WO2018161707A1 - 有机光活性层复合墨水、有机太阳能电池及其制备方法 - Google Patents

有机光活性层复合墨水、有机太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2018161707A1
WO2018161707A1 PCT/CN2017/119957 CN2017119957W WO2018161707A1 WO 2018161707 A1 WO2018161707 A1 WO 2018161707A1 CN 2017119957 W CN2017119957 W CN 2017119957W WO 2018161707 A1 WO2018161707 A1 WO 2018161707A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
photoactive layer
layer composite
organic photoactive
composite ink
Prior art date
Application number
PCT/CN2017/119957
Other languages
English (en)
French (fr)
Inventor
闫翎鹏
伊今垛
谭铭希
马昌期
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Priority to JP2019569530A priority Critical patent/JP6914556B2/ja
Priority to EP17899345.7A priority patent/EP3594297A4/en
Priority to US16/485,700 priority patent/US11895912B2/en
Publication of WO2018161707A1 publication Critical patent/WO2018161707A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to an organic solar cell photoactive layer composite ink material, a high stability organic solar cell formed by the same, and a preparation method thereof, and belongs to the technical field of photoelectric functional materials and devices.
  • Organic solar cells have attracted wide attention due to their advantages of low cost, light weight, good bending performance and large area printing.
  • the photoelectric conversion efficiency of organic solar cells has exceeded 11%, and it is gradually approaching the threshold of commercialization.
  • the stability of organic solar cell devices is far from satisfactory.
  • the main object of the present invention is to provide an organic photoactive layer composite ink and a preparation method thereof to overcome the deficiencies of the prior art.
  • Another main object of the present invention is to provide an organic solar cell prepared by using the organic photoactive layer composite ink and a method of preparing the same.
  • the technical solution adopted by the present invention includes:
  • Embodiments of the present invention provide an organic photoactive layer composite ink comprising an electron donor material, an electron acceptor material, an organic solvent, and an organic amine compound, and the mass of the organic amine compound in the organic photoactive layer composite ink is 0.01% by weight to 10% by weight of the total mass of the electron donor material and the electron acceptor material, and the mass ratio of the electron donor material to the electron acceptor material in the organic photoactive layer composite ink is 10:1 to 1 :10, the concentration of the electron donor material or electron acceptor material is 1 to 50 mg/mL.
  • the organic amine compound includes an organic amine compound having a structure represented by any one of the formula (1), the formula (2), the formula (1-1), and the formula (2-1):
  • R 1 , R 2 , R 3 , R 4 include hydrogen, a substituted or unsubstituted C1-C20 alkyl group, a C1-C20 heteroalkyl group or a substituted or unsubstituted modified aromatic or heteroaromatic ⁇ -conjugated unit.
  • R 5 , R 6 , R 7 , R 8 include hydrogen, a substituted or unsubstituted C1-C20 alkyl group, a C1-C20 heteroalkyl group, a substituted or unsubstituted modified aromatic or heteroaromatic ⁇ -conjugated
  • the embodiment of the invention further provides a method for preparing the organic photoactive layer composite ink, which comprises: dissolving an organic amine compound, an electron acceptor material and an electron donor material in an organic solvent, and uniformly mixing to obtain the organic light. Active layer composite ink.
  • the embodiment of the invention further provides an organic photoactive layer composite film formed by the aforementioned organic photoactive layer composite ink. Further, the present invention provides a method for preparing the organic photoactive layer composite film, comprising: forming a film of the organic photoactive layer composite ink to form an organic photoactive layer composite film.
  • the film forming process includes a film dropping process, a spin coating film forming process, a spray film forming process, an inkjet printing film forming process, a screen printing film forming process, a blade coating film forming process, and a wire bar coating process. At least one of the layer processes.
  • the invention also provides the use of the foregoing organic photoactive layer composite ink or organic photoactive layer composite film in preparing an organic solar cell.
  • the present invention also provides an organic solar cell comprising a top electrode, a top electrode interface modification layer, an organic photoactive layer, a bottom electrode interface modification layer, a bottom electrode and a bottom electrode substrate which are sequentially disposed in a set direction, the organic
  • the photoactive layer includes the aforementioned organic photoactive layer composite film.
  • the organic solar cell may further include a bottom electrode substrate, and the bottom electrode is disposed on the bottom electrode substrate.
  • the present invention also provides a laminated organic solar cell comprising the above-described organic solar cell in a front junction and/or a back junction cell.
  • the present invention also provides the foregoing method for preparing an organic solar cell, comprising:
  • the organic photoactive layer composite ink provided by the present invention incorporates an organic amine compound into the existing photoactive layer ink, and the photochemical reaction of the active layer molecule is suppressed by the interaction between the organic amine compound and the photoactive layer material molecule.
  • the light stability of the photoactive layer material can be improved, thereby improving the stability of the solar cell;
  • the organic photoactive layer composite ink provided by the present invention can not only improve the photoelectric conversion efficiency of the organic solar cell but also improve its long-term stability by introducing an organic amine compound;
  • the organic photoactive layer composite film prepared by the organic active layer composite ink provided by the invention has excellent stability, and the prepared organic solar cell based on the structure has high stability and long service life, and particularly can improve organic solar energy.
  • Other operating performance such as energy conversion efficiency of the battery device;
  • the preparation method of the high-stability organic solar cell provided by the invention has wide universality, simple and convenient preparation method, low material cost and high economic benefit.
  • FIG. 1 is a schematic structural view of an organic solar cell according to an exemplary embodiment of the present invention.
  • Example 3 is a I-V graph of an organic solar cell prepared in Example 1 of the present invention.
  • Example 4 is a I-V graph of an organic solar cell prepared in Example 2 of the present invention.
  • Figure 5 is a I-V graph of an organic solar cell prepared in Example 3 of the present invention.
  • Figure 6 is a I-V graph of an organic solar cell prepared in Example 4 of the present invention.
  • Figure 7 is a I-V graph of an organic solar cell prepared in Example 5 of the present invention.
  • Figure 8 is a I-V graph of an organic solar cell prepared in Example 6 of the present invention.
  • Figure 9 is a I-V graph of an organic solar cell prepared in Example 7 of the present invention.
  • Figure 10 is a I-V graph of an organic solar cell prepared in Example 8 of the present invention.
  • Figure 11 is a I-V graph of an organic solar cell prepared in Example 9 of the present invention.
  • Figure 12 is a I-V graph of an organic solar cell prepared in Example 10 of the present invention.
  • Figure 13 is a I-V graph of an organic solar cell prepared in Example 11 of the present invention.
  • Figure 14 is a I-V graph of an organic solar cell prepared in Example 12 of the present invention.
  • Figure 15 is a I-V graph of an organic solar cell prepared in Example 13 of the present invention.
  • Figure 16 is a I-V graph of an organic solar cell prepared in Example 14 of the present invention.
  • 17a to 17d are graphs showing the performance versus time of the organic solar cell prepared in Comparative Example 1 and Example 1 in the attenuation test of the present invention.
  • One aspect of an embodiment of the present invention provides an organic photoactive layer composite ink comprising an electron donor material, an electron acceptor material, and an organic solvent and an organic amine compound.
  • the mass of the organic amine compound in the organic photoactive layer composite ink is 0.01 wt% to 10 wt% of the total mass of the electron donor material and the electron acceptor material.
  • the mass ratio of the electron donor material to the electron acceptor material in the organic photoactive layer composite ink is 10:1 to 1:10, preferably 5:1 to 1:5, and particularly preferably 2 :1 ⁇ 1:2.
  • the concentration of the electron donor material or electron acceptor material is 1 to 50 mg/mL, preferably 5 to 20 mg/mL, and particularly preferably 10 to 20 mg/mL.
  • the organic solvent includes, but is not limited to, o-dichlorobenzene, chlorobenzene, chloroform, toluene, xylene, trimethylbenzene, and the like.
  • the organic amine compound includes one or more organic amine compounds having a structure represented by any one of the formula (1), the formula (2), the formula (1-1), and the formula (2-1):
  • R 1 , R 2 , R 3 , R 4 are at least independently selected from hydrogen, substituted or unsubstituted C1-C20 alkyl, C1-C20 heteroalkyl or substituted or unsubstituted modified aromatic or heteroaromatic ⁇ conjugated unit derivative.
  • R 5 , R 6 , R 7 , R 8 are at least independently selected from hydrogen, substituted or unsubstituted C1-C20 alkyl, C1-C20 heteroalkyl, substituted or unsubstituted modified aromatic or heteroaromatic a ⁇ -conjugated unit derivative or a five- or six-membered ring structure formed by linking any two of the substituent units of R 5 , R 6 , R 7 , and R 8 .
  • the C1-C20 alkyl group includes, but is not limited to, a methyl group, an ethyl group, a propyl group, a butyl group, and the like.
  • the organic amine compound having the structure of formula (1) is selected from the group consisting of ethylenediamine derivatives having the structure of formula (3).
  • R 1 , R 2 are at least independently selected from hydrogen, substituted or unsubstituted C1-C20 alkyl, C1-C20 heteroalkyl, or substituted or unsubstituted modified aromatic or heteroaromatic ⁇ -conjugated unit derived Things.
  • the organic amine compound is an alkylethylenediamine.
  • the organic amine compound having the structure of the formula (2) is selected from a piperazine derivative having a structure represented by any one of the following formulas (4) to (8).
  • R 9 is at least selected from the group consisting of hydrogen, a substituted or unsubstituted C1-C20 alkyl group, a C1-C20 heteroalkyl group, or a substituted or unsubstituted modified aromatic or heteroaromatic ⁇ -conjugated unit derivative.
  • the organic amine compound is piperazine.
  • the electron donor material refers to a semiconductor material in which a molecule can give electrons and realize charge separation under photoexcitation conditions in an organic solar cell photoactive layer.
  • the electron donor material comprises a conjugated polymer electron donor material and/or a conjugated organic small molecule electron donor material or the like.
  • the conjugated polymer electron donor material comprises poly(3-hexylthiophene) (P3HT), PTB7 (Nature Photonics, 2012, 6(9): 591-595), PTB7-Th (Energy Environ. Sci) , 2015, 8, 2902), PffBT4T-2OD (Nature communications, 2014, 5) and any combination of structural variants thereof, but are not limited thereto.
  • P3HT poly(3-hexylthiophene)
  • PTB7 Nature Photonics, 2012, 6(9): 591-595
  • PTB7-Th Energy Environ. Sci
  • PffBT4T-2OD Neture communications, 2014, 5
  • the conjugated organic small molecule electron donor material comprises a small molecule based on a benzodithiophene (BDT) core, a small molecule based on an oligothiophene, and the like.
  • BDT benzodithiophene
  • the conjugated organic small molecule electron donor material comprises DR3TSBDT (Advanced Materials, 2016, 28(32): 7008-7012.), DRCN7T (Nature Photonics 9.1 (2015): 35-41) and its structure. Variants and so on.
  • the electron acceptor material refers to a semiconductor material capable of accepting electrons and realizing charge separation under the condition of being excited by light in an active layer of an organic solar cell.
  • the electron acceptor material comprises any one or more of a fullerene electron acceptor material, a fullerene derivative electron acceptor material, and a non-fullerene electron acceptor material. Combination, but not limited to this.
