WO2018160026A1 - 면역활성물질을 포함하는 다중도메인캡슐, 이의 제조방법, 및 이를 포함하는 면역조절 조성물 - Google Patents

면역활성물질을 포함하는 다중도메인캡슐, 이의 제조방법, 및 이를 포함하는 면역조절 조성물 Download PDF

Info

Publication number
WO2018160026A1
WO2018160026A1 PCT/KR2018/002516 KR2018002516W WO2018160026A1 WO 2018160026 A1 WO2018160026 A1 WO 2018160026A1 KR 2018002516 W KR2018002516 W KR 2018002516W WO 2018160026 A1 WO2018160026 A1 WO 2018160026A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule
multidomain
substance
oil
present
Prior art date
Application number
PCT/KR2018/002516
Other languages
English (en)
French (fr)
Inventor
임용택
Original Assignee
단디바이오사이언스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180024900A external-priority patent/KR102069670B1/ko
Application filed by 단디바이오사이언스 주식회사 filed Critical 단디바이오사이언스 주식회사
Priority to AU2018229137A priority Critical patent/AU2018229137A1/en
Priority to US16/489,781 priority patent/US20190380960A1/en
Priority to RU2019130877A priority patent/RU2736639C1/ru
Priority to CN201880029326.3A priority patent/CN110582275A/zh
Priority to CA3055067A priority patent/CA3055067A1/en
Priority to JP2019547392A priority patent/JP2020510663A/ja
Priority to EP18761258.5A priority patent/EP3590508A4/en
Publication of WO2018160026A1 publication Critical patent/WO2018160026A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals

Definitions

  • the present invention relates to a multi-domain capsule containing an immunoactive substance, a method for preparing the multi-domain capsule, and an immunomodulatory composition comprising the multi-domain capsule.
  • various liposomes and emulsion materials e.g., ASO1, ASO2, AS15 and Novartis MF59
  • immunoactivating substances for activating immune cells have been immunoactivated to prevent or treat various infectious diseases and cancers. It is used as a substance.
  • the single liposome-based materials are infectious disease prevention vaccine compositions, but are currently in clinical trials, but due to the low duration of antigens and immunoactivating substances, these substances may be used for a period of time in order to effectively activate immune cells in vivo. There was a disadvantage that additional injection three times.
  • the Irvive Darrel group of MIT recently developed an immunoactivated cancer vaccine having a multilamellar liposome structure (Nature Materials, 10, 243-251, 2011).
  • the cancer vaccine is loaded with an antigen and an immunoactivating material in a liposome having a multi-lamellar structure, and then each lipid layer is made of a crosslinking structure using polyvalent metal ions or a chemical linker, thereby forming a single liposome material.
  • a drug carrier which is conventionally called multivesicular liposome
  • multivesicular liposome a drug carrier, which is conventionally called multivesicular liposome
  • Kim Shin-il and colleagues of the University of California, USA [Biochimica Biophysica Acta 1983 Mar. 9 728 (3) 339-348, Mantripragada's team in 2002 [Progress of Lipids Research 41 (2002) 392-406], and Wafa's team in 2007 [International Journal of Pharmaceutics 331 (2007) 182-185].
  • These multiple liposomes are composed of a mixture of substances selected from the group consisting of neutral lipids and cholesterol and triolein.
  • the multi-liposomes prepared in this way have a problem in that the structure stabilization efficiency due to triolein is very low, and microclusters are collapsed during preparation (for example, centrifugation and temperature change), resulting in uneven size or shape. .
  • multiple liposome forms into which immunoactivating drugs have been introduced have not been found to date.
  • the immunostimulation (immunostimulation) technology the important thing in the regulation of immune function is the development of a technology that can control the immunosuppression (immunosuppression) in the body.
  • Anti-cancer immunotherapy methods for treating cancer using the body's immune system have the advantage of minimizing side effects compared to conventional chemotherapy or radiation therapy.
  • these anti-cancer immunotherapy methods include cell therapy methods that inject T cells (including CAR-T), dendritic cells, natural killer cells, etc., which are therapeutic immune cells, and inject them directly into the body after activation in vitro.
  • anticancer vaccines for increasing anticancer efficacy by directly activating immune cells present in the body by injecting cancer antigens and immune activating substances into the body, and the like.
  • these cell therapies or anticancer vaccines are mainly used for blood cancer-related diseases, and in solid cancers, most of them have the disadvantage that their therapeutic efficacy is very low.
  • the present invention provides a multi-domain capsule containing an immunoactive substance, a method for preparing the multi-domain capsule, and an immunomodulatory composition comprising the multi-domain capsule.
  • a multi-domain capsule comprising two or more liposomes in contact with and connected to each other, and a multi-domain capsule outer wall surrounding the two or more liposomes, wherein the multi-domain capsule is composed of an organic phase and an aqueous phase.
  • the organic phase comprises a first immune modulator and a fluid oil
  • the organic phase forms a membrane of the liposome, and the outer wall of the multidomain capsule
  • the aqueous phase comprises a second immune modulator
  • the aqueous phase is the An inner aqueous solution phase of the liposome membrane and an outer aqueous solution phase of the liposome membrane
  • the first immunomodulatory substance is a fat-soluble immunoactive substance
  • the second immunomodulatory substance is a water-soluble immunoactive substance
  • the fluid oil is in contact with and connected to each other.
  • an immunomodulatory substance comprising the multidomain capsule and an antigen.
  • the step of dissolving the first immune modulator and the fluid oil in a solvent to prepare an oil phase solution Dispersing a first aqueous phase comprising a second immunomodulatory substance in the oil phase solution to produce a water-in-water (W / O) emulsion; And mixing the oil-in-water emulsion with a second aqueous solution and evaporating the solvent.
  • the first immunomodulatory substance is a fat-soluble immunoactive substance
  • the second immunomodulatory substance can be provided, characterized in that the method for producing a multi-domain capsule.
  • the present invention provides an immunomodulatory multiple-modal capsule having a micro-sized capsule form with improved structural stability of a plurality of liposomes linked to each other while forming respective domains based on an immunomodulator, and having a flowable oil component introduced therein. Domain capsules can be provided.
  • the immunomodulatory composition according to the present invention has the advantage of overcoming the disadvantages of low encapsulation efficiency and short effective duration of a single liposome material that is used as various pharmaceutical compositions and increasing the effective duration of the immunomodulatory effect. .
  • the method for preparing a multi-domain capsule according to the present invention by introducing a fluid oil such as squalene, instead of the triolein that was conventionally introduced to maintain the structural stability of the multi-liposomes, stability and The storage stability can be improved, and the introduction of the flowable oil facilitates solubilization of representative poorly soluble immunomodulatory substances that are insoluble in common organic solvents, and thus include multiple domains containing the various poorly soluble immunomodulatory substances.
  • a fluid oil such as squalene
  • the multi-domain capsule according to the present invention by tuning the surface charge of the multi-domain capsule, can increase the loading efficiency and effective duration of the antigen and immunomodulatory substance having the opposite charge characteristics, and includes cationic lipids
  • the multi-domain capsule by tuning the surface charge of the multi-domain capsule, can increase the loading efficiency and effective duration of the antigen and immunomodulatory substance having the opposite charge characteristics, and includes cationic lipids
  • a variety of anionic and / or negatively charged immunomodulators and biomaterials such as DNA, RNA can be effectively loaded into the multi-domain capsule.
  • the antigens and / or immunomodulators loaded on the outer wall and the inside of the multidomain capsule are released, thereby increasing the effective duration of the antigens and the immunomodulators. That has the advantage.
  • the multi-domain capsule according to the present invention by loading various immunomodulators having lipophilic properties on the membrane of the liposome and / or the outer wall of the multi-domain capsule, it is possible to increase the effective duration of the immunomodulators, By loading various immunomodulators with hydrophilic properties inside the liposomes, the effective duration of the immunomodulators can be increased, and various immunomodulators with hydrophilic properties inside the liposomes, membranes of liposomes and / or the capsules. By simultaneously loading a lipophilic immunomodulatory substance on the outer wall of the can, the effective duration of the immunomodulatory substance can be increased.
  • the multi-domain capsule according to the present invention may be a surfactant is coated on the outside of the multi-domain capsule so that the multi-domain capsule can be stably dispersed in the aqueous solution.
  • FIG. 1 is a schematic diagram showing the structure of an immunomodulatory multidomain capsule (imMDV) in one embodiment of the present invention.
  • 3 (a) to 3 (c) are optical microscopic images of multidomain capsules containing squalene in one embodiment of the present invention, and (d) to (f) are one embodiment of the present invention.
  • it is an optical microscope image of multidomain capsules without squalene (scale bar: 4 ⁇ m).
  • Figure 4 (a) to (d), in an embodiment of the present invention as a result of the stability analysis of the multi-domain capsule, before centrifugation (a) and after the centrifugation of the multi-domain capsule containing squalene (c) Microscopy images of) and before (b) and after centrifugation (d) of multidomain capsules that do not contain squalene.
  • FIG. 5 is an optical microscope image of multidomain capsules (imMDV (MPLA)) comprising squalene-based MPLA in one embodiment of the present invention.
  • imMDV multidomain capsules
  • Figure 6 shows the expression levels of cytokines secreted when imMDV (SQ) is treated with BMDC in one embodiment of the present invention (a: TNF-alpha, b: IL-6).
  • Figure 7 shows the expression levels of cytokines secreted when imMDV (MPLA) is treated with BMDC in one embodiment of the present invention (a: TNF-alpha, b: IL-6, c: IL-12p70) ).
  • FIG. 8 is a graph showing the release behavior of OVA according to whether squalene is included in a multi-domain capsule loaded with protein antigen (OVA, ovalbumin) according to one embodiment of the present invention.
  • Figure 9 in one embodiment of the present invention, it shows a multi-domain capsule for immune function regulation loaded with imiquimod (acid and base structure), an immunoactivating material (a: imMDV (R837-HCl) sample, b : imMDV (R837-base) sample, c: imMDV [R837-HCl: R837-base (1: 1) sample].
  • Figure 10 in one embodiment of the present invention, shows the release behavior of R837 over time in the immunomodulatory multi-domain capsule (imMDV (R837-HCl) loaded with imiquimod.
  • imMDV immunomodulatory multi-domain capsule
  • FIG. 11 illustrates the expression level of IL-6 cytokines secreted when imiquimod-loaded multidomain capsules (imMDV (R837-HCl)) are treated at different concentrations in BMDC. Indicates.
  • FIG. 12A is a graph showing humoral immune effects (IgG, 1 week after injection) against an OVA (ovalbumin) cancer antigen in a multidomain capsule loaded with imiquimod according to one embodiment of the present invention (FIG. imMDV (R837-HCl) sample / 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV sample).
  • FIG. 12B is a graph showing humoral immune effects (IgG, 1 week after injection) against an OVA (ovalbumin) cancer antigen against multidomain capsules loaded with imiquimod in one embodiment of the present invention (FIG. imMDV (R837-base) sample / 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV sample).
  • FIG. 12C is a graph showing humoral immune effects (IgG, 1 week after injection) against an OVA (ovalbumin) cancer antigen in a multidomain capsule loaded with imiquimod according to one embodiment of the present invention.
  • imMDV R837-HCl: R837-base (1: 1) / 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV sample).
  • FIG. 13A is a graph showing humoral immune effects (IgG, 3 week after injection) against an OVA (ovalbumin) cancer antigen in a multidomain capsule loaded with imiquimod according to one embodiment of the present invention (FIG. imMDV (R837-HCl) sample / 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV sample).
  • FIG. 13B is a graph showing humoral immune effects (IgG, 3 week after injection) against an OVA (ovalbumin) cancer antigen in a multidomain capsule loaded with imiquimod according to one embodiment of the present invention.
  • imMDV R837-base sample / 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV sample).
  • FIG. 13C is a graph showing humoral immune effects (IgG, 3 week after injection) against an OVA (ovalbumin) cancer antigen in a multidomain capsule loaded with imiquimod according to one embodiment of the present invention.
  • imMDV R837-HCl: R837-base (1: 1) sample / 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV sample).
  • FIG. 14A is a graph showing humoral immune effects (IgG, 5 week after injection) against OVA cancer antigens for imiquimod-loaded multidomain capsules according to one embodiment of the present invention (imMDV (R837) -HCl) samples, 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV).
  • imMDV R837 -HCl
  • FIG. 14B is a graph showing humoral immune effects (IgG, 5 week after injection) against OVA cancer antigens, for multidomain capsules loaded with imiquimod according to one embodiment of the present invention (imMDV (R837) -base) sample, 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV).
  • imMDV R837 -base
  • FIG. 14C is a graph showing humoral immune effects (IgG, 5 week after injection) against OVA cancer antigens against imiquimod-loaded multidomain capsules according to one embodiment of the present invention (imMDV [R837] -HCl: R837-base (1: 1) sample, 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV).
  • imMDV [R837] -HCl R837-base (1: 1) sample, 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV).
  • FIG. 15A illustrates humoral immune effects (IgG, 1 week after boosting of 5 weeks mice) on an OVA (ovalbumin) cancer antigen against multidomain capsules loaded with imiquimod in one embodiment of the present invention.
  • This is the graph shown (imMDV (R837-HCl) sample / 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV sample).
  • FIG. 15B illustrates a humoral immune effect (IgG, 1 week after boosting of 5 weeks mice) on an OVA (ovalbumin) cancer antigen against multi-domain capsules loaded with imiquimod according to one embodiment of the present invention.
  • IgG immunoglobulin
  • OVA ovalpha-associated antigen
  • FIG. 15B illustrates a humoral immune effect (IgG, 1 week after boosting of 5 weeks mice) on an OVA (ovalbumin) cancer antigen against multi-domain capsules loaded with imiquimod according to one embodiment of the present invention.
  • IgG humoral immune effect
  • FIG. 15C illustrates humoral immune effects (IgG, 1 week after boosting of 5 weeks mice) on OVA (ovalbumin) cancer antigens in a multidomain capsule loaded with imiquimod according to one embodiment of the present invention.
  • IgG humoral immune effects
  • OVA ovalalbumin
  • FIG. 15C illustrates humoral immune effects (IgG, 1 week after boosting of 5 weeks mice) on OVA (ovalbumin) cancer antigens in a multidomain capsule loaded with imiquimod according to one embodiment of the present invention.
  • imMDV [R837-HCl: R837-base (1: 1) sample / 1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: OVA + imMDV sample)).
  • FIG. 16 shows the body fluids for OVA (ovalbumin) cancer antigens in mice boosted at week 5 and mice not boosted after immunization of imMDV (R837-HCl) + OVA sample according to one embodiment of the present invention. It is a graph showing the sexual immune effect (IgG) (1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: imMDV (R837-HCl) + OVA).
  • IgG sexual immune effect
  • FIG. 17 shows the body fluids for OVA (ovalbumin) cancer antigens in mice boosted at week 5 and mice not boosted after immunization of imMDV (R837-base) + OVA sample according to one embodiment of the present invention. It is a graph showing the sexual immune effect (IgG) (1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: imMDV (R837-base) + OVA).
  • IgG sexual immune effect
  • FIG. 18 shows an example of an imMDV [R837-HCl: R837-base (1: 1) sample] + OVA sample, which is boosted at 5 weeks and not boosted, according to one embodiment of the present invention.
  • imMDV (R837-HCl) + OVA sample was immunized and boosted at 5th week.
  • FIG. 20 illustrates that imMDV (R837-base) + OVA samples are immunized and boosted at 5th week in an embodiment of the present invention.
  • This is a graph showing humoral immune effects (IgG) against OVA (ovalbumin) cancer antigens, which are continuously observed at weeks 1, 2 and 6 after boosting (1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: imMDV (R837-base) + OVA sample).
  • IgG humoral immune effects against OVA (ovalbumin) cancer antigens
  • FIG. 21 illustrates that imMDV [R837-HCl: R837-base (1: 1) sample] + OVA sample was immunized and boosted at 5th week in one embodiment of the present invention.
  • This is a graph showing humoral immune effects (IgG) against OVA (ovalbumin) cancer antigens, which are continuously observed at weeks 1, 2 and 6 after boosting (1: PBS, 2: OVA, 3: OVA + R837-HCl, 4: imMDV [R837-HCl: R837-base (1: 1) sample).
  • FIG. 23 compares the effects of inflammatory response after immunization of two vaccines [imMDV (R837-HCl) + OVA and DMSO (R837) + OVA] in mice in an embodiment of the present invention.
  • FIG. 24 is a graph showing humoral immune effects (two weeks after muscle injection) of immunomodulatory substances against HA (hemagglutinin) virus antigen in one embodiment of the present invention.
  • HA hemagglutinin
  • FIG. 25 is a graph showing humoral immune effects (4 weeks after muscle injection) of immunomodulatory substances against HA (hemagglutinin) virus antigen in one embodiment of the present invention.
  • HA hemagglutinin
  • FIG. 26 is a graph showing humoral immune effects of immunomodulatory substances against OVA (ovalbumin) cancer antigens in one embodiment of the present invention.
  • OVA ovalalbumin
  • FIG. 27 is a graph showing the cellular immune inducing effect of immunomodulatory substances against OVA (ovalbumin) cancer antigen in one embodiment of the present invention.
  • FIG. 28 shows optical microscope images of multi-domain capsule imMDV (SQ-Gem), imMDV (OA-Gem), and imMDV (Gem) samples according to one embodiment of the present invention.
  • FIG. 29 shows that, in one embodiment of the present invention, loaded gemcitabine is gradually released in a multidomain capsule containing squalene, while most of the drugs loaded in 24 hours are released in a multidomain capsule not containing squalene. It is a graph confirming that
  • FIG. 30 shows that in one embodiment of the present invention, when oleic acid vegetable oil is used instead of an animal oil such as squalene, the sustained release behavior of loaded gemcitabine may have a plateau shape for 24-72 hours.
  • the graph shows the linear behavior after 72 hours.
  • FIG. 31 is a graph showing imMDV (paclitaxel) and drug release behavior thereof in Example 4-2 of the present invention.
  • FIG. 31 is a graph showing imMDV (paclitaxel) and drug release behavior thereof in Example 4-2 of the present invention.
  • Fig. 32 shows imMDV (doxorubicin) in Example 4-2 of the present invention.
  • Figure 33 shows imMDV (methotrexate) in Example 4-2 of the present invention.
  • Fig. 34 shows imMDV (oxaliplatin) in Example 4-2 of the present invention.
  • Fig. 35 shows imMDV (MK-2206) in Example 4-3 of the present invention.
  • FIG. 37 shows imMDV (Azacytidine) in Example 4-5 of the present invention.
  • Example 38 is a graph showing imMDV (Resmonostat) and drug release behavior thereof in Example 4-5 of the present invention.
  • Fig. 39 is a graph showing imMDV (Panobinostat) and drug release behavior thereof in Example 4-5 of the present invention.
  • Fig. 40 shows imMDV (OTX015 (iBET)) in Example 4-5 of the present invention.
  • Fig. 41 shows imMDV (BLZ945) in Example 4-6 of the present invention.
  • Fig. 42 shows imMDV (Celecoxib) in Example 4-7 of the present invention.
  • FIG. 43 shows imMDV (GEM / R837) in Example 5 of the present invention.
  • Fig. 44 shows imMDV (BLZ945 / R837) in Example 5 of the present invention.
  • the term "combination (s) thereof" included in the expression of a makushi form refers to one or more mixtures or combinations selected from the group consisting of components described in the expression of makushi form, It means to include one or more selected from the group consisting of the above components.
  • a multi-domain capsule comprising two or more liposomes in contact with and connected to each other, and a multi-domain capsule outer wall surrounding the two or more liposomes, wherein the multi-domain capsule is composed of an organic phase and an aqueous phase.
  • the organic phase comprises a first immune modulator and a fluid oil
  • the organic phase forms a membrane of the liposome, and the outer wall of the multidomain capsule
  • the aqueous phase comprises a second immune modulator
  • the aqueous phase is the An inner aqueous solution phase of the liposome membrane and an outer aqueous solution phase of the liposome membrane
  • the first immunomodulatory substance is a fat-soluble immunoactive substance
  • the second immunomodulatory substance is a water-soluble immunoactive substance
  • the fluid oil is in contact with and connected to each other.
  • the multidomain capsule includes an outer wall of the multidomain capsule including a fat-soluble immunoactive substance, and inside the outer wall of the multidomain capsule surrounding the two or more liposomes, two or more liposomes each form a domain. Forming a capsule structure of about 1 ⁇ m to about 100 ⁇ m.
  • Multi-domain capsules containing two or more liposomes may be improved in duration, immune cell activation efficacy, encapsulation efficiency, or physiological stability of immune cell activating substances, as compared to conventional single liposomes and single emulsions.
  • the inside of the liposome membrane means the inner aqueous solution phase
  • the outside of the liposome membrane means the outer aqueous solution phase
  • the inner aqueous solution phase and the outer aqueous solution phase All means "first aqueous phase”.
  • the outer aqueous solution phase that is outside of the liposome membrane means a space between the liposome membrane and the outer wall of the multidomain capsule.
  • the multi-domain capsule may be dispersed in a solvent, wherein the dispersed phase in which the multi-domain capsule is dispersed, that is, the outside of the multi-domain capsule means "second aqueous solution phase".
  • the size of the multi-domain capsule is about 1 ⁇ m to about 100 ⁇ m, about 1 ⁇ m to about 80 ⁇ m, about 1 ⁇ m to about 60 ⁇ m, about 1 ⁇ m to about 40 ⁇ m, about 1 ⁇ m to about 20 ⁇ m, about 1 ⁇ m to about 10 ⁇ m, about 10 ⁇ m to about 100 ⁇ m, about 10 ⁇ m to about 80 ⁇ m, about 10 ⁇ m to about 60 ⁇ m, about 10 ⁇ m to about 40 ⁇ m, about 10 ⁇ m to About 20 ⁇ m, about 20 ⁇ m to about 100 ⁇ m, about 20 ⁇ m to about 80 ⁇ m, about 20 ⁇ m to about 60 ⁇ m, about 20 ⁇ m to about 40 ⁇ m, about 40 ⁇ m to about 100 ⁇ m, about 40 ⁇ m to about 80 ⁇ m, about 40 ⁇ m to about 60 ⁇ m, about 60 ⁇ m to about 100 ⁇ m, about 60 ⁇ m to about 80 ⁇ m, or about
  • the antigen loaded in the capsule and And / or the immunomodulatory substance may extend the release time compared to a single liposome or a single emulsion and consequently regulate the function of immune cells in vivo over a long time.
  • two or more liposomes may comprise liposomes in which the envelope is in contact with each other.
  • the liposomes of the multidomain capsule are interfacial contact between the outer skin, and thus the liposomes are not easily broken as compared to the multiple liposomes in which the outer skin is separated from each other, thereby improving the structural stability and sustained release effect of the multidomain capsule. Can be.
  • the fluid oil may improve the stability of the multi-domain capsule by acting as a glue (glue) between the domain consisting of each liposome.
  • the multi-domain capsule may be to improve the stability of the multi-domain capsule by introducing a fluid oil to the outer wall of the domain capsule, the contact of the outer wall of the liposomes, accordingly, the sustained-release effect and structural stability May be increased.
  • the fat-soluble immunoactive substance may be easily loaded into the multi-domain capsule by the fluid oil.
  • the lubricating oil such as a poorly soluble immunomodulating substance, which is difficult to solubilize in a general organic solvent, is easily solubilized, and thus, multi-domain capsules with the fluent fluid in the space between the liposomes and the liposomes. Can be loaded into.
  • the flowable oil may serve as an adjuvant to assist the activation of immune cells, for example animal oil, vegetable oil, tocopherol, mineral oil, castor oil, and combinations thereof It may include selected from the group consisting of.
  • the animal oil may be to include a fish oil.
  • the fish oil may be used without limitation as long as it is a metabolizable oil, for example, may include cod liver oil, shark liver oil, whale oil and the like.
  • the shark liver oil contains squalene, a molecule known as 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, unsaturated terpene, Saturation analogues may also be included.
  • fish oils including squalene or squalane they are readily available from commercial sources or can be obtained by methods known in the art.
  • the animal-derived oil may include a lard, resin (tallow), or tallow.
  • the vegetable-derived oil may be an oil derived from nuts, seeds, grains, and the like, and may include, for example, peanut oil, soybean oil, coconut oil, olive oil, and the like. .
  • the tocopherol may be tocopherol containing vitamin E.
  • various tocopherols ⁇ , ⁇ , ⁇ , ⁇ , ⁇ or ⁇
  • ⁇ -tocopherol can be used, for example DL- ⁇ -tocopherol can be used.
  • the fluid oil by introducing the fluid oil into the multi-domain capsule, it is possible to easily solubilize the immunomodulatory substance, it is possible to enhance the structural stability of the multi-domain capsule.
  • lipophilic or poorly soluble immunomodulators can be easily solubilized, and synergistic effects with the immunomodulation can be obtained by the immunoactivating effect of squalene and oleic acid itself. It may increase the structural stability of the multi-domain capsule, but may not be limited thereto.
  • the fat-soluble and water-soluble immunoactive substance may be an immunomodulatory substance expressed in stressed cancer cells, for example, a heat-shock protein, or activation of T cells. It may be a substance for inducing.
  • the fat-soluble and water-soluble immunoactive substance is a toll-like receptor agonist, saponin, antiviral peptide, inflammasome inducer, NOD ligand (NOD ligand), CDS ligand (cytosolic DNA sensor ligand), stimulator of interferon genes (STING) ligand, and combinations thereof may include one or more materials selected from, but may not be limited thereto. .
  • the toll-like receptor agonist as a direct ligand or indirect ligand means a component that can cause a signaling response through the TLT signaling pathway through the production of endogenous or exogenous ligands It may be.
  • the toll-like receptor agonist may be a natural toll-like receptor agonist or a synthetic toll-like receptor agonist.
  • the toll-like receptor agonist may be one that can cause a signaling response through TLR-1, for example, tri-acylated lipopeptide (LP); Phenol-soluble modulins; Cobacterium tuberculosis (Mycobacterium tuberculosis) lipopeptide; S- (2,3-bis (palmitoyloxy)-(2-RS) -propyl) -N-palmitoyl- (R) -Cys- (S) -Ser- (S) -Lys (4) -OH ; Bacterial lipopeptides from Borrelia burgdorfei; Trihydrochloride (Pam3Cys) lipopeptides that mimic the acetylated amino termini of OspA lipopeptides; And one or more materials selected from the group consisting of combinations thereof, but may not be limited thereto.
  • LP tri-acylated lipopeptide
  • Phenol-soluble modulins Cobacterium tub
  • the toll-like receptor agonist may include a TLR-2 agonist, for example, may include Pam3Cys-Lip, but may not be limited thereto.
  • the toll-like agonist may include a TLR-3 agonist, for example, Poly (I: C), Poly (ICLC), Poly ( IC12U), ampligen, and the like, but may not be limited thereto.
  • TLR-3 agonist for example, Poly (I: C), Poly (ICLC), Poly ( IC12U), ampligen, and the like, but may not be limited thereto.
  • the toll-like agonist may comprise a TLR-4 agonist, for example, Shigella flexineri (Shigella flexineri) outer membrane protein preparation, AGP, CRX-527, MPLA , PHAD, 3D-PHAD, GLA, and combinations thereof may be one or more materials selected from the group consisting of, but may not be limited thereto.
  • Shigella flexineri Shigella flexineri (Shigella flexineri) outer membrane protein preparation
  • AGP CRX-527
  • MPLA CRX-527
  • MPLA PHAD
  • 3D-PHAD 3D-PHAD
  • GLA GLA
  • the toll-like agonist may include a TLR-5 agonist, for example, may include, but is not limited to, flagellin or a fragment thereof. have.
  • the toll-like agonist may comprise a TLR-7 agonist or a TLR-8 agonist, for example, imiquimod, R837, resquimod, or R848
  • a TLR-7 agonist for example, imiquimod, R837, resquimod, or R848
  • imidazoquinoline molecules VTX-2337; CRX642; Imidazoquinoline covalently bound to a phospholipid group or a phosphonolipid group;
  • the toll-like agonist may include a TLR-9 agonist, for example, may include an immune stimulating oligonucleotide, but may not be limited thereto.
  • the immune stimulatory oligonucleotide may include one or more CpG motifs, but may not be limited thereto.
  • the saponin may be selected from the group consisting of QS21, QuilA, QS7, QS17, ⁇ -Eskin, Digitonin and combinations thereof, but may not be limited thereto.
  • the antiviral peptide may include KLK, but may not be limited thereto.
  • the influmersome inducer may be TDB (trehalose-6,6-dibehenate), but may not be limited thereto.
  • the NOD ligand may be M-TriLYS (NOD2 agonist-synthetic Muramil tripeptide) or NOD2 agonist (N-glycolylated muramyldipeptid), but may not be limited thereto.
  • the CDS ligand may be Poly (dA: dT), but may not be limited thereto.
  • the STING ligand may be cGAMP, di-AMP, or di-GMP, but may not be limited thereto.
  • the immunomodulatory substance may comprise a combination of one or more toll-like receptor agonists, for example, CL401 (dual TLR2 and TLR7 agonists) or CL429 (dual TLR2 And NOD2 agonist), but may not be limited thereto.
  • CL401 dual TLR2 and TLR7 agonists
  • CL429 dual TLR2 And NOD2 agonist
  • the immunomodulatory substance included in the multi-domain capsule is, for example, Pam3Cys-Lip, polycysi, CRX-527, MPLA, flagellin, imiquimod, resquimod, CpG , QS21, M-TriLys (MurNAc-Ala-D-isoGln-Lys), trehalose-6,6-dibehenate (TDB), 8837, Poly (dA: dT), cGAMP, and combinations thereof It may be, but may not be limited thereto.
  • the fat-soluble immunoactive substance is, for example, cationic lipid, MPLA, AGP, CRX-527, PHAD, 3D-PHAD, GLA, lipid peptide, Pam3Cys, Pam3Cys-Lip, DDA , A substance selected from the group consisting of imiquimod (base form), resquimod (base form), VTX-2337, CRX642, saponin (QS21), TDB, CL401, CL429, and combinations thereof Can be.
  • the hydrophilic immunoactive material is, for example, CpG, imiquimod (HCl form), resquimod (HCl form), Poly (I: C), STING, flagellin ( flagellin), saponins, KLK peptides, NOD agonist peptides, Poly (dA: dT), and combinations thereof.
  • the hydrophilic material may be conjugated to the outer wall of the multidomain capsule through the chemical bonding group of the end group, but may not be limited thereto.
  • the intracellular delivery efficiency of the immunomodulatory substance can be further improved.
  • an anionic and / or negatively charged various immunoregulatory substances and biomaterials such as DNA, RNA are effectively loaded into the multi-domain capsule Can be.
  • anionic or negatively charged biomaterials and / or DNA, RNA amino acid based immunomodulatory substances may be loaded via electrostatic bonding to the membrane of the outer wall or inner liposome of the multidomain capsules exhibiting cationic properties.
  • this may not be limited.
  • the cationic lipid is DC-cholesterol (3 ⁇ - [N- (N '(N', N'-dimethylaminoethane) -carbamoyl] cholesterol hydrochloride), DDA (dimethyldioctadecylammonium), DOTAP (1,2- dioleoyl-3-trimethylammonium-propane), DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane), EPC (1,2-dimyristoleoyl-sn-glycero-3-ethylphosphocholine), MVL5 (N1- [2 -((1S) -1-[(3-aminopropyl) amino] -4- [di (3-amino-propyl) amino] butylcarboxamido) ethyl] -3,4-di [oleyloxy] -benzamide), DODAP (lipid
  • a surfactant is coated on the outside of the multi-domain capsule, so that the multi-domain capsule can be stably dispersed in the aqueous solution.
  • the surfactant is coated on the outside of the multidomain capsule so that the multidomain capsule can be dispersed in an aqueous solution, for example, polyoxyethylene sorbitan ester surfactant (commonly called Tween), in particular polysorb Bait 20 and polysorbate 80; Copolymers of ethylene oxide (EO), propylene oxide (PO), and / or butylene oxide (BO); Octosinol (eg, Triton X-100, or t-octylphenoxypolyethoxyethanol); (Octylphenoxy) polyethoxyethanol (IGEPAL CA-630 / NP-40); As phospholipid (phospholipid component), phosphatidylcholine (lecithin) phosphatidylethanolaniline, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid, sphingomyelin and cardiolipin; Nonylphenol eth
  • the surfactant may be a mixture of these surfactants, such as a Tween 80 / Span 85 mixture. Combinations of polyoxyethylene sorbitan esters and octosinol may also be used. Other useful combinations may include laureth 9, polyoxyethylene sorbitan esters and / or octosinol.
  • the surfactant may be used in an amount of 0.001 to 20% by weight based on the total weight of the multidomain capsule, for example, 0.01 to 1%, 0.001 to 0.1%, and 0.005 to 0.02%; It may be used at a weight of 0.1 to 20%, 0.1 to 10%, 0.1 to 1% or about 0.5%.
  • an immunomodulatory substance comprising a multidomain capsule and an antigen according to the present invention .
  • the antigen may include one selected from the group consisting of proteins, genes, cells, viruses, and combinations thereof, but may not be limited thereto.
  • the protein may include overalbumin, recombinant protein, subunit, split protein antigen, and the cell may include, for example, dendritic cells, T cells,
  • the virus may include, but may not be limited to, for example, influenza, hepatitis B virus (HBV), hepatitis A virus (HAV), and human papilloma virus (HPV).
  • the antigen is attenuated live complete microorganisms, inert microorganisms, ruptured microorganisms, proteins of pathogens, recombinant proteins, glycoproteins, peptides, polysaccharides, lipopolysaccharides, lipopeptides, polynucleotides, cells, Virus, and combinations thereof, but may not be limited thereto.
  • the antigen may include, but is not limited to, an influenza-derived antigen or a cancer cell-derived antigen.
  • the immunomodulatory substance for intradermal administration may induce multiple immune responses in the body by including one or more antigens, but may not be limited thereto.
  • the cancer cells may be obtained by using a cancer cell line (cell line), or may be separated from cancer tissue (tumor tissue) existing in the body.
  • a cancer cell line cell line
  • cancer tissue tumor tissue
  • the cancer cells may include cancer cells of lung, colon, central nervous system, skin, ovary, kidney, breast, stomach, or colon, but may not be limited thereto.
  • the step of dissolving the first immunomodulator and fluid oil in a solvent to prepare an oil phase solution Dispersing a first aqueous phase comprising a second immunomodulatory substance in the oil phase solution to produce a water-in-water (W / O) emulsion; And mixing the oil-in-water emulsion with a second aqueous solution and evaporating the solvent.
  • the first immunomodulatory substance is a fat-soluble immunoactive substance
  • the second immunomodulatory substance is characterized in that the water-soluble immunoactive substance, a method for producing a multi-domain capsule.
  • the antigen loaded in the capsule and And / or the immunomodulatory substance may extend the release time compared to a single liposome or a single emulsion and consequently regulate the function of immune cells in vivo over a long time.
  • two or more liposomes may comprise liposomes in which the envelope is in contact with each other.
  • the liposomes of the multidomain capsule are interfacial contact between the outer skin, and thus the liposomes are not easily broken as compared to the multiple liposomes in which the outer skin is separated from each other, thereby improving the structural stability and sustained release effect of the multidomain capsule. Can be.
  • the fluid oil is characterized in that the role of glue (glue) between the domain consisting of each liposome, the stability of the multi-domain capsule is improved.
  • the multi-domain capsule may be to improve the stability of the multi-domain capsule by introducing a fluid oil to the outer wall of the domain capsule, the contact of the outer wall of the liposomes, accordingly, the sustained-release effect and structural stability May be increased.
  • the lipophilic immunomodulatory substance may be easily loaded into the multi-domain capsule by the flowable oil.
  • the lubricating oil such as a poorly soluble immunomodulating substance, which is difficult to solubilize in a general organic solvent, is easily solubilized, and thus, multi-domain capsules with the fluent fluid in the space between the liposomes and the liposomes. Can be loaded into.
  • the flowable oil may serve as an adjuvant to assist the activation of immune cells, for example animal oil, vegetable oil, tocopherol, mineral oil, castor oil, and combinations thereof It may include selected from the group consisting of.
  • the animal oil may be to include a fish oil.
  • the fish oil may be used without limitation as long as it is a metabolizable oil, for example, may include cod liver oil, shark liver oil, whale oil and the like.
