WO2014020989A1 - 有機薄膜太陽電池の製造方法 - Google Patents

有機薄膜太陽電池の製造方法 Download PDF

Info

Publication number
WO2014020989A1
WO2014020989A1 PCT/JP2013/065581 JP2013065581W WO2014020989A1 WO 2014020989 A1 WO2014020989 A1 WO 2014020989A1 JP 2013065581 W JP2013065581 W JP 2013065581W WO 2014020989 A1 WO2014020989 A1 WO 2014020989A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film solar
bulk heterojunction
solar cell
organic thin
Prior art date
Application number
PCT/JP2013/065581
Other languages
English (en)
French (fr)
Inventor
優 永井
郵司 吉田
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2014020989A1 publication Critical patent/WO2014020989A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an organic thin film solar cell provided with a bulk heterojunction layer.
  • a bulk heterojunction type organic thin film solar cell in which a bulk heterojunction layer is formed between a transparent electrode layer and a counter electrode layer as one of thin film solar cells using an organic material (hereinafter referred to as an organic thin film solar cell). There is.
  • a bulk heterojunction type organic thin film solar cell is formed by applying a coating liquid containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic solvent on one electrode layer. It is manufactured by forming a bulk heterojunction layer.
  • the domain size of the bulk heterojunction layer has a great influence on the device performance. That is, when the bulk heterojunction layer absorbs light, excitons are generated in the domain, and the excitons diffuse in the domain and reach the pn interface, and then are separated into free charges.
  • the exciton diffusion length in the bulk heterojunction layer is small and is 10 to 20 nm.
  • the domain size of the bulk heterojunction layer is ideally 10 nm or less.
  • Non-Patent Document 1 describes that the coating size of the bulk heterojunction layer is adjusted by heat-treating the coating film after application of the coating liquid.
  • Non-Patent Document 1 depending on the combination of organic semiconductors, such as a combination in which the affinity between the p-type organic semiconductor and the n-type organic semiconductor is strong and the phase separation is difficult to proceed, the phase separation is sufficient. In some cases, it was not possible to proceed. For this reason, it may be difficult to adjust the domain size, which is not general purpose.
  • an object of the present invention is to provide a method for manufacturing an organic thin film solar cell, which can optimize a phase separation structure of a bulk heterojunction layer and manufacture a bulk heterojunction type thin film solar cell excellent in power generation performance. It is in.
  • the method for producing the organic thin film solar cell of the present invention is as follows.
  • the bulk heterojunction layer after the drying step, before, during or after the second electrode forming step.
  • the bulk heterojunction layer is preferably heated at 50 ° C. or higher and 200 ° C. or lower for 10 minutes or longer and 30 minutes or shorter.
  • the drying time of the coating film it is preferable to set the drying time of the coating film so that the domain size of the bulk heterojunction layer is 1 nm or more and 30 nm or less.
  • the solvent vapor pressure it is preferable to adjust the solvent vapor pressure so that the drying time of the coating film is 0.5 minutes to 30 minutes.
  • the coating step and the drying step are performed in an atmosphere in which the solvent vapor pressure is adjusted.
  • the coating step and the drying step are performed in a sealed container in which an organic solvent is stored, or in an atmosphere into which an organic solvent vapor or mist is introduced. Preferably it is done.
  • an amorphous material as the p-type organic semiconductor and a fullerene derivative as the n-type semiconductor.
  • the boiling point of the organic solvent is preferably 30 ° C. or higher and 200 ° C. or lower.
  • the drying time of the coating film required to bring the domain size of the bulk heterojunction layer to a predetermined range is obtained, and at least in the atmosphere in which the drying process is performed so as to be the drying time. Since the solvent vapor pressure is adjusted, even if the affinity between the p-type organic semiconductor and the n-type organic semiconductor is high, the phase separation can be sufficiently advanced by adjusting the drying rate of the coating film.
  • the domain size of the bonding layer can be optimized.
  • FIG. 3 is a cross-sectional transmission diagram of a bulk heterojunction layer of Test Example 1.
  • FIG. 6 is a cross-sectional transmission diagram of a bulk heterojunction layer of Test Example 2.
  • FIG. 1 shows an embodiment of an organic thin film solar cell manufactured according to the present invention.
  • a first electrode layer 12, a bulk heterojunction layer 13, and a second electrode layer 14 are sequentially laminated on a substrate 11.
  • the type of the substrate 11 is not particularly limited.
  • an insulating plastic film substrate such as a polyimide film, a polyethylene terephthalate film, a polyethylene naphthalate film, a polyethersulfone film, an acrylic film, an aramid film, a glass substrate, a stainless steel substrate, or the like can be used.
  • substrate is distribute
  • FIG. Examples of the electrode material of the electrode layer disposed on the light incident side include transparent conductive oxides such as ITO (indium oxide + tin oxide), ZnO, TiO 2 , SnO 2 , and IZO (indium oxide + zinc oxide).
  • transparent conductive oxides such as ITO (indium oxide + tin oxide), ZnO, TiO 2 , SnO 2 , and IZO (indium oxide + zinc oxide).
  • Examples of the electrode material of the electrode layer disposed on the non-light-receiving side include metals such as Al, Mg, Ca, and alloys thereof.
  • the bulk heterojunction layer 13 has a structure in which a p-type organic semiconductor and an n-type organic semiconductor are phase-separated.
  • the domain size of the bulk heterojunction layer 13 is preferably 1 nm or more and 30 nm or less, and more preferably 5 nm or more and 10 nm or less.
  • the domain size of the bulk heterojunction layer 13 can be observed by preparing a thin piece sample and using a scanning transmission electron microscope (STEM).
  • any organic material having an electron donating property can be used.
  • compounds such as thiophene, phenylene vinylene, thienylene vinylene, carbazole, vinyl carbazole, pyrrole, isothiaphene and heptadiene, and the above compounds having a hydroxyl group, an alkyl group, an amino group, a methyl group, a nitro group, a halogen group, etc.
  • Examples include, but are not limited to, polymers of derivatives. In addition, these may be used independently and may be used in combination of 2 or more types. For example, compounds of the following formulas (1) to (14) can be mentioned as an example.
  • n is preferably 5 to 150, more preferably 10 to 100.
  • the compounds represented by the formulas (1) and (6) are crystalline compounds. Further, the compounds represented by the formulas (7) to (14) are amorphous (non-crystalline).
