WO2015196794A1 - 一种有机太阳能电池及其制备方法 - Google Patents

一种有机太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2015196794A1
WO2015196794A1 PCT/CN2015/070710 CN2015070710W WO2015196794A1 WO 2015196794 A1 WO2015196794 A1 WO 2015196794A1 CN 2015070710 W CN2015070710 W CN 2015070710W WO 2015196794 A1 WO2015196794 A1 WO 2015196794A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
organic solar
cell device
graphene
electrode
Prior art date
Application number
PCT/CN2015/070710
Other languages
English (en)
French (fr)
Inventor
李慧
夏圣安
谢封超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15811181.5A priority Critical patent/EP3144990A4/en
Publication of WO2015196794A1 publication Critical patent/WO2015196794A1/zh
Priority to US15/387,253 priority patent/US10153447B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of organic solar cells, and in particular to an organic solar cell and a preparation method thereof.
  • the efficiency of single-layer devices of organic heterojunction solar cells has reached a commercial level of nearly 10%, and this efficiency is largely derived from the introduction of bulk heterojunction device structures.
  • the essence of the bulk heterojunction structure is the interpenetrating network structure, which facilitates the transfer of electrons between the acceptor materials.
  • the acceptor materials used in bulk heterojunction solar cells are mostly fullerene derivative materials.
  • the fullerene derivative materials have excellent charge transport properties, and the energy level structure has good matching with most donor materials.
  • the spherical structure of fullerenes makes them have the same advantages in charge transport, which is more favorable for charge transport, but the fullerene acceptor material is easy to aggregate during the preparation of the active layer, and the effective area of charge transport The reduction and the difficulty in material preparation purification make it difficult to commercialize.
  • the first aspect of the embodiments of the present invention provides an organic solar cell to solve the problem that the energy level of the graphene and the energy level of the donor material cannot be matched in the prior art, thereby causing the solar cell prepared by using the same.
  • the open circuit voltage of the device is low, and there is no practical problem, and at the same time, the problem of the single material of the organic solar cell receptor currently used is solved.
  • an embodiment of the present invention provides an organic solar cell including a first electrode, a photoactive layer, a hole transport layer, and a second electrode, which are sequentially stacked, and the photoactive layer includes an electron acceptor material and an electron.
  • a donor material the electron acceptor material being graphene nitride, the graphene nitride forming a foam-like film on the first electrode, the graphene nitride having a three-dimensional network type structure, the electron Part of the bulk material is infiltrated into the graphene nitride, partially enriched on the side of the hole transport layer to form an electron donor enriched layer, and the graphene nitride is heterogeneous with the electron donor material
  • the first electrode is a conductive glass
  • the second electrode is a metal electrode.
  • the graphene nitride has a film thickness of 10 to 100 nm.
  • the content of the nitrogen element in the graphene nitride is 0.1% to 14%.
  • the graphene nitride forms an electron acceptor-rich layer on a side close to the first electrode.
  • the electron donor material is at least one of a material containing a thiophene unit, a material containing a dithienobenzene unit, and a material containing a dithienosilazole unit.
  • the electron donor material is poly-3-hexylthiophene, poly[[9-(1-octylfluorenyl)-9H-carbazole-2,7-diyl]-2,5-thiophene Base-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and 5;5'-bis[(4-(7-hexylthiophen-2-yl)) Thiophen-2-yl)-[1,2,5]thiadiazole[3,4-c]pyrimidine]-3; 3'-di-2-ethylhexylsilylene-2; 2'dithiophene At least one of (DTS (PTTh2) 2).
  • the photoactive layer has a thickness of 30 to 250 nm.
  • the conductive glass is FTO or ITO conductive glass.
  • the metal electrode is made of metal aluminum, silver or gold.
  • the material of the hole transport layer is molybdenum trioxide or poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS).
  • the organic solar cell device provided by the first aspect of the present invention uses graphene nitride as a receptor material, and its energy level can be matched with the energy level of the donor material, and can be integrated with the organic donor by constructing a three-dimensional network structure.
  • the material is better formed into the interpenetrating network structure, which is beneficial to the separation of the electric charge, thereby improving the short-circuit current under the condition of ensuring the open circuit voltage, thereby improving the energy conversion efficiency of the solar cell.
  • an embodiment of the present invention provides a method for fabricating an organic solar cell device, including the following steps:
  • the graphene nitride is ultrasonically dispersed in a mixed solvent of water and polyethylene glycol to obtain a graphene nitride dispersion; the graphene nitride dispersion is coated on the first electrode, and then removed by heat treatment.
  • the polyethylene glycol is obtained to obtain a graphene nitride foam film, which has a three-dimensional network structure;
  • an electron donor material on the graphene nitride foam film, the electron donor material partially permeating into the graphene nitride, and partially depositing on the graphene nitride film to form an electron donor enriched layer Forming a bulk heterojunction structure with the electron acceptor material to obtain a photoactive layer, and then sequentially depositing a hole transport layer and a second electrode on the photoactive layer to obtain an organic Solar cell device.
  • the graphene nitride foam-like film has a thickness of 10 to 100 nm.
  • the concentration of the graphene nitride dispersion is 0.1 to 10 mg/mL.
  • the coating method includes blade coating and spin coating; the heat treatment is at 200 ° C -500 ° C.
  • the polyethylene glycol has a number average molecular weight of from 1,000 to 5,000, and the mixed solvent has a mass concentration of polyethylene glycol of from 2 to 10%.
  • the graphene nitride is prepared in the following manner:
  • the graphene nitride is prepared in the following manner:
  • the electron donor material is at least one of a material containing a thiophene unit, a material containing a dithienobenzene unit, and a material containing a dithienosilazole unit.
  • the electron donor material is poly-3-hexylthiophene, poly[[9-(1-octylfluorenyl)-9H-carbazole-2,7-diyl]-2,5-thiophene At least one of benzyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and DTS(PTTh2)2.
  • the photoactive layer has a thickness of 30 to 250 nm.
  • the conductive glass is FTO or ITO conductive glass.
  • the metal electrode is made of metal aluminum, silver or gold.
  • the material of the hole transport layer is molybdenum trioxide or poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS).
  • the method for preparing an organic solar cell device provided by the second aspect of the embodiments of the present invention has a simple process and is suitable for industrial production.