  • the fullerene electron acceptor material and the fullerene derivative electron acceptor material include [6,6]-phenyl-C 61 -butyric acid methyl ester (PC 61 BM), PC 71 BM ( Advanced Energy Materials, 2013, 3(1): 65-74), Bis-PC 61 BM (Journal of Nanoscience and nanotechnology, 2014, 14(2): 1064-1084.) and IC 61 BA (Advanced Functional Materials, 2013, Any one or a combination of two or more of 23(26): 3286-3298.), but is not limited thereto.
  • PC 61 BM [6,6]-phenyl-C 61 -butyric acid methyl ester
  • PC 71 BM Advanced Energy Materials, 2013, 3(1): 65-74
  • Bis-PC 61 BM Journal of Nanoscience and nanotechnology, 2014, 14(2): 1064-1084.
  • IC 61 BA Advanced Functional Materials, 2013, Any one or a combination of two or more of 23(26): 3286-3298.
  • the non-fullerene electron acceptor material comprises an organic conjugated electron acceptor material.
  • the organic conjugated electron acceptor material comprises a perylene diimide (PDI) derivative, a naphthalene diimide (NDI) derivative, a derivative derivative, an anthracene derivative, and a benzene.
  • PDI perylene diimide
  • NDI naphthalene diimide
  • BT thiadiazole
  • SubPc subphthalocyanine derivative
  • Another aspect of the present invention provides a method for preparing the organic photoactive layer composite ink, which comprises: dissolving an organic amine compound, an electron acceptor material, and an electron donor material in an organic solvent, mixing uniformly, and obtaining a solution.
  • An organic photoactive layer composite ink is a method for preparing the organic photoactive layer composite ink.
  • Another aspect of the embodiment of the present invention provides an organic photoactive layer composite film formed of the aforementioned organic photoactive layer composite ink.
  • the organic photoactive layer composite film includes any one or a combination of two or more of poly(3-hexylthiophene), PTB7, PTB7-Th, PffBT4T-2OD, and structural variants thereof.
  • An electron donor material using any one or a combination of two or more of [6,6]-phenyl-C 61 -butyric acid methyl ester, PC 71 BM, Bis-PC 61 BM, and IC 61 BA as an electron acceptor
  • a composite material comprising a bulk material and an organic amine compound having a structure represented by any one of formula (1), formula (2), formula (1-1), and formula (2-1).
  • the organic photoactive layer composite film has a thickness of 80 nm to 2 ⁇ m, preferably 80 to 200 nm, and particularly preferably 80 to 100 nm.
  • the embodiment of the present invention further provides a method for preparing the organic photoactive layer composite film, comprising: forming a film of the organic photoactive layer composite ink to form an organic photoactive layer composite film.
  • the film forming process includes a film dropping process, a spin coating film forming process, a spray film forming process, an inkjet printing film forming process, a screen printing film forming process, a blade coating film forming process, and a wire bar coating process. At least one of the layer processes.
  • the preparation method may include: forming the organic light by applying the organic photoactive layer composite ink to a substrate by using at least one of coating and printing methods.
  • Active layer composite film Preferably, the coating method includes any one of spin coating, blade coating, and spray coating.
  • the film forming process further comprises heat treating and/or performing a solvent annealing treatment on the organic photoactive layer composite film.
  • the organic photoactive layer composite film has a heat treatment temperature of 60 to 200 ° C and a time of 10 s to 2 h.
  • the solvent used in the solvent annealing treatment includes any one or a combination of two or more of toluene, dimethylformamide (DMF), tetrahydrofuran, chloroform, o-dichlorobenzene, and chlorobenzene, but is not limited thereto. this.
  • DMF dimethylformamide
  • tetrahydrofuran chloroform
  • chloro-dichlorobenzene chlorobenzene
  • the solvent annealing treatment time is 5 s to 2 h.
  • Another aspect of the embodiments of the present invention provides the use of the foregoing organic photoactive layer composite ink or organic photoactive layer composite film in the preparation of an organic solar cell.
  • an embodiment of the present invention further provides an organic solar cell including a top electrode 1 , a top electrode interface modifying layer 2 , an organic photoactive layer 3 , and a bottom electrode interface modifying layer disposed in sequence along a set direction. 4.
  • the present invention also provides a laminated organic solar cell comprising the above-described organic solar cell in a front junction and/or a back junction cell.
  • the embodiment of the present invention further provides the foregoing method for preparing an organic solar cell, which includes:
  • the bottom electrode substrate may be cleaned before the bottom electrode substrate forms the bottom electrode.
  • the step (4) comprises: first performing heat treatment on the organic photoactive layer composite film and/or performing solvent annealing treatment, and then preparing a top electrode interface modification layer on the organic photoactive layer composite film.
  • the organic photoactive layer composite film has a heat treatment temperature of 60 to 200 ° C and a time of 10 s to 2 h.
  • the solvent used in the solvent annealing treatment includes any one or a combination of two or more of toluene, dimethylformamide (DMF), tetrahydrofuran, chloroform, o-dichlorobenzene, and chlorobenzene, but is not limited thereto. this.
  • DMF dimethylformamide
  • tetrahydrofuran chloroform
  • chloro-dichlorobenzene chlorobenzene
  • the solvent annealing treatment time is 5 s to 2 h.
  • the method further comprises: preparing the organic photoactive layer composite ink.
  • the preparation method may specifically include the following steps:
  • ITO indium tin oxide
  • Comparative Example 1 Inverted structural polymer solar cell based on poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C 61 -butyric acid methyl ester (PC 61 BM) as organic photoactive layer preparation
  • the substrate consisting of a transparent substrate and an indium tin oxide (ITO) transparent conductive cathode was first ultrasonically cleaned using detergent, deionized water, acetone, and isopropyl alcohol, each step for 30 minutes. After the cleaned substrate was blown dry with nitrogen, the substrate was treated with a UVO ozone cleaner for 30 min.
  • a ZnO cathode buffer layer was prepared on the treated substrate; the ZnO acetone solution was spin-coated on the substrate by spin coating, the speed of the homogenizer was 2000 rpm/s, the spin coating time was 60 s, and then annealed at 120 ° C. 10min.
  • An organic photoactive layer was prepared on the cathode buffer layer by spin coating.
  • the organic photoactive layer is prepared by mixing an electron donor material P3HT and an electron acceptor material PC 61 BM in a mass ratio of 1:1 in o-dichlorobenzene; and preparing an organic photoactive layer in a glove box by spin coating; The rotation speed was 600 rpm/s, the time was 60 s, and the thickness was about 150 nm. After spin coating, the film was annealed in a covered watch glass for 2 h, and then the substrate was placed on a hot plate and thermally annealed at 120 ° C for 30 min.
  • the substrate was transferred to a vacuum coater, and an anode buffer layer of molybdenum oxide (MoO 3 ) was sequentially deposited on the organic photoactive layer (thickness: 20 nm, evaporation rate was And metal anode Al (thickness is 100nm, evaporation rate is ).
  • MoO 3 molybdenum oxide
  • Prepared solar cells were measured under standard conditions (AM 1.5, 100 mW/cm 2 ) and current density-voltage curve data were collected using a Keithley 2400 source meter.
  • the structure of the organic solar cell prepared by the comparative example was: transparent substrate / ITO / ZnO / P3HT: PC 61 BM / MoO 3 / Al (100 nm).
  • Example 1 Based on poly-3-hexylthiophene (P3HT): [6,6]-phenyl-C 61 -butyric acid methyl ester (PC 61 BM): piperazine (different content) is an inverted structure of an organic photoactive layer Preparation of polymer solar cells
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is prepared by mixing an electron donor material P3HT, an electron acceptor material PC 61 BM and a piperazine in o-dichlorobenzene, wherein the mass percentage of P3HT and PC 61 BM is 1:1, the piperazine content is 1 wt%, 3 wt%, 5 wt%, 7 wt%, 10 wt% of the total mass of P3HT and PC 61 BM, respectively.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / P3HT: PC 61 BM: piperazine / MoO 3 / Al (100 nm).
  • the structure of piperazine is shown in formula (9).
  • the current density-voltage curve of the organic solar cell prepared in Example 1 and other specific device performance parameters are listed in Table 2. It can be seen from the experimental results that the organic solar cell voltage and current are improved when the piperazine doping amount is 1-5%, and the final device photoelectric conversion efficiency is up to 3.70%. In the range of doping amount from 1% to 10%, the device performance is higher than or comparable to that of the undoped piperazine device, indicating that the piperazine has a wide doping range.
  • Example 2 Based on poly-3-hexylthiophene (P3HT): [6,6]-phenyl-C 61 -butyric acid methyl ester (PC 61 BM): N,N'-dimethylethylenediamine (1 wt% Preparation of an inverted structure polymer solar cell which is an organic photoactive layer
  • the preparation method is as shown in Comparative Example 1.
  • the organic photoactive layer is prepared by mixing an electron donor material P3HT, an electron acceptor material PC 61 BM and N,N'-dimethylethylenediamine in o-dichlorobenzene. Wherein the P3HT and PC 61 BM mass percentage is 1:1, and the N,N'-dimethylethylenediamine content is 1% by weight of the total mass of P3HT and PC 61 BM.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / P3HT: PC 61 BM: N, N'-dimethylethylenediamine / MoO 3 / Al (100 nm).
  • the structure of N,N'-dimethylethylenediamine is shown in formula (10).
  • the current density-voltage graph of the organic solar cell prepared in Example 2 and other specific device performance parameters are listed in Table 3. It can be seen from the experimental results that after doping with 1wt% N,N'-dimethylethylenediamine, the voltage and current of the organic solar cell are also improved, and the photoelectric conversion efficiency of the final device is improved from the original 3.30% to 3.49%.
  • Example 3 Based on poly-3-hexylthiophene (P3HT): [6,6]-phenyl-C 61 -butyric acid methyl ester (PC 61 BM): decahydroisoquinoline (1 wt%) is an organic photoactive layer Preparation of inverted structure polymer solar cells
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is prepared by mixing an electron donor material P3HT, an electron acceptor material PC 61 BM and decahydroisoquinoline in o-dichlorobenzene, wherein P3HT and PC 61 are prepared.
  • the BM mass percentage was 1:1, and the decahydroisoquinoline content was 1 wt% of the total mass of P3HT and PC 61 BM.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / P3HT: PC 61 BM: decahydroisoquinoline / MoO 3 / Al (100 nm).
  • the structure of decahydroisoquinoline is shown in formula (11):
  • the current density-voltage graph of the organic solar cell prepared in Example 3 and other specific device performance parameters are listed in Table 4. It can be seen from the experimental results that the voltage and current of the organic solar cell are also improved after doping with 1 wt% of decahydroisoquinoline, and the photoelectric conversion efficiency of the device is improved from the original 3.30% to 3.51%.
  • Example 4 Based on PTB7-Th: [6,6]-phenyl-C 61 -butyric acid methyl ester (PC 61 BM): piperazine (different concentration) is an organic photoactive layer of inverted structure polymer solar cell preparation
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is mixed with an electron donor material PTB7-Th, an electron acceptor material PC 61 BM and a piperazine (different concentration) mixed with chlorobenzene (plus 3% by volume of DIO).
  • PTB7-Th an electron donor material
  • PC 61 BM an electron acceptor material
  • a piperazine (different concentration) mixed with chlorobenzene plus 3% by volume of DIO.
  • the mass percentage of PTB7-Th and PC 61 BM was 1:1.2, wherein the concentration of PTB7-Th was 7 mg/mL, and the piperazine content was 0.01-0.2 wt% of the total mass of PTB7-Th and PC 61 BM.