  • the p-type organic semiconductor may be crystalline or amorphous (amorphous), and the degree of stereoregularity is not questioned. According to the method of the present invention, even if an amorphous material is used, an increase in domain size can be suppressed, and the domain size can be controlled with high accuracy, and therefore an amorphous material is particularly preferably used.
  • the weight average molecular weight of the p-type organic semiconductor depends on the material used and cannot be generally mentioned, but is preferably 2,000 to 150,000.
  • any organic material having an electron accepting property can be used.
  • examples thereof include fullerene derivatives and perylene derivatives.
  • fullerene derivatives are particularly preferable because electron transfer from the p-type organic semiconductor is particularly fast.
  • Preferred examples of the fullerene derivative include a fullerene C 60 derivative, a fullerene C 70 derivative, and a fullerene C 80 derivative.
  • PCBM Phenyl-C 61 -Butyric-Acid -Methyl Ester
  • bis-PCBM Bisadduct-Phenyl-C 61 -Butyric- Acid-Methyl Ester
  • the first electrode layer 12 and the second electrode layer 14 are directly formed on both sides of the bulk heterojunction layer 13, respectively.
  • a hole blocking layer may be formed between the electrode layer serving as a cathode and the bulk heterojunction layer 13. According to this aspect, hole-electron recombination in the vicinity of the cathode can be suppressed, rectification is improved, and short-circuit current is improved.
  • the hole blocking layer is not particularly limited as long as it has a hole blocking effect.
  • Examples thereof include a lithium fluoride (LiF) film, a Bathocupline (BCP) film, a TiO x film, a TiO 2 film, and a ZnO nanoparticle.
  • the film thickness of the hole blocking layer is preferably from 0.1 nm to 1.0 nm, and more preferably from 0.3 nm to 0.5 nm.
  • the thickness is less than 0.1 nm, the hole blocking effect cannot be sufficiently obtained.
  • the thickness exceeds 1.0 nm, the insulating property becomes high and charge injection tends to be inhibited.
  • a hole transport layer may be formed between the electrode layer serving as an anode and the bulk heterojunction layer 13 among the first electrode layer 12 and the second electrode layer 14. According to this aspect, the injection of charge from the bulk heterojunction layer 13 to the anode can be promoted, the rectification is improved, and the short-circuit current is improved.
  • hole transport layer examples include poly (3,4-ethylenediothiophene / poly (styrene sulfate) (PEDOT / PSS).
  • an elution prevention film such as a vapor deposition metal film, a sol x film produced by a sol-gel method, or a ZnO nanoparticle is inserted on the bulk heterojunction layer 13, and an organic photoelectric conversion layer such as a bulk heterojunction layer is formed on the elution prevention film. Further, a tandem structure may be formed.
  • the first electrode layer 12 is formed on the substrate 11 (first electrode forming step).
  • the method for forming the first electrode layer 12 is not particularly limited, and a conventionally known method such as a sputtering method, a CVD method, or a spray film forming method can be used.
  • the organic solvent of the coating solution is preferably one having sufficient solubility for the p-type organic semiconductor and the n-type organic semiconductor.
  • the boiling point of the organic solvent is not particularly limited because the drying speed of the coating film is adjusted by adjusting the solvent vapor pressure of the coating liquid and the drying atmosphere.
  • the boiling point of the organic solvent is preferably 30 ° C. or higher and 200 ° C. or lower, and more preferably 50 ° C. or higher and 150 ° C. or lower.
  • organic solvent examples include chloroform (boiling point: 61 ° C.), chlorobenzene (boiling point: 131 ° C.), anisole (boiling point: 154 ° C.) and the like.
  • 70 mass% or more and 99.9 mass% or less are preferable, and, as for content of the organic solvent in a coating liquid, 80 mass% or more and 99 mass% or less are more preferable. If the content of the organic solvent is less than 70% by mass, the organic semiconductor that is a solute tends to aggregate and phase separation tends not to occur, and if it exceeds 99.9% by mass, the viscosity of the solution decreases, It becomes difficult to form a coating film having an appropriate film thickness by applying the working liquid.
  • the coating liquid can contain additives such as an antioxidant, a compatibilizing agent and a crystallization accelerator as long as the physical properties are not impaired.
  • the coating method of the coating liquid is preferably a method in which most of the organic solvent remains in the film immediately after coating. Specifically, methods such as dip coating, ink jet printing, and screen printing are preferable. When a coating film is formed in such a way that most of the organic solvent volatilizes during the coating process, it may be difficult to control the drying speed of the coating film even if the solvent vapor pressure in the drying atmosphere is adjusted. Because there is, it is not preferable. For example, spin coating is not preferable because it is a method in which an organic solvent is easily volatilized.
  • the coating film is dried to form the bulk heterojunction layer 13 (drying step).
  • the drying time of the coating film necessary to bring the domain size of the bulk heterojunction layer 13 into a predetermined range is determined, and at least the solvent in the atmosphere in which the drying process is performed so as to be the drying time. Adjust the vapor pressure. Preferably, the solvent vapor pressure of the atmosphere in which the coating process and the drying process are performed is adjusted.
  • the drying time of the coating film is set so that the domain size of the finally formed bulk heterojunction layer 13 is preferably 1 nm to 30 nm, more preferably 5 nm to 10 nm.
  • the specific drying time of the coating film depends on the combination of the p-type organic semiconductor and the n-type organic semiconductor, the coating method, the film thickness of the coating film, and the like. It is 30 minutes or less and more preferably 1 minute or more and 20 minutes or less. In a combination in which the affinity between the p-type organic semiconductor and the n-type organic semiconductor is strong and the phase separation hardly proceeds, it is preferable to lengthen the drying time. Conversely, if the affinity between the p-type organic semiconductor and the n-type organic semiconductor is low and phase separation proceeds easily, the drying time needs to be shortened.
  • the method for adjusting the solvent vapor pressure is not particularly limited.
  • a method in which the coating step and the drying step are performed in a sealed container in which an organic solvent is stored, a method in which an organic solvent vapor or mist is introduced, and the like are included.
  • the solvent used for adjusting the solvent vapor pressure is preferably the same as that used for the coating solution, but may be different.
  • the domain size of the bulk heterojunction layer can be adjusted more accurately.
  • the heat treatment of the bulk heterojunction layer may be performed at any stage before, during, or after the formation of the second electrode layer.