  • the organic solar cell device provided by the first aspect of the present invention uses graphene nitride as a receptor material, and its energy level can be matched with the energy level of the donor material, and a three-dimensional network structure is constructed, and organic The donor material is better formed into an interpenetrating network structure, which is advantageous for the separation of charges, thereby improving the short-circuit current while ensuring the open circuit voltage, thereby improving the energy conversion efficiency of the solar cell.
  • the method for preparing an organic solar cell device provided by the second aspect of the embodiments of the present invention has a simple process and is suitable for industrial production.
  • FIG. 1 is a schematic structural diagram of an organic solar cell device according to an embodiment of the present invention.
  • the first aspect of the present invention provides an organic solar cell for solving the problem that the energy level of the graphene and the energy level of the donor material cannot be matched in the prior art, thereby causing the solar cell device prepared by using the method to have a low open circuit voltage. There is no practical problem, and at the same time solve the problem of single use of organic solar cell receptor materials.
  • an embodiment of the present invention provides an organic solar cell including a first electrode, a photoactive layer, a hole transport layer, and a second electrode, which are sequentially stacked, and the photoactive layer includes an electron acceptor material and an electron.
  • a donor material the electron acceptor material being graphene nitride, the graphene nitride forming a foam-like film on the first electrode, the graphene nitride having a three-dimensional network type structure, the electricity Part of the donor material is partially infiltrated into the graphene nitride, partially enriched on the side of the hole transport layer to form an electron donor enriched layer, and the graphene nitride and the electron donor material form a body
  • the first electrode is a conductive glass
  • the second electrode is a metal electrode.
  • FIG. 1 is a schematic structural view of an organic solar cell device according to an embodiment of the present invention, wherein 10 is a conductive glass, 20 is a photoactive layer, 30 is a hole transport layer, and 40 is a metal electrode.
  • the photoactive layer 20 includes an electron acceptor material a and an electron donor material b, and the electron acceptor material a forms a bulk heterojunction structure with the electron donor material b to form a good interpenetrating network structure.
  • the entire photoactive layer 20 forms an electron acceptor-rich layer 21 near one end of the conductive glass 10, and forms an electron donor-rich layer 22 at one end of the hole transport layer 30, so that the charge can be effectively prevented from rotating.
  • the essence of the bulk heterojunction structure is the interpenetrating network structure, which facilitates the transfer of electrons between the acceptor materials.
  • the energy level of graphene nitride is similar to that of fullerenes, and the conductivity is good.
  • the foamy graphene nitride has a good three-dimensional network structure and can be used as a good acceptor scaffold material, and can be combined with organic photovoltaic donor materials.
  • Better formation of interpenetrating network type structure is beneficial to the separation of charges. Therefore, in the case of ensuring the open circuit voltage, the short-circuit current is increased, thereby improving the energy conversion efficiency of the solar cell.
  • the graphene nitride has a film thickness of 10 to 100 nm.
  • the content of the nitrogen element in the graphene nitride is 0.1% to 14%.
  • the graphene nitride forms an electron acceptor-rich layer on a side close to the first electrode.
  • the electron donor material is at least one of a material containing a thiophene unit, a material containing a dithienobenzene unit, and a material containing a dithienosilazole unit.
  • the electron donor material is poly-3-hexylthiophene, poly[[9-(1-octylfluorenyl)-9H-carbazole-2,7-diyl]-2,5-thiophene At least one of benzyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and DTS(PTTh2)2.
  • the photoactive layer has a thickness of 30 to 250 nm.
  • the conductive glass is FTO or ITO conductive glass.
  • the metal electrode is made of metal aluminum, silver or gold.
  • the material of the hole transport layer is molybdenum trioxide or poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS).
  • the organic solar cell device provided by the first aspect of the present invention uses graphene nitride as a receptor material, and its energy level can be matched with the energy level of the donor material, and can be integrated with the organic donor by constructing a three-dimensional network structure.
  • the material is better formed into the interpenetrating network structure, which is beneficial to the separation of the electric charge, thereby improving the short-circuit current under the condition of ensuring the open circuit voltage, thereby improving the energy conversion efficiency of the solar cell.
  • an embodiment of the present invention provides a method for fabricating an organic solar cell device, including the following steps:
  • the graphene nitride is ultrasonically dispersed in a mixed solvent of water and polyethylene glycol to obtain a graphene nitride dispersion; the graphene nitride dispersion is coated on the first electrode, and then removed by heat treatment.
  • the polyethylene glycol is obtained to obtain a graphene nitride foam film, which has a three-dimensional network structure;
  • an electron donor material on the graphene nitride foam film, the electron donor material partially permeating into the graphene nitride, and partially depositing on the graphene nitride film to form an electron donor enriched layer Forming a bulk heterojunction structure with the electron acceptor material to obtain a photoactive layer, and then sequentially depositing a hole transport layer and a second electrode on the photoactive layer to obtain an organic Solar cell device.
  • the graphene nitride foam-like film has a thickness of 10 to 100 nm.
  • the concentration of the graphene nitride dispersion is 0.1 to 10 mg/mL.
  • the coating method includes blade coating and spin coating; the heat treatment is at 200 ° C -500 ° C.
  • the polyethylene glycol has a number average molecular weight of from 1,000 to 5,000, and the mixed solvent has a mass concentration of polyethylene glycol of from 2 to 10%.
  • the graphene nitride is prepared in the following manner:
  • the graphene nitride is prepared in the following manner:
  • the electron donor material is at least one of a material containing a thiophene unit, a material containing a dithienobenzene unit, and a material containing a dithienosilazole unit.
  • the electron donor material is poly-3-hexylthiophene, poly[[9-(1-octylfluorenyl)-9H-carbazole-2,7-diyl]-2,5-thiophene At least one of benzyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] and DTS(PTTh2)2.
  • the photoactive layer has a thickness of 30 to 250 nm.
  • the conductive glass is FTO or ITO conductive glass.
  • the metal electrode is made of metal aluminum, silver or gold.
  • the material of the hole transport layer is molybdenum trioxide or poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT:PSS).
  • the method for preparing an organic solar cell device provided by the second aspect of the embodiments of the present invention has a simple process and is suitable for industrial production.
  • the organic solar cell device provided by the first aspect of the present invention uses graphene nitride as a receptor material, and its energy level can be matched with the energy level of the donor material, and a three-dimensional network structure is constructed, and organic The donor material is better formed into an interpenetrating network structure, which is advantageous for the separation of charges, thereby improving the short-circuit current while ensuring the open circuit voltage, thereby improving the energy conversion efficiency of the solar cell.
