se agitó a t.a. durante 1 h. A continuación, se adicionaron unas gotas de MeOH, se eliminó la DMF a presión reducida y el residuo se disolvió en AcOEt (15 mL) y se lavó con agua (10 mL) para eliminar las sales. La fase orgánica se secó con MgS04, se filtró, se concentró a sequedad y el residuo se purificó mediante cromatografía en columna (AcOEt-hexano 1 :30), aislándose 4 en forma de sólido incoloro. Rendimiento: 98%. 1H-RMN (300 MHz, CDCI3): δ 7.29-7.23 (m 4H, 7.06 (d 1 H, J= 1.8 Hz), 6.96 (dd 1 H, J= 8.3 Hz), 6.92 (d 1 H), 6.57 (dd 1 H, J= 17.6 Hz, J= 10.9 Hz), 5.56 (dd 1 H, J= 0.7 Hz), 5.41 (s 4H), 5.13 (dd 1 H).
1 -r3'.4'-(o-Xililenodioxi)fenilletano-1.2-diol (5b)
Figure imgf000013_0001
A una disolución de 4 (300 mg, 1.26 mmol) en agua-acetona (1 :3, 12 mL) se añadió N- óxido de N-metilmorfolina (186 mg, 1.38 mmol) y Os04 en terc-butanol (2.5%, 75μΙ_, 0.006 mmol) y se agitó a t.a. durante 3 h. A continuación, se evaporó la acetona, el producto se extrajo con AcOEt (3 x 30 mL) y el conjunto de las fases orgánicas se secó con MgS04, se filtró y se concentró a sequedad. El residuo se purificó mediante cromatografía en columna (AcOEt-hexano 1 :1 → 2:1), aislándose 5 en forma de sólido incoloro.
Rendimiento: 73%. 1H-RMN (300 MHz, (CD3)2CO): δ 7.30-7.23 (m 4H), 7.00 (s.a. 1 H), 6.91 (m 2H), 5.43 (s 2H), 5.41 (s 2H), 4.57 (dd 1 H, J= 4.3 Hz, J= 7.7 Hz), 3.54 (dd 1 H, J= 11.0 Hz, J= 4.3 Hz), 3.46 (dd 1 H, J= 11.0 Hz, J= 7.7 Hz).
(3',4'-Dihidroxifenil)qlicol (6) por desprotección de 5b
Figure imgf000013_0002
A una disolución de 5b (300 mg, 1.10 mmol) en EtOH (5 mL) se añadió Pd-C 10% (100 mg) y se hidrogenó a presión atmosférica, a t.a y en la oscuridad durante 2 h. La mezcla de reacción se filtró sobre celita, el disolvente se evaporó a presión reducida y el residuo se purificó mediante cromatografía en columna (CH2CI2-MeOH 5:1), aislándose 6 como simpo incoloro. Rendimiento: 88%. 1H-RMN (300 MHz, (CD3)2CO): 5 6.90 (d 1 H, J= 1.8 Hz), 6.77 (d 1 H, J= 8.1 Hz), 6.70 (dd 1 H), 4.60 (dd 1 H, J= 4.1 Hz, J= 8.0 Hz), 3.60 (dd 1 H, J= 11.0 Hz, J= 4.1 Hz), 3.52 (dd 1 H, = 11 Hz, J= 8.0 Hz). Diacetato de 4-(2-acetoxi-1 -hidroxietil)-1 ,2-fenileno y diacetato de 4-(1.2- acetoxiacetil)-1 ,2-difenileno (9) y (10)
Figure imgf000014_0001
A una disolución de cloruro de 3,4-dihidroxifenacilo (1.03 g, 5.53 mmol) 7 en anhídrido acético (10 mi), se le añade NaOAc anhidro (879 mg, 10.7 mmol) y se calienta a reflujo durante 6 horas. Se añade agua y unas gotas de piridina y se agita durante 1 h. A continuación se concentra a sequedad y el simpo se purifica en cromatografía en columna con AcOEt-hexano (1 :3→1 :2). Rendimiento del acetato de 3,4-diacetoxifenacilo (8): 90%. A una disolución de 8 (1.46 g, 4.96 mmol) en EtOH (30 mi), se añaden 470 μΙ de anhídrido acético y se hidrogena con Pd/C 10% (500 mg) a presión atmosférica y temperatura ambiente durante 4 h. A continuación se filtra sobre celita y se concentra a sequedad. El simpo resultante se purifica por cromatografía en columna en AcOEt-hexano (1 :2→ 1 :1), para obtener el triacetilado 9 (46%) y el tetraacetilado 8 (32%). Si se lleva a cabo la acetilación de la mezcla de 9 y 10 en Ac20 en piridina 1 : 1 (2 mi) antes de su separación cromatogáfica se obtiene 10 con un 80%. 1H-RMN de 8 (300 MHz, CDCI3): δ 7.29-7.26 (m 2H, 7.19-7.16 (m 1 H), 4.95 (dd 1 H, J= 8.1 Hz, J= 3.3 Hz), 4.29 y 4.13 (2 dd 1 H cada uno, J= 11.6 Hz, J= 3.3 Hz, J= 8.1 Hz), 2.29, 2.28 y 2.10 (3s 3H cada uno). 1H-RMN de 9 (300 MHz, CDCI3): δ 7.26 (dd 1 H, J= 8.6 Hz, J= 2.0 Hz), 7.22 (d 1 H, J= 2.0 Hz), 7.19 (d 1H, J= 8.6 Hz), 6.01 (dd 1 H, J= 7.8 Hz, J= 3.9 Hz), 4.34 y 4.27 (2 dd 1 H cada uno, J= 11.9 Hz, J= 3.9 Hz, J= 7.8 Hz).
(3,4-Dihidrox¡fenil)qlicol 6 a partir de 10
Figure imgf000014_0002
Se agita una dispersión de 10 (204 mg, 0.60 mmol) en H2S0 2N (10 mi) a temperatura ambiente durante 24 horas. Se neutraliza el medio con NaHC03 y se concentra a sequedad. El residuo se purifica por cromatografía en columna en CH2CI2-MeOH (30:1→ 10:1) para dar 6. Rendimiento: 55%.
Método general para la síntesis de los diacilqlicoles protegidos
A una disolución del glicol protegido (1 mmol) en piridina previamente enfriada a 0 °C se añade el agente acilante (3 mmol). Tras agitar 10-20 minutos en frío, se deja en agitación, y a temperatura ambiente, durante 12-72 horas hasta reacción completa. Se añaden unas gotas de agua y posteriormente se diluye la disolución con CH2CI2 y se realizan los siguientes lavados: primero con HCI 1 M hasta pH ácido, posteriormente con NaHC03 1 M hasta pH básico y, por último, con agua hasta pH neutro. Se concentra a sequedad y el residuo se purifica por cromatografía en columna en AcOEt-hexano (1 :5→ 1 :1).