  • fullerene which is an n-type organic semiconductor, tends to segregate at the interface of the bulk heterojunction layer / second electrode layer, so that the electron injection property is improved. More preferred.
  • thermo treatment method for the bulk heterojunction layer there is no particular limitation on the heat treatment method for the bulk heterojunction layer.
  • a method using a hot plate can be used.
  • the heat treatment of the bulk heterojunction layer is preferably performed at 50 ° C. or higher and 200 ° C. or lower for 10 minutes or longer and 30 minutes or shorter, more preferably at 100 ° C. or higher and 150 ° C. or lower for 10 minutes or longer and 20 minutes or shorter.
  • the heat treatment condition for adjusting the domain size is preferably a value between these.
  • the upper limit is about 200 ° C.
  • the lower limit is about 50 ° C. for many p-type organic semiconductors and n-type organic semiconductors.
  • a domain size can be adjusted more accurately by heating temperature being 100 degreeC or more and 150 degrees C or less. If the heating time is less than 10 minutes, the phase separation does not reach an equilibrium structure, and phase separation hardly occurs. Moreover, the phase separation structure no longer changes even if it continues for 30 minutes or more.
  • the second electrode layer 14 is formed on the bulk heterojunction layer directly or via another layer such as a hole blocking layer or a hole transporting layer (second electrode forming step).
  • the method for forming the second electrode layer 14 is not particularly limited, and a conventionally known method such as a sputtering method, a CVD method, or a spray film forming method can be used.
  • the organic thin film solar cell shown in FIG. 1 can be manufactured.
  • an elution preventing film such as a deposited metal film, a TiO x film prepared by a sol-gel method, or a ZnO nanoparticle is inserted on the bulk heterojunction layer 13 to prevent the elution.
  • An organic photoelectric conversion layer such as a bulk heterojunction layer is further formed on the film, and the second electrode layer is formed on the organic photoelectric conversion layer directly or via another layer such as a hole blocking layer or a hole transport layer. 14 may be formed.
  • Example 1 20 mg of poly-3-hexylthiophene (P3HT) as p-type organic semiconductor and 14 mg of Bisduct-Phenyl-C 61 -Butyric-Acyl-Methyl Ester (bis-PCBM) as n-type organic semiconductor were collected, and the solvent chlorobenzene (boiling point 131) C.) dissolved in 1 mL and stirred for 20 hours to prepare a coating solution.
  • P3HT poly-3-hexylthiophene
  • bis-PCBM Bisduct-Phenyl-C 61 -Butyric-Acyl-Methyl Ester
  • a glass substrate on which a first electrode made of ITO was formed was prepared, and the surface was dry-cleaned with oxygen plasma.
  • a spin coater poly (3,4-ethylenedithiophene / poly (styrene sulfate) (PEDT / PSS) was applied on the substrate, and then heat treatment (135 ° C. ⁇ 10 minutes) was performed using a hot plate. Then, PEDT / PSS was dried and solidified as a hole transport layer.
  • the substrate was set in a doctor blade type coating apparatus equipped with a sealed chamber. After the container containing 100 mL of solvent chlorobenzene was left in the chamber, the chamber lid was closed and left for 20 minutes to increase the internal solvent vapor pressure. Thereafter, the coating solution was applied onto the substrate using a syringe without breaking the sealing of the chamber. After confirming that the coating solution was dried, the substrate was taken out of the chamber. The time from the start of coating to drying was measured using a stopwatch.
  • a heat treatment 150 ° C. ⁇ 15 minutes is performed using a hot plate to form an organic thin film solar cell (first electrode layer 100 nm, Bulk heterojunction layer 200 nm, second electrode layer 100 nm) were manufactured.
  • the bulk heterojunction layer of the organic thin film solar cell of Example 1 was observed using a scanning transmission electron microscope (STEM) to examine the phase separation structure. The results are shown in FIG.
  • Example 2 Using the same coating apparatus as in Example 1, the coating solution was applied on the glass substrate. However, the container containing the solvent chlorobenzene was not introduced into the chamber. Therefore, the coating solution was dried in a short time. The time from the start of coating to drying was measured using a stopwatch.
  • a second electrode made of Al was formed in the same manner as in Example 1, and then heat treatment (130 ° C. ⁇ 15 minutes) was performed using a hot plate to form an organic thin film solar cell (first electrode).
  • first electrode On the bulk heterojunction layer, a second electrode made of Al was formed in the same manner as in Example 1, and then heat treatment (130 ° C. ⁇ 15 minutes) was performed using a hot plate to form an organic thin film solar cell (first electrode).
  • first electrode On the bulk heterojunction layer, a second electrode made of Al was formed in the same manner as in Example 1, and then heat treatment (130 ° C. ⁇ 15 minutes) was performed using a hot plate to form an organic thin film solar cell (first electrode).
  • first electrode On the bulk heterojunction layer, a second electrode made of Al was formed in the same manner as in Example 1, and then heat treatment (130 ° C. ⁇ 15 minutes) was performed using a hot plate to form an organic thin film solar cell (first electrode).
  • first electrode On the bulk heterojunction layer, second electrode
  • the bulk heterojunction layer of the organic thin film solar cell of Comparative Example 1 was observed using a scanning transmission electron microscope (STEM) to examine the phase separation structure. The results are shown in FIG.
  • the light receiving cell (2 mm ⁇ 2 mm) of the organic thin film solar battery of Example 1 and Comparative Example 1 was irradiated with simulated sunlight (AM1.5), and the solar battery performance (short circuit current (Jsc), open circuit voltage (Voc) ), FF (fill factor), energy conversion efficiency (PCE)).
  • simulated sunlight AM1.5
  • solar battery performance short circuit current (Jsc), open circuit voltage (Voc) ), FF (fill factor), energy conversion efficiency (PCE)
  • OTE-XL manufactured by Spectrometer Co., Ltd. was used.
  • For measurement of current density and voltage, 2400 made by KEITHLEY was used. Table 1 summarizes the results.
  • the domain size was 20 nm or less.
  • Comparative Example 1 in which the coating film was dried in a short time, as shown in FIG. 3, the phase separation domain had a continuous percolation shape, and the domain size increased to about 30 to 40 nm. It was. In Comparative Example 1, since the drying time was short, it was considered that the phase separation did not proceed sufficiently and the domains could not be completely separated.
  • the organic thin film solar cell of Example 1 showed better solar cell performance than Comparative Example 1. The reason for this is presumed that in Comparative Example 1, because the domain is large, excitons are deactivated in the domain, and the generation efficiency of free charges is low.
  • Substrate 12 First electrode layer 13: Bulk heterojunction layer 14: Second electrode layer