  • An organic photoactive layer was prepared in a glove box by spin coating at a speed of 1000 rpm/s, a time of 60 s, and a thickness of about 100 nm.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / PTB7 - Th: PC 61 BM: piperazine / MoO 3 / Al (100 nm). Among them, the chemical structure of PTB7-Th is shown in formula (12).
  • Example 5 Preparation of an upright structure polymer solar cell based on COOP-4HT-BDT (small molecule): PC 71 BM: piperazine (0.1 wt%) as an organic photoactive layer
  • the substrate consisting of a transparent substrate and an indium tin oxide (ITO) transparent conductive anode was first ultrasonically cleaned using detergent, deionized water, acetone, and isopropyl alcohol, each step for 30 minutes. After the cleaned substrate was blown dry with nitrogen, the substrate was treated with a UVO ozone cleaner for 30 min.
  • a PEDOT:PSS anode buffer layer was prepared on the treated substrate; an organic photoactive layer was prepared on the anode buffer layer by spin coating.
  • the organic photoactive layer is prepared by mixing an electron donor material COOP-4HT-BDT, an electron acceptor material PC 71 BM and a piperazine in a mixture of chloroform, wherein the COOP-4HT-BDT and PC 71 BM mass percentage 2: 1, wherein the concentration of COOP-4HT-BDT is 5 mg/mL, and the piperazine content is 0.1 wt% of the total mass of COOP-4HT-BDT and PC 71 BM.
  • An organic photoactive layer was prepared in a glove box by spin coating at a speed of 2500 rpm/s for 40 s and a thickness of about 110 nm.
  • the substrate was transferred to a vacuum coater, and a cathode buffer layer lithium fluoride (LiF) was sequentially evaporated on the organic photoactive layer (thickness: 1 nm, evaporation rate was And the metal cathode Al (thickness is 100nm, evaporation rate is ).
  • a cathode buffer layer lithium fluoride (LiF) was sequentially evaporated on the organic photoactive layer (thickness: 1 nm, evaporation rate was And the metal cathode Al (thickness is 100nm, evaporation rate is ).
  • Prepared organic solar cells were measured under standard conditions (AM 1.5, 100 mW/cm 2 ) and current density-voltage curve data were collected using a Keithley 2400 source meter.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / PEDOT: PSS / COOP-4HT-BDT: PC 71 BM: piperazine / LiF / Al (100 nm). Among them, the structure of COOP-4HT-BDT is shown in formula (13).
  • Example 6 Preparation of an inverted structure polymer solar cell based on PTB7-Th:SBF-PDI 4 : piperazine (0.1 wt%) as an organic photoactive layer
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is prepared by mixing an electron donor material PTB7-Th, an electron acceptor material SBF-PDI 4 and piperazine in chloroform (plus 1% by volume of chloronaphthalene). Wherein the mass percentage of PTB7-Th and SBF-PDI 4 is 1:1, wherein the concentration of PTB7-Th is 5 mg/mL, and the content of piperazine is 0.1 wt% of the total mass of PTB7-Th and SBF-PDI 4 .
  • An organic photoactive layer was prepared in a glove box by spin coating at a speed of 2000 rpm/s, a time of 60 s, and a thickness of about 100 nm.
  • the structure of the organic solar cell prepared in this embodiment is: transparent substrate / ITO / ZnO / PTB7 - Th: SBF - PDI 4 : piperazine / MoO 3 / Al (100 nm) wherein the chemical structure of PTB7-Th is as follows ( 12), the structure of SBF-PDI 4 is shown in equation (14).
  • Figure 8 is a graph showing the current density-voltage of the organic solar cell prepared in Example 6, and other specific device performance parameters are listed in Table 7. It can be seen from the experimental results that the photoelectric conversion efficiency of the organic solar cell reached 5.32% after doping with 0.1% piperazine.
  • Example 7 Preparation of an inverted structure polymer solar cell based on P3HT: PC 61 BM: polyetherimide (1 wt%) as an organic photoactive layer
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is prepared by mixing an electron donor material P3HT, an electron acceptor material PC 61 BM and a polyether imide in o-dichlorobenzene, wherein P3HT and PC 61 are prepared.
  • the BM mass percentage is 1:1
  • the polyetherimide content is 1 wt% of the total mass of P3HT and PC 61 BM.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / P3HT: PC 61 BM: polyetherimide / MoO 3 / Al (100 nm).
  • the structure of the polyetherimide is shown in the formula (15).
  • Example 8 Preparation of an inverted structure polymer solar cell based on P3HT:PC 61 BM: 2,5-diazabicyclo[2.2.2]octane (1 wt%) as an organic photoactive layer
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is mixed with an electron donor material P3HT, an electron acceptor material PC 61 BM and 2,5-diazabicyclo[2.2.2]octane in o-dichlorobenzene.
  • P3HT electron donor material
  • PC 61 BM electron acceptor material
  • 2,5-diazabicyclo[2.2.2]octane content is 1 wt% of the total mass of P3HT and PC 61 BM.
  • the structure of the organic solar cell prepared in this example is: transparent substrate / ITO / ZnO / P3HT: PC 61 BM: 2,5-diazabicyclo [2.2.2] octane / MoO 3 / Al (100 nm) .
  • the structure of 2,5-diazabicyclo[2.2.2]octane is shown in formula (16).
  • the current density-voltage graph of the organic solar cell prepared in Example 8 other specific device performance parameters are listed in Table 9. It can be seen from the experimental results that after doping with 1wt% 2,5-diazabicyclo[2.2.2]octane, the voltage and current of the organic solar cell are also improved, and the photoelectric conversion efficiency of the final device is improved from the original 3.30%. 3.67%.
  • Example 9 Preparation of an inverted structure polymer solar cell based on P3HT:PC 61 BM: N,N'-diphenylethylenediamine (1 wt%) as an organic photoactive layer
  • the preparation method is as shown in Comparative Example 1.
  • the organic photoactive layer is prepared by mixing an electron donor material P3HT, an electron acceptor material PC 61 BM and N,N'-diphenylethylenediamine in o-dichlorobenzene. Wherein the P3HT and PC 61 BM mass percentage is 1:1, and the N,N'-diphenylethylenediamine content is 1% by weight of the total mass of P3HT and PC 61 BM.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / P3HT: PC 61 BM: N, N'-diphenylethylenediamine / MoO 3 / Al (100 nm).
  • the structure of N,N'-diphenylethylenediamine is shown in formula (17).
  • the current density-voltage graph of the organic solar cell prepared in Example 9 other specific device performance parameters are listed in Table 10. It can be seen from the experimental results that after doping with 1wt% N,N'-diphenylethylenediamine, the voltage and current of the organic solar cell are also improved, and the photoelectric conversion efficiency of the final device is improved from 3.30% to 3.64%.
  • Example 10 Preparation of an inverted structure polymer solar cell based on P3HT:PC 61 BM: 2,5-dimethylpiperazine (1 wt%) as an organic photoactive layer
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is prepared by mixing an electron donor material P3HT, an electron acceptor material PC 61 BM and 2,5-dimethylpiperazine in o-dichlorobenzene.
  • the P3HT and PC 61 BM mass percentages were 1:1, and the 2,5-dimethylpiperazine content was 1 wt% of the total mass of P3HT and PC 61 BM.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / P3HT: PC 61 BM: 2,5-dimethylpiperazine / MoO 3 /Al (100 nm).
  • the structure of 2,5-dimethylpiperazine is shown in formula (18).
  • a current density-voltage graph of the organic solar cell prepared in Example 10 and other specific device performance parameters are listed in Table 11. It can be seen from the experimental results that after doping with 1wt% 2,5-dimethylpiperazine, the voltage and current of the organic solar cell are also improved, and the photoelectric conversion efficiency of the final device is increased from the original 3.30% to 3.59%.
  • Example 11 Preparation of an inverted structure polymer solar cell based on P3HT:PC 61 BM: 2-(4-pyridyl)piperazine (1 wt%) as an organic photoactive layer
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is prepared by mixing an electron donor material P3HT, an electron acceptor material PC 61 BM and 2-(4-pyridyl) piperazine in a mixture of trimethylbenzene, wherein P3HT is prepared. And the PC 61 BM mass percentage 1:1, 2-(4-pyridyl) piperazine content is 1 wt% of the total mass of P3HT and PC 61 BM.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / P3HT: PC 61 BM: 2-(4-pyridyl) piperazine / MoO 3 / Al (100 nm).
  • the structure of 2-(4-pyridyl)piperazine is shown in the formula (19).
  • Example 12 Preparation of an inverted structure polymer solar cell based on P3HT:PC 61 BM: pentaethylenehexamine (1 wt%) as an organic photoactive layer
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is prepared by mixing an electron donor material P3HT, an electron acceptor material PC 61 BM and pentaethylene hexamine in o-dichlorobenzene, wherein P3HT and PC 61 BM are prepared.
  • the mass percentage is 1:1, and the pentaethylenehexamine content is 1% by weight of the total mass of P3HT and PC 61 BM.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / P3HT: PC 61 BM: pentaethylene hexamine / MoO 3 / Al (100 nm).
  • the structure of pentaethylenehexamine is shown in formula (20).
  • the current density-voltage graph of the organic solar cell prepared in Example 12, and other specific device performance parameters are listed in Table 13. It can be seen from the experimental results that after doping with 1wt% pentaethylenehexamine, the voltage and current of the organic solar cell are also improved, and the photoelectric conversion efficiency of the final device is increased from the original 3.30% to 3.59%.
  • Example 13 Preparation of an inverted structure polymer solar cell based on PffBT4T-2OD: PC 61 BM: N,N-diphenylethylenediamine (1 wt%) as an organic photoactive layer
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is mixed with the electron donor material PffBT4T-2OD, the electron acceptor material PC 61 BM and the N,N-diphenylethylenediamine (Formula 20) and dissolved in the toluene and the 1 -Phenylnaphthalene was prepared by mixing, wherein the PffBT4T-2OD and PC 61 BM mass percentage was 1:1, and the N,N-diphenylethylenediamine content was 1 wt% of the total mass of PffBT4T-2OD and PC 61 BM.
  • the volume ratio of 1-phenylnaphthalene to trimethylbenzene was 0.025:1.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / PffBT4T-2OD: PC 61 BM: N, N-diphenylethylenediamine / MoO 3 / Al (100 nm).
  • the structure of PffBT4T-2OD is shown in formula (21), and the structure of N,N-diphenylethylenediamine is shown in formula (17).
  • Example 14 Preparation of an inverted structure polymer solar cell based on P3HT:PC 61 BM:5,10-DIHYDRO-PHENAZINE (1 wt%) as an organic photoactive layer
  • the preparation method is shown in Comparative Example 1.
  • the organic photoactive layer is prepared by mixing an electron donor material P3HT, an electron acceptor material PC 61 BM and 5,10-DIHYDRO-PHENAZINE in o-dichlorobenzene, wherein P3HT and The PC 61 BM mass percentage 1:1, 5, 10-DIHYDRO-PHENAZINE content is 1 wt% of the total mass of P3HT and PC 61 BM.
  • the structure of the organic solar cell prepared in this example was: transparent substrate / ITO / ZnO / P3HT: PC 61 BM: 5, 10-DIHYDRO - PHENAZINE / MoO 3 / Al (100 nm).
  • the structure of 5,10-DIHYDRO-PHENAZINE is shown in equation (22).
  • the current density-voltage graph of the organic solar cell prepared in Example 14 other specific device performance parameters are listed in Table 15. It can be seen from the experimental results that after doping with 1wt% 5,10-DIHYDRO-PHENAZINE, the voltage and current of the organic solar cell are also improved, and the photoelectric conversion efficiency of the final device is improved from the original 3.30% to 3.58%.
  • P3HT 15 will invert ratio of Example 1: PC 61 BM device and doped with 1% piperazine in Example 1 P3HT: PC 61 BM simultaneously attenuating device testing system with a solar battery life test, two test process
  • the device has the same light intensity and is carried out under the condition of 100% load. Since the device is continuously illuminated, the surface temperature of the device is 40-45 °C.
  • FIGS. 17a- 17d is an inverted FIG Comparative Example 1
  • P3HT 1% piperazine doped P3HT PC 61 BM
  • Embodiment 1 a graph showing changes over time performance during PC 61 BM attenuation device, from It can be seen from Fig. 17a-Fig. 17d that the undoped piperazine device decays with time, and the performance is rapidly attenuated. The performance of the device has decayed to 55% at the beginning of the test. In the piperazine-doped device, the voltage and current are hardly attenuated with time, and the fill factor rises, eventually resulting in a slight increase in device performance. At 200 h, the device performance is still almost no attenuation.