  • the shark liver oil contains squalene, a molecule known as 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, unsaturated terpene, Saturation analogues may also be included.
  • fish oils including squalene or squalane they are readily available from commercial sources or can be obtained by methods known in the art.
  • the animal-derived oil may include a lard, resin (tallow), or tallow.
  • the vegetable-derived oil may be an oil derived from nuts, seeds, grains, and the like, and may include, for example, peanut oil, soybean oil, coconut oil, olive oil, and the like. .
  • the tocopherol may be tocopherol containing vitamin E.
  • various tocopherols ⁇ , ⁇ , ⁇ , ⁇ , ⁇ or ⁇
  • ⁇ -tocopherol can be used, for example DL- ⁇ -tocopherol can be used.
  • the fluid oil by introducing the fluid oil into the multi-domain capsule, it is possible to easily solubilize the immunomodulatory substance, it is possible to enhance the structural stability of the multi-domain capsule.
  • lipophilic or poorly soluble immunomodulators can be easily solubilized, and synergistic effects with the immunomodulators can be achieved by the immunoactivating effect of squalene and oleic acid itself. It may represent, but may increase the structural stability of the multi-domain capsule, but may not be limited thereto.
  • the fat-soluble and water-soluble immunoactive substance may be an immunomodulatory substance expressed in stressed cancer cells, for example, a heat-shock protein, or activation of T cells. It may be a substance for inducing.
  • the fat-soluble and water-soluble immunoactive material is a toll-like receptor agonist, saponin, antiviral peptide, inflammasome inducer, NOD ligand (NOD ligand), CDS ligand (cytosolic DNA sensor ligand), stimulator of interferon genes (STING) ligand, and combinations thereof may include one or more materials selected from, but may not be limited thereto. .
  • the toll-like receptor agonist as a direct ligand or indirect ligand means a component that can cause a signaling response through the TLT signaling pathway through the production of endogenous or exogenous ligands It may be.
  • the toll-like receptor agonist may be a natural toll-like receptor agonist or a synthetic toll-like receptor agonist.
  • the toll-like receptor agonist may be one that can cause a signaling response through TLR-1, for example, tri-acylated lipopeptide (LP); Phenol-soluble modulins; Cobacterium tuberculosis (Mycobacterium tuberculosis) lipopeptide; S- (2,3-bis (palmitoyloxy)-(2-RS) -propyl) -N-palmitoyl- (R) -Cys- (S) -Ser- (S) -Lys (4) -OH ; Bacterial lipopeptides from Borrelia burgdorfei; Trihydrochloride (Pam3Cys) lipopeptides that mimic the acetylated amino termini of OspA lipopeptides; And one or more materials selected from the group consisting of combinations thereof, but may not be limited thereto.
  • LP tri-acylated lipopeptide
  • Phenol-soluble modulins Cobacterium tub
  • the toll-like receptor agonist may include a TLR-2 agonist, for example, may include Pam3Cys-Lip, but may not be limited thereto.
  • the toll-like agonist may include a TLR-3 agonist, for example, Poly (I: C), Poly (ICLC), Poly ( IC12U), ampligen, and the like, but may not be limited thereto.
  • TLR-3 agonist for example, Poly (I: C), Poly (ICLC), Poly ( IC12U), ampligen, and the like, but may not be limited thereto.
  • the toll-like agonist may comprise a TLR-4 agonist, for example, Shigella flexineri (Shigella flexineri) outer membrane protein preparation, AGP, CRX-527, MPLA , PHAD, 3D-PHAD, GLA, and combinations thereof may be one or more materials selected from the group consisting of, but may not be limited thereto.
  • Shigella flexineri Shigella flexineri (Shigella flexineri) outer membrane protein preparation
  • AGP CRX-527
  • MPLA CRX-527
  • MPLA PHAD
  • 3D-PHAD 3D-PHAD
  • GLA GLA
  • the toll-like agonist may include a TLR-5 agonist, for example, may include, but is not limited to, flagellin or a fragment thereof. have.
  • the toll-like agonist may comprise a TLR-7 agonist or a TLR-8 agonist, for example, imiquimod, R837, resquimod, or R848
  • a TLR-7 agonist for example, imiquimod, R837, resquimod, or R848
  • imidazoquinoline molecules VTX-2337; CRX642; Imidazoquinoline covalently bound to a phospholipid group or a phosphonolipid group;
  • the toll-like agonist may include a TLR-9 agonist, for example, may include an immune stimulating oligonucleotide, but may not be limited thereto.
  • the immune stimulatory oligonucleotide may include one or more CpG motifs, but may not be limited thereto.
  • the saponin may be selected from the group consisting of QS21, QuilA, QS7, QS17, ⁇ -Eskin, Digitonin and combinations thereof, but may not be limited thereto.
  • the antiviral peptide may include KLK, but may not be limited thereto.
  • the influmersome inducer may be TDB (trehalose-6,6-dibehenate), but may not be limited thereto.
  • the NOD ligand may be M-TriLYS (NOD2 agonist-synthetic Muramil tripeptide) or NOD2 agonist (N-glycolylated muramyldipeptid), but may not be limited thereto.
  • the CDS ligand may be Poly (dA: dT), but may not be limited thereto.
  • the STING ligand may be cGAMP, di-AMP, or di-GMP, but may not be limited thereto.
  • the immunomodulatory substance may comprise a combination of one or more toll-like receptor agonists, eg, CL401 (dual TLR2 and TLR7 agonists) or CL429 (dual TLR2 And NOD2 agonist), but may not be limited thereto.
  • toll-like receptor agonists eg, CL401 (dual TLR2 and TLR7 agonists) or CL429 (dual TLR2 And NOD2 agonist
  • the immunomodulatory substance included in the multi-domain capsule is, for example, Pam3Cys-Lip, polycysi, CRX-527, MPLA, flagellin, imiquimod, resquimod, CpG , QS21, M-TriLys (MurNAc-Ala-D-isoGln-Lys), trehalose-6,6-dibehenate (TDB), 8837, Poly (dA: dT), cGAMP, and combinations thereof It may be, but may not be limited thereto.
  • the fat-soluble immunomodulatory substance is, for example, cationic lipid, MPLA, AGP, CRX-527, PHAD, 3D-PHAD, GLA, lipid peptide, Pam3Cys, Pam3Cys-Lip, DDA , A substance selected from the group consisting of imiquimod (base form), resquimod (base form), VTX-2337, CRX642, saponin (QS21), TDB, CL401, CL429, and combinations thereof Can be.
  • the hydrophilic immunomodulatory substance is, for example, CpG, imiquimod (HCl form), resquimod (HCl form), Poly (I: C), STING, flagellin ( flagellin), saponins, KLK peptides, NOD agonist peptides, Poly (dA: dT), and combinations thereof.
  • the hydrophilic material may be conjugated to the outer wall of the multidomain capsule through the chemical bonding group of the end group, but may not be limited thereto.
  • the intracellular delivery efficiency of the immunomodulatory substance can be further improved.
  • an anionic and / or negatively charged various immunoregulatory substances and biomaterials such as DNA, RNA are effectively loaded into the multi-domain capsule Can be.
  • anionic or negatively charged biomaterials and / or DNA, RNA amino acid based immunomodulatory substances may be loaded via electrostatic bonding to the membrane of the outer wall or inner liposome of the multidomain capsules exhibiting cationic properties.
  • this may not be limited.
  • the cationic lipid is DC-cholesterol (3 ⁇ - [N- (N '(N', N'-dimethylaminoethane) -carbamoyl] cholesterol hydrochloride), DDA (dimethyldioctadecylammonium), DOTAP (1,2- dioleoyl-3-trimethylammonium-propane), DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane), EPC (1,2-dimyristoleoyl-sn-glycero-3-ethylphosphocholine), MVL5 (N1- [2 -((1S) -1-[(3-aminopropyl) amino] -4- [di (3-amino-propyl) amino] butylcarboxamido) ethyl] -3,4-di [oleyloxy] -benzamide), DODAP (lipid
  • a surfactant is coated on the outside of the multi-domain capsule, so that the multi-domain capsule can be stably dispersed in the aqueous solution.
  • the surfactant is coated on the outside of the multidomain capsule so that the multidomain capsule can be dispersed in an aqueous solution, for example, polyoxyethylene sorbitan ester surfactant (commonly called Tween), in particular polysorb Bait 20 and polysorbate 80; Copolymers of ethylene oxide (EO), propylene oxide (PO), and / or butylene oxide (BO); Octosinol (eg, Triton X-100, or t-octylphenoxypolyethoxyethanol); (Octylphenoxy) polyethoxyethanol (IGEPAL CA-630 / NP-40); As phospholipid (phospholipid component), phosphatidylcholine (lecithin) phosphatidylethanolaniline, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid, sphingomyelin and cardiolipin; Nonylphenol eth
  • the surfactant may be a mixture of these surfactants, such as a Tween 80 / Span 85 mixture. Combinations of polyoxyethylene sorbitan esters and octosinol may also be used. Other useful combinations may include laureth 9, polyoxyethylene sorbitan esters and / or octosinol.
  • the surfactant may be used in an amount of 0.001 to 20% by weight based on the total weight of the multidomain capsule, for example, 0.01 to 1%, 0.001 to 0.1%, and 0.005 to 0.02%; It may be used at a weight of 0.1 to 20%, 0.1 to 10%, 0.1 to 1% or about 0.5%.
  • a multi-domain capsule comprising two or more liposomes in contact with and connected to each other, and a multi-domain capsule outer wall surrounding the two or more liposomes, wherein the multi-domain capsule is composed of an organic phase and an aqueous phase.
  • the organic phase comprises a first immune modulator and a fluid oil
  • the organic phase forms a membrane of the liposome, and the outer wall of the multidomain capsule
  • the aqueous phase comprises a second immune modulator
  • the aqueous phase is the An inner aqueous solution phase of the liposome membrane and an outer aqueous solution phase of the liposome membrane
  • the first immunomodulatory substance and the second immunomodulatory substance are immunosuppressive factor controlling substances
  • the fluid oil is composed of two or more liposomes in contact with and connected to each other.
  • Multidomain capsules can be provided, characterized by improving structural stability. The.
  • the first immunomodulatory substance and the second immunomodulatory substance may further include the above-described immunoactive substance. That is, the first immunomodulatory substance and the second immunomodulatory substance may include an immunosuppressive factor controlling substance together with an immunoactive substance.
  • an immunomodulatory substance comprising the multidomain capsule and the antigen may be provided.
  • dissolving the first immune modulator and the fluid oil in a solvent to prepare an oil phase solution; Dispersing a first aqueous phase comprising a second immunomodulatory substance in the oil phase solution to produce a water-in-water (W / O) emulsion; And mixing the oil-in-water emulsion with a second aqueous solution and evaporating the solvent.
  • the first immunomodulatory substance, and the second immunomodulatory substance is characterized in that the immunosuppressive factor controlling substance, may be provided a method for producing a multi-domain capsule.
  • the multi-domain capsule-based solid cancer microenvironmental control composition is a new type of immunomodulatory composition for regulating the microenvironment of cancer, in addition to the substances for activating immune cells mentioned above, immunosuppressive cells appearing in the solid cancer microenvironment. And it is characterized in that it comprises a drug (immunosuppressive factor controlling substance) that can control the function of the immunosuppressive substance.
  • a plurality of liposomes are linked to each other while forming respective domains based on an immunosuppressive factor, that is, an immunosuppressive factor control material that can control the functions of the immunosuppressive cells and the immunosuppressive material
  • an immunosuppressive factor control material that can control the functions of the immunosuppressive cells and the immunosuppressive material
  • a new multiple that can overcome the shortcomings of the low encapsulation efficiency and short effective duration of a single liposome material that is used as a variety of pharmaceutical compositions, and increase the effective duration of the immunomodulatory effect Domain capsule-based anticancer immunotherapy composition can be prepared.
  • Multi-domain capsule while slowly decaying from the outer wall of the capsule to the inner membrane, the immune that can control the function of the immunosuppressive cells and immunosuppressive material loaded into the outer wall and the inside of the capsule Since inhibitor inhibitors are released, the effective duration of immune mechanism modulators can be increased.
  • the multi-domain capsule according to an embodiment of the present invention, immunosuppression capable of controlling the functions of various immunosuppressive cells and immunosuppressive substances having lipophilic properties on the membrane of the liposome and / or the outer wall of the multidomain capsule.
  • immunosuppression capable of controlling the functions of various immunosuppressive cells and immunosuppressive substances having lipophilic properties on the membrane of the liposome and / or the outer wall of the multidomain capsule.
  • Multi-domain capsule by loading the immunosuppressive factor control material that can control the function of various immunosuppressive cells and immunosuppressive agents having hydrophilic properties inside the liposome, immunosuppressive factor control material It can increase the effective duration of.
  • Multi-domain capsule by simultaneously loading a lipophilic immunosuppressive factor control material on the outer wall of the various immunosuppressive control agents, hydrophobic membranes and / or the capsule having hydrophilic properties inside the liposomes
  • a lipophilic immunosuppressive factor control material on the outer wall of the various immunosuppressive control agents, hydrophobic membranes and / or the capsule having hydrophilic properties inside the liposomes
  • drugs capable of controlling the function of Meloidoid-Derived Suppressor Cell that is, immunosuppressive factor controlling substances, include Tadalafil, Sildenafil, L-AME, Nitroaspirin, Celecoxib, NOHA, Bardoxolone methyl, D, L-1-methyl-tryptophan, 5-Fluorouracil, Gemcitabine, 17-DMAG, Peptide-Fc fusionproteins, ATRA, Vitamin A, Vitamin D3, Vitamin E, GR1 antibodies, Zoledronic acid, Sunitinib, Axitinib, Decetaxel, Sorafenib, CucurbitacinB, JSI-124, Anti IL-17 antibodies, Anti-glycan antibodies, Anti-VEGF antibodies, Bevacizumab, Antracycline, Tasquinimod, Imatinib, cyclophosphamide, but are not limited thereto.
  • MDSC Meloidoid-Derived Suppressor Cell
  • PI3K inhibitors include PX-866, Wortmannin, PI-103, Pictilisib, GDC-0980, PF-04691502, BEZ235, XL765, XL147, BAY80-6946, GSK-2126458, Buparlisib, BYL719, AZD8186, GSK-2636771, CH5132799, INK-1117 and the like.
  • PI3Kdelta inhibitors are AMG-319, Idelalisib, TRG-1202, INCB050465, IPI-145, Duvelisib, Acalisib, TG-1202, RV1729, RP-6530, GDC-0032. .
  • the PI3Kgamma inhibitors are characterized by IPI-549, IPI-145, and the like.
  • One example of the present invention is a drug capable of coordinating the function of a TAM (tumor associated macrophage), that is, a drug capable of inhibiting the recruitment of macrophage as an immunosuppressive factor controlling agent, CCL2 / CCR2 inhibitors (Yondeli, RS102895), M-CSF or M-CSFR inhibitors (anti-M-CSF antibodies, JNJ-28312141, GW2580), chemoattractants (CCL5, CXCL-12, VEGF) and their inhibitors and HIFs inhibitors. It is not limited to this.
  • a drug that can inhibit the survival of TAM that is, immunosuppressant control agent
  • it is a drug that can induce the expression of Bisphosphonates, Clodronate, Dasatinib, anti-FRbeta antibodies, Shigella flexneri, Legumain and CD1d It is not limited to this.
  • drugs capable of improving the properties of the M1 macrophage that is, immunosuppressive factor controlling substances, NF-kB agonists TLR agonists, Anti-CD40 antibodies, Thiazolidinediones, Tasquinimod, Anti-IL-10R antibodies, Anti-IL -10 antibodies, oligonucleotides (Anti-IL-10R Anti-IL-10), STAT1 agonists, interferons, SHIP and M1 pathway-inducing SHIP, GM-CSF, IL-12, Thymosin alpha1, etc.
  • immunosuppressive factor controlling substances that is, immunosuppressive factor controlling substances, NF-kB agonists TLR agonists, Anti-CD40 antibodies, Thiazolidinediones, Tasquinimod, Anti-IL-10R antibodies, Anti-IL -10 antibodies, oligonucleotides (Anti-IL-10R Anti-IL-10), STAT1 agonists, interferons, SHIP and M1 pathway-inducing SHIP, GM-
  • drugs that can inhibit the mechanism of M2 macrophage-based cancer cell growth include sunitinib, sorafenib, WP1066, corosolic acid, oleanolic acid, STAT6 inhibitors and the M2 pathway (c-).
  • the target miRNA that can control the function of macrophage under tumor microenvironment is miR-155, miR-511-3p, miR-26a).
  • Targeting drugs that can enhance anticancer efficacy by targeting Macrophage under tumor microenvironment include Paclitaxel, Docetaxel, 5-Flurouracil, Alendronate, Doxorubicin, Simvastatin, Hydrazinocurcumin, Amphotericin B, Ciprofloxacin, Rifabutin, Rifampicin, Efavirenz, Cilatin Theophyline, Pseudomonas exotoxin A, Zoledronic acid, Trabectedin, Siltuximab (Anti-IL-6 antibodies), Dasatinib, CpG-ODN, Interferon-alpha, beta, gamma, GM-CSF, IL-12, Thymosin alpha-1, Sunitinib, 5,6-Dimethylxanthenone-4-acetic acid, Silibinin, CCL2-CCR2 inhibitors (PF-04136309, Trabectedin, Carlumab), CSF1-CSF1R signaling blocker (
  • TGF-beta transforming growth factor beta
  • COX2 Cycloxygenase-2
  • IDO Indoleamine 2,3-dioxygenase
  • Phosphodiesterase-5 Multi-domain capsule-based compositions containing PDE-5) inhibitors
  • Anti-Interleukin 10 (IL-10)) drugs can be provided.
  • TGF-beta inhibitors include, but are not limited to, SB-505124, LY-364974, and the like.
  • Nitro aspirin includes, but is not limited to, NCX 4040 and the like.
  • COX-2 inhibitors include, but are not limited to, Celecoxib.
  • IDO inhibitors include, but are not limited to, Indoximod, NLG919, and the like.
  • PDE-5 inhibitors include, but are not limited to, Tadalafil (Cialis) and the like.
  • the solid cancer microenvironment immunosuppressive factor controlling agent contained in the multi-domain capsule may be composed of two or more combinations of the above drugs.
  • natural killer cells and T cells having a therapeutic ability to find and kill cancer cells present in the body directly survive effectively in the body, and include a multi-domain capsule capable of improving therapeutic efficacy. It may be an immunomodulatory substance.
  • One example of the present invention is an antibody that acts as an inhibitor of immune checkpoints (PD-1, PDL-1 CTLA-4, LAG-3, TIM-3, CEACAM1) as a method of T cell activation through direct binding in a solid cancer microenvironment. It can provide a multi-domain capsule-based composition comprising them.
  • PD-1 immune checkpoints
  • PDL-1 CTLA-4 LAG-3
  • TIM-3 TIM-3
  • CEACAM1 CEACAM1
  • Anti-CTLA-4 antibody includes, but is not limited to, Ipilimumab.
  • Anti-PD1-antibody in one example of the present invention includes, but is not limited to Nivolumab.
  • Anti-PDL1 antibody in one embodiment of the present invention includes, but is not limited to, Atezolizumab.
  • Anti-LAG-3 antibody in one embodiment of the present invention includes, but is not limited to, BMS-986016.
  • Anti-TIM-3 antibody includes, but is not limited to, TSR-022.
  • Anti-CEACAM1 antibody includes, but is not limited to, CM-24.
  • One example of the present invention provides a multi-domain capsule-based composition comprising a coactivator (OX40, CD137, CD27, CD40) and the like as a T cell activation method through direct binding in a solid cancer microenvironment.
  • a coactivator OX40, CD137, CD27, CD40
  • Anti-OX40 includes, but is not limited to, RG7888 and the like.
  • Anti-CD137 includes, but is not limited to, Urelumab.
  • Anti-CD27 includes, but is not limited to, Varlilumab.
  • Anti-CD40 in one example of the present invention includes, but is not limited to, BMS-986090 and the like.
  • One example of the present invention is a multidomain capsule-based composition containing a drug capable of inhibiting immunosuppressive factors (Treg, MDSC, TAM, IDO, PD-L1) by T cell activation through indirect binding in a solid cancer microenvironment.
  • a drug capable of inhibiting immunosuppressive factors Treg, MDSC, TAM, IDO, PD-L1
  • One example of the present invention may provide a multi-domain capsule-based composition comprising an anticancer agent that increases the efficacy of immune cells through induction of immunogenic cell death through chemotherapy.
  • One example of the present invention provides a multi-domain capsule-based composition comprising a drug capable of killing cancer cells or controlling the tumor microenvironment through epigenetic machinery.
  • the DNA methyltransferase inhibitor (DNMTi) substance is 5-Azacytidine, 5-Aza-2-deoxycytidine, Decitabine, SGI-110, Zebularine, CP-4200, Cladribine, Fludarabine, Clofarabine, Procainamide, Procaine, Hydralazine, Disulfiram, RG108, Nanaomycin A, Genistein, Equol, Curcumin, EEGG, Resveratrol, Parthenolide and the like, but is not limited thereto.
  • DNMTi DNA methyltransferase inhibitor
  • the histone deacetylase inhibitor (HDACi) material is Vorinostat, Abexinostat, Suberoylanilide, Hydroxamic acid, Belinostat, Panobinostat, Romidepsin, Valproic acid, Entinostat, Givinostat, Resminostat, Quisinostat, Pracinostat, Dacinostat, Pyroxamide, CHR-3996, CBHA, Trichostatin A, Oxamflatin, MC1568, Tubacin, PCI-30451, Tacedinaline, Mocetinostat, Chidamide, BML-210, M344, Butyrate, Sodium butyrate, Trapoxin A, Apicidin, Nicotinamide, Splitomicin, EX -527, Dihydrocoumarin, Tenovin-D3, AGK2, AEM1, AEM2, Cambinol, Sirtinol, Salermide, Tenovin-6, TMP-269, Psamm
  • a multi-domain capsule was prepared as follows.
  • DOPC (10 mg), cholesterol (8 mg), squalene (12 mg) and glycerol trioleate (12 mg) were dissolved in chloroform (1 mL) to prepare an oily solution.
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, this formed double emulsion was dispersed in dichloromethane solution. The dichloromethane was removed using a vacuum distillation and the temperature was raised to 37 ° C. to remove residual solvent.
  • the solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • a control group was prepared together in the same manner as in the above example, except that squalene was not included.
  • the multi-domain capsule containing squalene was uniform in size compared to the control without squalene, At the interface of the interface showed a clear boundary (Fig. 2 (a) and (b)). On the other hand, it was found that the control group containing no squalene maintains non-uniform size and shape (FIG. 2 (c) and (d)).
  • FIGS. 3D to 3F are optical microscopes of multidomain capsules not containing squalene. Image.
  • Figure 3 by applying the rhodamine fluorescent dye in the oil phase solution, it was possible to clearly observe the structure of the multi-domain capsule, the case of the multi-domain capsule containing squalene has a distinct boundary point, dispersed in an aqueous solution I could see that.
  • DOPC (10 mg), cholesterol (8 mg), MPLA [monophosphoryl lipid A, 10 mg, Avanti Polar Lipids, USA], squalene (12 mg), glycerol trioleate, 12 mg ) was dissolved in chloroform (1 mL) to prepare an oily solution.
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, this formed double emulsion was dispersed in dichloromethane solution.
  • the dichloromethane was removed using a vacuum distillation and the temperature was raised to 37 ° C. to remove residual solvent.
  • the solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • 5 is an optical microscope image of multidomain capsules (imMDV-1: imMDV (MPLA)) comprising squalene-based MPLA.
  • Samples of imMDV (SQ) and imMDV (MPLA) prepared in Examples 1-1 and 1-2 were obtained from bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophage (BMMCs). The effect on the activation was measured by the secretion amount of pro-inflammatory cytokines (TNF- ⁇ , IL-6, IL-12) using the ELISA test method.
  • BMDCs bone marrow-derived dendritic cells
  • BMMCs bone marrow-derived macrophage
  • DOPC (10 mg), cholesterol (8 mg), squalene (12 mg) and glycerol trioleate (12 mg) were dissolved in chloroform (1 mL) to prepare an oily solution.
  • the prepared oily solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose) containing ovalbumin (5 mg, Sigma Aldrich, USA). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, this formed double emulsion was dispersed in a dichloromethane solution.
  • the dichloromethane was removed using a reduced pressure distillation and the temperature was raised to 37 ° C. to remove residual solvent.
  • the solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • a control group was prepared together in the same manner as in the above example, except that squalene was not included.
  • a homogenizer 20,000 X g
  • the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent.
  • the solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • DOPC (10 mg), cholesterol (8 mg), MPLA (10 mg), squalene (12 mg), TDB (10 mg, Avanti Polar Lipids, USA), glycerol trioleate (12 mg) was dissolved in chloroform (1 mL) to prepare an oily solution.
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • DOPC (10 mg), cholesterol (8 mg), MPLA (10 mg), DDA (10 mg), squalene (12 mg) and glycerol trioleate (12 mg) were dissolved in chloroform (1 mL) to form an oily solution.
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • An oily solution was prepared by dissolving DOPC (10 mg), cholesterol (8 mg), squalene (12 mg), and glycerol trioleate (12 mg) in chloroform (1 mL).
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose, CpG 1 mg, Bioneer, Korea). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • An oily solution was prepared by dissolving DOPC (10 mg), cholesterol (8 mg), squalene (12 mg), and glycerol trioleate (12 mg) in chloroform (1 mL).
  • the prepared oil phase solution was used for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose, Poly (I: C) (Sigma-Aldrich, USA) 1 mg). Dispersed. Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • An oily solution was prepared by dissolving DOPC (10 mg), cholesterol (8 mg), squalene (12 mg), and glycerol trioleate (12 mg) in chloroform (1 mL). Dispersion of the prepared oil phase solution in 1 mL of an internal aqueous phase (5% sucrose, 5 mg of Resquimod (Sigma-Aldrich, USA)) using a homogenizer (20,000 X g) for 10 minutes I was. Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • An oleate (12 mg) was dissolved in chloroform (1 mL) to prepare an oily solution.
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds.
  • HCl-type imiquimod dissolved in an aqueous solution was prepared by the following process. Dissolve 400 g of imiquimod in 2000 ml of distilled water and 900 ml of n-butanol (or 1-butanol). Stirring and add 150ml of 37% HCl solution at the same time.
  • FIG. 9 shows an optical microscope image of a multi-domain capsule loaded with imiquimod in HCl, imiquimod in base, and imiquimod in two forms simultaneously.
  • imMDV R837-HCl
  • the amount of drug released was quantified using a UV-Vis spectrometer (FIG. 10). As shown in FIG. 10, about 70% of the loaded drug was released over 8 days.
  • imMDV R837-HCl
  • BMDCs bone marrow-derived dendritic cells
  • the secretion of representative pro-inflammatory cytokines IL-6 related to the Th1 immune response was determined by ELISA.
  • IL-6 was increased in proportion to the treated concentration
  • R837-HCl encapsulated in the multi-domain capsule was confirmed to show a similar behavior to that of R837-HCl used as a control. It can be seen that it is released to activate immune cells.
  • a humoral immune effect (IgG, 1 week after injection) against an OVA (ovalbumin) model antigen is shown in the multidomain capsule sample (12a: imMDV (R837-) loaded with imiquimod. HCl) sample, 12b: imMDV (R837-base) sample, 12c: imMDV [R837-HCl: R837-base (1: 1) sample]) administration group was significantly increased.
  • the increased humoral immunity effect can be confirmed to persist even after 3 weeks (Fig. 13a, 13b and 13c) and 5 weeks (Fig. 14a, 14b and 14c) after injection.
  • Humoral immunopotentiation effect is significantly increased when additional boosting once 5 weeks after the first injection (Figs. 15a, 15b, 15c, 16, 17, and 18). This increased humoral immune effect can be confirmed that it is maintained continuously in weeks 1, 2, 6 after boosting 5 weeks (Figs. 19, 20, and 21).
  • DMSO oil-type adjuvant
  • An oily solution was prepared by dissolving DOPC (10 mg), cholesterol (8 mg), squalene (12 mg), and glycerol trioleate (12 mg) in chloroform (1 mL).
  • the prepared oily solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose, 1 mg of STING (InvivoGen, USA)). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • An oily solution was prepared by dissolving DOPC (10 mg), cholesterol (8 mg), squalene (12 mg), MPLA (10 mg) and glycerol trioleate (12 mg) in chloroform (1 mL).
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose, CpG 1 mg). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • An oily solution was prepared by dissolving DOPC (10 mg), cholesterol (8 mg), squalene (12 mg), MPLA (10 mg) and glycerol trioleate (12 mg) in chloroform (1 mL).
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose, 1 g of Poly (I: C)). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • An oily solution was prepared by dissolving DOPC (10 mg), cholesterol (8 mg), squalene (12 mg), and glycerol trioleate (12 mg) in chloroform (1 mL).
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase [5% sucrose, 1 mg of CpG, 1 mg of Poly (I: C)]. Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • DOPC (10 mg), cholesterol (8 mg), MPLA (10 mg), castor oil (12 mg, Sigma-Aldrich, USA) and glycerol trioleate (12 mg) in chloroform (1 mL) was prepared.
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • Oily solution by dissolving DOPC (10 mg), cholesterol (8 mg), MPLA (10 mg), mineral oil (12 mg, Sigma-Aldrich, USA), glycerol trioleate (12 mg) in chloroform (1 mL) was prepared.
  • the prepared oil phase solution was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL of an internal aqueous phase (5% sucrose). Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds. Finally, the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent. The solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain liposomes.
  • mice Female BALB / c and C57BL / 6 mice (5-6 weeks old) were purchased from KOATECH (Pyeongtaek, Korea). All experiments with mice were conducted in accordance with Korean NIH guidelines for the care and use of laboratory study animals.
  • mouse serum was collected and antibody titers against HA proteins in serum were measured by an enzyme linked immunosorbent assay (ELISA).
  • ELISA enzyme linked immunosorbent assay
  • the plate coated with HA protein was blocked using PBS / 3% bovine serum albumin (BSA), and the control group serum was incubated at various serial dilutions. Then, mouse IgG attached with horseradish peroxidase was added. All the incubations were performed at 37 ° C. for 1 hour, and after each step mentioned, washed three times with PBS / 0.05% Tween 20.
  • BSA bovine serum albumin
  • the effect of the cancer prevention vaccine of the multidomain capsule containing the immunomodulatory substance prepared in Example 1 was verified through a mouse experiment (C57BL / 6, 6 to 7 week old female).
  • Increasing humoral immune response by injecting 50 ⁇ g of an immunomodulatory substance (cancer preventive vaccine) containing a multi-domain capsule into mice was measured by ELISA (Enzyme linked Immunosorbent assay) method, and the results are shown in FIG. 26. (IgG production measurement).
  • the humoral immune response was confirmed by performing ophthalmic blood collection in mice after vaccination, and comparing the production of immunoglobulin IgG with the control group.
  • mice inoculated in Example 3-1 three mice of the OVA and OVA-multiple-capsule group were selected, and after 2 weeks, spleens were extracted from each mouse, and then the spleen tissues were sterilized in a petri dish. The spleens were ground using a cell strainer to separate cells from the tissue coating.
  • the isolated splenocytes were plated in IFN-gamma coated plates in 96-well 5 ⁇ 10 5 cells / 100 ⁇ L and treated with MHC class I-restricted OVA peptide at a concentration of 5 ⁇ g / mL for 48 hours. Then, IFN-gamma with horseradish peroxide was added. As a substrate, the reaction was developed by adding 100 ⁇ L of ACE (3-amino-9-ethyl-carbazole, BD biosciences, USA) and measured by ELSPOT (enzyme-linked immunospot) method (FIG. 27).
  • ACE enzyme-linked immunospot
  • An oily solution was prepared by dissolving DOPC (10 mg), cholesterol (8 mg), squalene (12 mg), and glycerol trioleate (12 mg) in chloroform (1 mL).
  • the prepared oily solution was homogenizer (20,000) in 1 mL of internal aqueous phase (5% sucrose, gemcitabine: Gemzar® (Eli Lilly and Company, Indianapolis, Ind., USA), 5 mg).
  • X g was used to disperse for 10 minutes. Thereafter, the mixed solution was vortexed in 3 mL of an external aqueous phase (7.5% glucose, 40 mM lysine) for 10 seconds.
  • the formed double emulsion was removed using the vacuum distillation apparatus to remove the chloroform and the temperature was raised to 37 ° C. to remove residual solvent.
  • the solvent-free multidomain capsule dispersion was precipitated at low temperature, or it was settled by centrifugation to remove the supernatant to obtain a multidomain capsule (imMDV (SQ-Gem)).
  • FIG. 28 shows an optical microscope image of the three samples prepared in this way: In a multidomain capsule containing squalene, the loaded gemcitabine is slowly released, while it does not contain squalene. In the multi-domain capsule, it can be seen that most of the loaded drugs are released within 24 hours (FIG. 29) Also, when oleic acid vegetable oil is used instead of animal oil such as squalene, the sustained release behavior of loaded gemcitabine is 24. It was shown that the plateau shape for -72 hours and then linear behavior after 72 hours. It means that by using the liquid oil, can tune the release behavior of drug-loaded (Fig. 30).
  • paclitaxel By inducing the death of cancer cells, paclitaxel, doxorubicin, metotrexate and oxaliplatin are selected from anticancer agents that play a role in enabling antigen-presenting cells to recognize cancer antigens effectively.
  • Multidomain capsules loaded with these drugs were prepared. Prepared using the same method as in Example 4-1, but imMDV (paclitaxel) (Fig. 31) was used to add paclitaxel drug to the oily solution, imMDV (doxorubicin) (Fig. 32), imMDV (methotrexate) ( 33) and imMDV (oxaliplatin) (FIG. 34) prepared the multidomain capsules by adding the respective drugs on an internal aqueous solution. As can be seen in Figure 31, it was confirmed that the loaded drug is slowly released over two weeks.
  • An oily solution was prepared by dissolving DOPC (10 mg), cholesterol (8 mg), squalene (12 mg), and glycerol trioleate (12 mg) in chloroform (1 mL).
  • the prepared oil phase solution was prepared by internal aqueous phase (5% sucrose) in which MK-2206 (an Akt inhibitor, SelleckChem, 5 mg) was dissolved (Imatinib: Gleevec® (Novartis Pharmaceuticals Corp, East Hanover, NJ, USA) 5 mg) was dispersed for 10 minutes using a homogenizer (20,000 X g). Subsequently, a multi-domain capsule was prepared through the same process as in Example 4-1 (FIG. 35).
  • An oily solution was prepared by dissolving DOPC (10 mg), cholesterol (8 mg), squalene (12 mg), and glycerol trioleate (12 mg) in chloroform (1 mL).
  • the prepared oil phase solution was PF-04691502 (PI3K inhbitor, SelleckChem, 5 mg) in an internal aqueous phase (5% sucrose, (Imatinib: Gleevec® (Novartis Pharmaceuticals Corp, East Hanover, NJ, USA)) 5 mg) was dispersed for 10 minutes using a homogenizer (20,000 X g) in 1 mL. Thereafter, a multi-domain capsule was prepared by the same process as in Example 4-1 (FIG. 36).
  • Azacytidine, Resminostat, Panobinostat and OTX015 were selected to prepare multidomain capsules loaded with these drugs.
  • imMDV Azacytidine
  • imMDV Resmonostat
  • imMDV Panobinostat
  • imMDV OTX015
  • iBET imMDV
  • gemcitabine capable of killing MDSC and cancer cells and a toll-like receptor that acts on immune cell activation Multidomain capsules (imMDV (GEM / R837)) having a stable structure while simultaneously containing quimod (Examples 1-9) were prepared (FIG. 43).
  • BLZ945 which is a drug capable of removing TAM cells, and imiquimod (Example 1-9), a toll-like receptor that acts on immune cell activation Capsules (imMDV (BLZ945 / R837)) were prepared (FIG. 44).
  • Multi-domain capsule according to the present invention by loading a variety of immunomodulators having hydrophilic properties inside the liposomes, the membrane of the liposomes and / or the outer wall of the capsule at the same time, the effective maintenance of the immunomodulators You can increase the time.
  • the manufacturing method of the multi-domain capsule according to the present invention by introducing a fluid oil such as squalene, it is possible to improve the stability and storage stability in the manufacturing process of the multi-domain capsule, due to the introduction of the fluid oil, general Representative poorly soluble immunomodulatory substances that are not soluble in organic solvents can be easily solubilized, and thus, there are advantages in that multiple domain capsules containing the various poorly soluble immunomodulatory substances can be prepared.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은, 면역활성물질을 포함하는 다중도메인캡슐, 상기 다중도메인캡슐의 제조방법, 및 상기 다중도메인캡슐을 포함하는 면역조절 조성물에 관한 것으로, 본 발명의 일 측면에 따르면, 서로 접촉하고 연결되어 있는 둘 이상의 리포좀, 및 상기 둘 이상의 리포좀을 둘러싸는 다중도메인캡슐 외벽을 포함하는 다중도메인캡슐로서, 상기 다중도메인캡슐은 유기상과 수용액상으로 이루어지고, 상기 유기상은 제1면역조절물질 및 유동성 오일을 포함하며, 상기 유기상은 상기 리포좀의 멤브레인, 및 상기 다중도메인캡슐 외벽을 형성하고, 상기 수용액상은 제2면역조절물질을 포함하며, 상기 수용액상은 상기 리포좀 멤브레인의 내부 수용액상 및 리포좀 멤브레인의 외부 수용액상이며, 상기 제1면역조절물질은 지용성 면역활성물질이고, 상기 제2면역조절물질은 수용성 면역활성물질이며, 상기 유동성 오일은 서로 접촉하고 연결되어 있는 둘 이상의 리포좀의 구조 안정성을 향상시키는 것을 특징으로 하는, 다중도메인캡슐이 제공된다.

Description

면역활성물질을 포함하는 다중도메인캡슐, 이의 제조방법, 및 이를 포함하는 면역조절 조성물
본 발명은, 면역활성물질을 포함하는 다중도메인캡슐, 상기 다중도메인캡슐의 제조방법, 및 상기 다중도메인캡슐을 포함하는 면역조절 조성물에 관한 것이다.
현재 다양한 약물이 봉입된 리포좀 소재들이 사용되고 있다. 하지만, 이러한 단일 리포좀(single liposome) 소재를 이용한 기술에서는, 낮은 로딩 효율과 생체 내에서의 불안정성이 큰 단점으로 지적되고 있다.
최근, 면역 세포를 활성화 하기 위해 면역활성화 물질이 탑재된 다양한 리포좀 및 에멀젼 소재(예를 들어, GSK사의 ASO1, ASO2, AS15 및 노바티스사의 MF59)들이 다양한 감염성 질환 및 암을 예방하거나 치료하기 위한 면역활성화 물질로 사용되고 있다. 상기 단일 리포좀 기반 소재들은 감염성 질환 예방 백신 조성물로, 현재 임상 시험 단계에 있으나, 항원 및 면역활성화 물질의 낮은 지속 시간으로 인하여, 생체 내 면역세포를 효과적으로 활성화시키기 위해서는 이러한 물질을 일정 기간을 두고 2 내지 3회씩 추가적으로 주입해야 한다는 단점이 있었다.
이러한 단점을 극복하기 위하여 최근에 MIT의 Irvive Darrel 그룹에서는 다층 라멜라 리포좀(multilamellar liposome) 구조를 갖는 면역활성화 암 백신을 개발하였다(Nature Materials, 10, 243-251, 2011). 상기 암 백신은 다층 라멜라 구조를 갖는 리포좀 내부에 항원 및 면역활성화 물질을 로딩한 후에, 각 지질 층을 다가성 금속 이온 또는 화학적 링커를 이용하여 가교(chemical crosslinking) 구조를 만들어 줌으로써, 단일 리포좀 소재가 갖고 있었던 근본적인 단점이었던 낮은 봉입 효율과 안정성 문제를 해결하려는 시도였다.
하지만, 다층 라멜라 구조를 갖는 리포좀의 형태가 매우 불균일하며, 특정 구조를 갖는 다층 라멜라 구조를 제조하기 위한 제조 과정이 임의적이기 때문에, 제조 시마다 균일한 특성을 갖는 백신 조성물을 얻을 수 없다는 단점이 있었고, 화학적 가교 결합을 이용하기 때문에, 인체에 독성을 야기할 수 있다는 한계가 있었다.
또한, 이와 유사한 형태로, 종래에 다중 리포좀(multivesicular liposome)이라 부르는 약물 전달체가 미국 캘리포니아대학의 김신일 연구팀[Biochimica Biophysica Acta 1983 Mar. 9 728 (3) 339-348], 2002년 Mantripragada의 연구팀[Progress of Lipids Research 41 (2002) 392-406], 2007년 Wafa의 연구팀[International Journal of Pharmaceutics 331 (2007) 182-185]등에서 발표된 바 있다. 이러한 다중 리포좀은, 중성지질과 콜레스테롤 및 트리올레인(triolein)으로 이루어진 군에서 선택된 물질들의 혼합물로 이루어진다.
종래의 다중 리포좀에 있어서 미소 소포체(vesicle)가 한 덩어리의 마이크로 클러스터를 유지하는 원리는, 개개 소포체의 지질막 사이에서 트리올레인 물질이 접촉하는 지질막의 급격한 커브 변화에서도 이중막이 파괴되지 않고 흩어지지 않도록 고정하기 때문이었다. 이러한 다중 리포좀은 현재 통증조절제(pain management)인 부피바케인(bupivacaine)이 로딩된 약품으로 개발되어 EXPARELβ 라는 상품명으로 시판 중이다.
그러나, 이렇게 제조된 다중 리포좀은 트리올레인에 의한 구조 안정화 효율이 매우 낮아 준비과정 중(예를 들어, 원심분리 및 온도 변화 등)에 마이크로 클러스터가 붕괴되어 크기나 모양이 불균일하게 되는 문제점이 있다. 또한, 현재까지 면역활성화 약물이 도입된 다중 리포좀 형태는 발견되지 않은 것으로 조사 되었다. 한편, 이러한 면역활성화(immunostimulation) 기술과 더불어 면역기능 조절에서 중요한 것이 체내의 면역억제(immunosuppression)를 조절할 수 있는 기술의 개발이다. 특히, 현재 항암면역치료의 낮은 치료효율과 부작용을 해결하기 위해서는 암 미세환경에서의 면역억제 현상을 극복할 수 있는 기술의 개발의 매우 시급한 실정이다.
체내의 면역시스템을 이용하여 암을 치료하는 항암면역치료방법은 기존의 화학적 요법이나 방사선 치료방법에 비하여 부작용을 최소할 수 있다는 장점이 있다. 이러한 항암면역치료기법 중에는 치료용 면역세포인 T 세포(CAR-T 포함), 수지상세포(Dendritic Cells), 자연살해세포(Natural Killer Cells) 등을 체외에서 활성화 시킨 후에 체내에 직접 주입하는 세포치료제방법과 암 항원과 면역활성화 물질을 체내에 주입함으로써, 체내에 존재하는 면역세포를 직접적으로 활성화함으로써 항암효능을 높이는 항암백신에 대한 방법 등이 활발하게 진행되고 있다. 하지만, 이러한 세포치료제나 항암백신은 주로 혈액암 관련 질병에 주로 사용되고 있고, 고형암에서는 대부분 그 치료효능이 매우 낮다는 단점을 갖고 있다.
이러한 이유 중의 하나는 고형암 주위에서 면역기능을 억제하는 미세환경 요인에 기인한다. 실제로, 종양미세환경에서 면역세포의 기능을 저하시키는 세포 (MDSC: myeoloid-derived stromal cells, Treg: regulatory T cell, TAM: tumor-assocaitedmacrophages)나 면역억제유발 사이토카인, 대사체 등이 활발하게 작용함으로써, 면역활성화 물질과 치료용 면역세포의 활성을 급격하게 저하시키는 것이다. 따라서, 고형암의 치료효율을 높이기 위해서는 고형암 미세환경에서 면역억제인자을 제어할 수 있는 새로운 치료 플랫폼 기술의 개발이 매우 시급하다.
최근, 종양미세환경 내의 다양한 면역억제인자들을 제어할 수 있는 약물 개발에 대한 연구가 전 세계적으로 활발하게 진행되고 있다. 그러나, 이러한 약물들은 체내에 주입시에 생체 내의 다양한 생리적 환경 및 효소에 의해 쉽게 분해되거나, 종양 부위가 아닌 다른 조직으로 전달되어 원하지 않는 다양한 부작용을 초래하는 단점을 갖고 있다.
이러한 단점을 극복하기 위해서, 실제 임상분야에서는 고용량(high-dose)의 약물을 반복적으로 투여함으로써, 면역치료효과를 증진시키려는 시도가 진행되고 있으나, 다양한 약물독성 및 부작용으로 인해, 치료효과를 감소시키는 결과를 초래하고 있다.
따라서, 고형암 미세환경에서, 면역치료제의 치료기능을 저해하는 면역억제환경 인자들을 제어할 수 있는 약물을 고형암 주위에서 서방형으로 방출함으로써, 면역억제인자를 효과적으로 타겟하고, 약물에 의한 부작용을 최소화 할 수 있는 항암면역치료제 및 이를 이용한 항암면역치료의 치료효과 향상 기술 개발이 매우 시급한 실정이다.
본 발명은, 면역활성물질을 포함하는 다중도메인캡슐, 상기 다중도메인캡슐의 제조방법, 및 상기 다중도메인캡슐을 포함하는 면역조절 조성물을 제공하는 것이다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따르면, 서로 접촉하고 연결되어 있는 둘 이상의 리포좀, 및 상기 둘 이상의 리포좀을 둘러싸는 다중도메인캡슐 외벽을 포함하는 다중도메인캡슐로서, 상기 다중도메인캡슐은 유기상과 수용액상으로 이루어지고, 상기 유기상은 제1면역조절물질 및 유동성 오일을 포함하며, 상기 유기상은 상기 리포좀의 멤브레인, 및 상기 다중도메인캡슐 외벽을 형성하고, 상기 수용액상은 제2면역조절물질을 포함하며, 상기 수용액상은 상기 리포좀 멤브레인의 내부 수용액상 및 리포좀 멤브레인의 외부 수용액상이며, 상기 제1면역조절물질은 지용성 면역활성물질이고, 상기 제2면역조절물질은 수용성 면역활성물질이며, 상기 유동성 오일은 서로 접촉하고 연결되어 있는 둘 이상의 리포좀의 구조 안정성을 향상시키는 것을 특징으로 하는, 다중도메인캡슐을 제공할 수 있다.
본 발명의 다른 측면에 따르면, 상기 다중도메인캡슐 및 항원을 포함하는, 면역조절 물질을 제공할 수 있다.
본 발명의 또 다른 측면에 따르면, 제1면역조절물질 및 유동성 오일을 용매에 용해하여 오일상 용액을 제조하는 단계; 제2면역조절물질을 포함하는 제1수용액 상을 상기 오일상 용액에 분산시켜 유중-수(W/O) 에멀젼을 제조하는 단계; 및 상기 유중-수 에멀젼을 제2수용액과 혼합하고, 상기 용매를 증발시키는 단계; 를 포함하고, 상기 제1면역조절물질은 지용성 면역활성물질이고, 상기 제2면역조절물질은 수용성 면역활성물질인 것을 특징으로 하는, 다중도메인캡슐의 제조방법을 제공할 수 있다.
본 발명은, 면역조절물질을 기본성분으로 복수의 리포좀이 각각의 도메인을 형성하면서 서로 연결되고, 도입된 유동성 오일 성분에 의해 연결된 복수 리포좀의 구조적 안정성이 향상된 마이크로 크기의 캡슐 형태를 가지는 면역조절 다중도메인캡슐을 제공할 수 있다.
또한, 본 발명에 따른 면역조절 조성물은, 다양한 약학적 조성물로서 사용되고 있는 단일 리포좀 소재의 낮은 봉입 효율 및 짧은 유효 지속 시간의 단점을 극복하고, 면역조절 효과의 유효 지속 시간을 늘릴 수 있는 장점을 가진다.
그리고, 본 발명에 따른 다중도메인 캡슐의 제조방법은, 종래 다중 리포좀의 구조적 안정성을 유지하기 위해 도입되었던 트리올레인 대신, 스쿠알렌과 같은 유동성 오일을 도입함으로써, 다중도메인캡슐의 제조 과정에서의 안정성 및 저장 안정성을 향상시킬 수 있으며, 상기 유동성 오일의 도입으로 인하여, 일반적인 유기 용매에 녹지 않는 대표적인 난용성 면역조절 물질들을 용이하게 가용화할 수 있으며, 그에 따라 상기 다양한 난용성 면역조절 물질을 포함하는 다중도메인캡슐을 제조할 수 있다는 장점이 있다.
또한, 본 발명에 따른 다중도메인캡슐은, 다중도메인캡슐의 표면 전하를 조율함으로써, 반대의 전하 특성을 갖는 항원 및 면역조절 물질의 봉입 효율 및 유효 지속시간을 증가시킬 수 있고, 양이온성 지질을 포함하여 다중도메인캡슐을 구성함으로써, 음이온성 및/또는 음전하를 띄는 다양한 면역조절물질 및 DNA, RNA와 같은 바이오소재가 다중도메인캡슐에 효과적으로 로딩될 수 있다.
그리고, 다중도메인캡슐의 외벽부터 안쪽 멤브레인으로 서서히 붕괴가 일어나면서 다중도메인캡슐의 외벽 및 내부에 로딩된 항원 및/또는 면역조절물질이 방출되므로, 항원 및 면역조절물질의 유효 지속시간이 증가될 수 있다는 장점을 갖는다.
한편, 본 발명에 따른 다중도메인캡슐은, 리포좀의 멤브레인 및/또는 상기 다중도메인캡슐의 외벽에 친유성 성질을 갖는 다양한 면역조절물질을 로딩함으로써, 면역조절물질의 유효 지속시간을 증가시킬 수 있고, 리포좀의 내부에 친수성 성질을 갖는 다양한 면역조절물질을 로딩함으로써, 면역조절물질의 유효 지속시간을 증가시킬 수 있으며, 리포좀의 내부에 친수성 성질을 갖는 다양한 면역조절물질, 리포좀의 멤브레인 및/또는 상기 캡슐의 외벽에 친유성 면역조절화 물질을 동시에 로딩함으로써, 면역조절물질의 유효 지속시간을 증가시킬 수 있다.
아울러, 본 발명에 따른 다중도메인캡슐은 계면활성제가 다중도메인캡슐의 외부에 코팅되어 다중도메인캡슐이 수용액 내에 안정되게 분산될 수 있도록 할 수 있다.
도 1은, 본 발명의 일 구현예에 있어서, 면역기능 조절 다중도메인캡슐 (imMDV)의 구조를 나타낸 모식도이다.
도 2의 (a) 내지 (d)는, 본 발명의 일 실시예에 있어서, 스쿠알렌을 포함하는 다중도메인캡슐의 광학 현미경 이미지(a) 및 크기 분포를 나타낸 그래프(c), 및 스쿠알렌을 포함하지 않는 다중도메인캡슐의 광학 현미경 이미지(b) 및 크기 분포를 나타낸 그래프(d) 이다 (스케일 바: 20 ㎛).
도 3의 (a) 내지 (c)는, 본 발명의 일 실시예에 있어서, 스쿠알렌을 포함하는 다중도메인캡슐의 광학 현미경 이미지이며, (d) 내지 (f)는, 본 발명의 일 실시예에 있어서, 스쿠알렌을 포함하지 않는 다중도메인캡슐의 광학 현미경 이미지이다 (스케일 바: 4 ㎛).
도 4의 (a) 내지 (d)는, 본 발명의 일 실시예에 있어서, 다중도메인캡슐의 안정성 분석 결과로서, 스쿠알렌을 포함하는 다중도메인캡슐의 원심분리 전(a) 및 원심분리 후(c)의 현미경 이미지, 및 스쿠알렌을 포함하지 않는 다중도메인캡슐의 원심분리 전(b) 및 원심분리 후(d)의 현미경 이미지이다.
도 5는, 본 발명의 일 실시예에 있어서, 스쿠알렌 기반의 MPLA를 포함하는 다중도메인캡슐(imMDV(MPLA))의 광학 현미경 이미지이다.
도 6은, 본 발명의 일 실시예에 있어서, imMDV(SQ)를 BMDC에 처리했을 때 분비되는 사이토카인의 발현량을 나타낸다 (a: TNF-alpha, b: IL-6).
도 7은, 본 발명의 일 실시예에 있어서, imMDV(MPLA)를 BMDC에 처리했을 때 분비되는 사이토카인의 발현량을 나타낸다 (a: TNF-alpha, b: IL-6, c: IL-12p70).
도 8은, 본 발명의 일 실시예에 있어서, 단백질 항원(OVA, ovalbumin)가 로딩된 다중도메인캡슐에서 스쿠알렌 포함여부에 따른 OVA의 방출거동을 나타낸 그래프이다.
도 9는, 본 발명의 일 실시예에 있어서, 면역활성화 물질인 이미퀴모드(acid 및 base 구조)가 로딩된 면역기능 조절용 다중도메인캡슐을 나타낸 것이다(a: imMDV(R837-HCl) sample, b: imMDV(R837-base) sample, c: imMDV[R837-HCl:R837-base (1:1) sample].
도 10은, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 면역조절용 다중도메인캡슐(imMDV(R837-HCl)에서 시간에 따른 R837의 방출거동을 나타낸 것이다.
도 11은, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐(imMDV(R837-HCl))를 BMDC에 농도가 다르게 처리했을 때 분비되는 IL-6사이토카인의 발현량을 나타낸다.
도 12a는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG, 1 week after injection)를 나타낸 그래프이다(imMDV(R837-HCl) 샘플 / 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV sample).
도 12b는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG, 1 week after injection)를 나타낸 그래프이다(imMDV(R837-base) 샘플 / 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV sample).
도 12c는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG, 1 week after injection)를 나타낸 그래프이다(imMDV[R837-HCl:R837-base (1:1) / 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV sample).
도 13a는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG, 3 week after injection)를 나타낸 그래프이다(imMDV(R837-HCl) 샘플 / 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV sample).
도 13b는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG, 3 week after injection)를 나타낸 그래프이다(imMDV(R837-base) 샘플 / 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV sample).
도 13c는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG, 3 week after injection)를 나타낸 그래프이다(imMDV[R837-HCl:R837-base (1:1) 샘플 / 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV sample).
도 14a는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA 암 항원에 대한 체액성 면역 효과(IgG, 5 week after injection)를 나타낸 그래프이다(imMDV(R837-HCl) 샘플, 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV).
도 14b는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA 암 항원에 대한 체액성 면역 효과(IgG, 5 week after injection)를 나타낸 그래프이다(imMDV(R837-base) 샘플, 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV).
도 14c는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA 암 항원에 대한 체액성 면역 효과(IgG, 5 week after injection)를 나타낸 그래프이다(imMDV[R837-HCl:R837-base (1:1) 샘플, 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV).
도 15a는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG, 1 week after boosting of 5 weeks mice)를 나타낸 그래프이다(imMDV(R837-HCl) 샘플 / 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV sample).
도 15b는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG, 1 week after boosting of 5 weeks mice)를 나타낸 그래프이다(imMDV(R837-base) 샘플 / 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV sample).
도 15c는, 본 발명의 일 실시예에 있어서, 이미퀴모드가 로딩된 다중도메인캡슐에 대하여, OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG, 1 week after boosting of 5 weeks mice)를 나타낸 그래프이다(imMDV[R837-HCl:R837-base (1:1) 샘플 / 1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: OVA+imMDV sample).
도 16은, 본 발명의 일 실시예에 있어서, imMDV(R837-HCl)+OVA sample을 immunization한 후에, 5주차에 boosting을 한 마우스와 boosting을 하지않은 마우스에서 OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG)를 나타낸 그래프이다 (1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: imMDV(R837-HCl)+OVA).
도 17은, 본 발명의 일 실시예에 있어서, imMDV(R837-base)+OVA sample을 immunization한 후에, 5주차에 boosting을 한 마우스와 boosting을 하지않은 마우스에서 OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG)를 나타낸 그래프이다 (1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: imMDV(R837-base)+OVA).
도 18은, 본 발명의 일 실시예에 있어서, imMDV[R837-HCl:R837-base(1:1) sample]+OVA sample을 immunization한 후에, 5주차에 boosting을 한 마우스와 boosting을 하지않은 마우스에서 OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG)를 나타낸 그래프이다 (1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: imMDV[R837-HCl:R837-base (1:1) sample].
도 19는, 본 발명의 일 실시예에 있어서, imMDV(R837-HCl)+OVA sample을 immunization하고, 5주차에 boosting을 하였다. Boosting후 1, 2, 6주차에 지속적으로 나타내는 OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG)를 나타낸 그래프이다 (1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: imMDV(R837-HCl)+OVA sample).
도 20은, 본 발명의 일 실시예에 있어서, imMDV(R837-base)+OVA sample을 immunization하고, 5주차에 boosting을 하였다. Boosting후 1, 2, 6주차에 지속적으로 나타내는 OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG)를 나타낸 그래프이다 (1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: imMDV(R837-base)+OVA sample).
도 21은, 본 발명의 일 실시예에 있어서, imMDV[R837-HCl:R837-base (1:1) sample]+OVA sample을 immunization하고, 5주차에 boosting을 하였다. Boosting 후 1, 2, 6주차에 지속적으로 나타내는 OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG)를 나타낸 그래프이다 (1: PBS, 2: OVA, 3: OVA+R837-HCl, 4: imMDV[R837-HCl:R837-base (1:1) sample).
도 22는, 본 발명의 일 실시예에 있어서, imMDV(R837-HCl)+OVA sample을 immunization하고, 1-4 주차에 나타내는OVA(ovalbumin) 암 항원에 대한 체액성 면역 효과(IgG)를 오일 형태의 아주번트 (DMSO(R837)+OVA)와 비교한 데이터이다 (1: OVA, 2: imMDV(R837-HCl)+OVA, 3: DMSO(R837)+OVA, 4:DMSO).
도 23은, 본 발명의 일 실시예에 있어서, 두 가지 백신[imMDV(R837-HCl)+OVA와 DMSO(R837)+OVA]을 마우스에 immunization한 후에, 나타나는 염증반응 효과를 비교한 것이다.
도 24는, 본 발명의 일 실시예에 있어서, HA(hemagglutinin) 바이러스 항원에 대한 면역조절 물질들의 체액성 면역 효과(근육 주사 2 주 후)를 나타낸 그래프이다.
도 25는, 본 발명의 일 실시예에 있어서, HA(hemagglutinin) 바이러스 항원에 대한 면역조절 물질들의 체액성 면역 효과(근육 주사 4 주 후)를 나타낸 그래프이다.
도 26은, 본 발명의 일 실시예에 있어서, OVA(ovalbumin) 암 항원에 대한 면역조절 물질들의 체액성 면역 효과를 나타낸 그래프이다.
도 27은, 본 발명의 일 실시예에 있어서, OVA(ovalbumin) 암 항원에 대한 면역조절 물질들의 세포성 면역 유도 효과를 나타낸 그래프이다.
도 28은, 본 발명의 일 실시예에 있어서, 다중도메인캡슐 imMDV(SQ-Gem), imMDV(OA-Gem), 및 imMDV(Gem) 시료의 광학현미경 이미지를 나타낸 것이다.
도 29는, 본 발명의 일 실시예에 있어서, 스쿠알렌을 포함하는 다중도메인 캡슐에서는 로딩된 젬시타빈이 서서히 방출되는 반면, 스쿠알렌을 포함하지 않은 다중도메인캡슐에서는 24시간 내에 로딩된 대부분의 약물이 방출됨을 확인한 그래프이다.
도 30은, 본 발명의 일 실시예에 있어서, 스쿠알렌과 같은 동물성 오일 대신에 올레산 식물성 오일을 사용했을 경우, 로딩된 젬시타빈의 서방형 방출거동이 24-72시간 동안에 플래투(plateau) 형상을 보이다가, 72시간 이후에 선형(linear) 거동을 보이는 것을 확인한 그래프이다.
도 31은, 본 발명의 실시예 4-2에 있어서, imMDV(paclitaxel) 및 이의 약물방출 거동을 나타낸 그래프이다.
도 32는, 본 발명의 실시예 4-2에 있어서, imMDV(doxorubicin)를 나타낸 것이다.
도 33은, 본 발명의 실시예 4-2에 있어서, imMDV(methotrexate)를 나타낸 것이다.
도 34는, 본 발명의 실시예 4-2에 있어서, imMDV(oxaliplatin)를 나타낸 것이다.
도 35는, 본 발명의 실시예 4-3에 있어서, imMDV(MK-2206)를 나타낸 것이다.
도 36은, 본 발명의 실시예 4-4에 있어서, imMDV(PF-04691502)를 나타낸 것이다.
도 37은, 본 발명의 실시예 4-5에 있어서, imMDV(Azacytidine)를 나타낸 것이다.
도 38은, 본 발명의 실시예 4-5에 있어서, imMDV(Resmonostat), 및 이의 약물방출 거동을 나타낸 그래프이다.
도 39는, 본 발명의 실시예 4-5에 있어서, imMDV(Panobinostat), 및 이의 약물방출 거동을 나타낸 그래프이다.
도 40은, 본 발명의 실시예 4-5에 있어서, imMDV(OTX015(iBET))를 나타낸 것이다.
도 41은, 본 발명의 실시예 4-6에 있어서, imMDV(BLZ945)를 나타낸 것이다.
도 42는, 본 발명의 실시예 4-7에 있어서, imMDV(Celecoxib)를 나타낸 것이다.
도 43은, 본 발명의 실시예 5에 있어서, imMDV(GEM/R837)를 나타낸 것이다.
도 44는, 본 발명의 실시예 5에 있어서, imMDV(BLZ945/R837)를 나타낸 것이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 “직접적으로 연결”되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 “전기적으로 연결”되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함” 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 “약”, “실질적으로” 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 “~(하는) 단계” 또는 “~의 단계”는 “~ 를 위한 단계”를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 “이들의 조합(들)”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, “A 및/또는 B”의 기재는 “A 또는 B, 또는 A 및 B”를 의미한다.
이하, 첨부된 도면을 참조하여 본 발명의 구현예 및 실시예를 상세히 설명한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되지 않을 수 있다.
본 발명의 일 측면에 따르면, 서로 접촉하고 연결되어 있는 둘 이상의 리포좀, 및 상기 둘 이상의 리포좀을 둘러싸는 다중도메인캡슐 외벽을 포함하는 다중도메인캡슐로서, 상기 다중도메인캡슐은 유기상과 수용액상으로 이루어지고, 상기 유기상은 제1면역조절물질 및 유동성 오일을 포함하며, 상기 유기상은 상기 리포좀의 멤브레인, 및 상기 다중도메인캡슐 외벽을 형성하고, 상기 수용액상은 제2면역조절물질을 포함하며, 상기 수용액상은 상기 리포좀 멤브레인의 내부 수용액상 및 리포좀 멤브레인의 외부 수용액상이며, 상기 제1면역조절물질은 지용성 면역활성물질이고, 상기 제2면역조절물질은 수용성 면역활성물질이며, 상기 유동성 오일은 서로 접촉하고 연결되어 있는 둘 이상의 리포좀의 구조 안정성을 향상시키는 것을 특징으로 하는, 다중도메인캡슐이 제공될 수 있다.
도 1은, 본 발명의 일 구현예에 따른 면역기능 조절용 다중도메인캡슐(immunomodulatory multidomain vesicle, imMDV)의 구조를 도시한 단면도이다. 도 1에 나타낸 바와 같이, 다중도메인캡슐은 지용성 면역활성물질을 포함하는 다중도메인캡슐의 외벽을 포함하며, 상기 둘 이상의 리포좀을 둘러싼 상기 다중도메인캡슐의 외벽 내부에, 둘 이상의 리포좀이 각각의 도메인을 형성하고 있는, 약 1 μm 내지 약 100 μm 크기의 캡슐 구조일 수 있다.
상기 둘 이상의 리포좀을 포함하고 있는 다중도메인캡슐은, 종래의 단일 리포좀 및 단독 에멀젼에 비하여, 면역세포 활성화 물질의 지속 시간, 면역세포 활성화 효능, 봉입 효율, 또는 생리학적 안정성이 향상된 것일 수 있다.
본 발명의 일 구현예에 있어서, 도 1에 나타낸 바와 같이 상기 리포좀 멤브레인의 내부는 내부 수용액 상을 의미하며, 상기 리포좀 멤브레인의 외부는 외부 수용액 상을 의미하고, 상기 내부 수용액 상 및 상기 외부 수용액 상 모두는 "제 1 수용액상"을 의미한다. 상기 리포좀 멤브레인의 외부인 외부 수용액상은, 상기 리포좀 멤브레인과 상기 다중도메인캡슐의 외벽 사이의 공간을 의미한다. 또한, 상기 다중도메인캡슐은 용매에 분산되어 있는 것일 수 있으며, 이때 다중도메인캡슐이 분산되는 분산상, 즉 다중도메인캡슐의 외부는 "제 2 수용액상"을 의미한다.
본 발명의 일 구현예에 있어서, 상기 다중도메인캡슐의 크기는 약 1 μm 내지 약 100 μm, 약 1 μm 내지 약 80 μm, 약 1 μm 내지 약 60 μm, 약 1 μm 내지 약 40 μm, 약 1 μm 내지 약 20 μm, 약 1 μm 내지 약 10 μm, 약 10 μm 내지 약 100 μm, 약 10 μm 내지 약 80 μm, 약 10 μm 내지 약 60 μm, 약 10 μm 내지 약 40 μm, 약 10 μm 내지 약 20 μm, 약 20 μm 내지 약 100 μm, 약 20 μm 내지 약 80 μm, 약 20 μm 내지 약 60 μm, 약 20 μm 내지 약 40 μm, 약 40 μm 내지 약 100 μm, 약 40 μm 내지 약 80 μm, 약 40 μm 내지 약 60 μm, 약 60 μm 내지 약 100 μm, 약 60 μm 내지 약 80 μm, 또는 약 80 μm 내지 약 100 μm 범위일 수 있다.
본 발명의 일 구현예에 있어서, 상기 다중도메인캡슐은, 상기 캡슐의 바깥쪽을 구성하는 외벽에서부터, 상기 둘 이상의 리포좀을 포함하고 있는 안쪽 멤브레인으로 서서히 붕괴가 일어나므로, 상기 캡슐에 로딩된 항원 및/또는 면역조절 물질이 방출 시간을 단일 리포좀 또는 단일 에멀젼에 비해 연장시킬 수 있으며, 결과적으로는 장시간에 걸쳐 생체 내의 면역세포의 기능을 조절할 수 있다.
본 발명의 일 구현예에 있어서, 둘 이상의 리포좀은 외피가 서로 접촉하고 있는 리포좀을 포함할 수 있다. 예를 들어, 상기 다중도메인캡슐의 리포좀은 외피간의 계면접촉이 이루어지며, 그에 따라 외피가 서로 떨어져 있는 다중 리포좀에 비하여 리포좀이 쉽게 깨지지 않으므로, 다중도메인캡슐의 구조적 안정성 및 서방성 효과가 향상되는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 유동성 오일은 각 리포좀으로 구성된 도메인 사이에 글루(glue) 역할을 함으로써, 상기 다중도메인캡슐의 안정성을 향상시킬 수 있다. 예를 들어, 상기 다중도메인캡슐은 유동성 오일을 상기 도메인캡슐의 외벽에 도입하고, 상기 리포좀들의 외벽을 접촉시킴으로써 상기 다중도메인캡슐의 안정성이 향상되는 것일 수 있으며, 이에 따라 서방성 효과 및 구조 안정성이 증대되는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 유동성 오일에 의하여 상기 지용성 면역활성물질이 상기 다중도메인캡슐에 용이하게 로딩되는 것일 수 있다. 예를 들어, 상기 유동성 오일에 의하여, 일반적인 유기 용매에 가용화하기 힘든 난용성 면역조절 물질인, 이미퀴모드(R837) 등이 쉽게 가용화되어, 리포좀과 리포좀 사이의 공간에 유동성 오일과 함께 다중도메인캡슐에 로딩될 수 있다.
본 발명의 일 구현예에 있어서, 상기 유동성 오일은 면역세포의 활성화를 돕는 아주번트 역할을 수행할 수 있으며, 예를 들어, 동물성 오일, 식물성 오일, 토코페롤, 미네랄 오일, 캐스터 오일, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 동물성 오일은 어류 오일을 포함하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 어류 오일은 대사 가능한 오일이라면 제한 없이 사용할 수 있으며, 예를 들어, 대구간 오일, 상어간 오일, 또는 고래 오일 등을 포함할 수 있다. 상기 상어간 오일은 스쿠알렌, 2,6,10,15,19,23-헥사메틸-2,6,10,14,18,22-테트라코사헥사엔으로서 알려진 분자, 불포화 테르펜을 함유하며, 스쿠알란에 대한 포화 유사체도 포함할 수 있다. 스쿠알렌 또는 스쿠알란을 포함하는 어류 오일의 경우, 시중의 공급원으로부터 용이하게 이용 가능하거나 또는 당업계에 공지된 방법으로 획득될 수 있다.
본 발명의 일 구현예에 있어서, 상기 동물성 유래 오일은 라드, 수지(tallow) 오일, 또는 우지 등을 포함하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 식물성 유래 오일은 견과, 종자, 또는 곡물 등으로부터 유래된 오일일 수 있으며, 예를 들어, 땅콩 오일, 대두 오일, 코코넛 오일, 또는 올리브 오일 등을 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 토코페롤은 비타민 E가 함유된 토코페롤일 수 있다. 다양한 토코페롤이 존재하지만(α, β, γ, δ, ε 또는 ξ), 일반적으로 α-토코페롤이 사용될 수 있으며, 예를 들어, DL-α-토코페롤이 사용될 수 있다.
본 발명의 일 구현예에 있어서, 상기 유동성 오일을 상기 다중도메인캡슐에 도입함으로써, 상기 면역조절물질을 용이하게 가용화할 수 있으며, 상기 다중도메인캡슐의 구조적 안정성을 강화할 수 있다. 예를 들어, 상기 유동성 오일로서 스쿠알렌 및 올레인산을 이용할 경우, 친유성 또는 난용성 면역조절물질을 용이하게 가용화 할 수 있으며, 스쿠알렌 및 올레인산 자체의 면역활성화효과에 의하여 상기 면역조절과의 시너지 효과를 나타낼 수 있고, 상기 다중도메인캡슐의 구조적 안정성을 증가시킬 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 지용성 및 수용성 면역활성물질은 스트레스를 받은 암세포에서 발현되는 면역조절 물질, 예를 들어 열-충격 단백질(heat-shock protein)일 수 있으며, 또는 T 세포의 활성화를 유도하는 물질일 수 있다.
본 발명의 일 구현예에 있어서, 상기 지용성 및 수용성 면역활성물질은 톨-유사 수용체 아고니스트(toll-like receptor agonist), 사포닌, 항바이러스성 펩티드, 인플라머좀 인듀서(inflammasome inducer), NOD 리간드(NOD ligand), CDS 리간드(cytosolic DNA sensor ligand), STING(stimulator of interferon genes) 리간드, 및 이들의 조합들로 이루어진 군으로부터 선택되는 하나 이상의 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨-유사 수용체 아고니스트는 직접적 리간드로서 또는 간접적 리간드로서, 내인성 또는 외인성 리간드의 생성을 통해 TLT 신호전달 경로를 통한 신호전달 반응을 야기시킬 수 있는 성분을 의미하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨-유사 수용체 아고니스트는 천연 톨-유사 수용체 아고니스트 또는 합성 톨-유사 수용체 아고니스트일 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨-유사 수용체 아고니스트는 TLR-1을 통해 신호전달 반응을 야기시킬 수 있는 것일 수 있으며, 예를 들어, 트리-아실화된 지질펩티드(LP); 페놀-가용성 모듈린(modulin); 코박테리움튜베르쿨로시스(Mycobacteriumtuberculosis) 지질펩티드; S-(2,3-비스(팔미토일옥시)-(2-RS)-프로필)-N-팔미토일-(R)-Cys-(S)-Ser-(S)-Lys(4)-OH; 보렐리아 부르그도르페이(Borrelia burgdorfei)로부터의 박테리아 지질펩티드; OspA 지질펩티드의 아세틸화된 아미노 말단을 모방하는 트리히드로클로라이드(Pam3Cys) 지질펩티드; 및 이들의 조합들로 이루어진 군으로부터 선택되는 하나 이상의 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨-유사 수용체 아고니스트는 TLR-2 아고니스트를 포함하는 것일 수 있으며, 예를 들어, Pam3Cys-Lip을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨 유사 아고니스트는 TLR-3 아고니스트를 포함하는 것일 수 있으며, 예를 들어, 폴리아이시 계열로서 Poly(I:C), Poly(ICLC), Poly(IC12U), ampligen 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨 유사 아고니스트는 TLR-4 아고니스트를 포함하는 것일 수 있으며, 예를 들어, 시겔라 플렉시네리(Shigella flexineri) 외막 단백질 제조물, AGP, CRX-527, MPLA, PHAD, 3D-PHAD, GLA, 및 이들의 조합들로 이루어진 군으로부터 선택되는 하나 이상의 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨 유사 아고니스트는 TLR-5 아고니스트를 포함하는 것일 수 있으며, 예를 들어, 플라젤린(flagellin) 또는 이의 단편을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨 유사 아고니스트는 TLR-7 아고니스트 또는 TLR-8 아고니스트를 포함하는 것일 수 있으며, 예를 들어, 이미퀴모드, R837, 레스퀴모드, 또는 R848와 같은 이미다조퀴놀린 분자; VTX-2337; CRX642; 인지질 기 또는 포스포노지질 기에 공유적으로 결합된 이미다조퀴놀린; 및 이들의 조합들로 이루어진 군으로부터 선택되는 하나 이상의 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨 유사 아고니스트는 TLR-9 아고니스트를 포함하는 것일 수 있으며, 예를 들어, 면역 자극성 올리고뉴클레오티드를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 면역 자극성 올리고뉴클레오티드는 하나 이상의 CpG 모티프를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 사포닌은 QS21, QuilA, QS7, QS17, β-에스킨, 디지토닌 및 이들의 조합들로 이루어진 군으로부터 선택된 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 항바이러스성 펩티드는 케이엘케이(KLK) 를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 인플러머좀 인듀서는 TDB(trehalose-6,6-dibehenate)일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 NOD 리간드는 M-TriLYS(NOD2 아고니스트-합성 무라밀 트리펩티드) 또는 NOD2 아고니스트(N-glycolylated muramyldipeptid)일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 CDS 리간드는 Poly(dA:dT)일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 STING 리간드는 cGAMP, di-AMP, 또는 di-GMP 일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 면역조절물질은 하나 또는 둘 이상의 톨-유사 수용체 아고니스트의 조합을 포함할 수 있으며, 예를 들어, CL401(듀얼 TLR2 및 TLR7 아고니스트)또는 CL429(듀얼 TLR2 및 NOD2 아고니스트)를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 다중도메인캡슐에 포함되는 면역조절물질은, 예를 들어, Pam3Cys-Lip, 폴리아이시, CRX-527, MPLA, 플라젤린, 이미퀴모드, 레스퀴모드, CpG, QS21, M-TriLys(MurNAc-Ala-D-isoGln-Lys), TDB(trehalose-6,6-dibehenate), 8837, Poly(dA:dT), cGAMP, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 지용성 면역활성물질은, 예를 들어, 양이온성 지질, MPLA, AGP, CRX-527, PHAD, 3D-PHAD, GLA, 지질 펩타이드, Pam3Cys, Pam3Cys-Lip, DDA, 이미퀴모드(base form), 레스퀴모드 (base form), VTX-2337, CRX642, 사포닌(QS21), TDB, CL401, CL429, 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 친수성 면역활성물질은, 예를 들어, CpG, 이미퀴모드(HCl form), 레스퀴모드(HCl form), Poly(I:C), STING, 플라젤린(flagellin),사포닌, KLK 펩타이드, NOD 아고니스트 펩타이드, Poly(dA:dT), 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 예를 들어, 상기 친수성 물질은 말단기의 화학적 결합기를 통해서도 상기 다중도메인캡슐의 외벽에 컨쥬게이션될 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 양이온성 지질에 의하여, 음이온성인 세포막과의 정전기적 인력이 유도되어, 상기 면역조절 물질의 세포 내 전달 효율이 더 향상될 수 있다.
본 발명의 일 구현예에 따르면, 양이온성 지질을 포함하여 다중도메인캡슐을 구성함으로써, 음이온성 및/또는 음전하를 띄는 다양한 면역조절 물질 및 DNA, RNA와 같은 바이오소재가 상기 다중도메인캡슐에 효과적으로 로딩될 수 있다. 예를 들어, 음이온성 또는 음전하를 띄는 바이오소재 및/또는 DNA, RNA 아미노산 기반의 면역조절 물질은, 양이온 특성을 나타내는 상기 다중도메인캡슐의 외벽 또는 내부 리포좀의 멤브레인에 정전기적 결합을 통하여 로딩될 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 양이온성 지질은 DC-콜레스테롤(3β-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride), DDA (dimethyldioctadecylammonium), DOTAP (1,2-dioleoyl-3-trimethylammonium-propane), DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane), EPC (1,2-dimyristoleoyl-sn-glycero-3-ethylphosphocholine), MVL5 (N1-[2-((1S)-1-[(3-aminopropyl)amino]-4-[di(3-amino-propyl)amino]butylcarboxamido)ethyl]-3,4-di[oleyloxy]-benzamide), DODAP (lipids1,2-dioleoyl-3-dimethylammonium-propane), 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 따르면, 계면활성제가 다중도메인캡슐의 외부에 코팅되어 상기 다중도메인캡슐이 수용액 내에서 안정되게 분산될 수 있도록 하는 것을 특징으로 한다.
상기 계면활성제는 상기 다중도메인캡슐의 외부에 코팅되어 상기 다중도메인캡슐이 수용액 내에 분산될 수 있도록 하는 것으로, 예를 들어, 폴리옥시에틸렌 소르비탄 에스테르 계면활성제(일반적으로 Tween 라고 불림), 특히 폴리소르베이트 20 및 폴리소르베이트 80; 에틸렌 옥사이드(EO), 프로필렌 옥사이드(PO), 및/또는 부틸렌 옥사이드(BO)의 코폴리머; 옥토시놀(예를 들면, 트리톤 X-100, 또는 t-옥틸페녹시폴리에톡시에탄올); (옥틸페녹시)폴리에톡시에탄올 (IGEPAL CA-630/NP-40); 포스포리피드 (인지질 성분)로서, 포스파티딜콜린(레시틴) 포스파티딜에탄올아닐린, 포스파티딜세린, 포스파티딜이노시톨, 포스파티딜글리세롤, 포스파티딘산, 스핑고미엘린 및 카디올리핀; Tergitol™ NP 시리즈와 같은 노닐페놀 에톡실레이트; 트리에틸렌글리콜 모노라우릴 에테르 (Brij 30)과 같은 라우릴, 세틸 및 오레일 알코올(Brij 계면활성제로 알려진)로부터 유래된 폴리옥시에틸렌 패티 에테르; 및 소르비탄 트리올레이트 (Span85) 및 소르비탄 모노라우레이트와 같은 소르비탄 에스테르 (일반적으로 SPAN로 알려짐)를 단독으로 사용하거나, 2종 이상의 계면활성제를 조합하여 함께 사용할 수 있다. 예를 들어, 상기 계면활성제는 이들 계면활성제의 혼합물, 예를 들면 Tween 80/Span 85 혼합물이 이용될 수 있다. 폴리옥시에틸렌 소르비탄 에스테르 및 옥토시놀의 조합이 또한 사용될 수 있다. 다른 유용한 조합은 라우레스 9, 폴리옥시에틸렌 소르비탄 에스테르 및/또는 옥토시놀을 포함할 수 있다. 상기 계면활성제는 전체 상기 다중도메인캡슐 총 중량에 대하여 0.001 내지 20%의 중량으로 사용될 수 있으며, 예를 들어, 0.01 내지 1%, 0.001 내지 0.1%, 0.005 내지 0.02%; 0.1 내지 20%, 0.1 내지 10%, 0.1 내지 1% 또는 약 0.5%의 중량으로 사용될 수 있다.
본 발명의 다른 측면에 따르면, 본 발명에 따른 다중도메인캡슐 및 항원을 포함하는, 면역조절 물질을 제공한다.
본 발명의 일 구현예에 있어서, 상기 항원은 단백질, 유전자, 세포, 바이러스, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 단백질은 오버알부민, 재조합 단백질, 서브유닛(subunit), 스플릿(split) 단백질 항원을 포함할 수 있으며, 상기 세포는, 예를 들어, 수지상 세포, T 세포를 포함할 수 있으며, 상기 바이러스는, 예를 들어, 인플루엔자, HBV(hepatitis B virus), HAV(hepatitis A virus), HPV(human papilloma virus)를 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 항원은 약독화된 살아있는 완전체 미생물, 불활성 미생물, 파열 미생물, 병원체의 단백질, 재조합 단백질, 당단백질, 펩티드, 다당류, 지질다당류, 리포펩티드, 폴리뉴클레오티드, 세포, 바이러스, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 항원은 인플루엔자 유래 항원 또는 암세포 유래 항원을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 피내 투여용 면역조절 물질은 하나 이상의 항원을 포함함으로써 체내에서 다중 면역 반응을 유도될 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 암세포는 암세포 주(cell line)를 이용하여 수득되거나, 체내에 존재하는 암 조직(tumor tissue)으로부터 분리되는 것일 수 있다. 또한, 실제 암 조직에서 항암제나 방사선을 가함으로써 세포 내 스트레스와 관련된 단백질의 생성을 유도한 후에, 암세포를 용해함으로써 제조되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 암세포는 폐, 결장, 중추신경계, 피부, 난소, 신장, 유방, 위, 또는 대장의 암세포를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 다른 측면에 따르면, 제1면역조절물질 및 유동성 오일을 용매에 용해하여 오일상 용액을 제조하는 단계; 제2면역조절물질을 포함하는 제1수용액 상을 상기 오일상 용액에 분산시켜 유중-수(W/O) 에멀젼을 제조하는 단계; 및 상기 유중-수 에멀젼을 제2수용액과 혼합하고, 상기 용매를 증발시키는 단계; 를 포함하고, 상기 제1면역조절물질은 지용성 면역활성물질이고, 상기 제2면역조절물질은 수용성 면역활성물질인 것을 특징으로 하는, 다중도메인캡슐의 제조방법이 제공된다.
본 발명의 일 구현예에 있어서, 상기 다중도메인캡슐은, 상기 캡슐의 바깥쪽을 구성하는 외벽에서부터, 상기 둘 이상의 리포좀을 포함하고 있는 안쪽 멤브레인으로 서서히 붕괴가 일어나므로, 상기 캡슐에 로딩된 항원 및/또는 면역조절 물질이 방출 시간을 단일 리포좀 또는 단일 에멀젼에 비해 연장시킬 수 있으며, 결과적으로는 장시간에 걸쳐 생체 내의 면역세포의 기능을 조절할 수 있다.
본 발명의 일 구현예에 있어서, 둘 이상의 리포좀은 외피가 서로 접촉하고 있는 리포좀을 포함할 수 있다. 예를 들어, 상기 다중도메인캡슐의 리포좀은 외피간의 계면접촉이 이루어지며, 그에 따라 외피가 서로 떨어져 있는 다중 리포좀에 비하여 리포좀이 쉽게 깨지지 않으므로, 다중도메인캡슐의 구조적 안정성 및 서방성 효과가 향상되는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 유동성 오일은 각 리포좀으로 구성된 도메인 사이에 글루(glue) 역할을 함으로써, 상기 다중도메인캡슐의 안정성이 향상되는 것을 특징으로 한다. 예를 들어, 상기 다중도메인캡슐은 유동성 오일을 상기 도메인캡슐의 외벽에 도입하고, 상기 리포좀들의 외벽을 접촉시킴으로써 상기 다중도메인캡슐의 안정성이 향상되는 것일 수 있으며, 이에 따라 서방성 효과 및 구조 안정성이 증대되는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 유동성 오일에 의하여 상기 친유성 면역조절 물질이 상기 다중도메인캡슐에 용이하게 로딩되는 것일 수 있다. 예를 들어, 상기 유동성 오일에 의하여, 일반적인 유기 용매에 가용화하기 힘든 난용성 면역조절 물질인, 이미퀴모드(R837) 등이 쉽게 가용화되어, 리포좀과 리포좀 사이의 공간에 유동성 오일과 함께 다중도메인캡슐에 로딩될 수 있다.
본 발명의 일 구현예에 있어서, 상기 유동성 오일은 면역세포의 활성화를 돕는 아주번트 역할을 수행할 수 있으며, 예를 들어, 동물성 오일, 식물성 오일, 토코페롤, 미네랄 오일, 캐스터 오일, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 동물성 오일은 어류 오일을 포함하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 어류 오일은 대사 가능한 오일이라면 제한 없이 사용할 수 있으며, 예를 들어, 대구간 오일, 상어간 오일, 또는 고래 오일 등을 포함할 수 있다. 상기 상어간 오일은 스쿠알렌, 2,6,10,15,19,23-헥사메틸-2,6,10,14,18,22-테트라코사헥사엔으로서 알려진 분자, 불포화 테르펜을 함유하며, 스쿠알란에 대한 포화 유사체도 포함할 수 있다. 스쿠알렌 또는 스쿠알란을 포함하는 어류 오일의 경우, 시중의 공급원으로부터 용이하게 이용 가능하거나 또는 당업계에 공지된 방법으로 획득될 수 있다.
본 발명의 일 구현예에 있어서, 상기 동물성 유래 오일은 라드, 수지(tallow) 오일, 또는 우지 등을 포함하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 식물성 유래 오일은 견과, 종자, 또는 곡물등으로부터 유래된 오일일 수 있으며, 예를 들어, 땅콩 오일, 대두 오일, 코코넛 오일, 또는 올리브 오일 등을 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 토코페롤은 비타민 E가 함유된 토코페롤일 수 있다. 다양한 토코페롤이 존재하지만(α, β, γ, δ, ε 또는 ξ), 일반적으로 α-토코페롤이 사용될 수 있으며, 예를 들어, DL-α-토코페롤이 사용될 수 있다.
본 발명의 일 구현예에 있어서, 상기 유동성 오일을 상기 다중도메인캡슐에 도입함으로써, 상기 면역조절물질을 용이하게 가용화할 수 있으며, 상기 다중도메인캡슐의 구조적 안정성을 강화할 수 있다. 예를 들어, 상기 유동성 오일로서 스쿠알렌 및 올레인산을 이용할 경우, 친유성 또는 난용성 면역조절물질을 용이하게 가용화 할 수 있으며, 스쿠알렌 및 올레인산 자체의 면역활성화효과에 의하여 상기 면역조절 물질과의 시너지 효과를 나타낼 수 있고, 상기 다중도메인캡슐의 구조적 안정성을 증가시킬 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 지용성 및 수용성 면역활성물질은 스트레스를 받은 암세포에서 발현되는 면역조절 물질, 예를 들어 열-충격 단백질(heat-shock protein)일 수 있으며, 또는 T 세포의 활성화를 유도하는 물질일 수 있다.
본 발명의 일 구현예에 있어서, 상기 지용성 및 수용성 면역활성 물질은 톨-유사 수용체 아고니스트(toll-like receptor agonist), 사포닌, 항바이러스성 펩티드, 인플라머좀 인듀서(inflammasome inducer), NOD 리간드(NOD ligand), CDS 리간드(cytosolic DNA sensor ligand), STING(stimulator of interferon genes) 리간드, 및 이들의 조합들로 이루어진 군으로부터 선택되는 하나 이상의 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨-유사 수용체 아고니스트는 직접적 리간드로서 또는 간접적 리간드로서, 내인성 또는 외인성 리간드의 생성을 통해 TLT 신호전달 경로를 통한 신호전달 반응을 야기시킬 수 있는 성분을 의미하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨-유사 수용체 아고니스트는 천연 톨-유사 수용체 아고니스트 또는 합성 톨-유사 수용체 아고니스트일 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨-유사 수용체 아고니스트는 TLR-1을 통해 신호전달 반응을 야기시킬 수 있는 것일 수 있으며, 예를 들어, 트리-아실화된 지질펩티드(LP); 페놀-가용성 모듈린(modulin); 코박테리움튜베르쿨로시스(Mycobacteriumtuberculosis) 지질펩티드; S-(2,3-비스(팔미토일옥시)-(2-RS)-프로필)-N-팔미토일-(R)-Cys-(S)-Ser-(S)-Lys(4)-OH; 보렐리아 부르그도르페이(Borrelia burgdorfei)로부터의 박테리아 지질펩티드; OspA 지질펩티드의 아세틸화된 아미노 말단을 모방하는 트리히드로클로라이드(Pam3Cys) 지질펩티드; 및 이들의 조합들로 이루어진 군으로부터 선택되는 하나 이상의 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨-유사 수용체 아고니스트는 TLR-2 아고니스트를 포함하는 것일 수 있으며, 예를 들어, Pam3Cys-Lip을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨 유사 아고니스트는 TLR-3 아고니스트를 포함하는 것일 수 있으며, 예를 들어, 폴리아이시 계열로서 Poly(I:C), Poly(ICLC), Poly(IC12U), ampligen 등을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨 유사 아고니스트는 TLR-4 아고니스트를 포함하는 것일 수 있으며, 예를 들어, 시겔라 플렉시네리(Shigella flexineri) 외막 단백질 제조물, AGP, CRX-527, MPLA, PHAD, 3D-PHAD, GLA, 및 이들의 조합들로 이루어진 군으로부터 선택되는 하나 이상의 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨 유사 아고니스트는 TLR-5 아고니스트를 포함하는 것일 수 있으며, 예를 들어, 플라젤린(flagellin) 또는 이의 단편을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨 유사 아고니스트는 TLR-7 아고니스트 또는 TLR-8 아고니스트를 포함하는 것일 수 있으며, 예를 들어, 이미퀴모드, R837, 레스퀴모드, 또는 R848와 같은 이미다조퀴놀린 분자; VTX-2337; CRX642; 인지질 기 또는 포스포노지질 기에 공유적으로 결합된 이미다조퀴놀린; 및 이들의 조합들로 이루어진 군으로부터 선택되는 하나 이상의 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 톨 유사 아고니스트는 TLR-9 아고니스트를 포함하는 것일 수 있으며, 예를 들어, 면역 자극성 올리고뉴클레오티드를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 면역 자극성 올리고뉴클레오티드는 하나 이상의 CpG 모티프를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 사포닌은 QS21, QuilA, QS7, QS17, β-에스킨, 디지토닌 및 이들의 조합들로 이루어진 군으로부터 선택된 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 항바이러스성 펩티드는 케이엘케이(KLK) 를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 인플러머좀 인듀서는 TDB(trehalose-6,6-dibehenate)일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 NOD 리간드는 M-TriLYS(NOD2 아고니스트-합성 무라밀 트리펩티드) 또는 NOD2 아고니스트(N-glycolylated muramyldipeptid)일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 CDS 리간드는 Poly(dA:dT)일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 STING 리간드는 cGAMP, di-AMP, 또는 di-GMP 일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 면역조절 물질은 하나 또는 둘 이상의 톨-유사 수용체 아고니스트의 조합을 포함할 수 있으며, 예를 들어, CL401(듀얼 TLR2 및 TLR7 아고니스트)또는 CL429(듀얼 TLR2 및 NOD2 아고니스트)를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 다중도메인캡슐에 포함되는 면역조절물질은, 예를 들어, Pam3Cys-Lip, 폴리아이시, CRX-527, MPLA, 플라젤린, 이미퀴모드, 레스퀴모드, CpG, QS21, M-TriLys(MurNAc-Ala-D-isoGln-Lys), TDB(trehalose-6,6-dibehenate), 8837, Poly(dA:dT), cGAMP, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 지용성 면역조절 물질은, 예를 들어, 양이온성 지질, MPLA, AGP, CRX-527, PHAD, 3D-PHAD, GLA, 지질 펩타이드, Pam3Cys, Pam3Cys-Lip, DDA, 이미퀴모드(base form), 레스퀴모드 (base form), VTX-2337, CRX642, 사포닌(QS21), TDB, CL401, CL429, 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 친수성 면역조절 물질은, 예를 들어, CpG, 이미퀴모드(HCl form), 레스퀴모드(HCl form), Poly(I:C), STING, 플라젤린(flagellin),사포닌, KLK 펩타이드, NOD 아고니스트 펩타이드, Poly(dA:dT), 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있다. 예를 들어, 상기 친수성 물질은 말단기의 화학적 결합기를 통해서도 상기 다중도메인캡슐의 외벽에 컨쥬게이션될 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 양이온성 지질에 의하여, 음이온성인 세포막과의 정전기적 인력이 유도되어, 상기 면역조절 물질의 세포 내 전달 효율이 더 향상될 수 있다.
본 발명의 일 구현예에 따르면, 양이온성 지질을 포함하여 다중도메인캡슐을 구성함으로써, 음이온성 및/또는 음전하를 띄는 다양한 면역조절 물질 및 DNA, RNA와 같은 바이오소재가 상기 다중도메인캡슐에 효과적으로 로딩될 수 있다. 예를 들어, 음이온성 또는 음전하를 띄는 바이오소재 및/또는 DNA, RNA 아미노산 기반의 면역조절 물질은, 양이온 특성을 나타내는 상기 다중도메인캡슐의 외벽 또는 내부 리포좀의 멤브레인에 정전기적 결합을 통하여 로딩될 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 있어서, 상기 양이온성 지질은 DC-콜레스테롤 (3β-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride), DDA (dimethyldioctadecylammonium), DOTAP (1,2-dioleoyl-3-trimethylammonium-propane), DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane), EPC (1,2-dimyristoleoyl-sn-glycero-3-ethylphosphocholine), MVL5 (N1-[2-((1S)-1-[(3-aminopropyl)amino]-4-[di(3-amino-propyl)amino]butylcarboxamido)ethyl]-3,4-di[oleyloxy]-benzamide), DODAP (lipids1,2-dioleoyl-3-dimethylammonium-propane), 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본 발명의 일 구현예에 따르면, 계면활성제가 다중도메인캡슐의 외부에 코팅되어 상기 다중도메인캡슐이 수용액 내에서 안정되게 분산될 수 있도록 하는 것을 특징으로 한다.
상기 계면활성제는 상기 다중도메인캡슐의 외부에 코팅되어 상기 다중도메인캡슐이 수용액 내에 분산될 수 있도록 하는 것으로, 예를 들어, 폴리옥시에틸렌 소르비탄 에스테르 계면활성제(일반적으로 Tween 라고 불림), 특히 폴리소르베이트 20 및 폴리소르베이트 80; 에틸렌 옥사이드(EO), 프로필렌 옥사이드(PO), 및/또는 부틸렌 옥사이드(BO)의 코폴리머; 옥토시놀(예를 들면, 트리톤 X-100, 또는 t-옥틸페녹시폴리에톡시에탄올); (옥틸페녹시)폴리에톡시에탄올 (IGEPAL CA-630/NP-40); 포스포리피드 (인지질 성분)로서, 포스파티딜콜린(레시틴) 포스파티딜에탄올아닐린, 포스파티딜세린, 포스파티딜이노시톨, 포스파티딜글리세롤, 포스파티딘산, 스핑고미엘린 및 카디올리핀; Tergitol™ NP 시리즈와 같은 노닐페놀 에톡실레이트; 트리에틸렌글리콜 모노라우릴 에테르 (Brij 30)과 같은 라우릴, 세틸 및 오레일 알코올(Brij 계면활성제로 알려진)로부터 유래된 폴리옥시에틸렌 패티 에테르; 및 소르비탄 트리올레이트 (Span85) 및 소르비탄 모노라우레이트와 같은 소르비탄 에스테르 (일반적으로 SPAN로 알려짐)를 단독으로 사용하거나, 2종 이상의 계면활성제를 조합하여 함께 사용할 수 있다.
예를 들어, 상기 계면활성제는 이들 계면활성제의 혼합물, 예를 들면 Tween 80/Span 85 혼합물이 이용될 수 있다. 폴리옥시에틸렌 소르비탄 에스테르 및 옥토시놀의 조합이 또한 사용될 수 있다. 다른 유용한 조합은 라우레스 9, 폴리옥시에틸렌 소르비탄 에스테르 및/또는 옥토시놀을 포함할 수 있다. 상기 계면활성제는 전체 상기 다중도메인캡슐 총 중량에 대하여 0.001 내지 20%의 중량으로 사용될 수 있으며, 예를 들어, 0.01 내지 1%, 0.001 내지 0.1%, 0.005 내지 0.02%; 0.1 내지 20%, 0.1 내지 10%, 0.1 내지 1% 또는 약 0.5%의 중량으로 사용될 수 있다.
본 발명의 다른 측면에 따르면, 서로 접촉하고 연결되어 있는 둘 이상의 리포좀, 및 상기 둘 이상의 리포좀을 둘러싸는 다중도메인캡슐 외벽을 포함하는 다중도메인캡슐로서, 상기 다중도메인캡슐은 유기상과 수용액상으로 이루어지고, 상기 유기상은 제1면역조절물질 및 유동성 오일을 포함하며, 상기 유기상은 상기 리포좀의 멤브레인, 및 상기 다중도메인캡슐 외벽을 형성하고, 상기 수용액상은 제2면역조절물질을 포함하며, 상기 수용액상은 상기 리포좀 멤브레인의 내부 수용액상 및 리포좀 멤브레인의 외부 수용액상이며, 상기 제1면역조절물질, 및 제2면역조절물질은 면역억제인자 제어물질이고, 상기 유동성 오일은 서로 접촉하고 연결되어 있는 둘 이상의 리포좀의 구조 안정성을 향상시키는 것을 특징으로 하는, 다중도메인캡슐이 제공될 수 있다.
상기 제1면역조절물질, 및 제2면역조절물질은 상술한 면역활성물질을 더 포함할 수 있다. 즉, 상기 제1면역조절물질, 및 제2면역조절물질은 면역활성물질 과 함께 면역억제인자 제어물질을 포함할 수 있다.
그리고, 본 발명의 또 다른 측면에 따르면, 상기 다중도메인캡슐 및 항원을 포함하는, 면역조절 물질이 제공될 수 있다.
또한, 제1면역조절물질 및 유동성 오일을 용매에 용해하여 오일상 용액을 제조하는 단계; 제2면역조절물질을 포함하는 제1수용액 상을 상기 오일상 용액에 분산시켜 유중-수(W/O) 에멀젼을 제조하는 단계; 및 상기 유중-수 에멀젼을 제2수용액과 혼합하고, 상기 용매를 증발시키는 단계; 를 포함하고, 상기 제1면역조절물질, 및 제2면역조절물질은 면역억제인자 제어물질인 것을 특징으로 하는, 다중도메인캡슐의 제조방법이 제공될 수 있다.
본 발명에서 다중도메인캡슐기반 고형암 미세환경 제어 조성물은 암의 미세환경을 조절하기 위한 새로운 형태의 면역조절 조성물로서, 앞서서 언급했던 생체 내 면역세포를 활성화 하는 물질 이외에, 고형암 미세환경에서 나타나는 면역억제세포 및 면역억제물질의 기능을 제어할 수 있는 약물(면역억제인자 제어물질)을 포함하는 것을 특징으로 한다.
본 발명의 일 구현예에 따르면, 면역억제인자 즉, 면역억제세포 및 면역억제물질의 기능을 제어할 수 있는 면역억제인자 제어물질을 기본성분으로 복수의 리포좀이 각각의 도메인을 형성하면서 서로 연결되고, 도입된 유동성 오일 성분에 의해 연결된 복수 리포좀의 구조적 안정성이 향상된 마이크로 크기의 캡슐 형태를 가지는 면역조절용 다중도메인캡슐을 제조할 수 있다. 또한, 본 발명의 일 구현예에 따르면, 다양한 약학적 조성물로서 사용되고 있는 단일 리포좀 소재의 낮은 봉입 효율 및 짧은 유효 지속 시간의 단점을 극복하고, 면역기능 조절효과의 유효 지속 시간을 늘릴 수 있는 새로운 다중도메인캡슐 기반의 항암면역치료제 조성물을 제조할 수 있다.
본 발명의 일 구현예에 따른 다중도메인캡슐은, 상기 캡슐의 외벽부터 안쪽 멤브레인으로 서서히 붕괴가 일어나면서 상기 캡슐의 외벽 및 내부에 로딩된 면역억제세포 및 면역억제물질의 기능을 제어할 수 있는 면역억제인자 제어물질이 방출되므로, 면역기전 조절 물질의 유효 지속시간이 증가될 수 있다는 장점을 갖는다.
또한, 본 발명의 일 구현예에 따른 다중도메인캡슐은, 리포좀의 멤브레인 및/또는 상기 다중도메인캡슐의 외벽에 친유성 성질을 갖는 다양한 면역억제세포 및 면역억제물질의 기능을 제어할 수 있는 면역억제인자 제어물질을 로딩함으로써, 면역활성물질의 유효 지속시간을 증가시킬 수 있다.
본 발명의 일 구현예에 따른 다중도메인 캡슐은, 리포좀의 내부에 친수성 성질을 갖는 다양한 면역억제세포 및 면역억제물질의 기능을 제어할 수 있는 면역억제인자 제어물질을 로딩함으로써, 면역억제인자 제어물질의 유효 지속시간을 증가시킬 수 있다.
본 발명의 일 구현예에 따른 다중도메인캡슐은, 리포좀의 내부에 친수성 성질을 갖는 다양한 면역억제인자 제어물질, 리포좀의 멤브레인 및/또는 상기 캡슐의 외벽에 친유성 면역억제인자 제어물질을 동시에 로딩함으로써, 면역억제세포 및 면역억제물질의 기능을 제어할 수 있는 면역억제인자 제어물질의 유효 지속시간을 증가시킬 수 있다.
본 발명의 한 예에서 MDSC(Myeoloid-Derived SuppressorCell)의 기능을 제어할 수 있는 약물, 즉 면역억제인자 제어물질로는, Tadalafil, Sildenafil, L-AME, Nitroaspirin, Celecoxib, NOHA, Bardoxolone methyl, D,L-1-methyl-tryptophan, 5-Fluorouracil, Gemcitabine, 17-DMAG, Peptide-Fc fusionproteins, ATRA, Vitamin A, Vitamin D3, Vitamin E, GR1 antibodies, Zoledronic acid, Sunitinib,Axitinib, Decetaxel, Sorafenib, CucurbitacinB, JSI-124, Anti IL-17 antibodies, Anti-glycan antibodies, Anti-VEGF antibodies, Bevacizumab, Antracycline, Tasquinimod, Imatinib, cyclophosphamide 이 있으나, 이에 한정되지 않는다.
본 발명의 한 예에서, PI3K inhibitors는 PX-866, Wortmannin, PI-103, Pictilisib, GDC-0980, PF-04691502, BEZ235, XL765, XL147, BAY80-6946, GSK-2126458, Buparlisib,BYL719, AZD8186, GSK-2636771, CH5132799, INK-1117 등 인 것을 특징으로 한다.
본 발명의 한 예에서 PI3Kdelta inhibitors 물질로는 AMG-319, Idelalisib, TRG-1202, INCB050465, IPI-145, Duvelisib,Acalisib, TG-1202, RV1729, RP-6530, GDC-0032 등 인 것을 특징으로 한다.
본 발명의 한 예에서 PI3Kgamma inhibitors 물질로는 IPI-549, IPI-145 등 인 것을 특징으로 한다.
본 발명의 한 예에서 Treg (Regulatory T cell)의 기능을 제어할 수 있는 약물, 즉 면역억제인자 제어물질로는 Anti-CD25 antibodies (daclizumab), Basiliximab, LMB-2, Denileukin diftitox(Ontak), Bivalent IL-2 fusiontoxin, Anti-TGF-beta antibodies, fresolimumab, TGF-betaR kinase inhibitors, LY2157299, Soluble TGF-betaR I/II, Ipilimumab, Tremelimumab, Pembrolizumab, Nivolumab, TIM-3 antibodies, LAG-3 antibodies, Anti-CD39 antibodies, Anti-73 antibodies, A(2A)R inhibitors, Celecoxib, Indomethacin, Diclofenac, Ibuprofen, TNFR2 antibodies, Anti-GITR antibodies, Bevacizumab, Anti-OX40(CD134) antibodies, soluble GITR ligand, Blockades for chemokine receptors (CCR4, 5, 6,10), cyclophosphamide, Sunitinib,Fludarabine, PI3K p110(delta) inhibitors, CliniMACs, Mogamulizumab, Fingolimod, Regulators for miRNA (miR-155, miR-146a, miR-181a), 5-aza-2-deoxycytidine, paclitaxel, Imatinib, Sorafenib, Cyclosporin A, Tacrolimus, Dasatinib, Poly-G-oligonucleotide, TLR8 ligands, gemcitabine 및 5-fluorouracil 이 있으나, 이에 한정되지 않는다.
본 발명의 한 예는 TAM (tumor associated macrophage) 의 기능을 조율할 수 있는 약물, 즉 면역억제인자 제어물질로는 Macrophage의 recruitment를 저해할 수 있는 약물로서, CCL2/CCR2 inhibitors (Yondeli, RS102895), M-CSF나 M-CSFR inhibitors (anti-M-CSF antibodies, JNJ-28312141, GW2580), chemoattractants (CCL5, CXCL-12, VEGF)와 그 수용체들에 대한 inhibitors, HIFs inhibitors 들 인 것을 특징으로 하나, 이에 한정되지는 않는다.
또한, TAM의 생존을 억제할 수 있는 약물, 즉 면역억제인자 제어물질로서, Bisphosphonates, Clodronate, Dasatinib, anti-FRbeta antibodies, Shigella flexneri, Legumain과 CD1d의 발현을 유도할 수 있는 약물 인 것을 특징으로 하나, 이에 한정되지는 않는다.
그리고, M1 macrophage의 특성을 향상시킬 수 있는 약물, 즉 면역억제인자 제어물질로서, NF-kB 아고니스트인 TLR아고니스트, Anti-CD40 antibodies, Thiazolidinediones, Tasquinimod, Anti-IL-10R antibodies, Anti-IL-10 antibodies, 올리고뉴클레오타이드(Anti-IL-10R Anti-IL-10), STAT1 아고니스트인 인터페론(interferon), M1 pathway를 유도할 수 있는 SHIP과 GM-CSF, IL-12, Thymosin alpha1 등 인 것을 특징으로 하나, 이에 한정되지는 않는다.
또한, M2 macrophage 기반의 암세포 성장을 돕는 메커니즘을 저해할 수 있는 약물, 즉 면역억제인자 제어물질로는 STAT3 inhibitor인 sunitinib, sorafenib, WP1066, corosolic acid, oleanolic acid, STAT6 inhibitors들과 M2 pathway (c-Myc, PPAR-alpha/gamma, PI3K, KLF4, HIFs, Ets2, DcR3, mTOR) inhibitors와 HRG, CuNG,MDXAA, Silibinin, PPZ 인 것을 특징으로 하나, 이에 한정되지는 않는다.
그리고, 종양미세환경하에서 macrophage의 기능을 제어할 수 있는 타겟 miRNA는 miR-155, miR-511-3p, miR-26a)인 것을 특징으로 한다.
그리고, 종양미세환경하에서 Macrophage를 타겟팅함으로서, 항암효능을 높힐 수 있는 타겟 약물로는 Paclitaxel, Docetaxel, 5-Flurouracil, Alendronate, Doxorubicin, Simvastatin, Hydrazinocurcumin, Amphotericin B, Ciprofloxacin, Rifabutin, Rifampicin, Efavirenz, Cisplatin, Theophyline, Pseudomonas exotoxin A, Zoledronic acid, Trabectedin, Siltuximab (Anti-IL-6 antibodies), Dasatinib, CpG-ODN, Interferon-alpha, beta, gamma, GM-CSF, IL-12, Thymosin alpha-1, Sunitinib,5,6-Dimethylxanthenone-4-acetic acid, Silibinin, CCL2-CCR2 inhibitors (PF-04136309, Trabectedin, Carlumab), CSF1-CSF1R 신호전달 blocker (BLZ945, PLX3397, Emactuzumab(RG7155), AMG-820, IMC-CS4, GW3580, PLX6134)와 톨유사수용체7 의 리간드(imiquimod, 852A), NF-kB inhibitors (N-acetyl-l-cystein, Vitamin C, bortezomib, aspirin, salicylates, Indolecarboxamide derivatives, quinazolineanalogues, Thalidomide, prostaglandin metabolites), HIF-1 inhibitors (2ME2, 17-AAG, Camptothecin, Topotecan, Pleurotin, 1-methylpropyl, 2-imidazolyl dissulphide, YC-1), CXCR4 아고니스트(AMD3100, AMD1498), ALX40-4C, T22, T140, CGP64222, KRH-1636)인 것을 특징으로 하나, 이에 한정되는 것은 아니다.
본 발명의 한 예는 면역억제환경인자 억제인자 (Transforming growth factor beta (TGF-beta) inhibitors, Nitro aspirin, Cycloxygenase-2(COX2) inhibitors, Indoleamine 2,3-dioxygenase (IDO) inhibitors, Phosphodiesterase-5 (PDE-5) inhibitors, Anti-Interleukin 10 (IL-10)) 약물을 함유하는 다중도메인 캡슐기반 조성물을 제공할 수 있다.
본 발명의 한 예에서 TGF-beta inhibitor 는 SB-505124, LY-364974 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 Nitro aspirin은 NCX 4040 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 COX-2 inhibitor 는 Celecoxib 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 IDO inhibitor 는 Indoximod, NLG919 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 PDE-5 inhibitor 는 Tadalafil (Cialis) 등을 포함하나, 이에 한정되지 않는다.
본 발명의 일 구현예에 있어서, 다중도메인 캡슐이 함유하는 고형암 미세환경 면역억제인자 제어물질은 위의 약물이 2개 이상의 조합들로 이루어질 수 있다.
본 발명의 일 구현예에 있어서, 체내에 존재하는 암세포를 찾아 직접 사멸시키는 치료능을 갖고 있는 자연살해세포 및 T 세포가 체내에서 효과적으로 생존하며, 치료효능을 향상시킬 수 있는 다중도메인캡슐을 포함하는 면역조절 물질일 수 있다.
본 발명의 한 예는 고형암 미세환경에서 직접 결합을 통한 T 세포 활성화 방법으로 면역체크포인트(PD-1, PDL-1 CTLA-4, LAG-3, TIM-3, CEACAM1)의 억제 역할을 하는 항체들을 포함하는 다중도메인 캡슐기반 조성물을 제공할 수 있다.
본 발명의 한 예에서 Anti-CTLA-4 antibody 는 Ipilimumab 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 Anti-PD1-antibody 는 Nivolumab 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 Anti-PDL1 antibody 는 Atezolizumab 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 Anti-LAG-3 antibody 는 BMS-986016 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 Anti-TIM-3 antibody 는 TSR-022 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 Anti-CEACAM1 antibody 는 CM-24 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예는 고형암 미세환경에서 직접 결합을 통한 T 세포 활성화 방법으로 보조활성인자 (OX40, CD137, CD27, CD40) 등을 포함하는 다중도메인 캡슐기반 조성물을 제공한다.
본 발명의 한 예에서 Anti-OX40는 RG7888 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 Anti-CD137은 Urelumab 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 Anti-CD27은 Varlilumab 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예에서 Anti-CD40은 BMS-986090 등을 포함하나, 이에 한정되지 않는다.
본 발명의 한 예는 고형암 미세환경에서 간접 결합을 통한 T 세포 활성화 방법으로 면역억제 유발인자(Treg, MDSC, TAM, IDO, PD-L1) 들을 억제할 수 있는 약물을 함유하는 다중도메인 캡슐기반 조성물을 제공한다.
본 발명의 한 예는 화학요법을 통한 면역학적 세포 사멸(immunogenic cell death) 유도를 통해 면역세포의 효능을 증가시키는 항암제를 포함하는 다중도메인 캡슐기반 조성물을 제공할 수 있다.
본 발명의 한 예는 에피제네틱 기전(epigenetic machinery)을 통하여 암 세포를 사멸하거나, 종양미세환경을 제어할 수 있는 약물을 포함하는 다중도메인 캡슐기반 조성물을 제공한다.
본 발명에서 에피제네틱 기전의 한 예로 디엔에이 메틸트렌스페라아제 인히비터 (DNMTi) 물질로는 5-Azacytidine, 5-Aza-2-deoxycytidine, Decitabine, SGI-110, Zebularine, CP-4200, Cladribine, Fludarabine, Clofarabine, Procainamide, Procaine, Hydralazine, Disulfiram, RG108, Nanaomycin A, Genistein, Equol, Curcumin,EGCG, Resveratrol, Parthenolide 등에서 선택되는 것을 특징으로 하나, 이에 한정되지 않는다.
본 발명에서 에피제네틱 기전의 한 예로, 히스톤 디아세틸레이즈 인히비터 (HDACi) 물질로는 Vorinostat, Abexinostat, Suberoylanilide,Hydroxamic acid, Belinostat, Panobinostat, Romidepsin, Valproic acid, Entinostat, Givinostat, Resminostat, Quisinostat,Pracinostat, Dacinostat, Pyroxamide, CHR-3996, CBHA, Trichostatin A, Oxamflatin, MC1568, Tubacin,PCI-30451, Tacedinaline, Mocetinostat, Chidamide, BML-210, M344, Butyrate,Sodium butyrate,Trapoxin A, Apicidin, Nicotinamide, Splitomicin, EX-527, Dihydrocoumarin, Tenovin-D3, AGK2, AEM1, AEM2, Cambinol, Sirtinol, Salermide, Tenovin-6, TMP-269, Psammaplin A, Nexturastat A, RGFP966 등에서 선택되는 것을 특징으로 하나, 이에 한정되지 않는다.
이하, 본 발명의 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 본 발명의 이해를 돕기 위하여 예시하는 것 일뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1. 면역조절물질을 포함하는 다중도메인캡슐 제조 및 특성화
본 발명의 실시예에서는 다중도메인캡슐을 다음과 같이 제조하였다.
1-1. 스쿠알렌 기반의 다중도메인캡슐(imMDV(SQ)) 제조 및 특성화
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(glycerol trioleate, 12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose)1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 다이클로로메탄 용액에 분산시켰다. 감압 증류기를 사용하여 상기 다이클로로메탄을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다. 또한, 스쿠알렌을 포함하지 않는 것을 제외하고는 상기 실시예와 동일한 방법으로 대조군을 함께 제조하였다.
상기와 같이 다중도메인캡슐의 구조를 광학 현미경과 DLS(dynamic light scattering, 오츠카)를 이용하여 관찰한 결과, 스쿠알렌을 포함하는 다중도메인캡슐이 스쿠알렌을 포함하지 않는 대조군에 비하여 크기가 균일하였으며, 분산상과의 계면에서도 뚜렷한 경계를 보였다[도 2의 (a) 및 (b)]. 이에 비하여 스쿠알렌을 포함하지 않는 대조군에서는 불균일한 크기와 모양을 유지하는 것을 알 수 있었다[도 2의 (c) 및 (d)].
또한, 도 3의 (a) 내지 (c)는, 스쿠알렌을 포함하는 다중도메인캡슐의 광학 현미경 이미지이며, 도 3의 (d) 내지 (f)는, 스쿠알렌을 포함하지 않는 다중도메인캡슐의 광학 현미경 이미지이다. 도 3에 나타낸 바와 같이, 오일상 용액에 로다민 형광 염료를 가용함으로써, 다중도메인캡슐 구조를 뚜렷하게 관찰할 수 있었으며, 스쿠알렌을 포함하는 다중도메인캡슐의 경우가 뚜렷한 경계점을 보이며, 수용액 상에 분산되어 있음을 알 수 있었다.
제조 후 안정성 분석을 위하여, 불순물을 제거하는 과정이나 또는 다중도메인캡슐을 크기별로 분류하기 위하여 원심분리(약 2500 rpm) 공정을 수행하였을 경우, 스쿠알렌을 포함하는 다중도메인캡슐의 구조[도 4의 (a) 및 (c)]는 원심분리 전후에 형상이 거의 변하지 않고, 안정한 구조를 이루고 있으나, 스쿠알렌을 포함하지 않는 대조군에서는 대부분의 구조가 파괴된다는 것을 확인할 수 있었다[도 4의 (b) 및 (d)].
1-2. 스쿠알렌 기반의 MPLA를 포함하는 다중도메인캡슐(imMDV-1:imMDV(MPLA)) 제조 및 특성화
DOPC(10 mg), 콜레스테롤(8 mg), MPLA[monophosphoryl lipid A, 10 mg, 아반띠 폴라 리피드(Avanti Polar Lipids), 미국], 스쿠알렌(12 mg), 글리세롤 트리올레이트(glycerol trioleate, 12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose)1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 다이클로로메탄 용액에 분산시켰다. 감압 증류기를 사용하여 상기 다이클로로메탄을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다. 도 5는 스쿠알렌 기반의 MPLA를 포함하는 다중도메인캡슐(imMDV-1:imMDV(MPLA))의 광학 현미경 이미지이다.
제조된 다중도메인캡슐의 면역세포 활성 효과 평가
실시예 1-1과 1-2에서 제조된 imMDV(SQ)와 imMDV(MPLA) 샘플이 골수유래수지상세포 (Bone marrow-derived dendritic cells, BMDCs)와 골수유래대식세포 (Bone marrow-derived macrophage, BMMCs) 활성화에 미치는 영향을 전구염증 싸이토카인 (TNF-α, IL-6, IL-12)의 분비량을 이엘아이에스에이(ELISA) 실험방법을 이용하여 분석하였다.
도 6에서 imMDV(SQ)를 처리 하였을 경우, TNF-α와 IL-6의 분비가 처리해준 농도에 비례하여 증가되는 것으로 확인하였고, 또한 도 7에서 imMDV(MPLA)를 처리 하였을 경우에도 TNF-α, IL-6, IL-12의 분비가 처리해준 다중도메인캡슐의 농도에 비례하여 증가됨을 확인 할 수가 있었다.
스쿠알렌 기반의 항원(오브알부민)을 포함하는 다중도메인캡슐(imMDV) 제조 및 방출거동 특성화
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(glycerol trioleate, 12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 오브알부민(5mg, 시그마알드리치, 미국)을 포함하는 내부 수용액 상(internal aqueous phase, 5% sucrose)1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 다이클로로메탄 용액에 분산시켰다.감압 증류기를 사용하여 상기 다이클로로메탄을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다. 또한, 스쿠알렌을 포함하지 않는 것을 제외하고는 상기 실시예와 동일한 방법으로 대조군을 함께 제조하였다.
오브알부민 항원과 스쿠알렌을 포함하는 다중도메인캡슐(imMDV(SQ-OVA))과 오브알부민 항원만을 포함하는 다중도메인캡슐(imMDV(OVA))의 방출거동을 확인한 결과, 스쿠알렌이 포함된 다중도메인캡슐에서 오브알부민 항원의 방출거동이 지연되어 서서히 방출됨을 확인할 수 있었다 [도 8].
1-3. 스쿠알렌 기반의 DDA를 포함하는 다중도메인캡슐(imMDV-2) 제조
DOPC(10 mg), 콜레스테롤(8 mg), DDA(10 mg, 아반띠 폴라 리피드(Avanti Polar Lipids), 미국), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 그 후, 원심분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose)1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-4. 스쿠알렌 기반의 MPLA/TDB를 포함하는 다중도메인캡슐(imMDV-3) 제조
DOPC(10 mg), 콜레스테롤(8 mg), MPLA(10 mg), 스쿠알렌(12 mg), TDB(10 mg, 아반띠 폴라 리피드(Avanti Polar Lipids), 미국), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose)1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-5. 스쿠알렌 기반의 MPLA/DDA를 포함하는 다중도메인캡슐(imMDV-4) 제조
DOPC(10 mg), 콜레스테롤(8 mg), MPLA(10 mg), DDA(10 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose)1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-6. 스쿠알렌 기반의 MPLA/QS21을 포함하는 다중도메인캡슐(imMDV-5) 제조
DOPC(10 mg), 콜레스테롤(8 mg), MPLA(10 mg), QS21(10 mg, Desert King, 미국), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose)1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-7. 스쿠알렌 기반의 CpG를 포함하는 다중도메인캡슐(imMDV-6) 제조
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose,CpG 1 mg, Bioneer, 대한민국) 1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-8. 스쿠알렌 기반의 Poly(I:C)를 포함하는 다중도메인캡슐(imMDV-7) 제조
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상[internal aqueous phase, 5% sucrose,Poly(I:C)(Sigma-Aldrich,미국) 1 mg] 1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-9. 스쿠알렌 기반의 레스퀴모드를 포함하는 다중도메인캡슐( imMDV -8) 제조
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose,레스퀴모드(Sigma-Aldrich, 미국) 5 mg) 1 mL 에 호모지나이저(homogenizer, 20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-10. 스쿠알렌 기반의 이미퀴모드를 포함하는 다중도메인캡슐( imMDV -9) 제조 및 면역반응 유도효과 확인
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 올레산(2 mg, Sigma-Aldrich, 미국), 이미퀴모드 (base form, Sigma-Aldrich, 미국)(5 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose)1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다. 수용액에 용해되는 HCl 형태의 이미퀴모드는 base 형태의 이미퀴모드를 다음과 같은 과정을 통하여 제조하였다. 이미퀴모드 400g을 증류수 2000ml와 n-butanol(혹은 1-butanol) 900ml 혼합용액에 녹인다. Stirring 해주면서 동시에 37% HCl solution 150ml를 추가로 넣어준다. 이 용액을 60~65도 범위에서 imiquimod가 전부 녹을때까지 교반한 후에, imiquimod가 전부 녹으면 20~25도로 cooling down시킨 후 30분 가량 유지한다. 남은용액을 상온의 건조기에서 건조시키면 Hcl Imiquimod 을 얻을 수 있다. 이렇게 제조된 HCl-imiquimod는 위의 imMDV 제조과정에서 내부 수용액상에 용해한 후에, 동일 과정을 거쳐서 제조 하였다. 도 9는 HCl 형태의 이미퀴모드와 base 형태의 이미퀴모드, 및 두가지 형태의 이미퀴모드가 동시에 로딩된 다중도메인캡슐의 광학현미경 이미지를 나타낸다. 수득된 다중도메인캡슐 중에서 (imMDV(R837-HCl))에서, 이미퀴모드의 방출 거동을 트랜스웰(transwell)을 이용하여, 37℃에서 분석하였다. 방출되는 약물의 양은 분광계(UV-Vis spectrometer)를 이용하여 정량화 하였다(도 10). 도 10 에 나타낸 바와 같이, 8 일 동안 로딩된 약물의 약 70%가 방출되었다. 또한, imMDV(R837-HCl) 샘플을 골수유래수지상세포 (Bone marrow-derived dendritic cells, BMDCs)에 처리했을 때, Th1 면역반응과 관련된 대표적인 전구염증 싸이토카인 IL-6의 분비량을 이엘아이에스에이(ELISA) 실험방법을 이용하여 분석하였다. 도 11에서 보는 바와 같이 IL-6의 분비가 처리해준 농도에 비례하여 증가되는 것으로 확인하였고, 대조군으로 사용된 R837-HCl과 유사한 거동을 보임을 확인함으로써, 다중도메인캡슐내에 봉입된 R837-HCl이 방출되어 면역세포를 활성화 시킴을 알 수 있다.
상기 실시예에서 제조된 이미퀴모드를 포함하는 다중도메인캡슐 [imMDV(R837-HCl), imMDV(R837-base), imMDV[R837-HCl:R837-base]의 오브알부민 모델항원에 대한 항체형성 효과를, 마우스 실험(C57BL/6, 6 내지 7 주령 암컷)을 통해 검증하였다. 마우스에게 다중도메인캡슐을 50㎍를 주입함에 따라 체액성 면역 반응이 증가하는 것을 ELISA(Enzyme linked Immunosorbent assay)법으로 측정하였다.
도 12a, 12b, 및 12c에서 알 수 있듯이, OVA(ovalbumin) 모델 항원에 대한 체액성 면역 효과(IgG, 1 week after injection)가 이미퀴모드가 로딩된 다중도메인캡슐 샘플(12a:imMDV(R837-HCl) sample, 12b: imMDV(R837-base) sample, 12c: imMDV[R837-HCl:R837-base (1:1) sample])을 투여한 실험군에서 현저하게 증가함을 확인할 수 있다. 또한 이렇게 증가된 체액성 면역효과는 주입 후 3주 (도 13a, 13b 및 13c)과 5주(도 14a, 14b 및 14c)가 지났을 때도, 지속됨을 확인할 수 있다.
체액성 면역증강효과는 첫번째 주입 후 5주가 지난 시점에서 추가적으로 1회 boosting을 해 주었을 때, 현저하게 증가됨을 알 수 있다(도 15a, 15b, 15c, 16, 17, 및 18). 이러한 증가된 체액성 면역효과는 5주차 boosting후에 1, 2, 6주차에도 지속적으로 유지됨을 확인할 수 있다(도 19, 20, 및 21). 이러한 다중도메인캡슐기반 아주번트에 의한 면역증강유도 및 지속성 효과를 임상단계에서 사용되고 있는 오일형태의 아주번트(DMSO(R837))와 비교하였을 경우에도, 매우 우수함을 확인할 수 있다(도 22). 무엇보다도, 오일형태의 아주번트(DMSO(R837))를 투여했을 때 발생하는 염증현상이 다중도메인캡슐기반 아주번트(imMDV(R837-HCl))를 사용했을 때는 전혀 발생하지 않는 점이 가장 큰 장점이다(도 23).
1-11. 스쿠알렌 기반의 STING (cyclic DNA)을 포함하는 다중도메인캡슐(imMDV-10) 제조
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose,STING (InvivoGen, 미국) 1 mg) 1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-12. 스쿠알렌 기반의 MPLA/CpG를 포함하는 다중도메인캡슐(imMDV-11) 제조
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), MPLA(10 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose,CpG 1 mg) 1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-13. 스쿠알렌 기반의 MPLA와 Poly(I:C)를 포함하는 다중도메인캡슐(imMDV-12) 제조
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), MPLA(10 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상[internal aqueous phase, 5% sucrose,Poly(I:C) 1 mg] 1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-14. 스쿠알렌 기반의 CpG/Poly(I:C)를 포함하는 다중도메인캡슐(imMDV-13) 제조
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상[internal aqueous phase, 5% sucrose,CpG 1 mg, Poly(I:C) 1 mg] 1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-15. 캐스터 오일 기반의 MPLA를 포함하는 다중도메인캡슐(imMDV-14) 제조
DOPC(10 mg), 콜레스테롤(8 mg), MPLA(10 mg), 캐스터 오일(12 mg, Sigma-Aldrich, 미국), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose)1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
1-16. 미네랄 오일 기반의 MPLA를 포함하는 다중도메인캡슐(imMDV-15) 제조
DOPC(10 mg), 콜레스테롤(8 mg), MPLA(10 mg), 미네랄 오일(12 mg, Sigma-Aldrich, 미국), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose)1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 리포좀을 수득하였다.
실시예 2. 바이러스 항원에 대한 다중도메인캡슐의 면역 향상 효능 평가
실시예 1에서 제조된 면역기능 조절 물질을 포함하는 다중도메인캡슐 샘플들의 조류 인플루엔자 바이러스에 대한 특이적 면역효과를 조사하기 위하여, 항체 특이적인 면역 반응 중, 특히 항체 생산과 관련이 있는 B 세포에 의한 체액성 면역 반응에 미치는 영향을 조사하였다. 먼저, 암컷 BALB/c 및 C57BL/6 마우스(5-6주령)을 KOATECH(대한민국, 평택)에서 구입하였다. 마우스를 사용한 모든 실험은 실험실 연구 동물의 관리 및 사용에 대한 한국 NIH 지침에 따라 실시되었다.
첫 번째 근육 주사 2 주(도 24) 및 4 주(도 25) 후에 마우스 혈청을 채취하여, 혈청 중의 HA 단백질에 대한 항체 역가(titer)를 ELISA(enzyme linked immunosorbent assay)법으로 측정하였다. 상기 ELISA법은 HA 단백질이 코팅된 플레이트를 PBS/3% BSA(bovine serum albumin)를 사용하여 블록킹 한 후, 대조 실험군 혈청을 다양한 일련의 희석율에서 인큐베이션하였다. 그 후, 호스래디쉬 퍼옥사이드(horseradish peroxidase)가 부착된 마우스 IgG 를 첨가하였다. 상기 모든 인큐베이 션은 37℃에서 1 시간 동안 수행되었으며, 언급된 각각의 단계 후에는 PBS/0.05 % Tween 20을 사용하여 3 회씩 세척하였다. 기질로는 TMB(tetramethylbenzidine, BD biosciences, USA) 100 μL를 첨가하여 반응을 전개시킨 후, 450 nm에서 흡광도를 ELISA 판독기로 측정하고 그 결과를 도 24 및 도 25에 나타냈다.
실시예 3. 암 항원에 대한 다중도메인캡슐의 면역 향상 효능 평가
3-1 : 다중도메인캡슐의 OVA 특이 항체 생성 확인
상기 실시예 1에서 제조된 면역기능 조절 물질을 포함하는 다중도메인캡슐의 의 암 예방 백신의 효과를, 마우스 실험(C57BL/6, 6 내지 7 주령 암컷)을 통해 검증하였다. 마우스에게 다중도메인캡슐을 포함하는 면역조절 물질(암 예방 백신)을 50㎍를 주입함에 따라 체액성 면역 반응이 증가하는 것을 ELISA(Enzyme linked Immunosorbent assay)법으로 측정하고, 그 결과를 도 26에 나타냈다(IgG 생성량 측정). 체액성 면역 반응은 백신 접종이 끝난 후, 마우스에서 안과 채혈을 실시하여 면역 글로불린 IgG의 생성량을 대조군과 비교함으로써 확인하였다.
3-2: 다중도메인캡슐의 세포매개 특정 T 세포 반응 확인
면역기능 조절 물질을 포함하는 다중도메인캡슐에 의한 마우스 비장 내 T 세포의 세포성 면역 반응을 조사하였다. 상기 실시예 3-1에서 접종된 마우스 중, OVA 및 OVA-다중도메인캡슐 그룹 중 3 마리의 마우스를 선택하여 2 주 후에 각각의 마우스에서 비장을 적출한 후, 멸균된 페트리디쉬에 상기 비장 조직을 옮기고, 셀 스트레이너(cell strainer)를 이용하여 상기 비장을 갈아 조직 피막으로부터 세포를 분리하였다. 상기 페트리디쉬 내의 모든 내용물을 50 mL 튜브에 옮기고 RPMI 배지로 가득 채운 후, 1,500 rpm에서 5 분간 원심분리한 후, 상층액을 제거한 펠렛에 적혈구 용출 버퍼(sigma Aldrich, Germany)를 5 mL 넣고 30℃ 수조에서 5 분 내지 10 분간 방치하여, 적혈구를 용혈시켰다. 튜브에 포함된 세포를 PBS로 세척한 후, RPMI 배지에 부유시켜 비장세포(splenocyte)를 분리하였다. 분리된 비장세포를 IFN-gamma로 코팅된 플레이트에 5×105cell/100 μL로 96-웰에 깔고 MHC 클래스 I-제한 OVA 펩티드를 5 ㎍/mL의 농도로 48 시간 동안 처리하였다. 그 후, 호스레디쉬 퍼옥사이드가 부착된 IFN-gamma를 첨가하였다. 기질로는 ACE(3-amino-9-ethyl-carbazole, BD biosciences, USA) 100 μL를 첨가하여 반응을 전개시킨 후, ELSPOT(enzyme-linked immunospot)법으로 측정하였다(도 27).
실시예 4. 고형암 미세환경 조절용 약물이 로딩된 다중도메인 캡슐 제조
4-1. MDSC 세포 제거 물질을 함유하는 다중도메인 캡슐 제조
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 내부 수용액 상(internal aqueous phase, 5% sucrose,젬시타빈 (Gemcitabine: Gemzar® (Eli Lilly and Company, Indianapolis, Ind., USA)), 5mg) 1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 후, 상기 혼합 용액을 외부 수용액 상(external aqueous phase, 7.5% glucose, 40 mM lysine) 3 mL 에 10초간 보텍스(vortex) 해주었다. 최종적으로, 이 형성된 이중 에멀젼을 감압 증류기를 사용하여 상기 클로로포름을 제거하고, 온도를 37℃로 상승시켜 잔여 용매를 제거하였다. 용매가 제거된 다중도메인캡슐 분산액을 저온에서 침전시키거나, 원심 분리기로 가라앉혀 상등액을 제거하고 다중도메인캡슐(imMDV(SQ-Gem))을 수득하였다. 스쿠알렌 유동성 오일대신에 올레산 오일을 포함하면서 젬사타빈이 로딩된 다중도메인캡술(imMDV(OA-Gem))과 스쿠알렌을 포함하지 않으면서 젬사타빈이 로딩된 다중도메인캡슐((imMDV(Gem))은 위의 과정과 동일한 과정을 통하여 제조될 수 있다. 도 28은 이렇게 제조된 세가지 시료의 광학현미경 이미지를 나타낸다. 스쿠알렌을 포함하는 다중도메인 캡슐에서는 로딩된 젬시타빈이 서서히 방출되는 반면, 스쿠알렌을 포함하지 않은 다중도메인캡슐에서는 24시간내에 로딩된 대부분의 약물이 방출됨을 확인할 수 있다(도 29). 또한 스쿠알렌과 같은 동물성 오일 대신에 올레산 식물성 오일을 사용했을 경우, 로딩된 젬시타빈의 서방형 방출거동이 24-72시간 동안에 플래투(plateau) 형상을 보이다가, 72시간 이후에 선형(linear) 거동을 보이는 것을 확인할 수 있었다. 이는 유동성 오일을 이용하여, 로딩된 약물의 방출거동을 조율할 수 있음을 의미한다(도 30).
4-2. 면역학적 세포 사멸( immunogenic cell death)을 유도하는 약물을 포함하는 다중도메인 캡슐 제조
암세포의 사멸을 유도함으로써, 항원제시세포가 효과적으로 암항원을 인식할 수 있도록 하는 역할을 하는 항암제 중에서 파클리탁셀(paclitaxel), 독소루비신(doxorubicin), 메토트랙세이트(methotrexate) 및 옥살리플라틴(oxaliplatin)을 선정하여, 이들 약물이 로딩된 다중도메인 캡슐을 제조하였다. 실시예 4-1 에서와 동일한 방법을 이용하여 제조하되, imMDV(paclitaxel)(도 31)은 파클리탁셀 약물을 오일상 용액에 첨가하여 사용하였으며, imMDV(doxorubicin)(도 32), imMDV(methotrexate)(도 33) 및 imMDV(oxaliplatin)(도 34)는 각각의 약물을 내부 수용액상에 첨가하여 다중도메인캡슐을 제조하였다. 도 31에서 알 수 있듯이, 로딩된 약물이 2주간에 걸쳐 서서히 방출됨을 확인할 수 있었다.
4-3. Treg 세포 제거 물질을 함유하는 다중도메인 캡슐 제조
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 MK-2206 (an Akt inhibitor, SelleckChem, 5mg)가 용해되어 있는 내부 수용액 상(internal aqueous phase, 5% sucrose,(Imatinib: Gleevec® (NovartisPharmaceuticals Corp, East Hanover, NJ, USA)) 5mg) 1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 이후 과정은 상기 실시 예 4-1과 동일한 과정을 거쳐서 다중도메인캡슐을 제조 하였다(도 35).
4-4. PI3K 신호전달을 제어할 수 있는 약물을 함유하는 다중도메인 캡슐 제조
DOPC(10 mg), 콜레스테롤(8 mg), 스쿠알렌(12 mg), 글리세롤 트리올레이트(12 mg)를 클로로포름(1 mL)에 녹여서 오일상 용액을 제조하였다. 제조된 오일상 용액을 PF-04691502(PI3K inhbitor, SelleckChem, 5mg)가 용해되어 있는 내부 수용액 상(internal aqueous phase, 5% sucrose,(Imatinib: Gleevec® (NovartisPharmaceuticals Corp, East Hanover, NJ, USA)) 5mg) 1 mL 에 호모지나이저(20,000 X g)를 사용하여 10 분간 분산시켰다. 그 이후 과정은 상기 실시 예 4-1과 동일한 과정을 거쳐서 다중도메인캡슐을 제조하였다 (도 36).
4-5. 에피제네틱 기전(epigenetic machinery)을 제어할 수 있는 약물을 포함하는 다중도메인 캡슐 제조
에피제네틱 기전을 유도할 수 있는 약물 중에서 Azacytidine, Resminostat, Panobinostat 및 OTX015(iBET)을 선정하여, 이들 약물이 로딩된 다중도메인 캡슐을 제조하였다. 구체적으로, 실시예 4-1 에서와 동일한 방법을 이용하여 imMDV(Azacytidine)(도 37), imMDV(Resmonostat)(도 38), imMDV(Panobinostat)(도 39) 및 imMDV(OTX015(iBET))(도 40)는 각각의 약물을 내부 수용액상에 첨가하여 다중도메인캡슐을 제조하였다. 도 38, 39 에서 알 수 있듯이, 로딩된 약물이 2주간에 걸쳐 서서히 방출됨을 확인할 수 있었다.
4-6. TAM 세포 제거 물질을 함유하는 다중도메인 캡슐 제조
실시예 4-1과 같은 공정을 사용하되, TAM 세포를 제거할 수 있는 약물인 BLZ945 (CSF-1R kinase inhibitor) 오일상에 용해한 후에, 다중도메인캡슐을 제조 하였다(도 41).
4-7. 종양 면역억제 사이토카인 저해제(inhibitor)를 함유하는 다중도메인 캡슐 제조
실시예 4-1 에서 종양 면역억제 사이토카인 저해제 약물 (Celecoxib, Sigma-Aldrich) 5mg 을 오일상에 용해한 후에, 다중도메인캡슐을 제조 하였다(도 42).
실시예 5. 고형암 미세환경 면역조절물질이 조합된 다중도메인 캡슐 제조
고형암 미세환경내 면역기능을 조절하는 물질이 조합된 다중도메인 캡슐 제조의 한 실시 예로 MDSC 및 암세포를 사멸할 수 있는 젬시타빈(실시예 4-1)과 면역세포 활성화 작용을 하는 톨유사 수용체인 이미퀴모드(실시예 1-9)를 동시에 함유하면서 안정한 구조를 갖는 다중도메인캡슐(imMDV(GEM/R837))을 제조하였다 (도 43).
또한, TAM 세포를 제거할 수 있는 약물인 BLZ945 (실시예 4-6)과 면역세포 활성화 작용을 하는 톨유사 수용체인 이미퀴모드(실시예 1-9)를 동시에 함유하면서 안정된 구조를 갖는 다중도메인캡슐(imMDV(BLZ945/R837))을 제조하였다(도 44).
전술한 본 발명의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명에 따른 다중도메인캡슐은, 리포좀의 내부에 친수성 성질을 갖는 다양한 면역조절물질, 리포좀의 멤브레인 및/또는 상기 캡슐의 외벽에 친유성 면역조절화 물질을 동시에 로딩함으로써, 면역조절물질의 유효 지속시간을 증가시킬 수 있다. 또한, 본 발명에 따른 다중도메인 캡슐의 제조방법은, 스쿠알렌과 같은 유동성 오일을 도입함으로써, 다중도메인캡슐의 제조 과정에서의 안정성 및 저장 안정성을 향상시킬 수 있으며, 상기 유동성 오일의 도입으로 인하여, 일반적인 유기 용매에 녹지 않는 대표적인 난용성 면역조절 물질들을 용이하게 가용화할 수 있으며, 그에 따라 상기 다양한 난용성 면역조절 물질을 포함하는 다중도메인캡슐을 제조할 수 있다는 장점이 있다.

Claims (11)

  1. 서로 접촉하고 연결되어 있는 둘 이상의 리포좀, 및 상기 둘 이상의 리포좀을 둘러싸는 다중도메인캡슐 외벽을 포함하는 다중도메인캡슐로서,
    상기 다중도메인캡슐은 유기상과 수용액상으로 이루어지고,
    상기 유기상은 제1면역조절물질 및 유동성 오일을 포함하며, 상기 유기상은 상기 리포좀의 멤브레인, 및 상기 다중도메인캡슐 외벽을 형성하고,
    상기 수용액상은 제2면역조절물질을 포함하며, 상기 수용액상은 상기 리포좀 멤브레인의 내부 수용액상 및 리포좀 멤브레인의 외부 수용액상이며,
    상기 제1면역조절물질은 지용성 면역활성물질이고, 상기 제2면역조절물질은 수용성 면역활성물질이며,
    상기 유동성 오일은 서로 접촉하고 연결되어 있는 둘 이상의 리포좀의 구조 안정성을 향상시키는 것을 특징으로 하는, 다중도메인캡슐.
  2. 제1항에 있어서, 상기 다중도메인캡슐의 크기는 1 ㎛ 내지 100 ㎛인 것인, 다중도메인캡슐.
  3. 제1항에 있어서, 상기 유동성 오일은 동물성 오일, 식물성 오일, 토코페롤, 미네랄 오일, 캐스터 오일, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것인, 다중도메인캡슐.
  4. 제3항에 있어서, 상기 동물성 오일은 스쿠알렌이고, 상기 식물성 오일은 올레인산인 것을 특징으로 하는, 다중도메인캡슐.
  5. 제1항에 있어서, 상기 지용성 및 수용성 면역활성물질은 항원제시세포, B 세포, 또는 T 세포의 활성화를 유도하는 물질을 포함하는 것인, 다중도메인캡슐.
  6. 제1항에 있어서, 상기 지용성 면역활성물질은 양이온성 지질, MPLA, AGP, CRX-527, PHAD, 3D-PHAD, GLA, 지질 펩타이드, Pam3Cys, Pam3Cys-Lip, 이미퀴모드(base form), 레스퀴모드 (base form), VTX-2337, CRX642, 사포닌(QS21), TDB, CL401, CL429, 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것인, 다중도메인캡슐.
  7. 제1항에 있어서, 상기 수용성 면역활성물질은 CpG, 이미퀴모드(HCl form), 레스퀴모드(HCl form), Poly(I:C), STING, 플라젤린(flagellin), 사포닌, KLK 펩타이드, NOD 아고니스트 펩타이드, Poly(dA:dT), 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것인, 다중도메인캡슐.
  8. 제6항에 있어서, 상기 양이온성 지질은 DC-콜레스테롤, DDA, DOTAP, DOTMA, EPC, MVL5, DODAP, 및 이들의 조합들로 이루어진 군으로부터 선택되는 물질을 포함하는 것인, 다중도메인캡슐.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 다중도메인캡슐 및 항원을 포함하는, 면역조절 물질.
  10. 제9항에 있어서, 상기 항원은 단백질, 유전자, 세포, 바이러스, 및 이들의 조합들로 이루어진 군으로부터 선택된 것인, 면역조절 물질.
  11. 제1면역조절물질 및 유동성 오일을 용매에 용해하여 오일상 용액을 제조하는 단계;
    제2면역조절물질을 포함하는 제1수용액 상을 상기 오일상 용액에 분산시켜 유중-수(W/O) 에멀젼을 제조하는 단계; 및
    상기 유중-수 에멀젼을 제2수용액과 혼합하고, 상기 용매를 증발시키는 단계; 를 포함하고,
    상기 제1면역조절물질은 지용성 면역활성물질이고, 상기 제2면역조절물질은 수용성 면역활성물질인 것을 특징으로 하는, 다중도메인캡슐의 제조방법.
PCT/KR2018/002516 2017-03-02 2018-03-02 면역활성물질을 포함하는 다중도메인캡슐, 이의 제조방법, 및 이를 포함하는 면역조절 조성물 WO2018160026A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2018229137A AU2018229137A1 (en) 2017-03-02 2018-03-02 Multi-domain vesicle comprising immunoactive material, production method therefor and immunomodulatory composition comprising same
US16/489,781 US20190380960A1 (en) 2017-03-02 2018-03-02 Multi-domain vesicle comprising immunoactive material, production method therefor and immunomodulatory composition comprising same
RU2019130877A RU2736639C1 (ru) 2017-03-02 2018-03-02 Мультидоменная везикула, содержащая иммуностимулирующий материал, способ её производства и содержащая её иммуномодулирующая композиция
CN201880029326.3A CN110582275A (zh) 2017-03-02 2018-03-02 包含免疫刺激物质的多域囊泡、其制备方法和包含多域囊泡的免疫调节组合物
CA3055067A CA3055067A1 (en) 2017-03-02 2018-03-02 Multi-domain vesicle comprising immunoactive material, production method therefor and immunomodulatory composition comprising same
JP2019547392A JP2020510663A (ja) 2017-03-02 2018-03-02 免疫活性物質を含む多重ドメインカプセル、その製造方法、及びこれを含む免疫調節組成物
EP18761258.5A EP3590508A4 (en) 2017-03-02 2018-03-02 MULTI-DOMAIN VESICLE INCLUDING AN IMMUNOACTIVE MATERIAL, ASSOCIATED PRODUCTION PROCESS AND IMMUNOMODULATOR COMPOSITION INCLUDING IT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0027303 2017-03-02
KR20170027303 2017-03-02
KR10-2018-0024900 2018-02-28
KR1020180024900A KR102069670B1 (ko) 2017-03-02 2018-02-28 면역활성물질을 포함하는 다중도메인캡슐, 이의 제조방법, 및 이를 포함하는 면역조절 조성물

Publications (1)

Publication Number Publication Date
WO2018160026A1 true WO2018160026A1 (ko) 2018-09-07

Family

ID=63370156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002516 WO2018160026A1 (ko) 2017-03-02 2018-03-02 면역활성물질을 포함하는 다중도메인캡슐, 이의 제조방법, 및 이를 포함하는 면역조절 조성물

Country Status (1)

Country Link
WO (1) WO2018160026A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114617876A (zh) * 2022-01-28 2022-06-14 四川大学华西医院 一种抗肿瘤联合用药物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071534A (en) * 1988-02-18 2000-06-06 Skyepharma Inc. Multivesicular liposomes with controlled release of active agents encapsulated in the presence of a hydrochloride
US20020039596A1 (en) * 1997-11-14 2002-04-04 Hartoun Hartounian Production of multivesicular liposomes
JP2014058469A (ja) * 2012-09-18 2014-04-03 Kyoto Univ 複数の被内包リポソームを内包するリポソーム及びその製造方法
US20140112979A1 (en) * 2011-07-04 2014-04-24 Statens Serum Institut Methods for producing liposomes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071534A (en) * 1988-02-18 2000-06-06 Skyepharma Inc. Multivesicular liposomes with controlled release of active agents encapsulated in the presence of a hydrochloride
US20020039596A1 (en) * 1997-11-14 2002-04-04 Hartoun Hartounian Production of multivesicular liposomes
US20140112979A1 (en) * 2011-07-04 2014-04-24 Statens Serum Institut Methods for producing liposomes
JP2014058469A (ja) * 2012-09-18 2014-04-03 Kyoto Univ 複数の被内包リポソームを内包するリポソーム及びその製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BIOCHIMICA BIOPHYSICA ACTA, vol. 728, no. 3, 9 March 1983 (1983-03-09), pages 339 - 348
INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. 331, 2007, pages 182 - 185
JAIN, SANJAY K.: "Design and development of multivesicular liposomal depot delivery system for controlled systemic delivery of acyclovir sodium", AAPS PHARMSCITECH, vol. 6 1, 2005, pages E35 - E41, XP055214963, DOI: doi:10.1208/pt060108 *
NATURE MATERIALS, vol. 10, 2011, pages 243 - 251
PROGRESS OF LIPIDS RESEARCH, vol. 41, 2002, pages 392 - 406
See also references of EP3590508A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114617876A (zh) * 2022-01-28 2022-06-14 四川大学华西医院 一种抗肿瘤联合用药物
CN114617876B (zh) * 2022-01-28 2023-04-07 四川大学华西医院 一种抗肿瘤联合用药物

Similar Documents

Publication Publication Date Title
KR102069670B1 (ko) 면역활성물질을 포함하는 다중도메인캡슐, 이의 제조방법, 및 이를 포함하는 면역조절 조성물
WO2020162705A1 (ko) 톨-유사 수용체 7 또는 8 작용자와 콜레스테롤의 결합체 및 그 용도
WO2018147710A1 (ko) 이미다조퀴놀린계열 물질을 포함하는 나노에멀젼 및 이의 용도
WO2018080253A1 (ko) 면역반응 조절물질 및 양이온성 리포좀을 포함하는 면역증강용 조성물 및 이의 용도
US20130302362A1 (en) Immunomodulatory Compositions, Methods and Systems Comprising Immunogenic Fragments of ApoB-100
WO2018160026A1 (ko) 면역활성물질을 포함하는 다중도메인캡슐, 이의 제조방법, 및 이를 포함하는 면역조절 조성물
US9205139B2 (en) Immunomodulatory methods and systems for treatment and/or prevention of aneurysms
US20130230487A1 (en) Immunomodulatory Methods and Systems for Treatment and/or Prevention of Hypertension
WO2018160027A1 (ko) 면역억제인자 제어물질을 포함하는 다중도메인캡슐, 이의 제조방법, 및 이를 포함하는 면역조절 조성물
WO2022191555A1 (ko) Rna의 체내 전달용 조성물 및 이의 제조방법
WO2022250416A1 (ko) 리포펩타이드와 폴리(i:c) 아쥬번트를 이용하는 면역항암치료제 조성물
WO2021085696A1 (ko) 작은 지질 나노 입자 및 이를 포함하는 암 백신
WO2022031011A1 (ko) 동력학적으로 작용하는 아주번트 앙상블
WO2021137611A1 (ko) 나노 구조체가 부착된 면역세포
WO2020159161A1 (ko) 비동심 다중나노도메인 베시클 및 나노리포좀을 포함하는 비경구 약물전달용 가역적 겔, 및 이를 포함하는 약물전달용 조성물
WO2021177679A1 (ko) 병원균 외벽 성분 기반 생병원체 모방 나노 입자 및 그 제조 방법
WO2024053934A1 (ko) 에멀전 제형의 면역증강제 조성물 및 이의 제조 방법
WO2018124378A1 (ko) 재구성 인공 암세포, 이의 제조 방법, 및 이를 포함하는 항암 조성물
WO2022031021A1 (ko) 동력학적 제어가 가능한 아주번트를 포함하는 mrna 백신
WO2024151124A1 (ko) 항암능이 우수한 기억 t 세포 유래 면역세포치료제의 제조방법
WO2019124886A2 (ko) 분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자
WO2022250518A1 (ko) 바이러스 감염증 예방 또는 치료용 백신
WO2024196082A1 (ko) 신규한 펩타이드를 포함하는 미셀 및 이의 용도
WO2022131700A1 (ko) 펩타이드를 이용하는 줄기세포 유래 고순도 세포외 소포체의 대량 생산 방법
WO2023277610A1 (ko) 안티센스 올리고뉴클레오타이드 기반 약물이 탑재된 세포 유래 자연 또는 인공 나노소포체를 함유하는 약학 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3055067

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019547392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018229137

Country of ref document: AU

Date of ref document: 20180302

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018761258

Country of ref document: EP

Effective date: 20191002