  • the method for preparing an organic solar cell device provided by the second aspect of the embodiments of the present invention has a simple process and is suitable for industrial production.
  • a method for preparing an organic solar cell comprising the steps of:
  • the graphite nitride obtained above is ultrasonically dispersed in a mixed solvent of water and polyethylene glycol (number average molecular weight: 2000) to obtain a graphite nitride dispersion having a concentration of 10 mg/mL; and the mixed mixture is polyethylene-2
  • the mass concentration of the alcohol is 5%;
  • the graphene nitride dispersion is spin-coated on the conductive surface of the clean ITO glass, and then the ITO glass spin-coated with the graphene nitride dispersion is heat-treated at 400 ° C to remove the polyethylene glycol to obtain a thickness.
  • a chlorobenzene solution having a P3HT concentration of 15 mg/ml on the graphene nitride foam film Liquid, P3HT partially penetrates into the graphene nitride, partially deposits on the graphene nitride foam film to form an electron donor enrichment layer, and graphene nitride and P3HT form a bulk heterojunction structure, thereby obtaining a photoactive layer.
  • the thickness of the photoactive layer is 200 nm;
  • a MoO 3 hole transport layer having a thickness of 2 nm was deposited on P3HT, and then an aluminum electrode having a thickness of 100 nm was deposited on the hole transport layer to obtain an organic solar cell device.
  • a method for preparing an organic solar cell comprising the steps of:
  • the graphite nitride obtained above is ultrasonically dispersed in a mixed solvent of water and polyethylene glycol (number average molecular weight: 2000) to obtain a graphite nitride dispersion having a concentration of 10 mg/mL; and the mixed mixture is polyethylene-2
  • the mass concentration of the alcohol is 5%;
  • the graphene nitride dispersion is spin-coated on the conductive surface of the clean FTO glass, and then the FTO glass spin-coated with the graphene nitride dispersion is heat-treated at 400 ° C to remove the polyethylene glycol to obtain a thickness.
  • a chlorobenzene solution having a PCDTBT concentration of 15 mg/ml was spin-coated on the graphene nitride foam film, and PCDTBT partially penetrated into the graphene nitride and partially deposited on the graphene nitride foam film.
  • Forming an electron donor enrichment layer, the graphene nitride and the PCDTBT form a bulk heterojunction structure, thereby obtaining a photoactive layer, the photoactive layer having a thickness of 200 nm;
  • a MoO 3 hole transport layer having a thickness of 2 nm was further deposited on the PCDTBT, and then an aluminum electrode having a thickness of 100 nm was deposited on the hole transport layer to obtain an organic solar cell device.
  • a mixed solution of P3HT and PCBM fulllerene derivative
  • the solvent of the mixed solution was chlorobenzene
  • the concentration of P3HT was 10 mg/ml
  • the concentration of PCBM was 10 mg/ml.
  • the thickness is 100 nm;
  • a MoO 3 hole transport layer having a thickness of 2 nm was deposited on the photoactive layer film, and an aluminum electrode having a thickness of 100 nm was deposited on the hole transport layer to obtain a complete organic solar cell device.