Abstract

一种有机光活性层复合墨水,包括电子给体材料、电子受体材料、有机胺化合物和有机溶剂,其是将电子给体材料、电子受体材料和有机胺化合物均匀混合在有机溶剂中制备而得。该复合墨水可在有机太阳能电池的底电极界面修饰层(4)上形成有机光活性层(3)复合薄膜。该有机太阳能电池包括沿设定方向依次设置的顶电极(1)、顶电极界面修饰层(2)、有机光活性层(3)、底电极界面修饰层(4)和底电极(5)。通过有机胺化合物与光活性层材料分子间的相互作用,可以有效抑制活性层分子的光化学反应,显著提高光活性层材料的光稳定性,进而提高太阳能电池的稳定性。

Description

有机光活性层复合墨水、有机太阳能电池及其制备方法 技术领域
本发明具体涉及一种有机太阳能电池光活性层复合墨水材料、利用其形成的高稳定性有机太阳能电池及其制备方法,属于光电功能材料及器件技术领域。
背景技术
有机太阳能电池由于其低廉、质轻、弯曲性能好、可大面积印刷等优点,受到人们的广泛关注。近年来,随着科学家的不懈努力,有机太阳能电池光电转换效率已超过11%,逐渐接近商用化门槛。相比之下,目前有机太阳能电池器件的稳定性能还远远不能满足应用需求。
大量研究结果表明,有机太阳能电池在工作过程中,会在刚开始的100个小时内出现急速衰减的现象,称为“burn-in loss”。该过程通常发生在器件工作的起始阶段,虽然持续时间在一百个小时左右,但是却造成了器件20-50%的性能衰减,严重影响了器件的稳定性和使用寿命。这一过程被认为是由于有机光活性层内的失效而导致器件性能的衰减。因此提高光活性层的稳定性能是提高有机太阳能电池器件稳定性的重要方法。目前提高活性层结构稳定性的方法主要通过给体材料的设计合成和非富勒烯材料的开发使用,很少有合适方式能在不改变活性层中材料的前提下,不影响器件效率又能提高器件稳定性。
发明内容
本发明的主要目的在于提供一种有机光活性层复合墨水及其制备方法,以克服现有技术的不足。
本发明的另一主要目的在于提供利用该有机光活性层复合墨水制备的有机太阳能电池及其制备方法。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一种有机光活性层复合墨水,包括电子给体材料、电子受体材料、有机溶剂和有机胺化合物,并且在所述有机光活性层复合墨水中有机胺化合物的质量为电子给体材料与电子受体材料的总质量的0.01wt%~10wt%,在所述有机光活性层复合墨水中所述电 子给体材料和电子受体材料的质量比为10:1~1:10,所述电子给体材料或电子受体材料的浓度为1~50mg/mL。
进一步的,所述有机胺化合物包括具有式(1)、式(2)、式(1‐1)和式(2‐1)中任一者所示结构的有机胺化合物:
Figure PCTCN2017119957-appb-000001
其中,R 1,R 2,R 3,R 4包括氢、取代或未取代的C1~C20的烷基、C1~C20的杂烷基或者取代或未取代修饰的芳香或杂芳香π共轭单元衍生物;R 5,R 6,R 7,R 8包括氢、取代或未取代的C1~C20的烷基、C1~C20的杂烷基、取代或未取代修饰的芳香或杂芳香π共轭单元衍生物或者R 5,R 6,R 7,R 8中任意两个取代单元相连形成的五元或六元环状结构。
本发明实施例还提供了前述的有机光活性层复合墨水的制备方法,其包括:将有机胺化合物、电子受体材料和电子给体材料溶解于有机溶剂中,混合均匀,得到所述有机光活性层复合墨水。
本发明实施例还提供了一种有机光活性层复合薄膜,由前述的有机光活性层复合墨水形成。进一步的,本发明还提供了前述有机光活性层复合薄膜的制备方法,其包括:对所述的有机光活性层复合墨水进行成膜处理,形成有机光活性层复合薄膜。
优选的,所述成膜处理的方式包括滴膜工艺、旋涂成膜工艺、喷涂成膜工艺、喷墨打印成膜工艺、丝网印刷成膜工艺、刮刀涂覆成膜工艺和线棒涂层工艺中的至少一种。
本发明还提供了前述有机光活性层复合墨水或有机光活性层复合薄膜于制备有机太阳能电池中的应用。
本发明还提供了一种有机太阳能电池,其包括沿设定方向依次设置的顶电极、顶电极界面修饰层、有机光活性层、底电极界面修饰层、底电极和底电极基底,所述有机光活化层包括前述的有机光活性层复合薄膜。进一步的,所述的有机太阳能电池还可包括底电极基底,所述底电极设置于所述底电极基底上。
本发明还提供了一种叠层的有机太阳能电池,其前结和/或后结电池中含有上述的有机太阳能电池。
进一步的,本发明还提供了前述的有机太阳能电池的制备方法,其包括:
(1)提供底电极基底,并在底电极基底上设置底电极;
(2)在所述底电极上形成底电极界面修饰层;
(3)采用前述的有机光活性层复合墨水在所述底电极界面修饰层上形成有机光活性层复合薄膜;
(4)在所述的有机光活性层复合薄膜上形成顶电极界面修饰层;
(5)在所述顶电极界面修饰层上形成顶电极,获得所述有机太阳能电池。
与现有技术相比,本发明的优点包括:
(1)本发明提供的有机光活性层复合墨水在现有的光活性层墨水中加入有机胺化合物,通过有机胺化合物与光活性层材料分子间的相互作用,抑制了活性层分子光化学反应,可以提高光活性层材料的光稳定性,进而提高太阳能电池的稳定性;
(2)本发明提供的有机光活性层复合墨水通过有机胺化合物的引入,不仅可以提高有机太阳能电池的光电转换效率,还可以提高其长期稳定性;
(3)由本发明提供的有机活性层复合墨水制备的有机光活性层复合薄膜稳定性优异,制备的基于该结构的有机太阳能电池具有高的稳定性和长的使用寿命,尤其还能够改善有机太阳能电池器件的能量转换效率等其它工作性能;
(4)本发明提供的高稳定性有机太阳能电池制备方法普适性广,且制备方法简单方便,材料成本低廉,经济效益高。
附图说明
图1是本发明一典型实施例中一种有机太阳能电池的结构示意图;
图2是本发明对比例1中所制备的有机太阳能电池的I-V曲线图;
图3是本发明实施例1中所制备的有机太阳能电池的I-V曲线图;
图4是本发明实施例2中所制备的有机太阳能电池的I-V曲线图;
图5是本发明实施例3中所制备的有机太阳能电池的I-V曲线图;
图6是本发明实施例4中所制备的有机太阳能电池的I-V曲线图;
图7是本发明实施例5中所制备的有机太阳能电池的I-V曲线图;
图8是本发明实施例6中所制备的有机太阳能电池的I-V曲线图;
图9是本发明实施例7中所制备的有机太阳能电池的I-V曲线图;
图10是本发明实施例8中所制备的有机太阳能电池的I-V曲线图;
图11是本发明实施例9中所制备的有机太阳能电池的I-V曲线图;
图12是本发明实施例10中所制备的有机太阳能电池的I-V曲线图;
图13是本发明实施例11中所制备的有机太阳能电池的I-V曲线图;
图14是本发明实施例12中所制备的有机太阳能电池的I-V曲线图;
图15是本发明实施例13中所制备的有机太阳能电池的I-V曲线图;
图16是本发明实施例14中所制备的有机太阳能电池的I-V曲线图;
图17a-图17d是本发明对比例1和实施例1中所制备的有机太阳能电池在衰减测试中性能随时间变化曲线图。
附图标记说明:1-顶电极、2-顶电极界面修饰层、3-有机光活性层、4-底电极界面修饰层、5-底电极,6-底电极基底。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案,如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本发明实施例的一个方面提供了一种有机光活性层复合墨水,其包括电子给体材料、电子受体材料和有机溶剂和有机胺化合物。
进一步的,在所述有机光活性层复合墨水中有机胺化合物的质量为电子给体材料和电子受体材料的总质量的0.01wt%~10wt%。
进一步的,在所述有机光活性层复合墨水中所述电子给体材料与电子受体材料的质量比为10:1~1:10,优选为5:1~1:5,尤其优选为2:1~1:2。
进一步的,所述电子给体材料或电子受体材料的浓度为1~50mg/mL,优选为5~20mg/mL,尤其优选为10~20mg/mL。
所述有机溶剂包括但不限于邻二氯苯、氯苯、氯仿、甲苯、二甲苯、三甲苯等。
进一步的,所述有机胺化合物包括具有式(1)、式(2)、式(1‐1)和式(2‐1)中任一者所示结构的一种或多种有机胺化合物:
Figure PCTCN2017119957-appb-000002
其中,R 1,R 2,R 3,R 4至少独立地选自氢、取代或未取代的C1~C20的烷基、C1~C20的杂烷基或者取代或未取代修饰的芳香或杂芳香π共轭单元衍生物。
其中,R 5,R 6,R 7,R 8至少独立地选自氢、取代或未取代的C1~C20的烷基、C1~C20的杂烷基、取代或未取代修饰的芳香或杂芳香π共轭单元衍生物或者R 5,R 6,R 7,R 8中任意两个取代单元相连形成的五元或六元环状结构。
优选的,C1~C20的烷基包括但不限于为甲基、乙基、丙基、丁基等。
以下是本发明所公开的解决方案中应用的一些修饰单元,但本发明所提供的解决方案并不局限于下列单元。
Figure PCTCN2017119957-appb-000003
在一些实施例中,具有式(1)结构的有机胺化合物选自具有式(3)所述结构的乙二胺衍生物。
Figure PCTCN2017119957-appb-000004
其中,R 1,R 2至少独立地选自氢、取代或未取代的C1~C20的烷基、C1~C20的杂烷基、或者取代或未取代修饰的芳香或杂芳香π共轭单元衍生物。
以下是本发明所公开的解决方案中应用的一些修饰单元,但本发明所提供的解决方案并不局限于下列单元。
Figure PCTCN2017119957-appb-000005
优选的,所述有机胺化合物为烷基乙二胺。
在一些实施例中,具有式(2)结构的有机胺化合物选自具有下式(4)-式(8)中任一者所示结构的哌嗪衍生物。
Figure PCTCN2017119957-appb-000006
其中,R 9至少选自氢、取代或未取代的C1~C20的烷基、C1~C20的杂烷基、或者取代或未取代修饰的芳香或杂芳香π共轭单元衍生物。
以下是本发明所公开的解决方案中应用的一些修饰单元,但本发明所提供的解决方案并不局限于下列单元。
Figure PCTCN2017119957-appb-000007
优选的,所述有机胺化合物为哌嗪。
所述电子给体材料是指在有机太阳能电池光活性层中,在受光激发的条件下,分子能够给出电子,实现电荷分离的半导体材料。在一些实施例中,所述电子给体材料包括共轭聚合物电子给体材料和/或共轭有机小分子电子给体材料等。
优选的,所述共轭聚合物电子给体材料包括聚(3-己基噻吩)(P3HT)、PTB7(Nature Photonics,2012,6(9):591-595)、PTB7-Th(Energy Environ.Sci.,2015,8,2902)、PffBT4T-2OD(Nature communications,2014,5)和其结构变体中的任意一种或两种以上的组合,但不限于此。
优选的,所述共轭有机小分子电子给体材料包括基于苯并二噻吩(BDT)核心小分子,基于寡聚噻吩为核心的小分子等。
例如优选的,所述共轭有机小分子电子给体材料包括DR3TSBDT(Advanced Materials,2016,28(32):7008-7012.)、DRCN7T(Nature Photonics 9.1(2015):35-41)和其结构变体等等。
所述电子受体材料是指在有机太阳能电池活性层中,在受光激发的条件下,分子能够接受电子,实现电荷分离的半导体材料。在一些实施例中,所述电子受体材料包括富勒烯电子受体材料、富勒烯衍生物类电子受体材料和非富勒烯电子受体材料中的任意一种或两种以上的组合,但不限于此。
优选的,所述富勒烯电子受体材料、富勒烯衍生物类电子受体材料包括[6,6]-苯基-C 61-丁酸甲酯(PC 61BM)、PC 71BM(Advanced Energy Materials,2013,3(1):65-74)、Bis-PC 61BM(Journal ofnanoscience and nanotechnology,2014,14(2):1064-1084.)和IC 61BA(Advanced Functional Materials,2013,23(26):3286-3298.)中的任意一种或两种以上的组合,但不限于此。
优选的,所述非富勒烯电子受体材料包括有机共轭性电子受体材料。
更为优选的,所述有机共轭性电子受体材料包括基于苝二酰亚胺(PDI)衍生物、萘二酰亚胺(NDI)衍生物、引达省衍生物、芴衍生物、苯并噻二唑(BT)衍生物、亚酞菁类衍生物(SubPc)中的任意一种或两种以上的组合,但不限于此。
本发明实施例的另一个方面提供了前述的有机光活性层复合墨水的制备方法,其包括:将有机胺化合物、电子受体材料和电子给体材料溶解于有机溶剂中,混合均匀,得到所述有机光活性层复合墨水。
本发明实施例的另一个方面还提供了一种有机光活性层复合薄膜,其由前述的有机光活性层复合墨水形成。
在一些实施例中,所述有机光活性层复合薄膜包括以聚(3-己基噻吩)、PTB7、PTB7-Th、PffBT4T-2OD和其结构变体中的任意一种或两种以上的组合作为电子给体材料、以[6,6]-苯基-C 61-丁酸甲酯、PC 71BM、Bis-PC 61BM和IC 61BA中的任意一种或两种以上的组合作为电子受体材料、以及具有式(1)、式(2)、式(1-1)和式(2-1)中任一者所示结构的有机胺化合物组合形成的复合物。
优选的,所述有机光活性层复合薄膜的厚度为80nm~2μm,优选为80~200nm,尤其优选为80~100nm。
进一步的,本发明实施例还提供了前述有机光活性层复合薄膜的制备方法,其包括:对所述的有机光活性层复合墨水进行成膜处理,形成有机光活性层复合薄膜。