Abstract

 バルクヘテロ接合層の相分離構造を最適化して、発電性能に優れたバルクヘテロ接合型の薄膜太陽電池を製造することができる、有機薄膜太陽電池の製造方法を提供する。 基板上に第1電極層を形成する第1電極形成工程と、第1電極層上に直接又は他の層を介してp型有機半導体とn型有機半導体と有機溶媒とを含む塗工液を塗布して塗膜を形成する塗布工程と、塗膜を乾燥してバルクヘテロ接合層を形成する乾燥工程と、バルクヘテロ接合層上に直接又は他の層を介して第2電極層を形成する第2電極形成工程とを含み、バルクへテロ接合層のドメインサイズを所定の範囲にするのに必要な塗膜の乾燥時間を求めておき、その乾燥時間になるように少なくとも乾燥工程を行う雰囲気中の溶媒蒸気圧を調整する。

Description

有機薄膜太陽電池の製造方法
 本発明は、バルクヘテロ接合層を備えた有機薄膜太陽電池の製造方法に関する。
 有機材料を用いた薄膜太陽電池(以下、有機薄膜太陽電池という)の一つとして、透明電極層と対向電極層との間にバルクヘテロ接合層を形成してなる、バルクヘテロ接合型の有機薄膜太陽電池がある。
 バルクヘテロ接合型の有機薄膜太陽電池は、例えば特許文献1に開示されるように、p型有機半導体とn型有機半導体と有機溶媒とを含む塗工液を、一方の電極層上に塗布してバルクへテロ接合層を形成することにより製造される。
 バルクヘテロ接合型の薄膜太陽電池においては、バルクヘテロ接合層のドメインサイズ等が、素子性能に大きな影響を与えることが知られている。すなわち、バルクヘテロ接合層が光を吸収すると、ドメイン内に励起子が生成され、励起子がドメイン内を拡散してpn界面に到達した後、自由電荷に分離される。バルクヘテロ接合層での励起子の拡散長は小さく、10~20nmとされている。ドメインサイズがこの拡散長より大きい場合は、励起子はpn界面に到達する以前に失活してしまうため、自由電荷が生成されない。これらの事情から、バルクヘテロ接合層のドメインサイズは10nm以下であることが理想とされている。
 非特許文献1には、塗工液の塗布後に塗膜を加熱処理してバルクヘテロ接合層のドメインサイズを調整することが記載されている。
特開2009-252768号公報
F.Padinger,R.S.Rittberger,N.S.Sariciftci,Adv.Funct.Mater.2003,13,85
 しかしながら、非特許文献1に記載された方法では、p型有機半導体とn型有機半導体の親和性が強く相分離が進行し難い組合せ等のように、有機半導体の組み合わせによっては、相分離を十分に進行させることができないことがあった。このため、ドメインサイズの調整が困難な場合があり、汎用的ではなかった。
 よって、本発明の目的は、バルクヘテロ接合層の相分離構造を最適化して、発電性能に優れたバルクヘテロ接合型の薄膜太陽電池を製造することができる、有機薄膜太陽電池の製造方法を提供することにある。
 本発明の有機薄膜太陽電池の製造方法は、
 基板上に、第1電極層を形成する第1電極形成工程と、
 前記第1電極層上に、直接又は他の層を介して、p型有機半導体とn型有機半導体と有機溶媒とを含む塗工液を塗布して塗膜を形成する塗布工程と、
 前記塗膜を乾燥してバルクヘテロ接合層を形成する乾燥工程と、
 前記バルクヘテロ接合層上に、直接又は他の層を介して、第2電極層を形成する第2電極形成工程とを含む有機薄膜太陽電池の製造方法において、
 前記バルクへテロ接合層のドメインサイズを所定の範囲にするのに必要な、前記塗膜の乾燥時間を求めておき、前記乾燥時間になるように、少なくとも前記乾燥工程を行う雰囲気中の溶媒蒸気圧を調整することを特徴とする。
 本発明の有機薄膜太陽電池の製造方法は、前記乾燥工程の後、前記第2電極形成工程の前、途中又は後に、前記バルクヘテロ接合層を加熱することが好ましい。
 本発明の有機薄膜太陽電池の製造方法は、前記バルクヘテロ接合層の加熱を、50℃以上200℃以下で10分間以上30分間以下行うことが好ましい。
 本発明の有機薄膜太陽電池の製造方法は、前記バルクへテロ接合層のドメインサイズが1nm以上30nm以下となるように、前記塗膜の乾燥時間を設定することが好ましい。
 本発明の有機薄膜太陽電池の製造方法は、前記塗膜の乾燥時間が0.5分以上30分以下となるように、前記溶媒蒸気圧を調整することが好ましい。
 本発明の有機薄膜太陽電池の製造方法は、前記塗布工程及び前記乾燥工程を、前記溶媒蒸気圧が調整された雰囲気中で行うことが好ましい。
 本発明の有機薄膜太陽電池の製造方法は、前記塗布工程及び前記乾燥工程を、内部に有機溶媒が貯留された密閉容器中で行うか、あるいは、有機溶媒の蒸気又はミストを導入した雰囲気中で行うことが好ましい。
 本発明の有機薄膜太陽電池の製造方法は、前記p型有機半導体としてアモルファス性材料を用い、前記n型半導体としてフラーレン誘導体を用いることが好ましい。
 本発明の有機薄膜太陽電池の製造方法は、前記有機溶媒の沸点が30℃以上200℃以下であることが好ましい。
 本発明によれば、バルクへテロ接合層のドメインサイズを所定の範囲にするのに必要な、塗膜の乾燥時間を求めておき、該乾燥時間になるように、少なくとも乾燥工程を行う雰囲気中の溶媒蒸気圧を調整するので、p型有機半導体とn型有機半導体との親和性が高くても、塗膜の乾燥速度を調整することで相分離を十分に進行させることが可能となり、バルクヘテロ接合層のドメインサイズを最適化できる。
本発明により製造される有機薄膜太陽電池の一実施形態の概略図である。 試験例1のバルクヘテロ接合層の断面透過図である。 試験例2のバルクヘテロ接合層の断面透過図である。
 図1に、本発明により製造される有機薄膜太陽電池の一実施形態が示されている。
 この有機薄膜太陽電池は、基板11に、第1電極層12、バルクヘテロ接合層13、第2電極層14が順次積層されている。
 基板11の種類は、特に限定されない。例えば、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリエーテルスルホンフィルム、アクリルフィルム、アラミドフィルム等の絶縁性プラスチックフィルム基板、ガラス基板、ステンレス基板などを用いることができる。なお、この基板が光入射側に配される場合には、光透過性の材料で構成すべきことはいうまでもない。
 第1電極層12、及び第2電極層13を構成する電極材料としては、特に限定はない。光入射側に配される電極層の電極材料としては、ITO(酸化インジウム+酸化スズ)、ZnO、TiO、SnO、IZO(酸化インジウム+酸化亜鉛)などの透明導電性酸化物が挙げられる。非受光側に配される電極層の電極材料としては、Al、Mg、Ca等の金属あるいはこれらの合金が挙げられる。
 バルクヘテロ接合層13は、p型有機半導体とn型有機半導体とが相分離した構造をなしている。