1 -(3,4-B¡s(benciloxi)fenil)etano-1 ,2-diol (5a)
Figure imgf000015_0001
A una disolución de 6 (200 mg, 0.57 mmol) en acetona seca (20 mi) se añade K2C03 (640 mg, 4.63 mmol) y BrBn (320 μΙ_, 2.72 mmol). Se calienta a reflujo en oscuridad durante 12 horas. Se filtra y se concentra a sequedad. El simpo resultante se purifica en cromatografía en columna en AcOEt-hexano (1 :5 → 1 :1) obteniendo el producto final como un sirupo muy denso amarillo pálido. Rendimiento: 81 %. 1H-RMN (300 MHz, CD3OD): δ 7.50-7.29 (m 10H), 7.1 1 (d 1 H, J= 1.9 Hz), 7.02 (d 1 H, J= 8.3 Hz), 6.93 (dd 1 H, J= 8.3 Hz, J= 1.9 Hz), 5.15 (s 2H), 5.13 (s 2H), 4.62 (t 1 H, J= 6.0 Hz), 3.58 (d 2H, J= 6.0 Hz).
1 ,2-Dibenciloxi-4-(1 ,2-dibutanoiloxietil)benceno (11a)
Figure imgf000016_0001
A una disolución de 5a (553 mg, 1.58 mmol) en piridina (3 mi) enfriada a 0 °C se añade cloruro de butanoilo (500 μΐ, 4.81 mmol), se agita 10 minutos y se deja en congelador toda la noche. Se añade unas gotas de agua y se diluye la piridina con CH2CI2 (90 mi). Se lava con HCI 1 M (porciones de 30 mi) hasta pH ácido. Posteriormente la fase orgánica se lava con NaHC03 1 M (porciones de 30 mi) hasta pH básico y, por último, se lava la fase orgánica con agua hasta pH neutro. Finalmente la fase orgánica se seca con MgS04, se filtra y se concentra a sequedad obteniendo un sirupo que se purifica por cromatografía en columna en AcOEt- hexano (1 :5→ 1 : 1 ). Rendimiento: cuantitativo. 1H-RMN (300 MHz, CD3OD): δ 7.48-7.29 (m 10H), 7.06 (d 1 H, J= 1.9 Hz), 7.04 (d 1 H, J= 8.3 Hz), 6.94 (dd 1 H, J= 8.3 Hz, J= 1 .9 Hz), 5.95 (dd 1 H, J= 7.0 Hz, J= 5.0 Hz), 5.16 y 5.15 (2 s 2H cada uno), 4.24 (m 2H), 2.36-2.31 (m 2H), 2.27 (t 2H, J=7.3 Hz), 1.65 y 1 .62 (2 sex 2H cada uno,/=7.4Hz), 0.95 y 0.94 (2 1 3H cada uno, J=7.4 Hz).
1 ,2-Dibenciloxi-4-(1 ,2-d¡lauro¡loxietil)benceno (11 b)
Figure imgf000016_0002
A una disolución de 5a (400 mg, 1.12 mmol) en piridina (2.5 mi) enfriada a 0 °C se añade cloruro de lauroilo (780 μΙ, 3.37 mmol), se agita 10 minutos y se deja a temperatura ambiente tres días. Se añaden unas gotas de agua y se diluye con CH2CI2 (150 mi). Se lava con HCI 1 M (porciones de 40 mi) hasta pH ácido. Posteriormente la fase orgánica se lava con NaHC03 1 M (porciones de 40 mi) hasta pH básico y, por último, se lava la fase orgánica con agua hasta pH neutro. Finalmente la fase orgánica se seca con MgS0 , se filtra y se concentra a sequedad obteniendo un sirupo que se purifica por cromatografía en columna en AcOEt-hexano (1 :5 → 1 :1 ). Rendimiento: 95%. 1H-RMN (300 MHz, (CD3)2CO): δ.93 (d 1 H, J= 1 .9 Hz), 6.86 (d 1 H, J= 8.1 Hz), 6.79 (dd 1 H, J= 1.9 Hz, J= 8.1
Hz), 5.94 (dd 1 H, J= 7.5 Hz, J= 4.8 Hz), 4.33-4.24 (m 2H), 2.40-2.29 (m 4H), 1 .67-1.58 (m 4H), 1.33 (sa 32H), 0.94-0.90 (m 6H).
4-(1 ,2-Diacetoxietil)-1,2-(o-xililenodioxi)benceno (11c)
Figure imgf000017_0001
Se añade una mezcla de anhídrido acético y piridina 1 :1 (4 mi) previamente enfriada a 5b (300 mg, 1.10 mmol) en baño de hielo durante 20 minutos. A continuación se deja en nevera toda la noche. Seguidamente se hidroliza el anhídrido acético con hielo y se concentra a sequedad. El sirupo se purifica en cromatografía en columna en AcOEt- hexano (5→ 1 :1). Rendimiento: cuantitativo. 1H-RMN (300 MHz, CDCI3): δ 7.29-7.25 (m 2H), 7.20-7.17 (m 2H), 7.00 (d 1 H, J= 2.1 Hz), 6.98 (d 1 H, J= 8.2 Hz), 6.91 (dd 1 H, J= 8.2 Hz, J= 2.1 Hz), 5.91 (dd 1 H, J= 7.8 Hz, J= 4.1 Hz), 5.41 y 5.37 (2 d 1 H cada uno, J= 13.2 Hz), 4.27 y 4.21 (2 dd 1 H cada uno, J= 16.0 Hz, J= 7.8 Hz, J= 4.1 Hz), 2.09 (s 3H), 2.03 (s 3H).
Método general para la síntesis de los (3,4-dihidroxifenil)d¡acilglicoles a partir de sus correspondientes diacilqlicoles protegidos
A una disolución del diacilglicol protegido (0.5 mmol) en EtOH o THF (según su solubilidad), se añade Pd/C al 10% (50% en peso aproximadamente) y se hidrogena durante 2-72 horas hasta reacción completa. Se filtra sobre celita y se concentra a sequedad. El residuo se purifica por cromatografía en columna.
4-(1.2-Dibutanoiloxi)benceno-1 ,2-diol (12a)
Figure imgf000018_0001
A una disolución de 11a (240 mg, 0.49 mmol) en EtOH absoluto (4 mi) se añadió Pd/C al 10% (115 mg) y se hidrogenó a presión atmosférica, a t.a. y en oscuridad durante 3 días. La mezcla se filtró sobre celita, el disolvente se evaporó y el residuo se purificó mediante cromatografía en columna en AcOEt-hexano (1 :1) aislándose como sirupo incoloro.
Rendimiento: 90%. 1H-RMN (300 MHz, CDCI3): 86.87-6.86 (m 1 H), 6.82 (d 1 H, J= 8.1 Hz),
6.76 (dd 1 H, J= 8.1 Hz, J= 1.5 Hz), 5.89 (t 1 H, J= 6.0 Hz), 4.27 (d 2H), 2.35 (t 2H, J= 7.5 Hz), 2.29 (t 2H, J= 7.4 Hz), 1.64 (sex 2H, J= 7.4Hz), 1.63 (sex 2H, J= 7.4Hz), 0.92 (t 6H, J= 7.3 Hz).