优选的,所述成膜处理的方式包括滴膜工艺、旋涂成膜工艺、喷涂成膜工艺、喷墨打印成膜工艺、丝网印刷成膜工艺、刮刀涂覆成膜工艺和线棒涂层工艺中的至少一种。
在一些较为具体的实施方案中,所述制备方法可以包括:至少选用涂布、印刷方式中的任意一种将所述有机光活性层复合墨水施加至基材上而构建形成所述的有机光活性层复合薄膜。优选的,所述涂布方式包括旋转涂布、刮刀涂布、喷雾涂布中的任意一种。
优选的,所述成膜处理还包括对所述有机光活性层复合薄膜进行热处理和/或进行溶剂退火处理。
优选的,所述有机光活性层复合薄膜的热处理温度为60~200℃,时间为10s~2h。
优选的,所述溶剂退火处理采用的溶剂包括甲苯、二甲基甲酰胺(DMF)、四氢呋喃、氯仿、邻二氯苯、氯苯中的任意一种或两种以上的组合,但并不限于此。
进一步的,所述溶剂退火处理的时间为5s~2h。
本发明实施例的另一个方面还提供了前述有机光活性层复合墨水或有机光活性层复合薄膜于制备有机太阳能电池中的应用。
参见图1所示,本发明实施例还提供了一种有机太阳能电池,其包括沿设定方向依次设置的顶电极1、顶电极界面修饰层2、有机光活性层3、底电极界面修饰层4、底电极5和底电极基底6,所述有机光活化层3包括前述的有机光活性层复合薄膜。
本发明还提供了一种叠层的有机太阳能电池,其前结和/或后结电池中含有上述的有机太阳能电池。
进一步的,本发明实施例还提供了前述的有机太阳能电池的制备方法,其包括:
(1)提供底电极基底,并在底电极基底上设置底电极;
(2)在所述底电极上形成底电极界面修饰层;
(3)采用前述的有机光活性层复合墨水在所述底电极界面修饰层上形成有机光活性层复合薄膜;
(4)在所述的有机光活性层复合薄膜上形成顶电极界面修饰层;
(5)在所述顶电极界面修饰层上形成顶电极,获得所述有机太阳能电池。
进一步的,在前述步骤(1)中,在底电极基底形成底电极之前,可以先对底电极基底进行清洗。
在一些实施例中,步骤(4)包括:先对所述有机光活性层复合薄膜进行热处理和/或进行溶剂退火处理,之后再于所述有机光活性层复合薄膜上制备顶电极界面修饰层。
优选的,所述有机光活性层复合薄膜的热处理温度为60~200℃,时间为10s~2h。
优选的,所述溶剂退火处理采用的溶剂包括甲苯、二甲基甲酰胺(DMF)、四氢呋喃、氯仿、邻二氯苯、氯苯中的任意一种或两种以上的组合,但并不限于此。
进一步的,所述溶剂退火处理的时间为5s~2h。
进一步的,在步骤(3)前的任意步骤,还包括:制备所述的有机光活性层复合墨水。
在一些较为具体的实施例中,所述制备方法具体可以包括以下步骤:
(1)清洗氧化铟锡(ITO)基底;
(2)在底电极基底上旋涂或刮涂或喷涂底电极界面修饰层;
(3)制备有机光活性层复合墨水,然后采用所述有机光活性层复合墨水在底电极界面修饰层上旋涂或刮涂或喷涂形成有机光活性层复合薄膜;
(4)先对所述有机光活性层复合薄膜进行热处理或溶剂退火处理,之后再在所述有机光活性层复合薄膜上蒸镀顶电极界面修饰层;
(5)在所述顶电极界面修饰层上蒸镀顶电极,从而获得所述有机太阳能电池。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例及附图,对本发明的技术方案进行进一步详细说明,下列实施例中的方法,如无特别说明,均为本领域的常规方法。
对比例1:基于聚(3-己基噻吩)(P3HT):[6,6]-苯基-C 61-丁酸甲酯(PC 61BM)为有机光活性层的倒置结构聚合物太阳能电池的制备
首先依次使用洗涤剂、去离子水、丙酮和异丙醇对透明衬底及氧化铟锡(ITO)透明导电阴极所组成的基片进行超声清洗,每步各30min。用氮气将清洗后的基片吹干后,然后用UVO臭氧清洗机处理基片30min。在处理好的基片上制备ZnO阴极缓冲层;采用旋涂的方法将ZnO丙酮溶液旋涂在基片上,匀胶机转速为2000rpm/s,旋涂时间为60s;然后在120℃的条件下退火10min。采用旋涂法在阴极缓冲层上制备有机光活性层。该有机光活性层由电子给体材料P3HT与电子受体材料PC 61BM按质量百分比1:1溶于邻二氯苯混合制备而成;采用旋涂法在手套箱内制备有机光活性层,转速为600rpm/s,时间为60s,厚度约为150nm。旋涂成膜后在带盖表面皿中溶剂退火2h,然后将基片放在加热板上在120℃进行热退火30min。然后将基片移入真空镀膜机,在有机光活性层上依次蒸镀阳极缓冲层氧化钼(MoO 3)(厚度为20nm,蒸发速率为
Figure PCTCN2017119957-appb-000008
)及金属阳极Al(厚度为100nm,蒸发速率为
Figure PCTCN2017119957-appb-000009
)。制备完成的太阳能电池在标准条件下(AM1.5,100mW/cm 2)测量,使用Keithley 2400数字源表收集电流密度-电压曲线数据。
该对比例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM/MoO 3/Al(100nm)。
参阅图2所示,为对比例1制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性 能参数列于表1中。由实验结果可以看出,标准结构的P3HT:PC 61BM电池的光电转换效率为3.30%。
表1 P3HT:PC 61BM器件的性能参数
  V OC(V) J SC(mA/cm 2) FF PCE(%)
P3HT:PC 61BM 0.61 9.02 0.60 3.30
实施例1:基于聚3-己基噻吩(P3HT):[6,6]-苯基-C 61-丁酸甲酯(PC 61BM):哌嗪(不同含量)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料P3HT、电子受体材料PC 61BM和哌嗪混合溶于邻二氯苯混合制备而成,其中按P3HT和PC 61BM质量百分比1:1,哌嗪含量分别是P3HT和PC 61BM总质量的1wt%、3wt%、5wt%、7wt%、10wt%。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM:哌嗪/MoO 3/Al(100nm)。其中哌嗪的结构见式(9)。
Figure PCTCN2017119957-appb-000010
表2不同哌嗪含量的P3HT:PC 61BM器件的性能参数
哌嗪添加量 V OC(V) J SC(mA/cm 2) FF PCE(%)
1% 0.62 10.11 0.59 3.70
3% 0.62 9.61 0.60 3.57
5% 0.62 9.53 0.59 3.49
7% 0.61 9.89 0.56 3.38
10% 0.61 9.59 0.56 3.28
阅图3所示,为实施例1制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表2中。由实验结果可以看出,在哌嗪掺杂量为1-5%时,有机太阳能电池电压和电 流都有提升,最终器件光电转换效率最高达到3.70%。在掺杂量从1%到10%的范围时,器件性能都高于或与不掺杂哌嗪器件性能相当,说明哌嗪的掺杂范围很宽。
实施例2:基于聚3-己基噻吩(P3HT):[6,6]-苯基-C 61-丁酸甲酯(PC 61BM):N,N'-二甲基乙二胺(1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料P3HT、电子受体材料PC 61BM和N,N'-二甲基乙二胺混合溶于邻二氯苯混合制备而成,其中按P3HT和PC 61BM质量百分比1:1,N,N'-二甲基乙二胺含量是P3HT和PC 61BM总质量的1wt%。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM:N,N'-二甲基乙二胺/MoO 3/Al(100nm)。其中N,N'-二甲基乙二胺结构见式(10)。
Figure PCTCN2017119957-appb-000011
表3含1wt%N,N'-二甲基乙二胺的P3HT:PC 61BM器件的性能参数
  V OC(V) J SC(mA/cm 2) FF PCE(%)
N,N'‐二甲基乙二胺(1%) 0.62 9.55 0.59 3.49
参阅图4所示,为实施例2制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表3中。由实验结果可以看出,掺杂1wt%N,N'-二甲基乙二胺后,有机太阳能电池电压和电流也都有提升,最终器件光电转换效率从原始3.30%提高到3.49%。
实施例3:基于聚3-己基噻吩(P3HT):[6,6]-苯基-C 61-丁酸甲酯(PC 61BM):十氢异喹啉(1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料P3HT、电子受体材料PC 61BM和十氢异喹啉混合溶于邻二氯苯混合制备而成,其中按P3HT和PC 61BM质量百分比1:1,十氢异喹啉含量是P3HT和PC 61BM总质量的1wt%。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM:十氢异喹啉/MoO 3/Al(100nm)。其中十氢异喹啉的结构见式(11):
Figure PCTCN2017119957-appb-000012
表4含1wt%十氢异喹啉的P3HT:PC 61BM器件的性能参数
Figure PCTCN2017119957-appb-000013
参阅图5所示,为实施例3制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表4中。由实验结果可以看出,掺杂1wt%十氢异喹啉后,有机太阳能电池电压和电流也都有提升,最终器件光电转换效率从原始3.30%提高到3.51%。
实施例4:基于PTB7-Th:[6,6]-苯基-C 61-丁酸甲酯(PC 61BM):哌嗪(不同浓度)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料PTB7-Th、电子受体材料PC 61BM和哌嗪(不同浓度)混合溶于氯苯(加3%体积比的DIO)混合制备而成,其中按PTB7-Th和PC 61BM质量百分比1:1.2,其中PTB7-Th的浓度为7mg/mL,哌嗪含量是PTB7-Th和PC 61BM总质量的0.01-0.2wt%。采用旋涂法在手套箱内制备有机光活性层,转速为1000rpm/s,时间为60s,厚度约为100nm。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/PTB7-Th:PC 61BM:哌嗪/MoO 3/Al(100nm)。其中,PTB7-Th的化学结构见式(12)。
Figure PCTCN2017119957-appb-000014
表5不同哌嗪含量哌嗪的PTB7-Th:PC 61BM器件的性能参数
哌嗪添加量 V OC(V) J SC(mA/cm 2) FF PCE(%)
0.01% 0.8 14.42 0.50 5.77
0.05% 0.8 14.73 0.41 4.83
0.1% 0.8 14.61 0.51 5.96
0.15% 0.8 14.67 0.64 7.51
0.2% 0.8 14.88 0.57 6.79
参阅图6所示,为实施例4制备的掺杂0.15wt%哌嗪的有机太阳能电池的电流密度-电压曲线图。由实验结果可以看出,掺杂0.15wt%哌嗪后,有机太阳能电池光电转换效率达到7.51%。
实施例5:基于COOP-4HT-BDT(小分子):PC 71BM:哌嗪(0.1wt%)为有机光活性层的正置结构聚合物太阳能电池的制备
首先依次使用洗涤剂、去离子水、丙酮和异丙醇对透明衬底及氧化铟锡(ITO)透明导电阳极所组成的基片进行超声清洗,每步各30min。用氮气将清洗后的基片吹干后,然后用UVO臭氧清洗机处理基片30min。在处理好的基片上制备PEDOT:PSS阳极缓冲层;采用旋涂法在阳极缓冲层上制备有机光活性层。该有机光活性层由电子给体材料COOP-4HT-BDT、电子受体材料PC 71BM和哌嗪混合溶于氯仿混合制备而成,其中按COOP-4HT-BDT和PC 71BM质量百分比2:1,其中COOP-4HT-BDT的浓度为5mg/mL,哌嗪含量是COOP-4HT-BDT和PC 71BM总质量的0.1wt%。采用旋涂法在手套箱内制备有机光活性层,转速为2500rpm/s,时间为40s,厚度约为110nm。然后将基片移入真空镀膜机,在有机光活性层上依次蒸镀阴极缓冲层氟化锂(LiF)(厚度为1nm,蒸发速率为
Figure PCTCN2017119957-appb-000015
)及金属阴极Al(厚度为100nm,蒸发速率为
Figure PCTCN2017119957-appb-000016
Figure PCTCN2017119957-appb-000017
)。制备完成的有机太阳能电池在标准条件下(AM1.5,100mW/cm 2)测量,使用Keithley 2400数字源表收集电流密度-电压曲线数据。
该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/PEDOT:PSS/COOP-4HT-BDT:PC 71BM:哌嗪/LiF/Al(100nm)。其中,COOP-4HT-BDT结构见式(13)。
Figure PCTCN2017119957-appb-000018
表6含0.1wt%哌嗪的COOP-4HT-BDT:PC 71BM器件的性能参数
  V OC(V) J SC(mA/cm 2) FF PCE(%)
COOP-4HT-BDT:PC 71BM:哌嗪 0.90 8.27 0.69 5.14