  • the effect embodiment is to strongly support the beneficial effects of the embodiments of the present invention, and provides an effect implementation, for example, to evaluate the performance of the product provided by the embodiment of the present invention.
  • the organic solar cell devices prepared in the first to second and comparative examples of the present invention were tested under 100 mW/cm 2 intensity illumination, and the results were as follows:
  • Embodiment 1 The open circuit voltage V OC of the battery is 0.6 V, the short circuit current density J SC is 7.0 mA/cm 2 , the fill factor FF is 60.5%, and the energy conversion efficiency ⁇ is 2.54%.
  • Embodiment 2 The open circuit voltage V OC of the battery is 0.81 V, the short circuit current density J SC is 6.71 mA/cm 2 , the fill factor FF is 58.5%, and the energy conversion efficiency ⁇ is 3.18%.
  • the organic solar cell device adopts graphene nitride as the acceptor material, and the energy level thereof can be matched with the energy level of the donor material, and the three-dimensional network structure is formed, and the organic donor material is better formed. Wearing a network structure facilitates the separation of charges, thereby improving the short-circuit current and improving the energy conversion efficiency of the solar cell while ensuring the open circuit voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种有机太阳能电池器件,包括依次层叠设置的第一电极(10)、光活性层(20)、空穴传输层(30)、第二电极(40),光活性层(20)包括电子受体材料和电子给体材料,电子受体材料为氮化石墨烯,在第一电极(10)上形成泡沫状薄膜并具有单位网络型结构,电子给体材料部分渗透于氮化石墨烯中,部分富集于空穴传输层(30)一侧形成电子给体富集层(21),氮化石墨烯与电子给体材料形成体异质结构,第一电极(10)为导电玻璃,第二电极(40)为金属电极。太阳能电池以氮化石墨烯为受体材料,与有机给体材料更好的形成互穿网络型结构,有利于电荷的分离,从而在保证开路电压的情况下,提高了短路电流,提高了太阳能电池的能量转换效率。还提供了有机太阳能电池器件的制备方法。

Description

一种有机太阳能电池及其制备方法
本申请要求于2014年6月27日提交中国专利局的申请号为201410299943.9,其发明名称为“一种有机太阳能电池及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及领域有机太阳能电池领域,特别是涉及一种有机太阳能电池及其制备方法。
背景技术
目前,有机体异质结太阳能电池的单层器件效率已经达到了接近10%的商用水平,而这一效率的得到,很大程度上也是源自于体异质结器件结构的引入。体异质结结构的本质是互穿网络型结构,这种结构有利于给受体材料之间的电子转移。
现今,体异质结太阳能电池采用的受体材料多为富勒烯衍生物材料,富勒烯衍生物材料有优异的电荷传输性能,能级结构上与大多数给体材料有良好的匹配性,而且富勒烯的球形结构使得其在电荷传输上有各项同性的优点,更加有利于电荷的传输,但是在活性层制备时富勒烯受体材料易于聚集,使其电荷传输的有效面积减少,且材料制备提纯困难,使其不易于商业应用。
为了寻找代替富勒烯材料的其他受体材料,研究者也报道了大量的受体材料,但这些材料则因为电荷传输性,溶解性等问题,使其不能得到广泛应用。其中,石墨烯和碳纳米管这类碳材料的电荷传输能力以及稳定性等性质都可与富勒烯相媲美,受到了业界的关注。但是由于石墨烯和碳纳米管的相对较低的能级,与给体材料的能级不能匹配,因此使用它们制备的太阳能器件的开路电压 非常低,电池无实用性。
发明内容
有鉴于此,本发明实施例第一方面提供了一种有机太阳能电池,用以解决现有技术中由于石墨烯的能级与给体材料的能级不能匹配,从而导致使用其制备的太阳能电池器件开路电压低,无实用性的问题,同时解决现行使用的有机太阳能电池受体材料单一的问题。
第一方面,本发明实施例提供了一种有机太阳能电池,包括依次层叠设置的第一电极、光活性层、空穴传输层、第二电极,所述光活性层包括电子受体材料和电子给体材料,所述电子受体材料为氮化石墨烯,所述氮化石墨烯在所述第一电极上形成泡沫状薄膜,所述氮化石墨烯具有三维网络型结构,所述电子给体材料部分渗透于所述氮化石墨烯中,部分富集于所述空穴传输层一侧形成电子给体富集层,所述氮化石墨烯与所述电子给体材料形成体异质结结构,所述第一电极为导电玻璃,所述第二电极为金属电极。
本发明实施方式中,所述氮化石墨烯形成的薄膜厚度为10-100nm。
本发明实施方式中,所述氮化石墨烯中氮元素的质量含量为0.1%-14%。
本发明实施方式中,所述氮化石墨烯在靠近所述第一电极的一侧形成电子受体富集层。
本发明实施方式中,所述电子给体材料为含噻吩单元的材料、含二噻吩并苯单元的材料和含二噻吩并噻咯单元的材料中的至少一种。
本发明实施方式中,所述电子给体材料为聚3-己基噻吩、聚[[9-(1-辛基壬基)-9H-咔唑-2,7-二基]-2,5-噻吩二基-2,1,3-苯并噻二唑-4,7-二基-2,5-噻吩二基]和5;5’-二[(4-(7-己基噻吩-2-基)噻吩-2-基)-[1,2,5]噻二唑[3,4-c]嘧啶]-3;3’-二-2-乙基己基亚甲硅基-2;2’二噻吩(DTS(PTTh2)2)中的至少一种。
本发明实施方式中,所述光活性层的厚度为30-250nm。
本发明实施方式中,所述导电玻璃为FTO或ITO导电玻璃。
本发明实施方式中,所述金属电极的材质为金属铝、银或金。
本发明实施方式中,所述空穴传输层的材质为三氧化钼或聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)。
本发明实施例第一方面提供的有机太阳能电池器件,以氮化石墨烯为受体材料,其能级可与给体材料的能级匹配,并通过构建三维网络型结构,可与有机给体材料更好的形成互穿网络型结构,有利于电荷的分离,从而在保证开路电压的情况下,提高了短路电流,从而提高了太阳能电池的能量转换效率。