 バルクヘテロ接合層13のドメインサイズは、1nm以上30nm以下であることが好ましく、5nm以上10nm以下がより好ましい。ドメインサイズが1nm未満であると、膜中のドメイン数が多くなり過ぎて、自由電荷の適切な伝導パスが形成され難くなる。30nmを超えると、励起子がpn界面に到達する以前に失活して、自由電荷が生成され難くなる。バルクヘテロ接合層13のドメインサイズは、薄片試料を作製し、走査透過型電子顕微鏡(STEM)を用いて観察できる。
 バルクヘテロ接合層13を構成するp型有機半導体としては、電子供与性を有する任意の有機材料を用いることができる。例えば、チオフェン、フェニレンビニレン、チエニレンビニレン、カルバゾール、ビニルカルバゾール、ピロール、イソチアナフェンおよびヘプタジエンなどの化合物、ならびに水酸基、アルキル基、アミノ基、メチル基、ニトロ基およびハロゲン基などを有する上記化合物の誘導体の重合体が挙げられるが、これらには限定されない。なお、これらは、単独で用いてもよいし、二種以上を組み合わせて用いてもよい。例えば、下記式(1)~(14)の化合物が一例として挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 上記式(1)~(14)におけるnは5~150が好ましく、10~100がより好ましい。
 上記化合物のうち、式(1)、(6)で表される化合物は、結晶性の化合物である。また、式(7)~(14)で表される化合物は、アモルファス性(非晶性)である。p型有機半導体は、結晶性でもアモルファス性(非晶性)であってもよく、立体規則性の程度については問われない。本発明の方法によれば、アモルファス性の材料であっても、ドメインサイズの増大を抑制でき、ドメインサイズを精度よく制御できるので、アモルファス性の材料が特に好ましく用いられる。
 p型有機半導体の重量平均分子量は、用いる材料にも依存し、一概には言及出来ないが、2,000~150,000が望ましい。
 バルクヘテロ接合層13を構成するn型有機半導体は、電子受容性を有する任意の有機材料を用いることができる。例えば、フラーレン誘導体、ペリレン誘導体等が挙げられる。なかでも、フラーレン誘導体は、p型有機半導体からの電子移動が取り分け早いので、特に好ましい。フラーレン誘導体としては、フラーレンC60の誘導体、フラーレンC70の誘導体、フラーレンC80の誘導体等が好ましく挙げられる。具体的な一例としては、Phenyl-C61-Butyric-Acid-Methyl Ester(PCBM)、Bisadduct-Phenyl-C61-Butyric-Acid-Methyl Ester(bis-PCBM)等が挙げられる。
 なお、図1の有機薄膜太陽電池は、バルクヘテロ接合層13の両側に、第1電極層12、第2電極層14がそれぞれ直接形成されているが、第1電極層12及び第2電極層14のうち、陰極となる電極層と、バルクヘテロ接合層13との間に、正孔ブロック層が形成されていてもよい。この態様によれば、陰極近傍における正孔―電子の再結合を抑制でき、整流性が改善されて短絡電流が向上する。
 正孔ブロック層としては、正孔のブロック効果があるものであれば良く、特に限定はない。例えば、フッ化リチウム(LiF)膜、Bathocuproine(BCP)膜、TiO膜、TiO膜、ZnOナノパーティクルなどが挙げられる。
 正孔ブロック層の膜厚は、0.1nm以上1.0nm以下が好ましく、0.3nm以上0.5nm以下がより好ましい。0.1nm未満であると、正孔のブロック効果が十分に得られない。1.0nmを超えると、絶縁性が高くなって、電荷注入が阻害される傾向にある。
 また、第1電極層12及び第2電極層14のうち、陽極となる電極層と、バルクヘテロ接合層13との間に、正孔輸送層が形成されていてもよい。この態様によれば、バルクヘテロ接合層13から陽極への電荷の注入を促進でき、整流性が改善されて短絡電流が向上する。
 正孔輸送層としては、poly(3,4-ethylenedioxythiophene/poly(styrene sulfonate)(PEDOT/PSS)等が挙げられる。
 また、バルクヘテロ接合層13上に、蒸着金属膜、ゾルゲル法で作製したTiO膜、ZnOナノパーティクル等の溶出防止膜を挿入し、該溶出防止膜上にバルクヘテロ接合層などの有機光電変換層を更に形成してタンデム構造としてもよい。
 次に、図1に示す有機薄膜太陽電池の製造方法を例に挙げて、本発明の有機薄膜太陽電池の製造方法を説明する。
 まず、基板11上に、第1電極層12を形成する(第1電極形成工程)。
 第1電極層12の形成方法としては、特に限定は無く、スパッタ法、CVD法、スプレー成膜法等、従来公知の方法を用いることができる。
 次に、第1電極層12上に、直接又は、正孔ブロック層、正孔輸送層等の他の層を介して、p型有機半導体とn型有機半導体と有機溶媒とを含む塗工液を塗布し、塗膜を形成する(塗布工程)。
 塗工液は、p型有機半導体とn型有機半導体との混合割合が、モル比で、p型有機半導体:n型有機半導体=1:0.5~7が好ましく、1:0.7~3がより好ましい。
 塗工液の有機溶媒は、p型有機半導体及びn型有機半導体に対して、十分な溶解性を持つものが望ましい。
 本発明では、塗工液の塗布雰囲気や乾燥雰囲気の溶媒蒸気圧を調整して、塗膜の乾燥速度を調整するので、有機溶媒の沸点は特には問われない。しかしながら、有機溶媒の沸点があまり高いと、塗布雰囲気や乾燥雰囲気の溶媒蒸気圧に関わりなく、塗膜の乾燥速度が遅くなり、生産性が低下する傾向にある。また、有機溶媒の沸点があまり低いと、塗工液の塗布後に溶媒が直ちに揮発してしまい、乾燥速度の制御が困難な場合がある。そのため、有機溶媒の沸点は、30℃以上200℃以下が好ましく、50℃以上150℃以下がより好ましい。有機溶媒の好ましい具体例としては、クロロホルム(沸点:61℃)、クロロベンゼン(沸点:131℃)、アニソール(沸点:154℃)等が挙げられる。
 塗工液中における有機溶媒の含有量は、70質量%以上99.9質量%以下が好ましく、80質量%以上99質量%以下がより好ましい。有機溶媒の含有量が70質量%未満であると溶質である有機半導体が凝集して、相分離が生じ難くなる傾向があり、99.9質量%を超えると溶液の粘度が低下して、塗工液の塗布により適切な膜厚を有する塗膜を形成し難くなる。
 塗工液には、酸化防止剤、相溶化剤、結晶化促進剤等の添加剤を、物性を損なわない範囲で含有できる。
 塗工液の塗布方法は、塗布直後においては有機溶媒の大部分が膜中に残存しているような方法が望ましい。具体的には、ディップ塗布、インクジェット印刷、スクリーン印刷などの方法が好ましい。塗布過程で有機溶媒の大部分が揮発してしまうような方法で塗膜を形成した場合、乾燥雰囲気中の溶媒蒸気圧を調整しても塗膜の乾燥速度を制御することが困難な場合があるので、好ましくない。例えば、スピン塗布は、有機溶媒が揮発し易い方法であるので、好ましくない。
 次に、上記塗膜を乾燥してバルクヘテロ接合層13を形成する(乾燥工程)。
 本発明では、バルクへテロ接合層13のドメインサイズを所定の範囲にするのに必要な、塗膜の乾燥時間を求めておき、該乾燥時間になるように、少なくとも乾燥工程を行う雰囲気の溶媒蒸気圧を調整する。好ましくは、塗布工程及び乾燥工程を行う雰囲気の溶媒蒸気圧を調整する。
 塗膜の乾燥速度を調整することで、p型有機半導体とn型有機半導体との相分離を十分に進行させることが可能となり、最適なドメインサイズのバルクヘテロ接合層を形成でき、後述する実施例の試験例1と試験例2との比較から明らかなように、良好な太陽電池性能が得られる。
 塗膜の乾燥時間は、最終的に形成されるバルクヘテロ接合層13のドメインサイズが、好ましくは1nm以上30nm以下、より好ましくは5nm以上10nm以下となるように設定する。塗膜の具体的な乾燥時間は、p型有機半導体とn型有機半導体の組合せや、塗布方法、塗膜の膜厚などにも依存するので一概には言えないが、好ましくは0.5分以上30分以下であり、より好ましくは1分以上20分以下である。p型有機半導体とn型有機半導体の親和性が強く、相分離が進行し難い組合せでは、乾燥時間を長くすることが好ましい。逆に、p型有機半導体とn型有機半導体の親和性が低くて、容易に相分離が進行してしまう場合には、乾燥時間は短くする必要がある。
 溶媒蒸気圧を調整する方法としては、特に限定は無い。例えば、塗布工程及び乾燥工程を、内部に有機溶媒が貯留された密閉容器中で行う方法や、有機溶媒の蒸気又はミストを導入した雰囲気中で行う方法等が挙げられる。
 溶媒蒸気圧を調整するために用いる溶媒は、塗工液に用いたものと同一であることが望ましいが、異なるものであってもよい。例えば、塗工液にクロロベンゼンを使用し、溶媒蒸気圧の調整にクロロホルムを用いる、といったことも可能である。
 このようにして塗膜を乾燥した後、更に加熱処理してもよい。加熱処理を行うことで、バルクヘテロ接合層のドメインサイズをより精度よく調整することが可能である。バルクヘテロ接合層の加熱処理は、第2電極層の形成前、形成中、形成後のいずれの段階で行ってもよい。なかでも、第2電極層の形成後に加熱処理を施すと、n型有機半導体であるフラーレンが、バルクヘテロ接合層/第2電極層の界面に偏析する傾向があり、電子注入性が向上するので、より好ましい。
 バルクヘテロ接合層の加熱処理方法としては、特に限定は無い。例えば、ホットプレートを用いる方法等が挙げられる。
 バルクヘテロ接合層の加熱処理は、50℃以上200℃以下で10分間以上30分間以下行うことが好ましく、100℃以上150℃以下で10分間以上20分間以下行うことがより好ましい。高分子の相分離では、相分離の生じる臨界温度に上限と下限が存在する場合が多い。ドメインサイズ調整のための加熱処理条件は、これらの間の値であることが好ましい。調査の結果、多くのp型有機半導体及びn型有機半導体に対して、上限は200℃、下限は50℃程度であることが明らかとなった。そして、加熱温度を100℃以上150℃以下とすることで、より精度よくドメインサイズを調整できる。また、加熱時間が10分未満であると相分離が平衡構造に到達せず、相分離が生じ難い。また、30分以上続けても相分離構造はもはや変化しない。
 次に、バルクヘテロ接合層上に、直接又は、正孔ブロック層、正孔輸送層等の他の層を介して、第2電極層14を形成する(第2電極形成工程)。
 第2電極層14の形成方法としては、特に限定は無く、スパッタ法、CVD法、スプレー成膜法等、従来公知の方法を用いることができる。
 このようにして、図1に示す有機薄膜太陽電池を製造できる。
 なお、タンデム構造の有機薄膜太陽電池を製造する場合は、バルクヘテロ接合層13上に、蒸着金属膜、ゾルゲル法で作製したTiO膜、ZnOナノパーティクル等の溶出防止膜を挿入し、該溶出防止膜上にバルクヘテロ接合層などの有機光電変換層を更に形成し、該有機光電変換層上に、直接又は、正孔ブロック層、正孔輸送層等の他の層を介して、第2電極層14を形成すればよい。
 (実施例1)
 p型有機半導体としてポリ3-ヘキシルチオフェン(P3HT)を20mgと、n型有機半導体としてBisadduct-Phenyl-C61-Butyric-Acid-Methyl Ester(bis-PCBM)を14mg採取し、溶媒クロロベンゼン(沸点131℃)1mLに溶解させて、20時間攪拌し、塗工液を調製した。
 ITOからなる第1電極の形成されたガラス基板を用意して、酸素プラズマで表面をドライ洗浄した。スピンコーターを用いて、基板上にpoly(3,4-ethylenedioxythiophene/poly(styrene sulfonate)(PEDT/PSS)を塗布した。その後、ホットプレートを用いて加熱処理(135℃×10分)を施して、正孔輸送層としてPEDT/PSSを乾燥固化させた。
 次に、密閉チャンバーを備えたドクターブレード方式の塗布装置内に、上記基板をセットした。チャンバー内に100mLの溶媒クロロベンゼンが入った容器を静置した後、チャンバーの蓋を閉めて20分間放置し、内部の溶媒蒸気圧を高めた。その後、チャンバーの密閉を破ること無しに、シリンジを用いて基板上に塗工液を塗布した。塗工液が乾燥したのを確認した後、チャンバーから基板を取り出した。ストップウォッチを用いて、塗布開始から乾燥までの時間を測定した。
 次に、バルクヘテロ接合層上に、Alからなる第2電極を蒸着形成した後に、ホットプレートを用いて加熱処理(150℃×15分)を施して、有機薄膜太陽電池(第1電極層100nm、バルクヘテロ接合層200nm、第2電極層100nm)を製造した。
 実施例1の有機機薄膜太陽電池のバルクヘテロ接合層を、走査透過型電子顕微鏡(STEM)を用いて観察し、相分離構造を調べた。結果を図2に記す。
 (比較例1)
 実施例1と同じ方法を用いて、ITOからなる第1電極の形成されたガラス基板上に、PEDT/PSSを塗布して、乾燥固化させた。
 実施例1と同じ塗布装置を用いて、ガラス基板上に塗工液を塗布した。ただし、チャンバー内には溶媒クロロベンゼンが入った容器を導入しなかった。そのため、短時間で塗工液は乾燥した。ストップウォッチを用いて、塗布開始から乾燥までの時間を測定した。
 バルクヘテロ接合層上に、実施例1と同様にしてAlからなる第2電極を形成した後に、ホットプレートを用いて加熱処理(130℃×15分)を施して、有機薄膜太陽電池(第1電極層100nm、バルクヘテロ接合層200nm、第2電極層100nm)を製造した。
 比較例1の有機機薄膜太陽電池のバルクヘテロ接合層を、走査透過型電子顕微鏡(STEM)を用いて観察し、相分離構造を調べた。結果を図3に記す。
 実施例1及び比較例1の有機機薄膜太陽電池の受光セル(2mm×2mm)に、擬似太陽光(AM1.5)を照射して、太陽電池性能(短絡電流(Jsc)、開放電圧(Voc)、FF(曲線因子)、エネルギー変換効率(PCE))を調べた。擬似太陽光の照射には、分光計器製OTE-XLを用いた。電流密度と電圧の測定には、KEITHLEY製2400を用いた。表1に、結果をまとめて記す。
Figure JPOXMLDOC01-appb-T000006