参阅图7所示,为实施例5制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表6中。由实验结果可以看出,掺杂0.1wt%哌嗪后,有机太阳能电池光电转换效率达到5.14%。
实施例6基于PTB7-Th:SBF-PDI 4:哌嗪(0.1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料PTB7-Th、电子受体材料SBF-PDI 4和哌嗪混合溶于氯仿(加1%体积比的氯萘)混合制备而成,其中按PTB7-Th和SBF-PDI 4的质量百分比为1:1,其中PTB7-Th的浓度为5mg/mL,哌嗪的含量是PTB7-Th和SBF-PDI 4总质量的0.1wt%。采用旋涂法在手套箱内制备有机光活性层,转速为2000rpm/s,时间为60s,厚度约为100nm。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/PTB7-Th:SBF-PDI 4:哌嗪/MoO 3/Al(100nm)其中PTB7-Th的化学结构见式(12),SBF-PDI 4的结构见式(14)。
Figure PCTCN2017119957-appb-000019
表7 PTB7-Th:SBF-PDI 4器件的性能参数
  V OC(V) J SC(mA/cm 2) FF PCE(%)
PTB7-Th:SBF-PDI 4:哌嗪 0.85 13.05 0.48 5.32
图8所示,为实施例6制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表7中。由实验结果可以看出,掺杂0.1%哌嗪后,有机太阳能电池光电转换效率达到到5.32%。
实施例7基于P3HT:PC 61BM:聚醚酰亚胺(1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料P3HT、电子受体材料PC 61BM和聚醚酰亚胺混合溶于邻二氯苯混合制备而成,其中按P3HT和PC 61BM质量百分比1:1,聚醚酰亚胺含量是P3HT和PC 61BM总质量的1wt%。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM:聚醚酰亚胺/MoO 3/Al(100nm)。其中聚醚酰亚胺的结构见式(15)。
Figure PCTCN2017119957-appb-000020
表8含1wt%聚醚酰亚胺的P3HT:PC 61BM器件的性能参数
Figure PCTCN2017119957-appb-000021
参阅图9所示,为实施例7制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表8中。由实验结果可以看出,掺杂1wt%聚醚酰亚胺后,有机太阳能电池电压和电流也都有提升,最终器件光电转换效率从原始3.30%提高到3.60%。
实施例8基于P3HT:PC 61BM:2,5-二氮杂双环[2.2.2]辛烷(1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料P3HT、电子受体材料PC 61BM和2,5-二氮杂双环[2.2.2]辛烷混合溶于邻二氯苯混合制备而成,其中按P3HT和PC 61BM质量百分比1:1,2,5-二氮杂双环[2.2.2]辛烷含量是P3HT和PC 61BM总质量的1wt%。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM:2,5-二氮杂双环[2.2.2]辛烷/MoO 3/Al(100nm)。其中2,5-二氮杂双环[2.2.2]辛烷的结构见式(16)。
Figure PCTCN2017119957-appb-000022
表9含1wt%2,5-二氮杂双环[2.2.2]辛烷的P3HT:PC 61BM器件的性能参数
Figure PCTCN2017119957-appb-000023
参阅图10所示,为实施例8制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表9中。由实验结果可以看出,掺杂1wt%2,5-二氮杂双环[2.2.2]辛烷后,有机太阳能电池电压和电流也都有提升,最终器件光电转换效率从原始3.30%提高到3.67%。
实施例9基于P3HT:PC 61BM:N,N'-二苯基乙二胺(1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料P3HT、电子受体材料PC 61BM和N,N'-二苯基乙二胺混合溶于邻二氯苯混合制备而成,其中按P3HT和PC 61BM质量百分比1:1,N,N'-二苯基乙二胺含量是P3HT和PC 61BM总质量的1wt%。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM:N,N'-二苯基乙二胺/MoO 3/Al(100nm)。其中N,N'-二苯基乙二胺的结构见式(17)。
Figure PCTCN2017119957-appb-000024
表10含1wt%N,N'-二苯基乙二胺的P3HT:PC 61BM器件的性能参数
Figure PCTCN2017119957-appb-000025
参阅图11所示,为实施例9制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表10中。由实验结果可以看出,掺杂1wt%N,N'-二苯基乙二胺后,有机太阳能电池电压和电流也都有提升,最终器件光电转换效率从原始3.30%提高到3.64%。
实施例10基于P3HT:PC 61BM:2,5-二甲基哌嗪(1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料P3HT、电子受体材料PC 61BM和2,5- 二甲基哌嗪混合溶于邻二氯苯混合制备而成,其中按P3HT和PC 61BM质量百分比1:1,2,5-二甲基哌嗪含量是P3HT和PC 61BM总质量的1wt%。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM:2,5-二甲基哌嗪/MoO 3/Al(100nm)。其中2,5-二甲基哌嗪的结构见式(18)。
Figure PCTCN2017119957-appb-000026
表11含1wt%2,5-二甲基哌嗪的P3HT:PC 61BM器件的性能参数
  V OC(V) J SC(mA/cm 2) FF PCE(%)
2,5-二甲基哌嗪(1%) 0.61 9.50 0.62 3.59
参阅图12所示,为实施例10制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表11中。由实验结果可以看出,掺杂1wt%2,5-二甲基哌嗪后,有机太阳能电池电压和电流也都有提升,最终器件光电转换效率从原始3.30%提高到3.59%。
实施例11基于P3HT:PC 61BM:2-(4-吡啶基)哌嗪(1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料P3HT、电子受体材料PC 61BM和2-(4-吡啶基)哌嗪混合溶于三甲苯混合制备而成,其中按P3HT和PC 61BM质量百分比1:1,2-(4-吡啶基)哌嗪含量是P3HT和PC 61BM总质量的1wt%。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM:2-(4-吡啶基)哌嗪/MoO 3/Al(100nm)。其中2-(4-吡啶基)哌嗪的结构见式(19)。
Figure PCTCN2017119957-appb-000027
表12含1wt%2-(4-吡啶基)哌嗪的P3HT:PC 61BM器件的性能参数
  V OC(V) J SC(mA/cm 2) FF PCE(%)
2-(4-吡啶基)哌嗪(1%) 0.61 9.37 0.62 3.54
参阅图13所示,为实施例11制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表12中。由实验结果可以看出,掺杂1wt%2-(4-吡啶基)哌嗪后,有机太阳能电池电压和电流也都有提升,最终器件光电转换效率从原始3.30%提高到3.54%。
实施例12基于P3HT:PC 61BM:五乙烯六胺(1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料P3HT、电子受体材料PC 61BM和五乙烯六胺混合溶于邻二氯苯混合制备而成,其中按P3HT和PC 61BM质量百分比1:1,五乙烯六胺含量是P3HT和PC 61BM总质量的1wt%。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM:五乙烯六胺/MoO 3/Al(100nm)。其中五乙烯六胺的结构见式(20)。
Figure PCTCN2017119957-appb-000028
表13含1wt%五乙烯六胺的P3HT:PC 61BM器件的性能参数
  V OC(V) J SC(mA/cm 2) FF PCE(%)
五乙烯六胺(1%) 0.61 9.49 0.62 3.59
参阅图14所示,为实施例12制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表13中。由实验结果可以看出,掺杂1wt%五乙烯六胺后,有机太阳能电池电压和电流也都有提升,最终器件光电转换效率从原始3.30%提高到3.59%。
实施例13基于PffBT4T-2OD:PC 61BM:N,N-二苯基乙二胺(1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料PffBT4T-2OD、电子受体材料PC 61BM和N,N-二苯基乙二胺(式20)混合溶于三甲苯以及1-苯基萘混合制备而成,其中按PffBT4T-2OD和PC 61BM质量百分比1:1,N,N-二苯基乙二胺含量是PffBT4T-2OD和PC 61BM总质量的1wt%。1-苯基萘和三甲苯的体积比为0.025:1。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/PffBT4T-2OD:PC 61BM:N,N-二苯基乙二胺/MoO 3/Al(100nm)。其中PffBT4T-2OD的结构见式(21),N,N-二苯基乙二胺的结构见式(17)。
Figure PCTCN2017119957-appb-000029
表14含1wt%N,N-二苯基乙二胺的PffBT4T-2OD:PC 61BM器件的性能参数
Figure PCTCN2017119957-appb-000030
参阅图15所示,为实施例13制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表14中。由实验结果可以看出,掺杂1wt%N,N-二苯基乙二胺后,器件光电转换效率可达8.92%。
实施例14基于P3HT:PC 61BM:5,10-DIHYDRO-PHENAZINE(1wt%)为有机光活性层的倒置结构聚合物太阳能电池的制备
制备方法见对比例1,该有机光活性层由电子给体材料P3HT、电子受体材料PC 61BM和5,10-DIHYDRO-PHENAZINE混合溶于邻二氯苯混合制备而成,其中按P3HT和PC 61BM质量百分比1:1,5,10-DIHYDRO-PHENAZINE含量是P3HT和PC 61BM总质量的1wt%。该实施例制备得到的有机太阳能电池的结构为:透明衬底/ITO/ZnO/P3HT:PC 61BM:5,10-DIHYDRO-PHENAZINE/MoO 3/Al(100nm)。其中5,10-DIHYDRO-PHENAZINE的结构见式(22)。
Figure PCTCN2017119957-appb-000031
表15含1wt%5,10-DIHYDRO-PHENAZINE的P3HT:PC61BM器件的性能参数
Figure PCTCN2017119957-appb-000032
参阅图16所示,为实施例14制备的有机太阳能电池的电流密度-电压曲线图,其他具体器件性能参数列于表15中。由实验结果可以看出,掺杂1wt%5,10-DIHYDRO-PHENAZINE后,有机太阳能电池电压和电流也都有提升,最终器件光电转换效率从原始3.30%提高到3.58%。
实施例15将对比例1中的倒置P3HT:PC 61BM器件和实施例1中的掺杂1%哌嗪的P3HT:PC 61BM器件同时用太阳能电池寿命测试系统进行衰减测试,测试过程中两种器件光强一致且都是在外加100%负载的条件下进行,由于器件被持续光照,测试时器件表面温度为40-45℃。
图17a-图17d所示是对比例1中的倒置P3HT:PC 61BM器件和实施例1中的掺杂1%哌嗪的P3HT:PC 61BM器件衰减过程中性能随时间变化曲线图,从图17a-图17d可以看出,未掺杂哌嗪器件随着时间的延长,各参数都在衰减,导致期间性能快速衰减,测试到200h时,器件性能已衰减到起始的55%;然而掺杂哌嗪的器件,随着时间的延长电压和电流几乎没有衰减,而填充因子反而上升,最终导致器件性能略有上升,测试到200h时,器件性能依然几乎没有衰减。
藉由本发明实施例1-15的结果,可以说明有机胺化合物(例如乙二胺衍生物、哌嗪等)的掺杂不仅可以提高有机太阳能电池的效率,同时可以大大提高器件的长期稳定性。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (38)