第二方面,本发明实施例提供了一种有机太阳能电池器件的制备方法,包括以下步骤:
将氮化石墨烯超声分散于水与聚乙二醇形成的混合溶剂中,得到氮化石墨烯分散液;将所述氮化石墨烯分散液涂覆在第一电极上,然后经热处理去除所述聚乙二醇,得到氮化石墨烯泡沫状薄膜,所述氮化石墨烯泡沫状薄膜具有三维网络型结构;
再在所述氮化石墨烯泡沫状薄膜上涂覆电子给体材料,所述电子给体材料部分渗透到氮化石墨烯中,部分沉积在氮化石墨烯薄膜上形成电子给体富集层,所述电子受体材料与所述电子给体材料形成体异质结结构,从而得到光活性层,再在所述光活性层上依次蒸镀制备空穴传输层和第二电极,得到有机太阳能电池器件。
本发明实施方式中,所述氮化石墨烯泡沫状薄膜的厚度为10-100nm。
本发明实施方式中,所述氮化石墨烯分散液的浓度为0.1~10mg/mL。
本发明实施方式中,所述涂覆的方式包括刮涂、旋涂;所述热处理在200℃ -500℃下进行。
本发明实施方式中,所述聚乙二醇的数均分子量为1000-5000,所述混合溶剂中聚乙二醇的质量浓度为2-10%。
本发明实施方式中,所述氮化石墨烯采用如下方式制备得到:
取氧化石墨烯,置于氨气和氮气的混合气氛中,在600-1000℃下加热0.5-3小时,停止加热后,保持混合气流,待降至室温,停止通入氨气,得到氮化石墨烯。
本发明另一实施方式中,所述氮化石墨烯采用如下方式制备得到:
在氧化石墨烯水溶液中加入适量尿素,得到混合液,将所述混合液置于聚四氟乙烯高压釜中,在100-250℃下反应6-20小时,得到固体产物,待所述固体产物冷却后,经过滤、水洗、烘干,得到氮化石墨烯。
本发明实施方式中,所述电子给体材料为含噻吩单元的材料、含二噻吩并苯单元的材料、和含二噻吩并噻咯单元的材料中的至少一种。
本发明实施方式中,所述电子给体材料为聚3-己基噻吩、聚[[9-(1-辛基壬基)-9H-咔唑-2,7-二基]-2,5-噻吩二基-2,1,3-苯并噻二唑-4,7-二基-2,5-噻吩二基]和DTS(PTTh2)2中的至少一种。
本发明实施方式中,所述光活性层的厚度为30-250nm。
本发明实施方式中,所述导电玻璃为FTO或ITO导电玻璃。
本发明实施方式中,所述金属电极的材质为金属铝、银或金。
本发明实施方式中,所述空穴传输层的材质为三氧化钼或聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)。
本发明实施例第二方面提供的有机太阳能电池器件的制备方法,工艺简单,适于工业化生产。
综上,本发明实施例第一方面提供的有机太阳能电池器件,以氮化石墨烯为受体材料,其能级可与给体材料的能级匹配,并通过构建三维网络型结构,与有机给体材料更好的形成互穿网络型结构,有利于电荷的分离,从而在保证开路电压的情况下,提高了短路电流,从而提高了太阳能电池的能量转换效率。本发明实施例第二方面提供的有机太阳能电池器件的制备方法,工艺简单,适于工业化生产。
本发明实施例的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
附图说明
图1为本发明实施例提供的有机太阳能电池器件的结构示意图。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
本发明实施例第一方面提供了一种有机太阳能电池,用以解决现有技术中由于石墨烯的能级与给体材料的能级不能匹配,从而导致使用其制备的太阳能电池器件开路电压低,无实用性的问题,同时解决现行使用的有机太阳能电池受体材料单一的问题。
第一方面,本发明实施例提供了一种有机太阳能电池,包括依次层叠设置的第一电极、光活性层、空穴传输层、第二电极,所述光活性层包括电子受体材料和电子给体材料,所述电子受体材料为氮化石墨烯,所述氮化石墨烯在所述第一电极上形成泡沫状薄膜,所述氮化石墨烯具有三维网络型结构,所述电 子给体材料部分渗透于所述氮化石墨烯中,部分富集于所述空穴传输层一侧形成电子给体富集层,所述氮化石墨烯与所述电子给体材料形成体异质结结构,所述第一电极为导电玻璃,所述第二电极为金属电极。
图1为本发明实施例提供的有机太阳能电池器件的结构示意图,其中,10为导电玻璃、20为光活性层,30为空穴传输层,40为金属电极。其中光活性层20包括电子受体材料a和电子给体材料b,所述电子受体材料a与所述电子给体材料b形成体异质结结构,形成了良好的互穿网络型结构。整个光活性层20在靠近导电玻璃10一端形成电子受体富集层21,在靠空穴传输层30一端形成电子给体富集层22,这样可以有效防止电荷的回转。
体异质结结构的本质是互穿网络型结构,这种结构有利于给受体材料之间的电子转移。氮化石墨烯的能级与富勒烯相近,且导电性良好,泡沫状氮化石墨烯具有良好的三维网络型结构,可作为很好的受体支架型材料,能与有机光伏给体材料更好的形成互穿网络型结构,有利于电荷的分离。从而在保证开路电压的情况下,提高短路电流,从而提高太阳能电池的能量转换效率。
本发明实施方式中,所述氮化石墨烯形成的薄膜厚度为10-100nm。
本发明实施方式中,所述氮化石墨烯中氮元素的质量含量为0.1%-14%。
本发明实施方式中,所述氮化石墨烯在靠近所述第一电极的一侧形成电子受体富集层。
本发明实施方式中,所述电子给体材料为含噻吩单元的材料、含二噻吩并苯单元的材料和含二噻吩并噻咯单元的材料中的至少一种。
本发明实施方式中,所述电子给体材料为聚3-己基噻吩、聚[[9-(1-辛基壬基)-9H-咔唑-2,7-二基]-2,5-噻吩二基-2,1,3-苯并噻二唑-4,7-二基-2,5-噻吩二基]和DTS(PTTh2)2中的至少一种。
本发明实施方式中,所述光活性层的厚度为30-250nm。
本发明实施方式中,所述导电玻璃为FTO或ITO导电玻璃。
本发明实施方式中,所述金属电极的材质为金属铝、银或金。
本发明实施方式中,所述空穴传输层的材质为三氧化钼或聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)。
本发明实施例第一方面提供的有机太阳能电池器件,以氮化石墨烯为受体材料,其能级可与给体材料的能级匹配,并通过构建三维网络型结构,可与有机给体材料更好的形成互穿网络型结构,有利于电荷的分离,从而在保证开路电压的情况下,提高了短路电流,从而提高了太阳能电池的能量转换效率。
第二方面,本发明实施例提供了一种有机太阳能电池器件的制备方法,包括以下步骤:
将氮化石墨烯超声分散于水与聚乙二醇形成的混合溶剂中,得到氮化石墨烯分散液;将所述氮化石墨烯分散液涂覆在第一电极上,然后经热处理去除所述聚乙二醇,得到氮化石墨烯泡沫状薄膜,所述氮化石墨烯泡沫状薄膜具有三维网络型结构;
再在所述氮化石墨烯泡沫状薄膜上涂覆电子给体材料,所述电子给体材料部分渗透到氮化石墨烯中,部分沉积在氮化石墨烯薄膜上形成电子给体富集层,所述电子受体材料与所述电子给体材料形成体异质结结构,从而得到光活性层,再在所述光活性层上依次蒸镀制备空穴传输层和第二电极,得到有机太阳能电池器件。
本发明实施方式中,所述氮化石墨烯泡沫状薄膜的厚度为10-100nm。
本发明实施方式中,所述氮化石墨烯分散液的浓度为0.1~10mg/mL。
本发明实施方式中,所述涂覆的方式包括刮涂、旋涂;所述热处理在200℃ -500℃下进行。
本发明实施方式中,所述聚乙二醇的数均分子量为1000-5000,所述混合溶剂中聚乙二醇的质量浓度为2-10%。
本发明实施方式中,所述氮化石墨烯采用如下方式制备得到:
取氧化石墨烯,置于氨气和氮气的混合气氛中,在600-1000℃下加热0.5-3小时,停止加热后,保持混合气流,待降至室温,停止通入氨气,得到氮化石墨烯。
本发明另一实施方式中,所述氮化石墨烯采用如下方式制备得到:
在氧化石墨烯水溶液中加入适量尿素,得到混合液,将所述混合液置于聚四氟乙烯高压釜中,在100-250℃下反应6-20小时,得到固体产物,待所述固体产物冷却后,经过滤、水洗、烘干,得到氮化石墨烯。