 (評価結果)
 塗膜の乾燥を長時間かけて行った実施例1は、図2に示されるように、小さな球状ドメインが分散した相分離構造をしていた。ドメインのサイズは20nm以下であった。
 一方、塗膜を短時間で乾燥した比較例1は、図3に示されるように、相分離のドメインが連続的なパーコレーション形状をしており、ドメインのサイズが30~40nm程度にまで大きくなっていた。比較例1は、乾燥時間が短かったために、相分離が十分に進行せず、ドメインが完全に分離できなかったものと考えられる。
 また、表1に示されるように、実施例1の有機機薄膜太陽電池の方が、比較例1に比べて、より優れた太陽電池性能を示した。この理由は、比較例1では、ドメインが大きいために、ドメイン内で励起子が失活してしまい、自由電荷の生成効率が低かったためであると推測される。
11:基板
12:第1電極層
13:バルクヘテロ接合層
14:第2電極層

Claims (10)

  1.  基板上に、第1電極層を形成する第1電極形成工程と、
     前記第1電極層上に、直接又は他の層を介して、p型有機半導体とn型有機半導体と有機溶媒とを含む塗工液を塗布して塗膜を形成する塗布工程と、
     前記塗膜を乾燥してバルクヘテロ接合層を形成する乾燥工程と、
     前記バルクヘテロ接合層上に、直接又は他の層を介して、第2電極層を形成する第2電極形成工程とを含む有機薄膜太陽電池の製造方法において、
     前記バルクへテロ接合層のドメインサイズを所定の範囲にするのに必要な、前記塗膜の乾燥時間を求めておき、前記乾燥時間になるように、少なくとも前記乾燥工程を行う雰囲気中の溶媒蒸気圧を調整することを特徴とする有機薄膜太陽電池の製造方法。
  2.  前記乾燥工程の後、前記第2電極形成工程の前、途中又は後に、前記バルクヘテロ接合層を加熱する、請求項1記載の有機薄膜太陽電池の製造方法。
  3.  前記バルクヘテロ接合層の加熱を、50℃以上200℃以下で10分間以上30分間以下行う、請求項2記載の有機薄膜太陽電池の製造方法。
  4.  前記バルクへテロ接合層のドメインサイズが1nm以上30nm以下となるように、前記塗膜の乾燥時間を設定する、請求項1に記載の有機薄膜太陽電池の製造方法。
  5.  前記塗膜の乾燥時間が0.5分以上30分以下となるように、前記溶媒蒸気圧を調整する、請求項1に記載の有機薄膜太陽電池の製造方法。
  6.  前記塗布工程及び前記乾燥工程を、前記溶媒蒸気圧が調整された雰囲気中で行う、請求項1に記載の有機薄膜太陽電池の製造方法。
  7.  前記塗布工程及び前記乾燥工程を、内部に有機溶媒が貯留された密閉容器中で行う、請求項6記載の有機薄膜太陽電池の製造方法。
  8.  前記塗布工程及び前記乾燥工程を、有機溶媒の蒸気又はミストを導入した雰囲気中で行う、請求項6記載の有機薄膜太陽電池の製造方法。
  9.  前記p型有機半導体としてアモルファス性材料を用い、前記n型半導体としてフラーレン誘導体を用いる、請求項1に記載の有機薄膜太陽電池の製造方法。
  10.  前記有機溶媒の沸点が30℃以上200℃以下である、請求項1に記載の有機薄膜太陽電池の製造方法。
PCT/JP2013/065581 2012-07-31 2013-06-05 有機薄膜太陽電池の製造方法 WO2014020989A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012169238A JP2014029905A (ja) 2012-07-31 2012-07-31 有機薄膜太陽電池の製造方法
JP2012-169238 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014020989A1 true WO2014020989A1 (ja) 2014-02-06

Family

ID=50027680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065581 WO2014020989A1 (ja) 2012-07-31 2013-06-05 有機薄膜太陽電池の製造方法

Country Status (2)

Country Link
JP (1) JP2014029905A (ja)
WO (1) WO2014020989A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10297774B2 (en) 2014-07-31 2019-05-21 Fujifilm Corporation Photoelectric conversion element and imaging element
CN110495003A (zh) * 2017-05-02 2019-11-22 株式会社Lg化学 用于制造有机太阳能电池的方法和使用其制造的有机太阳能电池
CN116396637A (zh) * 2023-04-06 2023-07-07 中国科学院苏州纳米技术与纳米仿生研究所 调节喷墨打印薄膜微观组分分布的方法、共混墨水及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6434847B2 (ja) * 2015-03-31 2018-12-05 株式会社東芝 光電変換素子の製造方法および製造装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529631A (ja) * 2008-07-29 2011-12-08 ソルヴェイ(ソシエテ アノニム) 光起電力デバイスのためのペリレンテトラカルボキシイミド誘導体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529631A (ja) * 2008-07-29 2011-12-08 ソルヴェイ(ソシエテ アノニム) 光起電力デバイスのためのペリレンテトラカルボキシイミド誘導体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F. PADINGER ET AL.: "Effects of Postproduction Treatment on Plastic Solar Cells", ADVANCED FUNCTIONAL MATERIALS, vol. 13, no. 1, January 2003 (2003-01-01), pages 85 - 88 *
G. LI ET AL.: "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends", NATURE MATERIALS, vol. 4, November 2005 (2005-11-01), pages 864 - 868 *
G. LI ET AL.: "''Solvent Annealing'' Effect in Polymer Solar Cells Based on Poly(3- hexylthiophene) and Methanofullerenes", ADVANCED FUNCTIONAL MATERIALS, vol. 17, 2007, pages 1636 - 1644 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10297774B2 (en) 2014-07-31 2019-05-21 Fujifilm Corporation Photoelectric conversion element and imaging element
CN110495003A (zh) * 2017-05-02 2019-11-22 株式会社Lg化学 用于制造有机太阳能电池的方法和使用其制造的有机太阳能电池
CN116396637A (zh) * 2023-04-06 2023-07-07 中国科学院苏州纳米技术与纳米仿生研究所 调节喷墨打印薄膜微观组分分布的方法、共混墨水及应用
CN116396637B (zh) * 2023-04-06 2024-02-27 中国科学院苏州纳米技术与纳米仿生研究所 调节喷墨打印薄膜微观组分分布的方法、共混墨水及应用

Also Published As

Publication number Publication date
JP2014029905A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
Lian et al. Electron‐transport materials in perovskite solar cells
Jiang et al. Dopant‐free organic hole‐transporting material for efficient and stable inverted all‐inorganic and hybrid perovskite solar cells
Yang et al. Recent progress and challenges of organometal halide perovskite solar cells
Jiang et al. Planar‐structure perovskite solar cells with efficiency beyond 21%
Sun et al. Transparent conductive oxide-free perovskite solar cells with PEDOT: PSS as transparent electrode
Bai et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering
Wang et al. Ammonia-treated graphene oxide and PEDOT: PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability
Ryu et al. Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic
US10714270B2 (en) Photoelectric conversion device and method for manufacturing the same
Miao et al. A non-fullerene small molecule processed with green solvent as an electron transporting material for high efficiency pin perovskite solar cells
Li et al. Achieving efficient thick film all-polymer solar cells using a green solvent additive
WO2016012274A1 (en) Organic-inorganic tandem solar cell
Aslan et al. Sol–gel derived In2S3 buffer layers for inverted organic photovoltaic cells
Fu et al. Achieving 10.5% efficiency for inverted polymer solar cells by modifying the ZnO cathode interlayer with phenols
Guo et al. Low temperature solution deposited niobium oxide films as efficient electron transport layer for planar perovskite solar cell
Chen et al. Morphologic improvement of the PBDTTT-C and PC71BM blend film with mixed solvent for high-performance inverted polymer solar cells
Zhang et al. High efficiency and negligible hysteresis planar perovskite solar cells based on NiO nanocrystals modified TiO2 electron transport layers
Ge et al. Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells
JP5444743B2 (ja) 有機光電変換素子
WO2014020989A1 (ja) 有機薄膜太陽電池の製造方法
Tan et al. Chemical linkage and passivation at buried interface for thermally stable inverted perovskite solar cells with efficiency over 22%
Park et al. Water-processable electron-collecting layers of a hybrid poly (ethylene oxide): Caesium carbonate composite for flexible inverted polymer solar cells
Kim et al. A Thiophene Based Dopant-Free Hole-Transport Polymer for Efficient and Stable Perovskite Solar Cells
WO2014020988A1 (ja) 有機薄膜太陽電池及びその製造方法
TWI568044B (zh) 活性層,含有彼之有機光伏打電池及其製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825763

Country of ref document: EP

Kind code of ref document: A1