  1. 一种有机光活性层复合墨水,包括电子给体材料、电子受体材料和有机溶剂,其特征在于还包括有机胺化合物,并且在所述有机光活性层复合墨水中有机胺化合物的质量为电子给体材料和电子受体材料的总质量的0.01wt%~10wt%,在所述有机光活性层复合墨水中所述电子给体材料与电子受体材料的质量比为10:1~1:10,所述电子给体材料或电子受体材料的浓度为1~50mg/mL。
  2. 根据权利要求1所述的有机光活性层复合墨水,其特征在于:在所述有机光活性层复合墨水中所述电子给体材料和电子受体材料的质量比为5:1~1:5。
  3. 根据权利要求2所述的有机光活性层复合墨水,其特征在于:在所述有机光活性层复合墨水中所述电子给体材料和电子受体材料的质量比为2:1~1:2。
  4. 根据权利要求1所述的有机光活性层复合墨水,其特征在于:在所述有机光活性层复合墨水中,所述电子给体材料或电子受体材料的浓度为5~20mg/mL。
  5. 根据权利要求4所述的有机光活性层复合墨水,其特征在于:在所述有机光活性层复合墨水中,所述电子给体材料或电子受体材料的浓度为10~20mg/mL。
  6. 根据权利要求1所述的有机光活性层复合墨水,其特征在于:所述有机溶剂包括邻二氯苯、氯苯、氯仿、甲苯、二甲苯、三甲苯中的任意一种或两种以上的组合。
  7. 根据权利要求1所述的有机光活性层复合墨水,其特征在于,所述有机胺化合物包括具有式(1)、式(2)、式(1-1)和式(2-1)中任一者所示结构的有机胺化合物:
    Figure PCTCN2017119957-appb-100001
    其中,R 1,R 2,R 3,R 4包括氢、取代或未取代的C1~C20的烷基、C1~C20的杂烷基或者取代或未取代修饰的芳香或杂芳香π共轭单元衍生物;R 5,R 6,R 7,R 8包括氢、取代或未取代的 C1~C20的烷基、C1~C20的杂烷基、取代或未取代修饰的芳香或杂芳香π共轭单元衍生物或者R 5,R 6,R 7,R 8中任意两个取代单元相连形成的五元或六元环状结构。
  8. 根据权利要求1所述的有机光活性层复合墨水,其特征在于,所述有机胺化合物选自乙二胺衍生物,所述乙二胺衍生物具有式(3)所述结构:
    Figure PCTCN2017119957-appb-100002
    其中,R 1,R 2包括氢、取代或未取代的C1~C20的烷基、C1~C20的杂烷基、或者取代或未取代修饰的芳香或杂芳香π共轭单元衍生物。
  9. 根据权利要求8所述的有机光活性层复合墨水,其特征在于,所述有机胺化合物为烷基乙二胺。
  10. 根据权利要求1所述的有机光活性层复合墨水,其特征在于,所述有机胺化合物选自具有式(4)-式(8)中任一者所示结构的哌嗪衍生物:
    Figure PCTCN2017119957-appb-100003
    其中,R 9包括氢、取代或未取代的C1~C20的烷基、C1~C20的杂烷基、或者取代或未取代修饰的芳香或杂芳香π共轭单元衍生物。
  11. 根据权利要求10所述的有机光活性层复合墨水,其特征在于,所述有机胺化合物为哌嗪。
  12. 根据权利要求1所述的有机光活性层复合墨水,其特征在于:所述电子给体材料包括共轭聚合物电子给体材料和/或共轭有机小分子电子给体材料。
  13. 根据权利要求12所述的有机光活性层复合墨水,其特征在于:所述共轭聚合物电子给体材料包括聚(3-己基噻吩)、PTB7、PTB7-Th、PffBT4T-2OD和其结构变体中的任意一种或两 种以上的组合。
  14. 根据权利要求12所述的有机光活性层复合墨水,其特征在于:所述共轭有机小分子电子给体材料包括基于苯并二噻吩和/或寡聚噻吩为核心的小分子。
  15. 根据权利要求12所述的有机光活性层复合墨水,其特征在于:所述共轭有机小分子电子给体材料包括DR3TSBDT、DRCN7T和其结构变体中的任意一种或两种以上的组合。
  16. 根据权利要求1所述的有机光活性层复合墨水,其特征在于:所述电子受体材料包括富勒烯电子受体材料、富勒烯衍生物类电子受体材料和非富勒烯电子受体材料中的任意一种或两种以上的组合。
  17. 根据权利要求16所述的有机光活性层复合墨水,其特征在于:所述富勒烯电子受体材料、富勒烯衍生物类电子受体材料包括[6,6]-苯基-C 61-丁酸甲酯、PC 71BM、Bis-PC 61BM和IC 61BA中的任意一种或两种以上的组合。
  18. 根据权利要求16所述的有机光活性层复合墨水,其特征在于:所述非富勒烯电子受体材料包括有机共轭性电子受体材料。
  19. 根据权利要求16所述的有机光活性层复合墨水,其特征在于:所述有机共轭性电子受体材料包括基于苝二酰亚胺衍生物、萘二酰亚胺衍生物、引达省衍生物、芴衍生物、苯并噻二唑衍生物、亚酞菁类衍生物中的任意一种或两种以上的组合。
  20. 如权利要求1-19中任一项所述的有机光活性层复合墨水的制备方法,其特征在于包括:将有机胺化合物、电子受体材料和电子给体材料溶解于有机溶剂中,混合均匀,得到所述有机光活性层复合墨水。
  21. 一种有机光活性层复合薄膜,由权利要求1-19中任一项所述的有机光活性层复合墨水形成。
  22. 根据权利要求21所述的有机光活性层复合薄膜,其特征在于包括以聚(3-己基噻吩)、PTB7、PTB7-Th、PffBT4T-2OD和其结构变体中的任意一种或两种以上的组合作为电子给体材料、以[6,6]-苯基-C 61-丁酸甲酯、PC 71BM、Bis-PC 61BM和IC 61BA中的任意一种或两种以上的组合作为电子受体材料、以及具有式(1)、式(2)、式(1-1)和式(2-1)中任一者所示结构的有机胺化合物组合形成的复合物。
  23. 根据权利要求21或22所述的有机光活性层复合薄膜,其特征在于,所述有机光活性层复合薄膜的厚度为80nm~2μm。
  24. 根据权利要求23所述的有机光活性层复合薄膜,其特征在于,所述有机光活性层复合薄膜的厚度为80~200nm。
  25. 根据权利要求24所述的有机光活性层复合薄膜,其特征在于,所述有机光活性层复合薄膜的厚度为80~100nm。
  26. 如权利要求21-25中任一项所述的有机光活性层复合薄膜的制备方法,其特征在于包括:对权利要求1-19中任一项所述的有机光活性层复合墨水进行成膜处理,形成有机光活性层复合薄膜。
  27. 如权利要求26所述的制备方法,其特征在于,所述成膜处理的方式包括滴膜工艺、旋涂成膜工艺、喷涂成膜工艺、喷墨打印成膜工艺、丝网印刷成膜工艺、刮刀涂覆成膜工艺和线棒涂层工艺中的至少一种。
  28. 如权利要求26所述的制备方法,其特征在于,所述成膜处理还包括对所述有机光活性层复合薄膜进行热处理和/或进行溶剂退火处理。
  29. 如权利要求28所述的制备方法,其特征在于,所述有机光活性层复合薄膜的热处理温度为60~200℃,时间为10s~2h。
  30. 如权利要求28所述的制备方法,其特征在于,所述溶剂退火处理采用的溶剂包括甲苯、二甲基甲酰胺、四氢呋喃、氯仿、邻二氯苯、氯苯中的任意一种或两种以上的组合,所述溶剂退火处理的时间为5s~2h。
  31. 如权利要求1-19中任一项所述的有机光活性层复合墨水或权利要求21-25中任一项所述的有机光活性层复合薄膜于制备有机太阳能电池中的应用。
  32. 一种有机太阳能电池,包括沿设定方向依次设置的顶电极、顶电极界面修饰层、有机光活性层、底电极界面修饰层、底电极,其特征在于:所述有机光活化层包括权利要求21-25中任一项所述的有机光活性层复合薄膜。
  33. 如权利要求32所述的有机太阳能电池,其特征在于还包括底电极基底,所述底电极设置于所述底电极基底上。
  34. 如权利要求32或33所述的有机太阳能电池的制备方法,其特征在于包括:
    (1)提供底电极基底,并在底电极基底上设置底电极;
    (2)在所述底电极上形成底电极界面修饰层;
    (3)采用权利要求1-19中任一项所述的有机光活性层复合墨水在所述底电极界面修饰层上形成有机光活性层复合薄膜;
    (4)在所述的有机光活性层复合薄膜上形成顶电极界面修饰层;
    (5)在所述顶电极界面修饰层上形成顶电极,获得所述有机太阳能电池。
  35. 根据权利要求34所述的制备方法,其特征在于,步骤(4)包括:对所述有机光活性层 复合薄膜进行热处理和/或进行溶剂退火处理,之后再于所述有机光活性层复合薄膜上形成顶电极界面修饰层。
  36. 根据权利要求35所述的制备方法,其特征在于,所述溶剂退火处理采用的溶剂包括甲苯、二甲基甲酰胺、四氢呋喃、氯仿、邻二氯苯、氯苯中的任意一种或两种以上的组合。
  37. 根据权利要求35或36所述的制备方法,其特征在于,所述溶剂退火处理的时间为5s~2h。
  38. 根据权利要求35所述的制备方法,其特征在于,所述有机光活性层复合薄膜的热处理温度为60~200℃,时间为10s~2h。
PCT/CN2017/119957 2017-03-06 2017-12-29 有机光活性层复合墨水、有机太阳能电池及其制备方法 WO2018161707A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019569530A JP6914556B2 (ja) 2017-03-06 2017-12-29 有機光学活性層複合インク、有機太陽電池及びその製造方法
EP17899345.7A EP3594297A4 (en) 2017-03-06 2017-12-29 COMPOSITE INK WITH ORGANIC PHOTOACTIVE LAYER, ORGANIC SOLAR CELL AND MANUFACTURING METHOD FOR IT
US16/485,700 US11895912B2 (en) 2017-03-06 2017-12-29 Organic photoactive layer composite ink, organic solar cell and preparation methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710126348.9A CN108530977B (zh) 2017-03-06 2017-03-06 有机光活性层复合墨水、有机太阳能电池及其制备方法
CN201710126348.9 2017-03-06