本发明实施方式中,所述电子给体材料为含噻吩单元的材料、含二噻吩并苯单元的材料、和含二噻吩并噻咯单元的材料中的至少一种。
本发明实施方式中,所述电子给体材料为聚3-己基噻吩、聚[[9-(1-辛基壬基)-9H-咔唑-2,7-二基]-2,5-噻吩二基-2,1,3-苯并噻二唑-4,7-二基-2,5-噻吩二基]和DTS(PTTh2)2中的至少一种。
本发明实施方式中,所述光活性层的厚度为30-250nm。
本发明实施方式中,所述导电玻璃为FTO或ITO导电玻璃。
本发明实施方式中,所述金属电极的材质为金属铝、银或金。
本发明实施方式中,所述空穴传输层的材质为三氧化钼或聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)。
本发明实施例第二方面提供的有机太阳能电池器件的制备方法,工艺简单,适于工业化生产。
综上,本发明实施例第一方面提供的有机太阳能电池器件,以氮化石墨烯为受体材料,其能级可与给体材料的能级匹配,并通过构建三维网络型结构,与有机给体材料更好的形成互穿网络型结构,有利于电荷的分离,从而在保证开路电压的情况下,提高了短路电流,从而提高了太阳能电池的能量转换效率。本发明实施例第二方面提供的有机太阳能电池器件的制备方法,工艺简单,适于工业化生产。
下面分多个实施例对本发明实施例进行进一步的说明。本发明实施例不限定于以下的具体实施例。在不变主权利的范围内,可以适当的进行变更实施。
实施例一
一种有机太阳能电池的制备方法,包括以下步骤:
取氧化石墨烯置于水平石英炉中,在氨气和氮气(体积比=1∶1)的混合气氛中,置于熔炉中在800℃下加热1小时,停止加热后,保持混合气流,待石英管降至室温,停止通入氨气,将产物从石英管中取出,得到氮化石墨烯;
将上述所得氮化石墨烯超声分散于水与聚乙二醇(数均分子量为2000)形成的混合溶剂中,得到浓度为10mg/mL氮化石墨烯分散液;所述混合合剂中聚乙二醇的质量浓度为5%;
取ITO玻璃,依次用洗涤剂、氯仿、丙酮超声洗涤后,将洗净的导电玻璃的导电面用氮气吹干待用;
将所述氮化石墨烯分散液旋涂在洁净的ITO玻璃的导电面上,然后将旋涂有氮化石墨烯分散液的ITO玻璃在400℃下进行热处理,去除聚乙二醇,得到厚度为40nm的氮化石墨烯泡沫状薄膜,所述氮化石墨烯泡沫状薄膜具有三维网络型结构;
再在所述氮化石墨烯泡沫状薄膜上旋涂P3HT的浓度为15mg/ml的氯苯溶 液,P3HT部分渗透到氮化石墨烯中,部分沉积在氮化石墨烯泡沫状薄膜上形成电子给体富集层,氮化石墨烯与P3HT形成体异质结结构,从而得到光活性层,所述光活性层的厚度为200nm;
再在P3HT上蒸镀厚度为2nm的MoO3空穴传输层,然后再在空穴传输层上蒸镀厚度为100nm的铝电极,得到有机太阳能电池器件。
实施例二
一种有机太阳能电池的制备方法,包括以下步骤:
将10mL浓度为4mg/mL的氧化石墨烯水溶液用25mL去离子水稀释,并加入少量尿素,得到混合液,将所述混合液置于50mL的聚四氟乙烯高压釜中,在180℃温度下反应12小时,得到固体产物,待所述固体产物冷却后,经过滤、水洗、烘干,得到氮化石墨烯;
将上述所得氮化石墨烯超声分散于水与聚乙二醇(数均分子量为2000)形成的混合溶剂中,得到浓度为10mg/mL氮化石墨烯分散液;所述混合合剂中聚乙二醇的质量浓度为5%;
取FTO玻璃,依次用洗涤剂、氯仿、丙酮超声洗涤后,将洗净的导电玻璃的导电面用氮气吹干待用;
将所述氮化石墨烯分散液旋涂在洁净的FTO玻璃的导电面上,然后将旋涂有氮化石墨烯分散液的FTO玻璃在400℃下进行热处理,去除聚乙二醇,得到厚度为50nm的氮化石墨烯泡沫状薄膜,所述氮化石墨烯泡沫状薄膜具有三维网络型结构;
再在所述氮化石墨烯泡沫状薄膜上旋涂PCDTBT的浓度为15mg/ml的氯苯溶液,PCDTBT部分渗透到氮化石墨烯中,部分沉积在氮化石墨烯泡沫状薄膜 上形成电子给体富集层,氮化石墨烯与PCDTBT形成体异质结结构,从而得到光活性层,所述光活性层的厚度为200nm;
再在PCDTBT上再蒸镀厚度为2nm的MoO3空穴传输层,然后再在空穴传输层上蒸镀厚度为100nm的铝电极,得到有机太阳能电池器件。
对比例
取ITO玻璃,依次用洗涤剂、氯仿、丙酮超声洗涤后,将洗净的导电玻璃的导电面用氮气吹干待用;
然后在ITO上旋涂P3HT和PCBM(富勒烯衍生物)的混合溶液形成光活性层,混合溶液的溶剂为氯苯,P3HT浓度为10mg/ml,PCBM浓度为10mg/ml,光活性层薄膜的厚度为100nm;
再在光活性层薄膜上蒸镀厚度为2nm的MoO3空穴传输层,在空穴传输层上蒸镀厚度为100nm的铝电极,从而得到完整的有机太阳能电池器件。
效果实施例为有力支持本发明实施例的有益效果,提供效果实施例如下,用以评测本发明实施例提供的产品的性能。
将本发明实施例一~二和对比例制备得到的有机太阳能电池器件在100mW/cm2强度光照下进行性能测试,结果如下:
实施例一:电池的开路电压VOC为0.6V,短路电流密度JSC为7.0mA/cm2,填充因子FF为60.5%,能量转换效率η为2.54%。
实施例二:电池的开路电压VOC为0.81V,短路电流密度JSC为6.71mA/cm2,填充因子FF为58.5%,能量转换效率η为3.18%。
对比例:电池的开路电压VOC为0.59V,短路电流密度JSC为5.71mA/cm2,填充因子FF为55.7%,能量转换效率η为1.88%。
本发明实施例有机太阳能电池器件以氮化石墨烯为受体材料,其能级可与给体材料的能级匹配,并通过构建三维网络型结构,与有机给体材料更好的形成了互穿网络型结构,有利于电荷的分离,从而在保证开路电压的情况下,提高了短路电流,提高了太阳能电池的能量转换效率。

Claims (23)

  1. 一种有机太阳能电池器件,包括依次层叠设置的第一电极、光活性层、空穴传输层和第二电极,其特征在于,所述光活性层包括电子受体材料和电子给体材料,所述电子受体材料为氮化石墨烯,所述氮化石墨烯在所述第一电极上形成泡沫状薄膜,所述氮化石墨烯具有三维网络型结构,所述电子给体材料部分渗透于所述氮化石墨烯中,部分富集于所述空穴传输层一侧形成电子给体富集层,所述氮化石墨烯与所述电子给体材料形成体异质结结构,所述第一电极为导电玻璃,所述第二电极为金属电极。
  2. 如权利要求1所述的有机太阳能电池器件,其特征在于,所述氮化石墨烯形成的薄膜厚度为10-100nm。
  3. 如权利要求1或2所述的有机太阳能电池器件,其特征在于,所述氮化石墨烯中氮元素的质量含量为0.1%-14%。
  4. 如权利要求1-3任一项所述的有机太阳能电池器件,其特征在于,所述氮化石墨烯在靠近所述第一电极的一侧形成电子受体富集层。
  5. 如权利要求1-4任一项所述的有机太阳能电池器件,其特征在于,所述电子给体材料为含噻吩单元的材料、含二噻吩并苯单元的材料和含二噻吩并噻咯单元的材料中的至少一种。
  6. 如权利要求5所述的有机太阳能电池器件,其特征在于,所述电子给体材料为聚3-己基噻吩、聚[[9-(1-辛基壬基)-9H-咔唑-2,7-二基]-2,5-噻吩二基-2,1,3-苯并噻二唑-4,7-二基-2,5-噻吩二基]和5;5’-二[(4-(7-己基噻吩-2-基)噻吩-2-基)-[1,2,5]噻二唑[3,4-c]嘧啶]-3;3’-二-2-乙基己基亚甲硅基-2;2’二噻吩中的至少一种。
  7. 如权利要求1-6任一项所述的有机太阳能电池器件,其特征在于,所述 光活性层的厚度为30-250nm。
  8. 如权利要求1-7任一项所述的有机太阳能电池器件,其特征在于,所述导电玻璃为FTO或ITO导电玻璃。
  9. 如权利要求1-8任一项所述的有机太阳能电池器件,其特征在于,所述金属电极的材质为金属铝、银或金。
  10. 如权利要求1-9任一项所述的有机太阳能电池器件,其特征在于,所述空穴传输层的材质为三氧化钼或聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)。