4-(1 ,2-Dilauroiloxietil)benceno-1 ,2-diol (12b)
Figure imgf000018_0002
A una disolución de 11 b (350 mg, 0.47 mmol) en THF (5 mL) se añadió Pd/C al 10% (160 mg) y se hidrogenó a presión atmosférica, a t.a. y en oscuridad durante un día. La mezcla se filtró sobre celita, el disolvente se evaporó y el residuo se purificó mediante cromatografía en columna en AcOEt-hexano (1 :3) aislándose como sólido blanco.
Rendimiento: 79%. 1H-RMN (300 MHz, (CD3)2CO): 66.93 (d 1 H, J= 1 .9 Hz), 6.86 (d 1 H, J= 8.1 Hz), 6.79 (dd 1 H, J= 1.9 Hz, J= 8.1 Hz), 5.94 (dd 1 H, J= 7.5 Hz, J= 4.8 Hz), 4.33-4.24 (m 2H), 2.340-2.29 (m 4H), 1.67-1.58 (m 4H), 1.33 (sa 32H), 0.94-0.90 (m 6H).
4-(1,2-Diacetoxietil)benceno-1,2-diol (12c)
Figure imgf000019_0001
A una disolución de 11c (180 mg, 0.51 mmol) en EtOH (4 mL) se añadió Pd/C al 10% (80 mg) y se hidrogenó a presión atmosférica, a t.a. y en oscuridad durante 2 h. La mezcla se filtró sobre celita, el disolvente se evaporó y el residuo se purifico mediante cromatografía en columna CH2CI2-MeOH (50:1 → 10:1) aislándose como un simpo amarillo pálido. Rendimiento: 93%. 1H-RMN (300 MHz, CDCI3): 8 6.86 (d 1 H, J= 1.5 Hz), 6.82 (d 1 H, J= 8.1 Hz), 6.78 (dd 1 H, J= 8.1 Hz, J= 1.5 Hz), 5.88 (dd 1 H, J= 6.9 Hz, J= 5.2 Hz), 4.31-4.22 (m 2H), 2.10 (s 3H), 2.07 (s 3H).
B. EVALUACIÓN DE LA ACTIVIDAD ANTIINFLAMATORIA EN MACRÓFAGOS PERITONEALES DE RATÓN
Actividad anti-inflamatoria de 3,4-dihidroxifenilglicol (6), 4-(1 ,2-dibutanoiloxietil)benceno- 1 ,2-diol (12a), 4-(1 ,2-dilauroiloxietil)benceno-1 ,2-diol (12b), acetato de hidroxitirosilo (13) y los tioderivados: etanotioato de S-2-(3,4-dihidroxifenil)etilo (14), 4-(2-sulfaniletil)benceno- 1 ,2-diol (15), disulfuro de bis(3,4-dihidroxifenetilo)(16) en el modelo in vitro de macrófagos perifonéales de ratón estimulados con lipopolisacárido bacteriano (LPS). Comparación con HT(1).
B1 Aislamiento de macrófagos peritoneales de ratón
La estimulación de macrófagos peritoneales es uno de los modelos mejor caracterizados para la producción de mediadores pro-inflamatorios. El lipopolisacárido bacteriano (LPS) es un componente presente en la membrana externa de bacterias Gram negativas, que induce una respuesta inflamatoria severa mediante la iniciación de señales celulares que incluyen la síntesis de múltiples mediadores implicados en el proceso inflamatorio como el oxido nítrico (NO), PGE2 (prostaglandina E2) y citocinas como el TNF-α entre otros. Para la obtención de macrófagos peritoneales de ratón se inyectó 1 ml_ de tioglicolato sódico 10% (p/v) en la cavidad peritoneal de los ratones permitiendo el libre acceso a comida y agua durante 4 días. Tras el sacrificio se inyectó PBS 1x estéril en la cavidad peritoneal, tras lo cual se procedió a la recolección de la suspensión celular. Posteriormente se centrifugó 5 minutos a 1200 r.p.m y 4o C y tras el centrifugado se descartaron las muestras contaminadas con sangre. Todas las manipulaciones de las células fueron realizadas en cabinas de flujo laminar vertical y en condiciones estériles.
A continuación, se eliminaron los sobrenadantes y se resuspendió cada pellet celular en medio RPMI-1640 al 10%(v/v) de suero fetal bovino (SFB) tras lo cual se procedió al recuento de los macrófagos obtenidos mediante el test de exclusión de Azul Tripán.
B2 Evaluaciones realizadas
Viabilidad celular. Test de la Sulforodamina (SRB)
Para la realización de este ensayo las células en suspensión extraídas de la cavidad peritoneal de los ratones fueron sembradas a una densidad de 1x104 células por pocilio en placas de 96 pocilios (NUNC, Roskilde, Danmark) y tratadas con los distintos polifenoles estudiados. Los resultados fueron comparados con los obtenidos de células tratadas con DMSO (vehículo), y con un grupo control constituido por células sin tratar. La supervivencia celular fue medida como el porcentaje de absorbancia comparado con un grupo control (células no tratadas) según la metodología descrita por Skehan et al., Nati. Cáncer Inst. 82, 1990, 1107-1112. Producción de óxido nítrico (NO).
La células son incubadas con los compuestos a ensayar en placas de 24 pocilios durante media hora (37° C, 95% aire, 5% C02), tras la cual se adiciona LPS (5Mg/ mL) en cada pocilio y se incuba 18 horas (37° C, 95% aire, 5% C02). Finalmente se recogen los sobrenadantes obtenidos y en placas de 96 pocilios estériles se añade cada una de nuestras muestras de sobrenadante a analizar por triplicado y 100 μΙ de blanco [medio usado en el cultivo celular: RPMI-1640 al 5 % de SFB (v/v)]. Para terminar se adiciona 100 μΙ del reactivo de Griess a todos los pocilios procediéndose acto seguido a la medida en lector de placas Bio-Rad 550 a una longitud de onda de 540 nm. La cantidad de nitritos se obtiene por extrapolación desde una recta patrón con nitrito de sodioEn todos los experimentos los resultados se compararon con un grupo celular sin estimular, usado como control negativo, y con un grupo de células estimuladas únicamente con LPS y otro grupo estimulado con LPS al que se le adiciona el vehículo (DMSO), como controles positivos. Expresión de las enzimas pro-inflamatorias ciclooxigenasa-2 (COX-2), óxido nítrico sintasa inducible (¡NOS). Estudio de las vía de señalización celular del factor nuclear de transcripción (NF-κΒ) mediante western blotting
Los células fueron sembradas a una concentración de 1x106 células/ml, incubadas en presencia o ausencia de los diferentes compuestos a ensayar y estimuladas con LPS a una concentración de 5 g/ mi. En todos los experimentos los resultados se compararon con un grupo celular sin estimular, usado como control negativo y con un grupo de células estimuladas únicamente con LPS y otro grupo estimulado con LPS al que se le adiciona el vehículo (DMSO), como controles positivos. Tras 18 horas de incubación (37° C, 95% aire, 5% C02) las células fueron recogidas con un rascador en PBS 1x estéril conteniendo inhibidores de proteasas y fosfatasas y fueron procesadas como se ha descrito (Sánchez- Hidalgo et al., Biochem. Pharmacol. 69, 2005, 1733-1744).
La medida del contenido de proteínas (Mg/mL) fue realizada mediante el método colorimétrico de Bradford (Bradford MM,. Anal. Biochem. 7, 1976, 248-254), basado en la cuantificación colorimétrica de la concentración de proteínas total en cada una de las muestras usando como estándar γ-globulina (Bio-Rad®).
Las muestras, desnaturalizadas por calor (100 °C, 10 minutos) y conteniendo igual cantidad de proteínas (20 g), fueron separadas mediante electroforesis en gel de poliacriamida-SDS al 10%. En el siguiente paso, las proteínas se transfirieron electroforéticamente desde el gel a una membrana de nitrocelulosa y finalmente fueron incubadas con anticuerpos primarios específicos: anti-rabbit COX-2, anti-rabbit ¡NOS (Cayman®, Ann Arbor, MI, USA) (1 :2500 y 1 :1000 respectivamente), anti-rabbit ΙκΒα (Cell Signalling®, Danvers, MA, USA) (1 :1000) y anti-mouse β-actina (Sigma-Aldrich® St. Louis, MO, USA) e incubadas durante toda la noche a 4 °C en agitación. Tras los lavados del anticuerpo primario, las membranas se incubaron con sus correspondientes anticuerpos secundarios: anti-rabbit HRP conjugated (Cayman Chemical®, Ann Arbor, MI, USA) (1 :50000) o anti-mouse (Dako®, Atlanta, GA, USA) (1 :2000) en solución de bloqueo durante 1-2 h a temperatura ambiente. Tras los lavados del anticuerpo secundario, la detección de los inmunocomplejos marcados con peróxidos se realizó mediante una reacción de quimioluminiscencia. Para valorar esta señal de quimioluminiscencia, se introdujeron las membranas en el transiluminador (LAS-3000 Imaging System de Fujifilm Image Reader (Stamford, USA)), dispositivo que nos permitió obtener una imagen de la señal emitida.
Los datos de densitometría fueron estudiados siguiendo una normalización con el control de β-actina, y las señales obtenidas fueron analizadas y cuantificadas mediante el programa informático Java (Image J, Softonic®) y expresadas en relación al grupo control DMSO-LPS.
B3 Tratamiento estadístico de los resultados
Los resultados han sido expresados como la media aritmética ± el error estándar, y la significación de las diferencias entre los distintos grupos ha sido evaluada utilizando el análisis de la varianza (test de ANOVA) seguido del test de Tukey para datos paramétricos. Valores de p <0.05 fueron considerados estadísticamente significativos. El análisis estadístico ha sido realizado utilizando el programa informático Graph Pad Prism® 2.01.
B4 Resultados
Los resultados reflejan la media de dos ensayos independientes por triplicado.
Evaluación de la viabilidad celular. Tras el ensayo de viabilidad celular de diferentes concentraciones de los compuestos a ensayar acetato de hidroxitirosilo (13), 3,4- dihidroxifenilglicol (6) y sus derivados 4-(1 ,2-dibutanoiloxi)benceno-1 ,2-diol (12a) y 4-(1 ,2- dilauroiloxietil)benceno-1 ,2-diol (12b) y el tioacetilado (14), tiohidroxitirosol (15) y disulfuro de hidroxitirosol (16), fueron seleccionadas las concentraciones de los compuestos que presentaron una viabilidad superior al 95%.
Producción de óxido nítrico (Fig. 1). Acetato de hidroxitirosilo (13), 3,4- dihidroxifenilglicol (6) y sus derivados 4-(1 ,2-dibutanoiloxietil)benceno-1 ,2-diol (12a) así como los tres tioderivados (14, 15 y 16) presentaron una disminución estadísticamente significativa de la producción de nitritos a los mismos niveles que el patrón de referencia HT. Es más, la concentración más elevada del compuesto 13 disminuyó significativamente los niveles de los nitritos respecto al HT. El compuesto 12b fue capaz de disminuir solo levemente la producción del metabolito en las concentraciones ensayadas.
Expresión de la enzima proinflamatoria ¡NOS (Fig. 2). El tratamiento de las células con LPS indujo una importante sobreexpresión de la proteína iNOS. Sin embargo, la incubación con los compuestos acetato de hidroxitirosilo (13) y 3,4-dihidroxifenilglicol (6), y los tres tioderivados (14, 15 y 16) logró reducir de forma estadísticamente significativa su expresión a niveles paralelos a HT. Únicamente la concentración más elevada de 4-(1 ,2- dibutanoiloxietil)benceno-1 ,2-diol (12a) fue capaz de disminuir significativamente la sobreexpresión de ¡NOS.
Expresión de la enzima proinflamatoria COX-2 (Fig. 3). La expresión de la proteína COX-2 fue marcadamente aumentada tras el tratamiento de las células con LPS. Por el contrario, las células previamente tratadas con acetato de hidroxitirosilo (13), 3,4- dihidroxifenilglicol (6) y el compuesto de referencia HT disminuyeron la sobreexpresión de la proteína COX-2 tras la administración de LPS. Tras la incubación con los derivados diacilglicoles, 4-(1 ,2-dibutanoiloxi)benceno-1 ,2-diol (12a) y 4-(1 ,2-dilauroiloxietil)benceno- 1 ,2-diol (12b) no se observaron resultados estadísticamente significativos. Con respecto a los tioderivados la concentración más elevada de los tioderivados (15) y (16) muestran una disminución significativa de la sobreexpresión de la enzima.
Expresión del factor de transcripción NF-kB (Fig. 4). Los resultados obtenidos ponen de manifiesto que la proteína IkappaB se encuentra aumentada en las células tratadas con los compuestos acetato de hidroxitirosilo (13) y 3,4-dihidroxifenilglicol (6). Es más, estos resultados son también significativos respecto al patrón de referencia (HT). Los compuestos 4-(1 ,2-dibutanoiloxietil)benceno-1 ,2-diol (12a) y 4-(1 ,2- dilauroiloxietil)benceno-1 ,2-diol (12b) y los tioderivados 14-16 no presentaron cambios en la expresión de la IkappaB.
C. EFECTOS DE ACETATO DE HIDROXITIROSILO EN UN MODELO DE COLITIS AGUDA INDUCIDA POR DEXTRANO SULFATO SÓDICO (DSS)
C1 Modelo animal y de enfermedad
Todos los protocolos llevados a cabo han seguido las recomendaciones de la Unión Europea relativas a la experimentación animal (Directiva del Consejo de Europa 86/609/CEE). Como animales de experimentación se utilizaron ratones hembra C57BIJ6J de 7-12 semanas de edad y 18-22 g de peso, mantenidas en condiciones estándar de
estabulización a 24-25°C, doce horas de luz al día y alimentación controlada y
suministrados por Harían Ibérica, S.A. Barcelona (España).
El modelo de enfermedad utilizado está basado en la administración de dextrano sulfato sódico (DSS) a ratones, modelo seleccionado por presentar características morfológicas, clínicas y analíticas similares a la de los pacientes que manifiestan una enfermedad inflamatoria intestinal del tipo de la colitis ulcerosa o de la enfermedad de Crohn. (Melgar et al. Am. J. Physiol. Gastrointest. Liver Physiol. 288, 2005, G1328-1338.
Cada grupo de animales (n = 14) fue alimentado con una dieta estándar, que fue suplementada con 0.1 % del compuesto acetato de hidroxitirosilo (13) en el grupo de estudio correspondiente. Esta dosis supone la ingesta por ratón (con peso medio de 25gramos, y suponiendo una ingesta diaria de 3 g de dieta) de 120 mg de producto (13)/día x kg (peso de animal).
El protocolo de experimentación in vivo consistió en la administración de una dieta preventiva durante 35 días,. Como bebida todos los animales consumieron agua durante los primeros 25 días, seguido de 5 días de consumo de agua adicionada de DSS (3% p/v; MW: 40.000) y de otros 5 días de agua solamente. Los grupos de experimentación fueron los siguientes: grupo control (dieta estándar + agua durante los 35 días), grupo control- DSS (dieta estándar + DSS en agua de bebida durante 5 días) y grupo A (dieta estándar suplementada con producto A + DSS en agua de bebida durante 5 días).
Los efectos de la colitis inducida, de acuerdo a los descritos anteriormente en este modelo, fueron los siguientes:
• Pérdida de apetito y peso.
• Diarrea y sangre en heces, con la aparición de anemia.
• Acortamiento del colon y engrosamiento de sus paredes.
• Alteración de la barrera mucosa incrementando la exposición de los macrófagos a la microbiota
• Infiltrado leucocitario, pérdida de epitelio y destrucción de criptas.
• Liberación de citocinas proinflamatorias.
• Aumento del estatus inflamatorio a nivel intestinal y sistémico.
C2 Evaluaciones realizadas Control de peso, ingesta de alimento y bebida: a lo largo de todo el experimento, y de manera individualizada, se monitorizó el peso de cada ratón, la cantidad de dieta ingerida y la de agua bebida.
Sangre y agua en heces: una semana antes, en días alternos, y diariamente a partir de la incorporación de DSS en el agua, hasta la finalización del ensayo, se evaluó la consistencia de las heces (agua en heces) y la presencia de sangre en las mismas mediante la utilización de una escala visual propuesta por Gommeaux (Gommeaux et al., Mol. Cell. Biol. 27, 2007, 2215-2228).
Longitud del colon: una vez sacrificados los animalitos, se procedió a la extracción de este órgano, a su limpieza y extensión para obtener dicho parámetro por medida directa.
La evaluación macroscópica del daño colónico se realizó atendiendo al índice de actividad de la enfermedad (DAI). Se evaluó diariamente, a partir de la incorporación de DSS en el agua de bebida (DO correspondiente al día 26 del ensayo global), la inflamación intestinal mediante el DAI, que correlaciona la pérdida de peso, la consistencia de las heces y la presencia de sangre en las mismas, siendo el índice de actividad el promedio de los tres parámetros, según la escala propuesta por Gommeaux (Gommeaux et al., Mol. Cell. Biol. 27, 2007, 2215-2228).
• La pérdida de peso se calculó como el % de la diferencia entre el peso original a día = 0 (antes de comenzar a administrar el DSS) y el peso de cada día de suministro de DSS y los días de recuperación, siguiendo la siguiente escala de puntación:
0: < 1 % de pérdida de peso
1 : 1-4.99 % de pérdida de peso
2: 5-10 % de pérdida de peso
2.5: 10.01-20 % de pérdida de peso
3: > 20 % de pérdida de peso
• La consistencia de heces se evaluó según la siguiente escala:
0: consistencia normal de las heces
1 : heces blandas no adheridas al ano
2: heces muy blandas y adheridas al ano
3: heces líquidas y ano humedecido
• La presencia de sangre en heces se determinó visualmente, según la siguiente escala:
0: ninguna mancha de sangre en heces
1 : pequeña mancha de sangre en heces y región anal seca 2: gran mancha de sangre en heces, con sangrado localizado en el orificio anal
3: heces de color rojo oscuro y sangrado abundante alrededor del ano
✓ Actividad mieloperoxidasa en mucosa colónica: fue evaluada para conocer el grado de infiltración neutrofílica, mediante espectrofotometría (a 655 nm) y según el método descrito por Grisham (Grisham et al., Meth. Enzymol. 186, 1990, 729- 742). Los resultados se expresaron como unidades de actividad enzimática por miligramo de tejido (U/mg tejido). Expresión colónica de las proteínas COX-2, ¡NOS, IkappaB, JNK y p-p38, mediante la técnica de western blot
Las muestras, desnaturalizadas por calor (100 °C, 10 minutos) y conteniendo igual cantidad de proteínas (50 μg), fueron separadas mediante electroforesis en gel de poliacriamida-SDS al 10% según su peso molecular. En el siguiente paso, las proteínas se transfirieron electroforéticamente desde el gel a una membrana de nitrocelulosa y finalmente fueron incubadas con anticuerpos primarios específicos: anti-rabbit COX-2, anti-rabbit iNOS (Cayman®, Ann Arbor, Ml, USA) (1 :2500 y 1 :1000 respectivamente), anti-rabbit ΙκΒα (Cell Signalling®, Danvers, MA, USA) (1 :1000) y anti-mouse β-actina (Sigma-Aldrich® St. Louis, MO, USA) e incubadas durante toda la noche a 4 °C en agitación. Tras los lavados del anticuerpo primero, las membranas se incubaron con sus correspondientes anticuerpos secundarios: anti-rabbit HRP conjugated (Cayman Chemical®, Ann Arbor, Ml, USA) (1 :50000) o anti-mouse (Dako®, Atlanta, GA, USA) (1 :2000) en solución de bloqueo durante 1- 2 h a temperatura ambiente. Tras los lavados del anticuerpo secundario, la detección de los immunocomplejos marcados con peróxidos se realizó mediante una reacción de quimioluminiscencia. Para valorar esta señal de quimioluminiscencia se introdujeron las membranas en el transiluminador (LAS- 3000 Imaging System de Fujifiim Image Reader (Stamford, USA)), dispositivo que nos permitió obtener una imagen de la señal emitida. Los datos de densitometría fueron estudiados siguiendo una normalización con el control β-actina y las señales obtenidas fueron analizadas y cuantificadas mediante el programa informático Java (Image J, Softonic®) y expresadas en relación al grupo control DMSO-LPS.
Análisis microscópico del daño colónico (arquitectura colónica): tras haber seleccionado 3 animales por lote, se procedió a la extracción del colon y, con escalpelo, se obtuvieron secciones de de tejido constituidas por anillos de colon ascendente, transverso y descendente, que fueron lavadas con solución salina fisiológica y, rápidamente, se sumergieron en solución fijadora (paraformaldehído al 4% en tampón fosfato (PBS), pH 7.2) durante 12-18 h a 4 °C. Posteriormente se sometieron a un proceso de deshidratación en frío con agitación mediante una batería de alcoholes de concentración creciente, iniciándose con alcohol de 50° hasta alcohol absoluto.. Tras la deshidratación las muestras fueron introducidas en xileno y finalmente en parafina.pura. Tras la formación de los bloques, para ser , se seccionaron en cortes de 5-7 m de grosor con una cuchilla de vidrio siguiendo el plano perpendicular a la superficie de la mucosa, y los cortes fueron teñidos con hematoxilina/eosina y visualizados en un microscopio óptico.
C3 Tratamiento estadístico de los resultados
Los resultados han sido expresados como la media aritmética ± el error estándar, y la significación de las diferencias entre los distintos grupos ha sido evaluada utilizando el análisis de la varianza (test de ANOVA) seguido del test de Tukey para datos paramétricos y la U de Mann-Whitney para datos no paramétricos. Valores de p <0.05 fueron considerados estadísticamente significativos. El análisis estadístico ha sido realizado utilizando el programa informático Graph Pad Prism® 2.01.
C4 Resultados observados
Evolución del peso: durante los días de exposición al agente inductor del daño (DSS, al 3% v/v) en el agua de bebida, los animales experimentaron un descenso de peso que fue claramente patente al final del período de evaluación (Fig. 5). Esta pérdida de peso fue estadísticamente significativa en los animales pertenecientes al grupo control-DSS (p<0.001), mientras que los animales que recibieron una alimentación suplementada con el compuesto acetato de hidroxitirosilo (13) experimentaron una pérdida de peso similar a la del grupo control (Fig. 6).
Preservación de la longitud del colon: los ratones del lote control-DSS experimentaron un acortamiento del colon que fue significativo (p<0.05) con respecto a los animales sanos correspondientes al grupo control. Los ratones que recibieron la dieta suplementada con acetato de hidroxitirosilo (13) preservaron la longitud colónica en los valores del control sano (Fig. 7). La relación peso/longitud del colon como marcador inflamatorio macroscópico, expresada en gramos por centímetro (g/cm), indicó un marcado descenso (p<0.05) en dicha relación para los animales del grupo control-DSS, mientras que los animales alimentados con la dieta suplementada con acetato de hidroxitirosilo (13) mantuvieron la relación del orden de la del control (Fig. 8).
Evaluación del DAI (índice de actividad de la enfermedad). Según la escala propuesta por Gommeaux (Gommeaux et al., Mol. Cell. Biol. 27, 2007, 2215-2228), los resultados mostraron un incremento del DAI en los ratones control-DSS que fue significativo (pO.001) frente al que obtenido en grupo control sano (Fig. 9). Sin embargo los animales ratones que recibieron la dieta suplementada con acetato de hidroxitirosilo (13) el DAI se mantuvo en los valores del control sano.
Disminución de la actividad MPO en mucosa colónica (Fig. 10). La MPO como índice de infiltración neutrofílica, experimentó un incremento estadísticamente significativo (p<0.001) comparada con los resultados obtenidos de los intestinos procedentes de animales sanos. Por el contario, se observó una reducción de dicho parámetro estadísticamente significativa en las muestras procedentes de animales que consumieron dieta suplementada con el acetato de hidroxitirosilo (13).
Atenuación del daño en la mucosa colónica (Fig .11 A-C). En el control-DSS se apreció una destrucción masiva de las criptas colónicas y del epitelio, así como una sustancial infiltración del tejido linfoide (Fig. 11 B). Sin embargo, en las mucosas colónicas procedentes de animales alimentados con una dieta enriquecida con acetato de hidroxitirosilo (13) se apreció histológicamente una atenuación de los parámetros morfológicos de daño celular, la mucosa colónica mostraba úlceras en proceso de curación, evolucionando a un tipo de infiltrado inflamatorio crónico (Fig. 11C).
Expresión colónica de las proteínas COX-2, ¡NOS, IkappaB, JNK y p-p38 (Fig. 12-14).
Como puede observarse en la Fig. 12 los niveles de expresión de las proteínas COX-2 e ¡NOS fueron muy elevados en las mucosas colónicas procedentes de ratones sometidos a colitis. Sin embargo, aquellos animales tratados con acetato de hidroxitirosilo (13) presentaron unos niveles de expresión significativamente más bajos (p<0.05) respecto al grupo control-DSS. Entre los mecanismos de señalización celular implicados en esta respuesta inmunoinflamatoria figuran la actividad de factores de transcripción como el NF- κβ regulados por la vía de las cinasas activadas por mitógenos (MAPK cinasas). Las proteínas MAPK cinasas en su estado inactivo (no fosforilado) residen en el citoplasma, pero cuando se activan son fosforiladas y a su vez fosforilan en serinas y treoninas a los factores de transcripción. Estos últimos promueven la transcripción de genes responsables de la activación de las células inflamatorias e inmunocompetentes y la expresión de proteínas mediadoras clave con el consiguiente efecto biológico. En este estudio evaluamos los niveles de expresión proteica de las MAPK p38 y JNK cinasas. Los niveles de expresión de la proteína JNK fosforilada (p-JNK) fueron elevados en las muestras colónicas procedentes de animales sometidos a colitis en relación a las controles sanos (p<0.01) (Fig. 13). Sin embargo, en aquellos animales que recibieron terapia nutricional con acetato de hidroxitirosilo (13) se detectó una disminución estadísticamente significativa de la activación de esta cinasa (p<0.05). Por otra parte, no se observaron modificaciones significativas en la proteína MAPK p38 en mucosa de los animales sometidos al tratamiento (Fig. 13).
El NF-κΒ es un factor transcripcional regulador de la expresión de numerosos genes que codifican moléculas involucradas en el proceso inflamatorio, entre los que podemos incluir COX-2, ¡NOS y ciertas citocinas proinflamatorias. Este factor se encuentra en el citoplasma como un dímero formado por dos subunidades idénticas (homodímero) o diferentes (heterodímeros) y unido a sus inhibidores ΙκΒ (ΙκΒ-α, Ι Β-β y ΙκΒ-ε) previniendo su entrada al núcleo En el caso de ΙκΒ-α, la estimulación de receptores como el receptor de factor de necrosis tumoral (TNFR), receptores TLR o el receptor de linfocito T (TCR) activa al NFKB a través de la ruta conocida como "canónica", el cual a través de la activación de IKK fosforila Ι Β, siendo posteriormente ubiquitinada y degradada por el proteasoma, liberando NFKB. La degradación de ΙκΒ permite por tanto la entrada de las proteínas NFKB al núcleo y su unión a secuencias específicas del ADN, regulando la transcripción de un gran número de genes que codifican citocinas proinflamatorias. En nuestro estudio valoramos posibles cambios de expresión de la proteína ΙκΒ-α tras el tratamiento con el compuesto (13) (Lee y Surh, Biochem. Pharmacol. 84, 2012, 1340- 1350). En base a los resultados obtenidos, los niveles de expresión de la proteína ΙκΒ-α de las muestras colónicas de animales del grupo DSS fueron estadísticamente inferiores (p<0.01) a los cuantificados en las muestras colónicas procedentes de animales sanos. En aquellos animales que recibieron una dieta enriquecida con acetato de hidroxitirosilo (13) los niveles de expresión de dicha proteína fueron similares a los obtenidos en los animales del grupo control DSS (Fig. 14).
No se considera necesario hacer más extensa esta descripción para que cualquier experto en la materia comprenda el alcance de la invención y las ventajas que de la misma se derivan. Los elementos que la componen, soluciones técnicas adoptadas o incluso su aplicación serán susceptibles de variación siempre y cuando ello no suponga una alteración en la esencialidad del invento.

Claims

REIVINDICACIONES
1 . Uso del compuesto 6 para la elaboración de formulación farmacéutica o composición alimentaria para la prevención y tratamiento de procesos inflamatorios.
Figure imgf000032_0001
6
2. Uso del compuesto de fórmula general 12 para la elaboración de formulación farmacéutica o composición alimentaria para la prevención y tratamiento de procesos inflamatorios.
Figure imgf000032_0002
12
Donde R es un grupo alquilo (C^C23), un grupo alquenilo C 2"^23, un alcadienilo C -C23, un grupo alcatrienilo o alcapolienilo de hasta 23 carbonos.
3. Uso del compuesto de fórmula general 13 para la elaboración de formulación farmacéutica o composición alimentaria para la prevención y tratamiento de procesos inflamatorios.
Figure imgf000032_0003
13
Donde R es un grupo alquilo ((- C23), un grupo alquenilo C2-C23, un grupo alcadienilo C4-C23, un grupo alcatrienilo o alcapolienilo de hasta 23 carbonos.
4. Uso de los tioderivados del HT 14-16 para la elaboración de formulación farmacéutica o composición alimentaria para la prevención y tratamiento de procesos inflamatorios.
Figure imgf000033_0001
14 15 16
5. Uso de los compuestos reivindicados en 1 a 4 donde los procesos inflamatorios conducen o están originados por enfermedades inflamatorias, sistémicas, enfermedades cardiovasculares, enfermedades neurodegenerativas o cáncer.
6. Uso del compuesto según la reivindicación 5 donde la enfermedad inflamatoria sistémica es la artritis.
7. Uso de los compuestos según cualquiera de las reivindicaciones 1 a 4, donde los procesos inflamatorios están relacionados con procesos infecciosos provocados por microorganismos.
8. Uso de los compuestos de las reivindicaciones 1 a 4 donde los procesos inflamatorios son enfermedades inflamatorias del tracto digestivo.
9. Uso de los compuestos de las reivindicaciones 1 a 4 donde las enfermedades inflamatorias son del intestino.
10. Uso de los compuestos de las reivindicaciones 1 a 4 donde las enfermedades inflamatorias del tracto digestivo se seleccionan de la lista que comprende el síndrome del colon irritable, colitis indeterminada, colitis ulcerosa y enfermedad de Crohn.
1 1. Compuesto de fórmula general 12.
Donde R es un grupo alquilo ( C23), un grupo alquenilo C2-C23, un grupo alcadienilo C -C23, un grupo alcatrienilo o alcapolienilo de hasta 23 carbonos.
12. Compuesto 4-(1 ,2-D¡butanoiloxietil)benceno-1 ,2-diol (12a).
13. Compuesto 4-(1 ,2-Dilauroiloxietil)benceno-1 ,2-diol (12b).
14. Compuesto 4-(1 ,2-Diacetoxietil)benceno-1 ,2-diol (12c)
15. Compuesto de fórmula general 5 donde los grupos P pueden ser grupos bencilo, o- xilileno.
Figure imgf000034_0001
Procedimientos de síntesis química de 6 según una de las dos opciones que se indican a continuación;
Opción 1 Procedimiento de síntesis del 3,4-dihidroxifenilglicol a partir del HT
A partir de HT 1 a la vista del Esquema 1 , mediante la protección de los hidroxilos fenólicos con grupos tales como grupos bencilos o un grupo o-xilileno par a dar 2. La halogenación de la cadena lateral de 2 por sustitución del hidroxilo alifático por halógeno y posterior deshidrohalogenación de 3 conduce al vinilcatecol O-protegido 4 que es dihidroxilado para dar 5, usando por ejemplo con tetróxido de osmio. Por último la desprotección del fragmento de catecol conduce a 6.
Figure imgf000035_0001
Figure imgf000035_0002
Opción 2 Procedimiento de síntesis del 3,4-dihidroxifenilglicol a partir de cloruro de 3,4-dihidroxifenacilo
El segundo procedimiento de preparación de 3,4-dihidroxifenilglicol 6 a la vista del Esquema 2 parte de haluro de 3,4-dihidroxifenacilo 7 que se transforma en la triacetoxiacetofenona 8 siguiendo una modificación del procedimiento de H. Voswinckel, Ber. Dtsch. Chem. Ges. 42, 1910, 4651-4654. La hidrogenación de 8 se puede llevar a cabo con distintos catalizadores tales como Pd/C, Pd(OH)2/C, Nickel Raney, en disolventes como etanol, metanol, THF, conteniendo o no anhídrido acético. Se forma en dichas condiciones mezclas de 9 y 10 que se convierten en 10 por acetilación convencional, con rendimiento de 10 del 80% calculado a partir de 8. También obtenemos 9 por reducción de 8 con hidruros de boro como el triacetoxiborohidruro, en presencia o en ausencia de tricloruro de cerio. La hidrólisis de 9, de 10 o de mezclas de 9 y 10 para dar 6 se lleva a cabo en medio acuoso y catálisis ácida o básica.
Figure imgf000036_0001
Figure imgf000036_0002
a 10
Esquema 2.
17. Uso del compuesto según cualquiera de la reivindicación 1 a 4 para la elaboración de un medicamento.
18. Uso del compuesto según cualquiera de las reivindicaciones 1 a 4 para la elaboración de una composición alimenticia.
19. Uso del compuesto según la reivindicación anterior donde la composición alimenticia se puede seleccionar de entre un alimento, complemento alimenticio, alimento funcional o nutracéutico.
20. Uso del compuesto según cualquiera de las reivindicaciones 1 a 4 como antioxidantes.
21. Uso del compuesto según cualquiera de las reivindicaciones 1 a 4 como antioxidantes alimentarios.
22. Composición farmacéutica que comprende al menos un compuesto de fórmula 6, 12, 13, 14, 15 y 16 con un vehículo farmacéuticamente aceptable, con actividad antiinflamatoria.
23. Composición farmacéutica según cualquiera de las reivindicaciones 1 a 4 que además comprende otro principio activo.
24. Composición alimenticia que comprende al menos un compuesto de fórmula general 12.
25. Uso como nutracéutico de una composición nutricional que contenga al menos un compuesto de fórmula general 12.
26. Uso como componente en alimentos funcionales de compuestos de fórmula general
12.
27. Uso de compuestos de fórmula 6, 12, 13, 14, 15 y 16 para la modulación de la microbiótica intestinal, incrementando la población intestinal de bifido bacterias lactobacilos y disminuyendo la población de patógenos.
28. Composición cosmética con propiedades antiinflamatorias que comprende al menos un compuesto de las reivindicaciones 1 a 4.
PCT/ES2014/000154 2013-09-24 2014-09-24 Nuevos antiinflamatorios basados en polifenoles del olivo WO2015044470A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201300916A ES2539637B1 (es) 2013-09-24 2013-09-24 Nuevos antiiflamatorios basados en polifenoles del olivo
ESP201300916 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015044470A1 true WO2015044470A1 (es) 2015-04-02

Family

ID=52742115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/000154 WO2015044470A1 (es) 2013-09-24 2014-09-24 Nuevos antiinflamatorios basados en polifenoles del olivo

Country Status (2)

Country Link
ES (1) ES2539637B1 (es)
WO (1) WO2015044470A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170884A1 (ja) * 2016-03-31 2017-10-05 富山化学工業株式会社 新規なヒドロキサム酸誘導体の製造方法およびその中間体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181084A (zh) * 2022-08-04 2022-10-14 中国药科大学 一类瑞香素衍生物的合成工艺优化及药理活性研究

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2377510A1 (en) * 2008-12-19 2011-10-19 Consejo Superior de Investigaciones Científicas (CSIC) Method for purifying 3,4-dihydroxyphenylglycol (dhpg) from plant products
ES2392915A1 (es) * 2011-06-03 2012-12-14 Universidad De Sevilla Compuestos bioactivos polifenólicos conteniendo azufre o selenio y sus usos
ES2395317A1 (es) * 2011-07-08 2013-02-11 Consejo Superior De Investigaciones Cientificas (Csic) Procedimiento para la obtención de extracto de hidroxitirosol, extracto mezcla de hidroxitirosol y 3,4-dihidroxifenilglicol, y extracto de acetato de hidroxitirosilo, a partir de subproductos del olivo y su purificación.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2377510A1 (en) * 2008-12-19 2011-10-19 Consejo Superior de Investigaciones Científicas (CSIC) Method for purifying 3,4-dihydroxyphenylglycol (dhpg) from plant products
ES2392915A1 (es) * 2011-06-03 2012-12-14 Universidad De Sevilla Compuestos bioactivos polifenólicos conteniendo azufre o selenio y sus usos
ES2395317A1 (es) * 2011-07-08 2013-02-11 Consejo Superior De Investigaciones Cientificas (Csic) Procedimiento para la obtención de extracto de hidroxitirosol, extracto mezcla de hidroxitirosol y 3,4-dihidroxifenilglicol, y extracto de acetato de hidroxitirosilo, a partir de subproductos del olivo y su purificación.

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B. ROOS ET AL.: "Anti-platelet effects of olive oil extract: in vitro functional and proteomic studies", EUROPEAN JOURNAL OF NUTRITION, vol. 50, 2011, pages 553 - 562 *
J. D. BENIGNI ET AL.: "The synthesis of two new metabolites of catecholamines: 3,4-dihydroxyphenyl ethyleneglycol and 4-hydroxy-3-methoxyphenyl ethyleneglycol", JOURNAL OF MEDICINAL CHEMISTRY, vol. 6, no. 5, 1963, pages 607 - 608 *
M. H. HOLSHOUSER ET AL.: "Facile synthesis of glycol metabolites of phenethylamine drugs", JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 75, no. 6, 1986, pages 619 - 621 *
T. R. WEBB: "A simple synthesis of potassium 3-methoxy-4-hydrophenylethyleneglycol-4-sulfate", SYNTHESIS, vol. 3, 1984, pages 213 - 214 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170884A1 (ja) * 2016-03-31 2017-10-05 富山化学工業株式会社 新規なヒドロキサム酸誘導体の製造方法およびその中間体
JPWO2017170884A1 (ja) * 2016-03-31 2019-02-14 富士フイルム富山化学株式会社 新規なヒドロキサム酸誘導体の製造方法およびその中間体

Also Published As

Publication number Publication date
ES2539637A1 (es) 2015-07-02
ES2539637B1 (es) 2016-02-05

Similar Documents

Publication Publication Date Title
Jara et al. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice
Sanchez-Fidalgo et al. Effects of dietary virgin olive oil polyphenols: hydroxytyrosyl acetate and 3, 4-dihydroxyphenylglycol on DSS-induced acute colitis in mice
Della-Morte et al. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1–uncoupling protein 2 pathway
Mahmood et al. The thioredoxin system as a therapeutic target in human health and disease
EP2866804B1 (en) Enhancing autophagy or increasing longevity by administration of urolithins or precursors thereof
US11278550B2 (en) Compositions and methods for the treatment of Prader-Willi syndrome
Huang et al. Endoplasmic reticulum stress contributes to vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells
Zang et al. Sepsis-induced cardiac mitochondrial damage and potential therapeutic interventions in the elderly
JP2013082723A (ja) 神経変性障害および血液凝固障害を予防および処置するための新規組成物
CN101257897A (zh) 用于治疗或预防肥胖、胰岛素抵抗障碍和线粒体相关障碍的方法和相关组合物
KR20120060945A (ko) 환경대사적 전환인자, 다차원 세포내 분자 또는 환경적 영향인자를 사용한 대사적 장애의 치료 방법
Kesharwani et al. A novel approach for overcoming drug resistance in breast cancer chemotherapy by targeting new synthetic curcumin analogues against aldehyde dehydrogenase 1 (ALDH1A1) and glycogen synthase kinase-3 β (GSK-3β)
Mustafa Harmful free radicals in aging: A narrative review of their detrimental effects on health
ES2704064T3 (es) Formulaciones orales de antioxidantes dirigidos mitocondrialmente y su preparación y uso
Ka et al. A low toxicity synthetic cinnamaldehyde derivative ameliorates renal inflammation in mice by inhibiting NLRP3 inflammasome and its related signaling pathways
Li et al. Syntheses, toxicities and anti-inflammation of H2S-donors based on non-steroidal anti-inflammatory drugs
Wang et al. Mitochondrial dysfunction is responsible for fatty acid synthase inhibition-induced apoptosis in breast cancer cells by PdpaMn
Ahmed et al. Combinatory Effects of Bone Marrow‐Derived Mesenchymal Stem Cells and Indomethacin on Adjuvant‐Induced Arthritis in Wistar Rats: Roles of IL‐1β, IL‐4, Nrf‐2, and Oxidative Stress
Zaher et al. Novel amino acid derivatives bearing thieno [2, 3-d] pyrimidine moiety down regulate NF-κB in γ-irradiation mediated rat liver injury
Andreev-Andrievskiy et al. Efficacy of mitochondrial antioxidant plastoquinonyl‐decyl‐triphenylphosphonium bromide (SkQ1) in the rat model of autoimmune arthritis
ES2917982T3 (es) Método para tratar trastornos hepáticos
WO2015044470A1 (es) Nuevos antiinflamatorios basados en polifenoles del olivo
Zhang et al. FM0807 decelerates experimental arthritis progression by inhibiting inflammatory responses and joint destruction via modulating NF-κB and MAPK pathways
Zhao et al. α-lipoic acid alleviated fluoride-induced hepatocyte injury via inhibiting ferroptosis
ES2819175T3 (es) Compuestos farmacéuticos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849272

Country of ref document: EP

Kind code of ref document: A1