Publications (1)

Publication Number Publication Date
WO2018161707A1 true WO2018161707A1 (zh) 2018-09-13

Family

ID=63447253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119957 WO2018161707A1 (zh) 2017-03-06 2017-12-29 有机光活性层复合墨水、有机太阳能电池及其制备方法

Country Status (5)

Country Link
US (1) US11895912B2 (zh)
EP (1) EP3594297A4 (zh)
JP (1) JP6914556B2 (zh)
CN (1) CN108530977B (zh)
WO (1) WO2018161707A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524549A (zh) * 2018-11-02 2019-03-26 中国科学院重庆绿色智能技术研究院 双功能层全小分子非富勒烯体系有机太阳能电池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102614576B1 (ko) * 2018-03-06 2023-12-15 주식회사 엘지화학 유기 태양 전지의 제조방법 및 이를 이용하여 제조된 유기 태양 전지
CN110511235B (zh) * 2019-07-19 2020-11-20 山东师范大学 一种氧族元素稠合苝二酰亚胺受体材料及其制备方法和应用
CN112442297A (zh) * 2019-08-28 2021-03-05 中国科学院苏州纳米技术与纳米仿生研究所 有机胺衍生物掺杂的有机光活性层复合墨水、制法与应用
WO2023140013A1 (ja) * 2022-01-24 2023-07-27 パナソニックIpマネジメント株式会社 光電変換素子、撮像装置およびフラーレン誘導体溶液

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794729A (zh) * 2014-01-20 2014-05-14 中国科学院长春应用化学研究所 大面积聚合物太阳能电池及其活性层的制备方法
CN105185911A (zh) * 2015-08-13 2015-12-23 电子科技大学 一种基于溶剂掺杂的聚合物太阳能电池及其制备方法
CN105778619A (zh) * 2014-12-17 2016-07-20 中国科学院苏州纳米技术与纳米仿生研究所 聚合物-纳米金属氧化物复合墨水及其制备方法与应用
CN106410037A (zh) * 2016-11-03 2017-02-15 南开大学 一种基于有机小分子给体材料的双结太阳能电池器件及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135237A (ja) * 2007-11-29 2009-06-18 Nagoya Institute Of Technology 溶解性フラーレン誘導体
US20120061659A1 (en) * 2009-05-27 2012-03-15 Sumitomo Chemical Company, Limited Organic photoelectric conversion element
JP5928469B2 (ja) * 2011-08-09 2016-06-01 コニカミノルタ株式会社 有機光電変換素子、およびそれを用いた有機太陽電池
JP2013077760A (ja) * 2011-09-30 2013-04-25 Konica Minolta Advanced Layers Inc 有機光電変換素子およびこれを用いた太陽電池
KR101563048B1 (ko) * 2013-05-10 2015-10-30 주식회사 엘지화학 광활성층, 이를 포함하는 유기 태양 전지 및 이의 제조 방법
KR101638470B1 (ko) * 2013-07-19 2016-07-11 주식회사 엘지화학 금속 나노 입자를 포함하는 광흡수층 제조용 잉크 조성물 및 이를 사용한 박막의 제조 방법
CN103560207B (zh) * 2013-11-20 2015-12-09 电子科技大学 一种有机薄膜太阳能电池及其制备方法
KR20160033392A (ko) * 2014-09-18 2016-03-28 한국과학기술연구원 광안정화제, 이를 포함하는 유기 태양전지 및 이의 제조방법
WO2016095828A1 (zh) * 2014-12-17 2016-06-23 中国科学院苏州纳米技术与纳米仿生研究所 聚合物-金属化合物复合墨水及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794729A (zh) * 2014-01-20 2014-05-14 中国科学院长春应用化学研究所 大面积聚合物太阳能电池及其活性层的制备方法
CN105778619A (zh) * 2014-12-17 2016-07-20 中国科学院苏州纳米技术与纳米仿生研究所 聚合物-纳米金属氧化物复合墨水及其制备方法与应用
CN105185911A (zh) * 2015-08-13 2015-12-23 电子科技大学 一种基于溶剂掺杂的聚合物太阳能电池及其制备方法
CN106410037A (zh) * 2016-11-03 2017-02-15 南开大学 一种基于有机小分子给体材料的双结太阳能电池器件及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ADVANCED ENERGY MATERIALS, vol. 3, no. 1, 2013, pages 65 - 74
ADVANCED FUNCTIONAL MATERIALS, vol. 23, no. 26, 2013, pages 3286 - 3298
ADVANCED MATERIALS, vol. 28, no. 32, 2016, pages 7008 - 7012
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, vol. 14, no. 2, 2014, pages 1064 - 1084
NATURE PHOTONICS, vol. 9.1, 2015, pages 35 - 41
See also references of EP3594297A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109524549A (zh) * 2018-11-02 2019-03-26 中国科学院重庆绿色智能技术研究院 双功能层全小分子非富勒烯体系有机太阳能电池
CN109524549B (zh) * 2018-11-02 2022-08-16 中国科学院重庆绿色智能技术研究院 双功能层全小分子非富勒烯体系有机太阳能电池

Also Published As

Publication number Publication date
JP6914556B2 (ja) 2021-08-04
JP2020509613A (ja) 2020-03-26
US11895912B2 (en) 2024-02-06
US20190393423A1 (en) 2019-12-26
EP3594297A1 (en) 2020-01-15
CN108530977A (zh) 2018-09-14
EP3594297A4 (en) 2020-12-23
CN108530977B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2018161707A1 (zh) 有机光活性层复合墨水、有机太阳能电池及其制备方法
WO2015165259A1 (zh) 一种溶液加工的有机-无机平面异质结太阳电池及其制备
WO2019242184A1 (zh) 一种三元聚合物太阳能电池
WO2015196794A1 (zh) 一种有机太阳能电池及其制备方法
Wang et al. Copolymers based on thiazolothiazole-dithienosilole as hole-transporting materials for high efficient perovskite solar cells
Chiang et al. On the role of solution-processed bathocuproine in high-efficiency inverted perovskite solar cells
CN112018242A (zh) 一种钙钛矿太阳能电池及其制备方法
CN113193117A (zh) 一种基于对甲氧基苯乙酸钝化剂的钙钛矿太阳电池
CN112071992A (zh) 一种磷烯/二氧化锡复合物钙钛矿太阳能电池电子传输层及其制备方法
Zhang et al. High efficiency and negligible hysteresis planar perovskite solar cells based on NiO nanocrystals modified TiO2 electron transport layers
Deng et al. Naphthalene diimide based polymer as electron transport layer in inverted perovskite solar cells
JP2013526031A (ja) 電気的活性層を含みかつ垂直分離を有する有機バルクヘテロ接合太陽電池
Zhang et al. Amino N-oxide functionalized graphene quantum dots as a cathode interlayer for inverted polymer solar cells
Chen et al. Solution-processed polymer bilayer heterostructures as hole-transport layers for high-performance opaque and semitransparent organic solar cells
TWI568044B (zh) 活性層,含有彼之有機光伏打電池及其製法
CN102593362B (zh) 一种有机太阳能电池
WO2014020989A1 (ja) 有機薄膜太陽電池の製造方法
Chuang et al. RETRACTED: Enhance the stability and efficiency of perovskite solar cell via gel-type polyurethane
CN108832000B (zh) 一种三元聚合物太阳能电池
KR101149782B1 (ko) 인버티드 구조의 유기태양전지 및 그 제조방법
CN112794861B (zh) 一种端基局部不对称小分子受体材料及其在全小分子有机太阳能电池上的应用
CN112442297A (zh) 有机胺衍生物掺杂的有机光活性层复合墨水、制法与应用
CN110190196B (zh) 氢卤酸二次掺杂聚苯胺薄膜及其制备方法和应用
Guo et al. Easy-processing saccharin doped ZnO electron extraction layer in efficient polymer solar cells
CN102832346A (zh) 一种基于微腔结构的聚合物太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017899345

Country of ref document: EP

Effective date: 20191007