  11. 一种有机太阳能电池器件的制备方法,其特征在于,包括以下步骤:
    将氮化石墨烯超声分散于水与聚乙二醇形成的混合溶剂中,得到氮化石墨烯分散液;将所述氮化石墨烯分散液涂覆在第一电极上,然后经热处理去除所述聚乙二醇,得到氮化石墨烯泡沫状薄膜,所述氮化石墨烯泡沫状薄膜具有三维网络型结构;
    再在所述氮化石墨烯泡沫状薄膜上涂覆电子给体材料,所述电子给体材料部分渗透到氮化石墨烯中,部分沉积在氮化石墨烯薄膜上形成电子给体富集层,所述电子受体材料与所述电子给体材料形成体异质结结构,从而得到光活性层,再在所述光活性层上依次蒸镀制备空穴传输层和第二电极,得到有机太阳能电池器件。
  12. 如权利要求11所述的有机太阳能电池器件的制备方法,其特征在于,所述氮化石墨烯泡沫状薄膜的厚度为10-100nm。
  13. 如权利要求11或12所述的有机太阳能电池器件的制备方法,其特征在于,所述氮化石墨烯分散液的浓度为0.1~10mg/mL。
  14. 如权利要求11-13任一项所述的有机太阳能电池器件的制备方法,其特征在于,所述涂覆的方式包括刮涂、旋涂;所述热处理在200℃-500℃下进行。
  15. 如权利要求11-14任一项所述的有机太阳能电池器件的制备方法,其特征在于,所述聚乙二醇的数均分子量为1000-5000,所述混合溶剂中聚乙二醇的质量浓度为2-10%。
  16. 如权利要求11-15任一项所述的有机太阳能电池器件的制备方法,其特征在于,所述氮化石墨烯采用如下方式制备得到:
    取氧化石墨烯,置于氨气和氮气的混合气氛中,在600-1000℃下加热0.5-3小时,停止加热后,保持混合气流,待降至室温,停止通入氨气,得到氮化石墨烯。
  17. 如权利要求11-16任一项所述的有机太阳能电池器件的制备方法,其特征在于,所述氮化石墨烯采用如下方式制备得到:
    在氧化石墨烯水溶液中加入适量尿素,得到混合液,将所述混合液置于聚四氟乙烯高压釜中,在100-250℃下反应6-20小时,得到固体产物,待所述固体产物冷却后,经过滤、水洗、烘干,得到氮化石墨烯。
  18. 如权利要求11-17任一项所述的有机太阳能电池器件的制备方法,其特征在于,所述电子给体材料为含噻吩单元的材料、含二噻吩并苯单元的材料、和含二噻吩并噻咯单元的材料中的至少一种。
  19. 如权利要求11-18任一项所述的有机太阳能电池器件的制备方法,其特征在于,所述电子给体材料为聚3-己基噻吩、聚[[9-(1-辛基壬基)-9H-咔唑-2,7-二基]-2,5-噻吩二基-2,1,3-苯并噻二唑-4,7-二基-2,5-噻吩二基]和5;5’-二[(4-(7-己基噻吩-2-基)噻吩-2-基)-[1,2,5]噻二唑[3,4-c]嘧啶]-3;3’-二-2-乙基己基亚甲硅基-2;2’二噻吩中的至少一种。
  20. 如权利要求11-19任一项所述的有机太阳能电池器件的制备方法,其特征在于,所述光活性层的厚度为30-250nm。
  21. 如权利要求11-20任一项所述的有机太阳能电池器件的制备方法,其特征在于,所述导电玻璃为FTO或ITO导电玻璃。
  22. 如权利要求11-21任一项所述的有机太阳能电池器件的制备方法,其特征在于,所述金属电极的材质为金属铝、银或金。
  23. 如权利要求11-22任一项所述的有机太阳能电池器件的制备方法,其特征在于,所述空穴传输层的材质为三氧化钼或聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)。
PCT/CN2015/070710 2014-06-27 2015-01-14 一种有机太阳能电池及其制备方法 WO2015196794A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15811181.5A EP3144990A4 (en) 2014-06-27 2015-01-14 Organic solar battery and preparation method therefor
US15/387,253 US10153447B2 (en) 2014-06-27 2016-12-21 Organic solar cell and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410299943.9A CN105336861B (zh) 2014-06-27 2014-06-27 一种有机太阳能电池及其制备方法
CN201410299943.9 2014-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/387,253 Continuation US10153447B2 (en) 2014-06-27 2016-12-21 Organic solar cell and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2015196794A1 true WO2015196794A1 (zh) 2015-12-30

Family

ID=54936687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070710 WO2015196794A1 (zh) 2014-06-27 2015-01-14 一种有机太阳能电池及其制备方法

Country Status (4)

Country Link
US (1) US10153447B2 (zh)
EP (1) EP3144990A4 (zh)
CN (1) CN105336861B (zh)
WO (1) WO2015196794A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110142A (zh) * 2017-12-15 2018-06-01 吉林大学 一种阴极界面层材料及其制备方法和一种反式太阳能电池及其制备方法
CN109768240A (zh) * 2018-12-24 2019-05-17 岭南师范学院 一种Sb掺氮石墨烯复合材料及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530360B2 (ja) * 2016-09-23 2019-06-12 株式会社東芝 光電変換素子
CN107093607B (zh) * 2017-04-20 2018-11-23 深圳市华星光电技术有限公司 阵列基板、显示基板的制作方法、显示基板及显示面板
CN107768522A (zh) * 2017-11-29 2018-03-06 湖南师范大学 一种以石墨烯作为导电材料的钙钛矿薄膜太阳能电池及其制备方法
CN112349836B (zh) 2019-08-08 2024-03-26 天光材料科技股份有限公司 有机半导体混合材料及应用其的有机光电组件
CN113838983B (zh) * 2021-08-26 2024-03-26 电子科技大学 一种基于npb/v2o5缓冲层的有机光电传感器及其制备方法
CN114695678B (zh) * 2022-02-28 2023-04-25 电子科技大学 一种有效抑制倒置结构的有机光电探测器内暗电流的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280589A (zh) * 2011-09-08 2011-12-14 深圳市创益科技发展有限公司 一种有机太阳能电池及其制备方法
CN102386332A (zh) * 2010-08-27 2012-03-21 海洋王照明科技股份有限公司 太阳能电池及其制备方法
