WO2018161482A1 - 氮化碳基光催化剂及其制备方法 - Google Patents
氮化碳基光催化剂及其制备方法 Download PDFInfo
- Publication number
- WO2018161482A1 WO2018161482A1 PCT/CN2017/091479 CN2017091479W WO2018161482A1 WO 2018161482 A1 WO2018161482 A1 WO 2018161482A1 CN 2017091479 W CN2017091479 W CN 2017091479W WO 2018161482 A1 WO2018161482 A1 WO 2018161482A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- melem
- photocatalyst
- benzophenonetetracarboxylic dianhydride
- carbon nitride
- temperature
- Prior art date
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 53
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title abstract description 8
- YSRVJVDFHZYRPA-UHFFFAOYSA-N melem Chemical compound NC1=NC(N23)=NC(N)=NC2=NC(N)=NC3=N1 YSRVJVDFHZYRPA-UHFFFAOYSA-N 0.000 claims description 54
- 239000007787 solid Substances 0.000 claims description 48
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 33
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 claims description 31
- 238000010438 heat treatment Methods 0.000 claims description 30
- 239000010453 quartz Substances 0.000 claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 22
- 229920000877 Melamine resin Polymers 0.000 claims description 22
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000006116 polymerization reaction Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 230000003647 oxidation Effects 0.000 abstract description 14
- 238000007254 oxidation reaction Methods 0.000 abstract description 14
- 230000001699 photocatalysis Effects 0.000 abstract description 9
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000005465 channeling Effects 0.000 abstract 1
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 17
- 238000001816 cooling Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- BOKGTLAJQHTOKE-UHFFFAOYSA-N 1,5-dihydroxynaphthalene Chemical compound C1=CC=C2C(O)=CC=CC2=C1O BOKGTLAJQHTOKE-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-dioxonaphthalene Natural products C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 9
- 241000758789 Juglans Species 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000012467 final product Substances 0.000 description 9
- 239000004570 mortar (masonry) Substances 0.000 description 9
- 235000009496 Juglans regia Nutrition 0.000 description 8
- 235000020234 walnut Nutrition 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 4
- 230000005281 excited state Effects 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 241001247821 Ziziphus Species 0.000 description 2
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 2
- 125000004018 acid anhydride group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920000547 conjugated polymer Polymers 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 244000068645 Carya illinoensis Species 0.000 description 1
- 235000009025 Carya illinoensis Nutrition 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- 238000003775 Density Functional Theory Methods 0.000 description 1
- 235000013757 Juglans Nutrition 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005284 basis set Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical group C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005384 cross polarization magic-angle spinning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000004773 frontier orbital Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- MILUBEOXRNEUHS-UHFFFAOYSA-N iridium(3+) Chemical compound [Ir+3] MILUBEOXRNEUHS-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- -1 melem amine Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0245—Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
- B01J31/0247—Imides, amides or imidates (R-C=NR(OR))
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0201—Oxygen-containing compounds
- B01J31/0205—Oxygen-containing compounds comprising carbonyl groups or oxygen-containing derivatives, e.g. acetals, ketals, cyclic peroxides
- B01J31/0208—Ketones or ketals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0244—Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0271—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C46/00—Preparation of quinones
- C07C46/02—Preparation of quinones by oxidation giving rise to quinoid structures
- C07C46/06—Preparation of quinones by oxidation giving rise to quinoid structures of at least one hydroxy group on a six-membered aromatic ring
Definitions
- the invention relates to the field of carbon material science, in particular to a photocatalyst, in particular to a carbon nitride-based photocatalyst with high selectivity and a preparation method thereof.
- Efficient selective photocatalytic oxidation as a simple way to obtain complex organic oxidation products and convert solar energy into chemical energy for storage, provides support for the sustainable use of energy.
- Reactive oxygen species with high reactivity and oxidative properties play an important role in high-efficiency selective photocatalytic oxidation, in which singlet oxygen ( 1 O 2 ) has been proven to be applicable to a variety of selective organic synthesis.
- An effective reactive oxygen species At present, a series of reactions using 1 O 2 as an oxidant have been extensively studied, including selective sulfoxidation, selective oxidation of primary alcohols to aldehydes, conversion of hydrazine derivatives to hydrazine and the like.
- the ground state oxygen ( 3 O 2 ) cannot directly generate 1 O 2 by absorbing light, so a photocatalyst is usually required.
- Another embodiment of the present invention provides a carbon nitride-based photocatalyst comprising melem and 3,3',4,4'-benzophenone Prepared by the reaction of formic acid dianhydride.
- Another embodiment of the present invention provides a method for preparing a carbon nitride-based photocatalyst, comprising:
- Melamine is produced by polymerization of melamine
- the carbonitride-based photocatalyst is obtained by reacting the melem with 3,3',4,4'-benzophenonetetracarboxylic dianhydride.
- An embodiment of the present invention provides a method for preparing a carbon nitride-based photocatalyst, which comprises introducing a ketone-carbonyl-containing 3,3',4,4'-diphenyl group based on melemidine having a tris-triazine structure.
- Ketone tetracarboxylic dianhydride (BTDA) Ketone tetracarboxylic dianhydride
- the specific preparation method comprises the following steps:
- An embodiment of the present invention provides a method for simply preparing a carbon nitride-based high-efficiency selective photocatalyst, and creatively introducing a 3,3' having a long triplet lifetime on the basis of a melemidine having a tris-triazine structure.
- 4,4'-benzophenone tetracarboxylic dianhydride to achieve the energy level matching, reduce the energy difference between the singlet-triplet state ( ⁇ E ST ), promote the inter-system ⁇ process, and thus It is advantageous to generate singlet oxygen and enhance its selective photocatalytic oxidation ability.
- the most important feature of the invention is that it does not require complicated pretreatment and purification treatment, and the raw material is cheap and easy to obtain, simple and rapid to prepare, high efficiency and environmental protection, and can realize efficient selective light.
- the batch preparation of the catalyst is specifically prepared as follows:
- the heating rate of the muffle furnace is controlled at 1 to 10 K/min, the heating temperature is controlled at 400 to 500 ° C, and the obtained solid is washed with hot water of 60 to 80 ° C.
- the heating rate of the tube furnace in step (2) is controlled to be 1 to 10 K/min, and the heating temperature is controlled at 250 to 350 ° C, for example, 300 ° C.
- the photocatalyst according to an embodiment of the present invention achieves energy level matching between the melem structure and the BTDA structure, reduces the energy difference between the singlet-triplet state ( ⁇ E ST ), and promotes intersystem ⁇ The more the process, the more favorable it is to enhance the singlet oxygen production and improve its selective photocatalytic oxidation ability.
- the preparation method of the photocatalyst according to an embodiment of the invention does not require complicated pretreatment and purification treatment, and the raw material is cheap and easy to obtain, the preparation is simple, rapid, high-efficiency and environmentally friendly, and the batch preparation of the high-efficiency selective photocatalyst can be realized.
- Example 2 is a solid nuclear magnetic 13 C spectrum ( 13 C-NMR) of melem, 3,3',4,4'-benzophenonetetracarboxylic dianhydride and the carbonitride-based photocatalyst prepared in Example 3. .
- Fig. 3a is a graph showing the reaction rates of the carbonitride-based photocatalysts produced by Examples 1 to 5 and the catalytic oxidation of 1,5-dihydroxynaphthalene by melem.
- Fig. 3b is a graph showing the yield of the walnut meal obtained by the carbonitride-based photocatalysts produced in Examples 1 to 5 and the catalytic oxidation of 1,5-dihydroxynaphthalene by melem.
- Figure 4a is an energy level diagram of melem.
- Figure 4b is an energy level diagram of the photocatalyst prepared in Example 3.
- One embodiment of the present invention provides a photocatalyst comprising a carbon nitride group in its molecular structure, as follows:
- the carbon nitride-based photocatalyst represented by the structure (1) is obtained by reacting melem and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA).
- BTDA 3,3',4,4'-benzophenonetetracarboxylic dianhydride
- One embodiment of the present invention provides a photocatalyst comprising a product obtained by reacting melem with 3,3',4,4'-benzophenonetetracarboxylic dianhydride.
- the reaction product of melem and 3,3',4,4'-benzophenonetetracarboxylic dianhydride in addition to the compound represented by the structure (1), other products may be present, and the structure of the product and The ratio of each structure will vary accordingly depending on the molar ratio of the two reactants.
- one BTDA molecule is reacted with two melem amine molecules, and two acid anhydride groups in each BTDA molecule participate in the reaction, and only one NH 2 in each melem molecule participates in the reaction. .
- two or three NH 2 in each melem molecule may also participate in the reaction to obtain a corresponding product; or only one acid anhydride group in the BTDA molecule may participate in the reaction.
- melem can itself undergo different degrees of condensation.
- a ketone carbonyl-containing structure (BTDA) is combined with a carbon nitride structure (melamine) by a chemical reaction to achieve energy level matching between the two, and the single weight is reduced.
- BTDA ketone carbonyl-containing structure
- melamine carbon nitride structure
- the energy difference between the state and the triplet state ( ⁇ E ST ) promotes the intersystem crossing process, which is beneficial to enhance the singlet oxygen generation and improve the selective photocatalytic oxidation ability.
- the photocatalyst according to an embodiment of the present invention can generate 1 O 2 under visible light irradiation, and can realize selective catalytic oxidation of, for example, 1,5-dihydroxynaphthalene; and the photocatalyst is water-insoluble, and can realize unevenness.
- Phase catalysis the product is easy to separate from the system, the catalyst can be reused, and it is of great value for the realization of large-scale application of carbon nitride-based materials in the field of photocatalytic selective oxidation.
- the melem can be prepared by the polymerization of melamine, and the photocatalyst is prepared by reacting melem with 3,3',4,4'-benzophenonetetracarboxylic dianhydride. .
- the prepared photocatalyst does not contain precious metals, the raw materials are easy to obtain, and the process cost is low, the operation is simple, and the batch production can be carried out, thereby solving the application limitation of the carbon nitride in the field of selective photocatalytic oxidation.
- the melamine is polymerized at a temperature of from 400 to 500 ° C, for example 425 ° C or 450 ° C to produce melem.
- the melem can be specifically obtained by the following steps:
- the melamine-containing crucible was placed in a muffle furnace, and the temperature of the muffle furnace was raised to 425 ° C at a heating rate of 1.77 K/min;
- the crucible was taken out from the muffle furnace, and the obtained solid was washed with water at 60 to 80 ° C to obtain melem.
- melem and 3,3',4,4'-benzophenonetetracarboxylic dianhydride are reacted at 250 to 350 ° C, for example, 300 ° C to obtain a carbon nitride-based photocatalyst.
- the reaction temperature is lower than the above range, and the reaction ability of melem and 3,3',4,4'-benzophenonetetracarboxylic dianhydride is weak; above the above range, 3, 3', 4, 4' -
- the benzophenone tetracarboxylic dianhydride is highly volatile, and it is difficult to obtain a reaction product.
- the molar ratio of melem and 3,3',4,4'-benzophenonetetracarboxylic dianhydride may be 5:1 to 1:5, for example, may be 3:1. 1:1 or 1:3.
- melem and 3,3',4,4'-benzophenonetetracarboxylic dianhydride are reacted under the following conditions:
- the quartz boat containing melem and 3,3',4,4'-benzophenone tetracarboxylic dianhydride was placed in a tube furnace, and the temperature of the quartz boat tube furnace was raised at a heating rate of 5 K/min. Up to 300 ° C;
- the quartz boat was taken out from the tube furnace, and the obtained solid was washed with N,N-dimethylformamide and ethanol, respectively, to prepare the photocatalyst.
- XRD is commonly used to test the phase and crystal form of a substance and the type of substance.
- the instrument used in the embodiment of the present invention is a Panaco X'Pert Pro MPD type polycrystalline powder X-ray diffractometer (XRD) with a tube voltage of 40 kV, a tube current of 40 mA, and a scanning speed of 10 °min -1 .
- XRD Panaco X'Pert Pro MPD type polycrystalline powder X-ray diffractometer
- 13 C-NMR is commonly used for the determination of molecular structure of organic matter.
- the instrument used in the embodiment of the present invention is a 400M wide-cavity solid-state nuclear magnetic resonance spectrometer of Bruker, Switzerland, which adopts a CP/MAS (cross-polarized magic angle rotation) BB/1H probe with a diameter of 4 mm, a proton resonance frequency of 400 MHz, melem and S3.
- the relaxation delay is 3 s and the BTDA relaxation is delayed by 30 s.
- the application example of the present invention is a UV2700 ultraviolet-visible spectrophotometer manufactured by Shimadzu Corporation of Japan, and the absorbance of the prepared sample at 200 to 600 nm is tested. Based on Lambert Beer's law, the rate dependence curve is obtained by linear correlation between ln(A 0 /A t ) and time according to the change of the UV absorption intensity of the substrate. According to the change of the ultraviolet absorption intensity of the product, the yield of the walnut was calculated by the following formula.
- a final (walnut) is the absorbance value of the product walnut
- ⁇ (walnut) is the molar extinction coefficient of the walnut
- C initial (1,5-dihydroxynaphthalene) is 1,5-dihydroxy. The initial concentration of naphthalene.
- the DFT calculation of the B3LYP/6-31G basis set is used to optimize the model structure, on which the energy of the singlet excited state and the triplet excited state are calculated.
- the frontier molecular orbitals (vibrator strength, f ⁇ 0) of the singlet excited state and the triplet excited state are selected to calculate the energy difference between the singlet-triplet state.
- the raw materials melamine and 3,3',4,4'-benzophenonetetracarboxylic dianhydride used in the examples and comparative examples of the present invention were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., and no further purification treatment was required before use.
- the mixture was then evenly spread in a quartz boat and placed in a tube furnace (under a nitrogen atmosphere).
- the tube furnace heating rate was 5 K/min, and the temperature was raised to 300 ° C for 4 h. After cooling to room temperature, the sample was taken out of the tube furnace to give a solid. Finally, the obtained solid was washed three times with N,N-dimethylformamide and ethanol, and the obtained solid was dried in a vacuum oven to obtain a final product.
- the mixture was then evenly spread in a quartz boat and placed in a tube furnace (under a nitrogen atmosphere).
- the tube furnace heating rate was 5 K/min, and the temperature was raised to 300 ° C for 4 h. After cooling to room temperature, the sample was taken out of the tube furnace to give a solid. Finally, the obtained solid was washed three times with N,N-dimethylformamide and ethanol, and the obtained solid was dried in a vacuum oven to obtain a final product.
- the mixture was then evenly spread in a quartz boat and placed in a tube furnace (under a nitrogen atmosphere).
- the tube furnace heating rate was 5 K/min, and the temperature was raised to 300 ° C for 4 h. After cooling to room temperature, the sample was taken out of the tube furnace to give a solid. Finally, the obtained solid was washed three times with N,N-dimethylformamide and ethanol, and the obtained solid was dried in a vacuum oven to obtain a final product.
- the mixture was then evenly spread in a quartz boat and placed in a tube furnace (under a nitrogen atmosphere).
- the tube furnace heating rate was 5 K/min, and the temperature was raised to 300 ° C for 4 h. After cooling to room temperature, the sample was taken out of the tube furnace to give a solid. Finally, the obtained solid was washed three times with N,N-dimethylformamide and ethanol, and the obtained solid was dried in a vacuum oven to obtain a final product.
- the mixture was then evenly spread in a quartz boat and placed in a tube furnace (under a nitrogen atmosphere).
- the tube furnace heating rate was 5 K/min, and the temperature was raised to 300 ° C for 4 h. After cooling to room temperature, the sample was taken out of the tube furnace to give a solid. Finally, the obtained solid was washed three times with N,N-dimethylformamide and ethanol, and the obtained solid was dried in a vacuum oven to obtain a final product.
- the mixture was then evenly spread in a quartz boat and placed in a tube furnace (under a nitrogen atmosphere).
- the tube furnace heating rate was 5 K/min, and the temperature was raised to 300 ° C for 4 h. After cooling to room temperature, the sample was taken out of the tube furnace to give a solid. Finally, the obtained solid was washed three times with N,N-dimethylformamide and ethanol, and the obtained solid was dried in a vacuum oven to obtain a final product.
- the absorbance of 1,5-dihydroxynaphthalene at 331 nm was measured by an ultraviolet spectrophotometer, and the product was at 425 nm. Absorbance changes.
- the reaction time of the best effect of Example 3 60 minutes was taken as the standard, and the other examples and the comparative examples were all stopped after 60 minutes.
- the measured yield of the walnut was as follows:
- Comparative Example 1 directly reacted with BTDA using melamine as a reactant to obtain a photocatalyst.
- the yield of the obtained jujube was much lower than that of the photocatalyst of the examples of the present application.
- Comparative Example 2 A photocatalyst was prepared by reacting 3,3',4,4'-biphenyltetracarboxylic dianhydride similar to BTDA with melem, and the resulting walnut was catalyzed by the reaction of 1,5-dihydroxynaphthalene.
- the yield of rhodium is also much lower than that of the photocatalyst of the examples of the present application.
- the signal attributed to the ketone carbonyl carbon atom was still present at 194 ppm in the prepared photocatalyst, indicating that the benzophenone structure was not destroyed after the reaction, which was one of the reasons why the photocatalyst produced was better.
- the photocatalysts prepared in Examples 1 to 5 were used for catalytic oxidation of 1,5-dihydroxynaphthalene, and the reaction rate (Fig. 3a) and the pecan yield (Fig. 3b) showed that the photocatalytic activity of the prepared photocatalyst was obtained.
- the photocatalyst obtained in Example 3 has the best catalytic effect, and the yield of the jujube can reach 71.77%.
- the energy level diagrams shown in Figures 4a and 4b are calculated by Gaussian theory.
- the energy difference between the singlet-triplet state of the photocatalyst obtained in Example 3 (0.09eV) is much smaller than that of the raw material melemide singlet-triplet state.
- the energy difference (1.1 eV) between the energy difference can effectively promote the inter-system crossing (ISC) process, enhance the generation of singlet oxygen, and thus improve the catalytic effect.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
一种氮化碳基光催化剂及其制备方法,该光催化剂由蜜勒胺与3,3 ,,4,4 ,-二苯甲酮四甲酸二酐反应制得,实现了蜜勒胺结构与3,3 ,,4,4 ,-二苯甲酮四甲酸二酐结构之间的能级匹配,减小了单重态-三重态之间的能量差,促进了系间窜越过程,从而有利于增强单线态氧产生,提高其选择性光催化氧化能力。
Description
本发明涉及碳材料科学领域,具体为一种光催化剂,特别是一种具有高效选择性的氮化碳基光催化剂及其制备方法。
高效选择性光催化氧化作为一种获得复杂有机氧化产物以及将太阳能转化为化学能进行储存的简单途径,为实现能源的可持续利用提供了支撑。在高效选择性光催化氧化过程中,具有高反应性和氧化性的活性氧物种充当着重要的角色,其中单线态氧(1O2)被证明是一种可应用于多种选择性有机合成的有效的活性氧物种。目前,已经广泛地研究了一系列以1O2作为氧化剂的反应,包括选择性磺化氧化,伯醇到醛的选择性氧化,蒽衍生物转变为蒽醌等。然而由于自旋禁阻限制,基态氧(3O2)不能通过吸收光而直接产生1O2,因此通常需要光催化剂。
过去,由于重原子被证明能增强自旋轨道耦合(SOC),因此传统光催化剂的研究通常基于过渡金属(Pt(II)、Ir(III)、Ru(II)等)络合物或一些含I、Br的有机发色团。然而,这类复合物在可见光谱范围内的摩尔吸光系数较小,对可见光的利用能力较差,限制了其实际应用。近年来,不含重原子的共轭聚合物在1O2的产生方面表现出了诱人的前景,因此具有共轭结构的氮化碳(C3N4)受到了很大的关注。但是共轭聚合物最大的缺点就是系间窜越(ISC)过程相当不足,阻碍了单重态激子转化成三重态激子,这在本质上限制了1O2的产生。
发明内容
本发明一实施方式提供了一种氮化碳基光催化剂,具有如下结构:
本发明另一实施方式提供了一种氮化碳基光催化剂,由蜜勒胺与3,3’,4,4’-二苯甲酮四
甲酸二酐反应制得。
本发明另一实施方式提供了一种氮化碳基光催化剂的制备方法,包括:
通过三聚氰胺的聚合反应制得蜜勒胺;以及
将所述蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐反应制得所述氮化碳基光催化剂。
本发明一实施方式提供了一种氮化碳基光催化剂的制备方法,在具有三均三嗪结构的蜜勒胺基础上,引入含酮羰基的3,3’,4,4’-二苯甲酮四甲酸二酐(BTDA);
具体制备方法包括以下步骤:
(1)称取一定量的三聚氰胺,将其均匀地放置在坩埚底部,随后将坩埚放置在马弗炉中,设置升温速率为1.77K/min,加热至425℃,并在此温度下保持4h。待冷却后将坩埚从马弗炉中取出,得到淡黄色固体;
(2)将得到的固体放入适量热水中(70℃)搅拌15min,抽滤,如此清洗三遍之后,将得到的固体放入真空干燥箱中干燥即可得到蜜勒胺;
(3)将蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐放置在石英研钵中,充分研磨二者使之混合均匀。研磨过后的混合物放置在石英舟中,将石英舟放入管式炉中加热。加热前使用氮气对石英管内气体进行置换,以排空空气,并且在加热的过程中始终通入氮气。管式炉以5K/min的加热速率升温至300℃,保持4h。待冷却后将样品从管式炉中取出,得到固体;
(4)将得到的固体分别用N,N-二甲基甲酰胺和乙醇抽滤洗涤三次,最后得到的固体放入真空干燥箱中干燥,即得到最终产物。
本发明一实施方式提供了一种简单制备氮化碳基高效选择性光催化剂的方法,在具有三均三嗪结构的蜜勒胺基础上,创造性地引入具有长三重态寿命的3,3’,4,4’-二苯甲酮四甲酸二酐,实现二者能级匹配,减小单重态-三重态之间的能量差(△EST),促进系间窜越过程,从而有利于产生单线态氧,增强其选择性光催化氧化能力,本发明的最大特点是无需进行繁杂的预处理和提纯处理,原料价廉易得、制备简单快速、高效环保,可实现高效选择性光催化剂的批量制备,其具体制备方法如下:
(1)称取一定量的三聚氰胺,将其均匀地放置在坩埚底部,随后将坩埚放置在马弗炉中,以1.77K/min的升温速率加热至425℃,并在此温度下保持4h,待冷却后将坩埚从马弗炉中取出,将得到的淡黄色固体放入适量热水中搅拌一定时间,抽滤,如此清洗三遍之后放入真空干燥箱中干燥即可得到蜜勒胺;
(2)将蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐放置在石英研钵中,充分研磨二者使之
混合均匀,将研磨后的混合物放置在石英舟中,随后置于管式炉中,以5K/min的升温速率加热至300℃,保持4h(加热前使用氮气对石英管内气体进行置换,以排空空气,并且在加热的过程中始终通入氮气),待冷却后将样品从管式炉中取出,之后将得到的固体分别用N,N-二甲基甲酰胺和乙醇抽滤洗涤三次,最后放入真空干燥箱中干燥,即得到最终产物。
根据本发明一实施方式,步骤(1)中马弗炉升温速率控制在1~10K/min,加热温度控制在400~500℃,洗涤得到的固体时用60~80℃的热水即可。
根据本发明一实施方式,步骤(2)中管式炉升温速率控制在1~10K/min,加热温度控制在250~350℃,例如300℃。
本发明一实施方式的光催化剂,实现了蜜勒胺结构与BTDA结构之间的能级匹配,减小了单重态-三重态之间的能量差(△EST),促进了系间窜越过程,从而有利于增强单线态氧产生,提高其选择性光催化氧化能力。
本发明一实施方式的光催化剂的制备方法,无需进行繁杂的预处理和提纯处理,原料价廉易得、制备简单快速、高效环保,可实现高效选择性光催化剂的批量制备。
图1为蜜勒胺、3,3’,4,4’-二苯甲酮四甲酸二酐及实施例1至5所制得的氮化碳基光催化剂的X射线衍射谱图(XRD)。
图2为蜜勒胺、3,3’,4,4’-二苯甲酮四甲酸二酐及实施例3所制氮化碳基光催化剂的固体核磁13C谱图(13C-NMR)。
图3a为实施例1至5所制氮化碳基光催化剂及蜜勒胺催化氧化1,5-二羟基萘的反应速率图。
图3b为实施例1至5所制氮化碳基光催化剂及蜜勒胺催化氧化1,5-二羟基萘所得的胡桃醌的产率图。
图4a为蜜勒胺的能级图。
图4b为实施例3制得的光催化剂的能级图。
体现本发明特征与优点的典型实施例将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施例上具有各种的变化,其皆不脱离本发明的范围,且其中的描述在本质上是当作说明之用,而非用以限制本发明。
本发明一实施方式提供了一种光催化剂,其分子结构中包含氮化碳基,具体如下所示:
根据本发明一实施方式,结构(1)所示的氮化碳基光催化剂由蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐(BTDA)反应制得。
本发明一实施方式提供了一种光催化剂,包括蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐反应制得的产物。
其中,蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐的反应产物中,除结构(1)所示的化合物外,也可有其他产物,产物的结构及各结构的比例会根据两种反应物的摩尔比相应地变化。上述结构(1)中,相当于一个BTDA分子与两个蜜勒胺分子反应,且每个BTDA分子中有两个酸酐基团参与反应,每个蜜勒胺分子中仅有一个NH2参与反应。本发明一实施方式中,也可以是每个蜜勒胺分子中有两个或三个NH2同时参与反应制得相应产物;还可以是BTDA分子中仅有一个酸酐基团参与反应。此外,蜜勒胺本身也会发生不同程度的缩合。
本发明一实施方式的光催化剂,通过化学反应将含酮羰基的结构(BTDA)与氮化碳结构(蜜勒胺)相结合,实现了二者之间的能级匹配,减小了单重态-三重态之间的能量差(△EST),促进了系间窜越过程,从而有利于增强单线态氧产生,提高了选择性光催化氧化能力。
本发明一实施方式的光催化剂,在可见光照射下便可产生1O2,能够实现例如1,5-二羟基萘的选择性催化氧化;同时该光催化剂为非水溶性的,可实现非均相催化,产物易于从体系中分离,催化剂可重复使用,对于氮化碳基材料在光催化选择性氧化领域中实现规模化应用具有重要价值。
于本发明一实施方式中,可先通过三聚氰胺的聚合反应制得蜜勒胺,再将蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐反应制得光催化剂。其中,所制得的光催化剂不含贵金属、原料易得,且工艺成本低、操作简单、可批量生产,解决了氮化碳在选择性光催化氧化领域的应用限制。
于本发明一实施方式中,三聚氰胺在400~500℃,例如425℃或450℃的温度下进行聚合反应,制得蜜勒胺。
于本发明一实施方式中,具体可通过如下步骤制得蜜勒胺:
将盛有三聚氰胺的坩埚放置于马弗炉中,以1.77K/min的升温速率将马弗炉的温度升至425℃;
将坩埚在马弗炉的上述温度下保持4h;以及
将坩埚从马弗炉中取出,用60~80℃的水洗涤得到的固体,制得蜜勒胺。
于本发明一实施方式中,蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐于250~350℃,例如300℃下反应,制得氮化碳基光催化剂。其中,反应温度低于上述范围,蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐反应能力较弱;高于上述范围,3,3’,4,4’-二苯甲酮四甲酸二酐挥发严重,难以得到反应产物。
于本发明一实施方式中,蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐的摩尔比可以为5:1~1:5,例如可以是3:1、1:1或1:3。
于本发明一实施方式中,蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐可在如下条件下进行反应:
将盛有蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐的石英舟置于管式炉中,以5K/min的升温速率将石英舟管式炉温度升至300℃;
将石英舟在上述温度下保持4h;以及
将石英舟从管式炉中取出,分别用N,N-二甲基甲酰胺和乙醇清洗得到的固体,制得所述光催化剂。
以下,通过具体实施例对本发明一实施方式的光催化剂及其制备方法做进一步说明。其中,所涉及的XRD、13C-NMR等测试在以下条件下进行:
XRD通常用来测试物质的相态和晶型以及物质的种类。本发明实施例中采用的仪器是荷兰帕纳科X’Pert Pro MPD型多晶粉末X-射线衍射仪(X-ray Diffraction,XRD),管电压为40kV,管电流为40mA,扫描速度是10°min-1。
13C-NMR常用于有机物分子结构测定。本发明实施例中采用的仪器是瑞士布鲁克400M宽腔固体核磁共振波谱仪,采用直径为4mm的CP/MAS(交叉极化魔角旋转)BB/1H探头,质子共振频率为400MHz,melem和S3弛豫延迟3s,BTDA弛豫延迟30s。
本发明应用例采用日本岛津公司生产的UV2700型紫外可见分光光度计,对所制得的样品在200~600nm的吸光性能进行测试。在朗伯比尔定律基础上,根据底物的紫外吸光强度的变化,利用ln(A0/At)与时间的线性相关性得到速率变化曲线。根据产物胡桃醌的紫外吸光强度的变化,利用如下公式计算胡桃醌产率。
其中,Afinal(胡桃醌)为反应结束时产物胡桃醌的吸光度值,ε(胡桃醌)为胡桃醌的摩尔消光系数,Cinitial(1,5-二羟基萘)为1,5-二羟基萘的起始浓度。
理论计算采用Gaussian 09进行。使用B3LYP/6-31G基组的DFT计算优化模型结构,在此基础之上计算单重激发态和三重激发态的能量。选择单重激发态和三重激发态的前沿分子轨道(振子强度,f≠0)计算单重态-三重态之间的能量差。
本发明实施例、对比例中所用原料三聚氰胺和3,3’,4,4’-二苯甲酮四甲酸二酐均购买自上海阿拉丁生化科技股份有限公司,使用前不需要进一步提纯处理。
实施例1
首先称取10g三聚氰胺均匀地放置在坩埚底部,随后将坩埚放置在马弗炉中,以1.77K/min的升温速率加热至425℃,在此温度下保持4h。冷却后得到淡黄色固体。将得到的固体放入适量热水中(70℃)搅拌15min,抽滤,如此清洗三遍,干燥后得到蜜勒胺。称取0.78g的蜜勒胺与0.23g的3,3’,4,4’-二苯甲酮四甲酸二酐(摩尔比为5:1)放置在石英研钵研磨均匀。然后将混合物均匀平铺在石英舟中,并置于管式炉(氮气氛围下)中加热。管式炉加热速率为5K/min,升温至300℃,保持4h。待冷却至室温后将样品从管式炉中取出,得到固体。最后将得到的固体分别用N,N-二甲基甲酰胺和乙醇抽滤洗涤三次,得到的固体放入真空干燥箱中干燥,即可得到最终产物。
实施例2
首先称取10g三聚氰胺均匀地放置在坩埚底部,随后将坩埚放置在马弗炉中,以1.77K/min的升温速率加热至425℃,在此温度下保持4h。冷却后得到淡黄色固体。将得到的固体放入适量热水中(70℃)搅拌15min,抽滤,如此清洗三遍,干燥后得到蜜勒胺。称取0.67g的蜜勒胺与0.33g的3,3’,4,4’-二苯甲酮四甲酸二酐(摩尔比为3:1)放置在石英研钵研磨均匀。然后将混合物均匀平铺在石英舟中,并置于管式炉(氮气氛围下)中加热。管式炉加热速率为5K/min,升温至300℃,保持4h。待冷却至室温后将样品从管式炉中取出,得到固体。最后将得到的固体分别用N,N-二甲基甲酰胺和乙醇抽滤洗涤三次,得到的固体放入真空干燥箱中干燥,即可得到最终产物。
实施例3
首先称取10g三聚氰胺均匀地放置在坩埚底部,随后将坩埚放置在马弗炉中,以1.77K/min的升温速率加热至425℃,在此温度下保持4h。冷却后得到淡黄色固体。将得到的固体放入适量热水中(70℃)搅拌15min,抽滤,如此清洗三遍,干燥后得到蜜勒胺。称取0.40g的蜜勒胺与0.60g的3,3’,4,4’-二苯甲酮四甲酸二酐(摩尔比为1:1)放置在石英研钵研磨均匀。然后将混合物均匀平铺在石英舟中,并置于管式炉(氮气氛围下)中加热。管式炉加热速率为5K/min,升温至300℃,保持4h。待冷却至室温后将样品从管式炉中取出,得到固体。最后将得到的固体分别用N,N-二甲基甲酰胺和乙醇抽滤洗涤三次,得到的固体放入真空干燥箱中干燥,即可得到最终产物。
实施例4
首先称取10g三聚氰胺均匀地放置在坩埚底部,随后将坩埚放置在马弗炉中,以1.77K/min的升温速率加热至425℃,在此温度下保持4h。冷却后得到淡黄色固体。将得到的固体放入适量热水中(70℃)搅拌15min,抽滤,如此清洗三遍,干燥后得到蜜勒胺。称取0.18g的蜜勒胺与0.82g的3,3’,4,4’-二苯甲酮四甲酸二酐(摩尔比为1:3)放置在石英研钵研磨均匀。然后将混合物均匀平铺在石英舟中,并置于管式炉(氮气氛围下)中加热。管式炉加热速率为5K/min,升温至300℃,保持4h。待冷却至室温后将样品从管式炉中取出,得到固体。最后将得到的固体分别用N,N-二甲基甲酰胺和乙醇抽滤洗涤三次,得到的固体放入真空干燥箱中干燥,即可得到最终产物。
实施例5
首先称取10g三聚氰胺均匀地放置在坩埚底部,随后将坩埚放置在马弗炉中,以1.77K/min的升温速率加热至425℃,在此温度下保持4h。冷却后得到淡黄色固体。将得到的固体放入适量热水中(70℃)搅拌15min,抽滤,如此清洗三遍,干燥后得到蜜勒胺。称取0.12g的蜜勒胺与0.88g的3,3’,4,4’-二苯甲酮四甲酸二酐(摩尔比为1:5)放置在石英研钵研磨均匀。然后将混合物均匀平铺在石英舟中,并置于管式炉(氮气氛围下)中加热。管式炉加热速率为5K/min,升温至300℃,保持4h。待冷却至室温后将样品从管式炉中取出,得到固体。最后将得到的固体分别用N,N-二甲基甲酰胺和乙醇抽滤洗涤三次,得到的固体放入真空干燥箱中干燥,即可得到最终产物。
对比例1
称取0.28g的三聚氰胺与0.72g的3,3’,4,4’-二苯甲酮四甲酸二酐(摩尔比为1:1)放置在石英研钵研磨均匀。然后将混合物均匀平铺在石英舟中,并置于管式炉(氮气氛围下)中加热。管式炉加热速率为5K/min,升温至300℃,保持4h。待冷却至室温后将样品从管式炉中取出,得到固体。最后将得到的固体分别用N,N-二甲基甲酰胺和乙醇抽滤洗涤三次,得到的固体放入真空干燥箱中干燥,即可得到最终产物。
对比例2
首先称取10g三聚氰胺均匀地放置在坩埚底部,随后将坩埚放置在马弗炉中,以1.77K/min的升温速率加热至425℃,在此温度下保持4h。冷却后得到淡黄色固体。将得到的固体放入适量热水中(70℃)搅拌15min,抽滤,如此清洗三遍,干燥后得到蜜勒胺。称取0.43g的蜜勒胺与0.57g的3,3’,4,4’-联苯四甲酸二酐(摩尔比为1:1)放置在石英研钵研磨均匀。然后将混合物均匀平铺在石英舟中,并置于管式炉(氮气氛围下)中加热。管式炉加热速率为5K/min,升温至300℃,保持4h。待冷却至室温后将样品从管式炉中取出,得到固体。最后将得到的固体分别用N,N-二甲基甲酰胺和乙醇抽滤洗涤三次,得到的固体放入真空干燥箱中干燥,即可得到最终产物。
将实施例1至5、对比例1、2制得的产物及蜜勒胺按照如下步骤用作催化氧化1,5-二羟基萘反应的光催化剂,所测得的相关数据参见下表。
应用例
在盛有20mL乙腈和水(v/v=5:1)混合溶液的圆底烧瓶中加入200μL 10-2mol/L的1,5-二羟基萘以及20mg所制备的光催化剂,在室温以及空气气氛下连续搅拌,并用35W的氙灯(λ>380nm),以600W/m2的光强照射。间隔10min取样、离心,上层清液经0.45μm的针筒式滤膜过滤后用紫外分光光度计检测溶液中1,5-二羟基萘在331nm处的吸光度变化,以及产物胡桃醌在425nm处的吸光度变化。以效果最好的实施例3的反应时长(60分钟)为准,其他实施例及对比例均反应60min后停止,所测得的胡桃醌产率如下表所示:
S1 | S2 | S3 | S4 | S5 | 对比例1 | 对比例2 | |
胡桃醌产率(%) | 42.33 | 50.74 | 71.77 | 66.72 | 62.24 | 37.57 | 24.39 |
对比例1直接以三聚氰胺为反应物与BTDA反应制得光催化剂,在催化1,5-二羟基萘的反应中,所得胡桃醌的产率远低于本申请实施例的光催化剂。对比例2以与BTDA结构相似的3,3’,4,4’-联苯四甲酸二酐与蜜勒胺反应制得光催化剂,在催化1,5-二羟基萘的反应中,所得胡桃醌的产率也是远低于本申请实施例的光催化剂。
图1至图3b列出了本申请实施例1至5、蜜勒胺及BTDA的相关数据,其中的ME表示蜜勒胺,S1、S2、S3、S4、S5分别表示实施例1至5所制得的光催化剂。从图1的数据可以看出反应后的光催化剂同时具有蜜勒胺和3,3’,4,4’-二苯甲酮四甲酸二酐的特征衍射峰,说明蜜勒胺和3,3’,4,4’-二苯甲酮四甲酸二酐成功反应。图2的固体核磁数据同样证明了上述观点。此外,归属于酮羰基碳原子的信号在制备的光催化剂中仍存在于194ppm处,说明反应后没有破坏二苯甲酮结构,这也是所制得的光催化剂性能较好的原因之一。
将实施例1至5制得的光催化剂用于催化氧化1,5-二羟基萘的反应,反应速率(图3a)以及胡桃醌产率(图3b)均表明所制备的光催化剂催化效果得到提升,实施例3所得到光催化剂催化效果最好,胡桃醌产率可达71.77%。经过Gaussian理论计算得到如图4a、4b的能级图,实施例3所得到的光催化剂单重态-三重态之间的能量差(0.09eV)远小于原料蜜勒胺单重态-三重态之间的能量差(1.1eV),能量差的减小能有效促进系间窜越(ISC)过程,增强单线态氧的产生,从而提高催化效果。
除非特别限定,本发明所用术语均为本领域技术人员通常理解的含义。
本发明所描述的实施方式仅出于示例性目的,并非用以限制本发明的保护范围,本领域技术人员可在本发明的范围内作出各种其他替换、改变和改进,因而,本发明不限于上述实施方式,而仅由权利要求限定。
Claims (10)
- 一种氮化碳基光催化剂,由蜜勒胺与3,3’,4,4’-二苯甲酮四甲酸二酐反应制得。
- 根据权利要求1所述的光催化剂,其中所述蜜勒胺与所述3,3’,4,4’-二苯甲酮四甲酸二酐的摩尔比为5:1~1:5。
- 一种氮化碳基光催化剂的制备方法,包括:通过三聚氰胺的聚合反应制得蜜勒胺;以及将所述蜜勒胺与所述3,3’,4,4’-二苯甲酮四甲酸二酐反应,制得所述氮化碳基光催化剂。
- 根据权利要求4所述的方法,其中所述三聚氰胺在400~500℃的温度下进行聚合反应。
- 根据权利要求5所述的方法,包括:将盛有所述三聚氰胺的坩埚放置于马弗炉中,以1.77K/min的升温速率将所述马弗炉的温度升至425℃;将所述坩埚在上述温度下保持4h;以及将所述坩埚从马弗炉中取出,用60~80℃的水洗涤得到的固体,制得所述蜜勒胺。
- 根据权利要求4所述的方法,其中所述蜜勒胺与所述3,3’,4,4’-二苯甲酮四甲酸二酐的摩尔比为5:1~1:5。
- 根据权利要求7所述的方法,其中所述蜜勒胺与所述3,3’,4,4’-二苯甲酮四甲酸二酐的摩尔比为1:1。
- 根据权利要求4所述的方法,包括将所述蜜勒胺与所述3,3’,4,4’-二苯甲酮四甲酸二酐于250~350℃下反应,制得所述氮化碳基光催化剂。
- 根据权利要求9所述的方法,包括将盛有所述蜜勒胺与所述3,3’,4,4’-二苯甲酮四甲酸二酐的石英舟置于管式炉中,以5K/min的升温速率将所述管式炉的温度升至300℃;将所述石英舟在上述温度下保持4h;以及将所述石英舟从所述管式炉中取出,分别用N,N-二甲基甲酰胺和乙醇清洗得到的固体,制得所述光催化剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/487,177 US11247200B2 (en) | 2017-03-06 | 2017-07-03 | Carbon nitride-based photocatalyst and preparation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710129107.XA CN106902876B (zh) | 2017-03-06 | 2017-03-06 | 一步共聚合法制备氮化碳基高效选择性光催化剂 |
CN201710129107.X | 2017-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018161482A1 true WO2018161482A1 (zh) | 2018-09-13 |
Family
ID=59186845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/091479 WO2018161482A1 (zh) | 2017-03-06 | 2017-07-03 | 氮化碳基光催化剂及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11247200B2 (zh) |
CN (1) | CN106902876B (zh) |
WO (1) | WO2018161482A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110560139A (zh) * | 2019-09-27 | 2019-12-13 | 南昌航空大学 | 一种具有优异光催化性能的三维氮化碳与钨酸铋复合材料的制备方法 |
CN111437866A (zh) * | 2020-04-28 | 2020-07-24 | 陕西科技大学 | 一种双缺陷异质结光催化剂及其制备方法和应用 |
CN113000061A (zh) * | 2021-03-04 | 2021-06-22 | 西北工业大学 | 一种带状石墨氮化碳纳米片的制备方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106902876B (zh) * | 2017-03-06 | 2022-04-15 | 中国石油大学(华东) | 一步共聚合法制备氮化碳基高效选择性光催化剂 |
CN108993569A (zh) * | 2018-07-28 | 2018-12-14 | 天津大学 | 一种棒状多孔石墨相氮化碳光催化材料的制备方法 |
CN110170329B (zh) * | 2019-05-28 | 2022-04-01 | 汕头大学 | 管状氮碳担载的Pd催化剂及其制备方法和应用 |
CN110283524B (zh) * | 2019-07-08 | 2021-07-02 | 东华大学 | 一种多羧酸酯光催化自清洁水性聚氨酯涂料及其制备和应用 |
CN113058651B (zh) * | 2019-12-31 | 2023-05-05 | 南京理工大学 | 基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法 |
CN115722250B (zh) * | 2022-11-29 | 2024-08-20 | 西安交通大学 | 一种cn/bst同质结光催化剂及其制备方法和应用 |
CN115651170A (zh) * | 2022-11-29 | 2023-01-31 | 福州大学 | 一种七嗪基聚合物的制备及其在光催化氧化硫醚中的应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090186295A1 (en) * | 2006-03-03 | 2009-07-23 | Maw Soe Win | Photosensitive Ink Composition for Screen Printing and Method of Forming Positive Relief Pattern with Use Thereof |
CN103265547A (zh) * | 2013-05-15 | 2013-08-28 | 陆希峰 | 一种密勒胺基碳氮化合物纳米颗粒以及含有该碳氮化合物纳米颗粒的柴油发动机油组合物 |
WO2016027042A1 (en) * | 2014-08-21 | 2016-02-25 | The University Of Liverpool | Two-dimensional carbon nitride material and method of preparation |
CN106902876A (zh) * | 2017-03-06 | 2017-06-30 | 中国石油大学(华东) | 一步共聚合法制备氮化碳基高效选择性光催化剂 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102380416B (zh) * | 2011-07-25 | 2013-05-01 | 南京大学 | 一种制备不含金属的高分子聚合物光催化材料的方法 |
WO2014098251A1 (ja) * | 2012-12-21 | 2014-06-26 | 独立行政法人理化学研究所 | g-C3N4フィルムの製造方法およびその利用 |
CN103272639B (zh) * | 2013-06-09 | 2015-02-04 | 福州大学 | 一种共聚合改性的石墨相氮化碳纳米片可见光催化剂 |
CN103721745A (zh) * | 2014-01-07 | 2014-04-16 | 福州大学 | 一种共聚合改性有序介孔氮化碳光催化剂 |
CN103769213B (zh) * | 2014-01-07 | 2016-06-01 | 河北科技大学 | 一种磷掺杂石墨相氮化碳可见光催化剂的制备方法 |
-
2017
- 2017-03-06 CN CN201710129107.XA patent/CN106902876B/zh not_active Expired - Fee Related
- 2017-07-03 WO PCT/CN2017/091479 patent/WO2018161482A1/zh active Application Filing
- 2017-07-03 US US16/487,177 patent/US11247200B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090186295A1 (en) * | 2006-03-03 | 2009-07-23 | Maw Soe Win | Photosensitive Ink Composition for Screen Printing and Method of Forming Positive Relief Pattern with Use Thereof |
CN103265547A (zh) * | 2013-05-15 | 2013-08-28 | 陆希峰 | 一种密勒胺基碳氮化合物纳米颗粒以及含有该碳氮化合物纳米颗粒的柴油发动机油组合物 |
WO2016027042A1 (en) * | 2014-08-21 | 2016-02-25 | The University Of Liverpool | Two-dimensional carbon nitride material and method of preparation |
CN106902876A (zh) * | 2017-03-06 | 2017-06-30 | 中国石油大学(华东) | 一步共聚合法制备氮化碳基高效选择性光催化剂 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110560139A (zh) * | 2019-09-27 | 2019-12-13 | 南昌航空大学 | 一种具有优异光催化性能的三维氮化碳与钨酸铋复合材料的制备方法 |
CN111437866A (zh) * | 2020-04-28 | 2020-07-24 | 陕西科技大学 | 一种双缺陷异质结光催化剂及其制备方法和应用 |
CN111437866B (zh) * | 2020-04-28 | 2023-02-14 | 陕西科技大学 | 一种双缺陷异质结光催化剂及其制备方法和应用 |
CN113000061A (zh) * | 2021-03-04 | 2021-06-22 | 西北工业大学 | 一种带状石墨氮化碳纳米片的制备方法 |
CN113000061B (zh) * | 2021-03-04 | 2023-05-23 | 西北工业大学 | 一种带状石墨氮化碳纳米片的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200055036A1 (en) | 2020-02-20 |
CN106902876B (zh) | 2022-04-15 |
CN106902876A (zh) | 2017-06-30 |
US11247200B2 (en) | 2022-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018161482A1 (zh) | 氮化碳基光催化剂及其制备方法 | |
Gao et al. | Substituent effect of conjugated microporous polymers on the photocatalytic hydrogen evolution activity | |
US20220355284A1 (en) | Perylene imide and composite photocatalytic material thereof, preparation method therefor and application thereof in removing organic pollutants from water | |
Sun et al. | Enhancement of visible-light-driven CO 2 reduction performance using an amine-functionalized zirconium metal–organic framework | |
Chu et al. | Melem: A metal-free unit for photocatalytic hydrogen evolution | |
Marcì et al. | Photoelectrochemical and EPR features of polymeric C3N4 and O-modified C3N4 employed for selective photocatalytic oxidation of alcohols to aldehydes | |
CN108772093A (zh) | 一种高可见光活性石墨相氮化碳纳米片及其制备方法 | |
CN104998686B (zh) | 硝基锌酞菁/含硫氮化碳复合催化剂的制备方法及其应用 | |
CN107876079B (zh) | 一种硫掺杂氧化锌量子点修饰多孔石墨相碳化氮复合材料的制备方法及其应用 | |
CN104478759A (zh) | 一种胺光催化氧化合成亚胺的制备方法 | |
Barrio et al. | Photoactive carbon nitride from melamine hydrochloride supramolecular assembly | |
CN115007182B (zh) | 一种钾氧共掺杂石墨相氮化碳光催化剂的制备方法 | |
Zhao et al. | A BODIPY‐Based 1D Covalent Organic Framework for Photocatalytic Aerobic Oxidation | |
Xu et al. | Triazine-free polyimide for photocatalytic hydrogen production | |
Sepehrmansourie et al. | A convenient catalytic method for preparation of new tetrahydropyrido [2, 3-d] pyrimidines via a cooperative vinylogous anomeric based oxidation | |
Guo et al. | Molecular engineering of gC 3 N 4 with spatial charge separation for enhancing photocatalytic performances | |
CN113231101A (zh) | 一种Cu-NM-101(Fe)光催化剂的制备及应用 | |
Chu et al. | Band structure engineering of a polyimide photocatalyst towards enhanced water splitting | |
CN113413900B (zh) | 基于聚氮化碳的共聚物及其制备方法和应用 | |
CN113578394A (zh) | 一种无机/有机双异质结可见光催化复合材料及其制备方法和应用 | |
CN114591476B (zh) | 基于茚酮骨架的共价有机框架材料及其制备方法和用途 | |
CN110577644A (zh) | 一种可涂膜的三嗪类聚酰亚胺的制备方法 | |
CN111686806B (zh) | 一种聚[2-(3-噻吩基)乙醇]/石墨相氮化碳复合可见光催化剂的制备方法及应用 | |
CN114805797B (zh) | 一种含氮杂环的共轭多孔有机聚合物及制备方法和应用 | |
CN115216023B (zh) | 具有光热转换性能的铁基MOFs材料及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17899755 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17899755 Country of ref document: EP Kind code of ref document: A1 |