CN103367641A (zh) * 2012-04-06 2013-10-23 中国科学院大连化学物理研究所 以高功函石墨烯衍生物为中间层的有机太阳能电池及制备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543469B (zh) 2012-01-11 2014-12-10 山东理工大学 染料敏化太阳能电池氮掺杂石墨烯对电极及其制备方法
US9917255B2 (en) * 2012-02-03 2018-03-13 Northwestern University Methods of making composite of graphene oxide and nanostructures
US20150083206A1 (en) * 2012-03-22 2015-03-26 The University Of Manchester Photovoltaic cells
JP6147542B2 (ja) * 2013-04-01 2017-06-14 株式会社東芝 透明導電フィルムおよび電気素子
CN103193785B (zh) * 2013-04-11 2015-04-22 江苏大学 一种类石墨烯c3n4材料及其制备方法和用途
US9287057B2 (en) * 2013-06-05 2016-03-15 City University Of Hong Kong Plasmonic enhanced tandem dye-sensitized solar cell with metallic nanostructures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386332A (zh) * 2010-08-27 2012-03-21 海洋王照明科技股份有限公司 太阳能电池及其制备方法
CN102280589A (zh) * 2011-09-08 2011-12-14 深圳市创益科技发展有限公司 一种有机太阳能电池及其制备方法
CN103367641A (zh) * 2012-04-06 2013-10-23 中国科学院大连化学物理研究所 以高功函石墨烯衍生物为中间层的有机太阳能电池及制备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3144990A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110142A (zh) * 2017-12-15 2018-06-01 吉林大学 一种阴极界面层材料及其制备方法和一种反式太阳能电池及其制备方法
CN109768240A (zh) * 2018-12-24 2019-05-17 岭南师范学院 一种Sb掺氮石墨烯复合材料及其制备方法和应用
CN109768240B (zh) * 2018-12-24 2021-01-29 岭南师范学院 一种Sb掺氮石墨烯复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN105336861A (zh) 2016-02-17
US10153447B2 (en) 2018-12-11
EP3144990A4 (en) 2017-06-07
CN105336861B (zh) 2017-11-17
US20170104169A1 (en) 2017-04-13
EP3144990A1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2015196794A1 (zh) 一种有机太阳能电池及其制备方法
Wu et al. Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells
Wang et al. Enhancement of photovoltaic characteristics using a suitable solvent in hybrid polymer/multiarmed CdS nanorods solar cells
CN106233482B (zh) 有机无机混合太阳能电池
CN105006522B (zh) 一种基于钙钛矿的倒置薄膜太阳能电池及其制备方法
WO2015165259A1 (zh) 一种溶液加工的有机-无机平面异质结太阳电池及其制备
Cheng et al. Fluorinated reduced graphene oxide as an efficient hole-transport layer for efficient and stable polymer solar cells
CN106972102B (zh) 一种银掺杂氧化镍薄膜的制备及作为空穴传输层在钙钛矿太阳能电池中的应用
Zhen et al. An ethanolamine-functionalized fullerene as an efficient electron transport layer for high-efficiency inverted polymer solar cells
Ikram et al. Hybrid organic solar cells using both ZnO and PCBM as electron acceptor materials
CN106129251A (zh) 一种柔性钙钛矿电池的结构及其制备方法
CN107946471B (zh) 一种基于硅纳米线阵列的异质结光伏电池及其制备方法
CN105789444A (zh) 一种基于真空蒸发镀膜法的钙钛矿太阳能电池及其制备方法
CN109802041B (zh) 一种非富勒烯钙钛矿平面异质结太阳能电池及制备方法
WO2018161707A1 (zh) 有机光活性层复合墨水、有机太阳能电池及其制备方法
TW201108485A (en) Organic solar cell and method forming the same
Jiang et al. Template-free synthesis of vertically aligned CdS nanorods and its application in hybrid solar cells
CN106601916B (zh) 基于异质结阴极缓冲层的有机太阳能电池及其制备方法
CN106410037A (zh) 一种基于有机小分子给体材料的双结太阳能电池器件及其制备方法
CN105355787A (zh) 一种新型太阳能电池器件及其制备方法
Liu et al. ADA-type small molecular acceptor with one hexyl-substituted thiophene as π bridge for fullerene-free organic solar cells
CN105870343B (zh) 一种提高有机聚合物光伏电池效率的方法
CN105185911A (zh) 一种基于溶剂掺杂的聚合物太阳能电池及其制备方法
CN102593362B (zh) 一种有机太阳能电池
CN102280586B (zh) 反转结构的聚合物太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811181

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015811181

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811181

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE