WO2019124886A2 - 분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자 - Google Patents

분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자 Download PDF

Info

Publication number
WO2019124886A2
WO2019124886A2 PCT/KR2018/015921 KR2018015921W WO2019124886A2 WO 2019124886 A2 WO2019124886 A2 WO 2019124886A2 KR 2018015921 W KR2018015921 W KR 2018015921W WO 2019124886 A2 WO2019124886 A2 WO 2019124886A2
Authority
WO
WIPO (PCT)
Prior art keywords
component
scaffold
acid
drug
hyaluronic acid
Prior art date
Application number
PCT/KR2018/015921
Other languages
English (en)
French (fr)
Other versions
WO2019124886A3 (ko
Inventor
임용택
송찬영
하타이차녹풍캄
랜롱
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180143015A external-priority patent/KR102227745B1/ko
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to US16/954,324 priority Critical patent/US11590076B2/en
Publication of WO2019124886A2 publication Critical patent/WO2019124886A2/ko
Publication of WO2019124886A3 publication Critical patent/WO2019124886A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to a cryocell scaffold capable of controlling the degree of degradation and a soft biotissue element loaded with a drug for controlling immunosuppressive action in a solid tumor microenvironment in the scaffold.
  • Porous scaffolds prepared using biomaterials and synthetic polymers have been used in various fields.
  • porous scaffolds have been used for biomedical applications for scaffolds for cell growth and tissue engineering, cell carriers, drug delivery systems, and biomaterial purification.
  • Such porous scaffolds have been prepared using physical / chemical crosslinking methods, using the major components of extracellular matrix (ECM) such as alginate, gelatin, collagen, hyaluronic acid and the like.
  • ECM extracellular matrix
  • Conventionally, a method of using a special template or a porogen material to form pores in a porous scaffold has been actively used.
  • all of the porous scaffolds prepared by this method have a uniform degradability, , Or has a very low swelling ratio.
  • porous scaffolds used in biotechnology and medical fields have to be freely controlled in terms of their degree of decomposition and swelling ratio, depending on their use and purpose.
  • a low molecular weight constituent material has been used to control the degree of degradation Attempts have been made to lower the crosslinking density, but in this case there has been a disadvantage in that the mechanical properties are lowered. Therefore, it is expected that the porous scaffold which can control the decomposition degree and maintain the mechanical properties and swelling ratio can be effectively used in the bio and medical fields.
  • the anti-cancer immunotherapy for treating cancer by using the body's immune system has an advantage that the side effects can be minimized compared to the conventional chemotherapy or radiation therapy.
  • cell therapy methods for directly injecting therapeutic immune cells such as dendritic cells, natural killer cells, and T-cells.
  • cancer vaccines that increase the anticancer efficacy by activating therapeutic immune cells in the body by injecting cancer antigen and immunostimulatory substance into the body are actively being conducted.
  • cancer vaccines that increase the anticancer efficacy by activating therapeutic immune cells in the body by injecting cancer antigen and immunostimulatory substance into the body are actively being conducted.
  • such cell therapy agents and cancer vaccines are mainly used for blood cancer-related diseases, and most of solid cancer has a disadvantage that its therapeutic effect is very low.
  • One of these reasons is due to the microenvironmental factors that suppress immune function around solid tumors.
  • MDSC myeoloid-derived stromal cells
  • T reg Tumor-assocated macrophages
  • immunosuppressive cytokines immunosuppressive cytokines
  • dendritic cells, NK cells, T cells, etc. which are currently used in clinical trials, are injected into the body through abdominal cavity or blood vessels. At this time, a large amount of injected remains in the injection site, or does not function in the circulation process in vivo, and is disappeared. Therefore, in the actual clinical field, attempts have been made to enhance the cancer treatment efficacy by in vivo injection of a large number of therapeutic immune cells of 10 (9) or more. However, it takes a lot of time and money to cultivate a large number of cells in vitro, and the treatment cost is very high. In addition, a large number of cells cultured in vitro must be used in patients within a specified period of time, or, if they are not, a large number of therapeutic cells manufactured at a high cost should be discarded.
  • the present invention is based on a variety of non-alginate biopolymers that are currently actively used, and it is possible to use an interconnected pore structure without using an intermediate material (template or porogen) cryogel scaffolds were prepared using a crosslinking at low temperature (-4 ° C or -20 ° C) capable of forming a cysteine-like structure, and the efficacy of the anti-cancer immunotherapeutic agent Which is capable of controlling various immunosuppressive factors, and a method for producing the same.
  • the present invention relates to a curable composition
  • a curable composition comprising a first component that is swelled upon contact with an aqueous solution to increase its volume, and a second component that is different from the first component and is capable of crosslinking at a low temperature with the first component, And a second component which is capable of controlling the degree of decomposition by external stimuli, is crosslinked, and a method for producing the cryogel scaffold.
  • the present invention also relates to a cryogen comprising a first component which swells upon contact with an aqueous solution to increase its volume and a second component which is crosslinked at a low temperature and which is capable of controlling the degree of decomposition by external stimuli, Scaffold; And a drug for controlling immunosuppressive action in a solid tumor microenvironment, and a method for producing the same.
  • the present invention provides a cryogel scaffold comprising a cross-linked structure of a first component and a second component, wherein the first component comprises a swelling ),
  • the first component may comprise at least one component selected from the group consisting of hyaluronic acid, hyaluronic acid methacrylate, polyglutamic acid, polygamargamic acid, polyamino acid, and derivatives thereof .
  • the second component is selected from the group consisting of collagen, hyaluronic acid, hyaluronic acid aldehyde methacrylate, polygamaglutamic acid, polyamino acid, chitosan, cellulose, polyacrylate, polyacrylic acid and derivatives thereof ≪ / RTI >
  • the first component is hyaluronic acid-methacrylate (HA-MA) and the second component is hyaluronic acid-aldehyde methacrylate (HA) -ald-MA).
  • the second component is collagen
  • the first component may be poly (gamma-glutamic acid) or hyaluronic acid.
  • the first component and the second component are selected from the group consisting of 10:90 to 90:10, 20:80 to 80:20, 30:70 to 70:30, 40:60 to 60:40, Or w / v% of 50:50.
  • the cross-linked structure of the first component and the second component may be formed at -25 to -4 ⁇ ⁇ .
  • the diameter of the pores of the cryogen scaffold may be 20 to 900 ⁇ .
  • the diameter of the pores may be controlled through a two-step cooling technique.
  • the external stimulus may be at least one stimulus selected from the group consisting of physiological conditions in the body, light, reducing agent, and enzyme.
  • the present invention also provides a method for producing a first component comprising: (a) preparing a first component solution comprising a first component; (b) preparing a second component solution comprising a second component; (c) mixing the first component solution and the second component solution to prepare a mixed solution; And (d) crosslinking the mixed solution at a low temperature, wherein the first component is swelled on contact with an aqueous solution to form a crosslinked solution of the scaffold
  • the second component is a compound different from the first component and capable of crosslinking with the first component and capable of controlling the degree of degradation by external stimuli after crosslinking with the first component, (cryogel scaffold).
  • the first component of the step (a) is at least one component selected from the group consisting of hyaluronic acid, hyaluronic acid methacrylate, polyglutamic acid, polygamma glutamic acid, polyamino acid, May include.
  • the first component of step (a) is hyaluronic acid-methacrylate (HA-MA) and the second component of step (b) is hyaluronic acid aldehyde meta Hyaluronic acid-aldehyde methacrylate (HA-ald-MA).
  • HA-MA hyaluronic acid-methacrylate
  • HA-ald-MA hyaluronic acid aldehyde meta Hyaluronic acid-aldehyde methacrylate
  • the second component of step (b) is collagen and the first component of step (a) is poly (gamma-glutamic acid) or hyaluronic acid (Hyaluronic acid).
  • the first component or the second component may be contained in each solution at a concentration of 0.1 to 50 mg / ml.
  • the crosslinking in step (d) may be carried out at -25 to -4 ⁇ for 3 to 24 hours.
  • the step (d) may be a step of pouring the mixed solution into a mold, followed by crosslinking at a low temperature.
  • the present invention provides a soft biocompatible device comprising the above-described cryocell scaffold and a drug for controlling immunosuppressive action in a solid tumor microenvironment.
  • the drug that controls the immunosuppressive action in the solid tumor microenvironment is selected from the group consisting of MDSC (Myeolid-Derived Suppressor Cell), Treg (Regulatory T cell), and / or TAM (tumor associated macrophage) , Or to inhibit proliferation.
  • MDSC Myeolid-Derived Suppressor Cell
  • Treg Regulatory T cell
  • TAM tumor associated macrophage
  • the drug that controls the immunosuppressive action in the solid tumor microenvironment is one that performs the function of suppressing the immunosuppressive environmental factor in the solid tumor microenvironment, or the T cell through direct binding in the solid tumor microenvironment And performing the function of suppressing the immune checkpoint by activating it.
  • the soft biodegradable element may be an anticancer agent that inhibits tumor growth, an immunosuppressive factor control drug, a cancer vaccine, an immunoadjuvant, an immune cell for cancer treatment, And a cytokine necessary for maintaining the activity of the immune cell.
  • the tumor growth inhibiting drug is selected from the group consisting of a DNA methyltransferase inhibitor (DNMTi), a histone deacetylase inhibitor (HDACi), and an angiogenesis inhibitor angiogenesis inhibitors, and the like.
  • DNMTi DNA methyltransferase inhibitor
  • HDACi histone deacetylase inhibitor
  • angiogenesis inhibitor angiogenesis inhibitors and the like.
  • the drug may be loaded on the cryocell scaffold, and the loading of the drug may be pre-fabricated loading or post-fabrication loading .
  • the pre-crosslinking loading may be carried out by mixing the drug with a mixed solution of the first component and the second component before the formation of the structure of the cryogel scaffold, followed by crosslinking.
  • the post-crosslinking loading can be accomplished by immersion of the cryogen scaffold, by dropping the drug into the cryocell scaffold, A method of injecting the drug directly, and the like.
  • the present invention also provides a method for producing a first component comprising: (a) preparing a first component solution comprising a first component; (b) preparing a second component solution comprising a second component; (c) mixing the first component solution, the second component solution, and the drug to prepare a mixed solution; And (d) crosslinking the mixed solution at a low temperature, wherein the first component is swelled upon contact with an aqueous solution to increase the volume of the scaffold,
  • the second component is a compound different from the first component and is capable of cross-linking with the first component. After cross-linking with the first component, it is possible to control the degradation degree by external stimulation.
  • the drug inhibits the immunosuppressive action in the micro-
  • the method comprising the steps of:
  • the present invention also provides a method for producing a first component comprising: (a) preparing a first component solution comprising a first component; (b) preparing a second component solution comprising a second component; (c) mixing the first component solution and the second component solution to prepare a mixed solution; (d) crosslinking the mixed solution at a low temperature to prepare a cryostat scaffold; And (e) loading the drug into the cryocell scaffold, wherein the first component is swelled upon contact with the aqueous solution to increase the volume of the scaffold, wherein the second component is a compound different from the first component and is capable of cross-linking with the first component, and the degree of degradation can be controlled by external stimulation after crosslinking with the first component, Wherein the drug is a drug that controls the action of the biodegradable polymer.
  • the first component of the step (a) is at least one component selected from the group consisting of hyaluronic acid, hyaluronic acid methacrylate, polyglutamic acid, polygamma glutamic acid, polyamino acid, May include.
  • the first component of step (a) is hyaluronic acid-methacrylate (HA-MA) and the second component of step (b) is hyaluronic acid aldehyde meta Hyaluronic acid-aldehyde methacrylate (HA-ald-MA).
  • HA-MA hyaluronic acid-methacrylate
  • HA-ald-MA hyaluronic acid aldehyde meta Hyaluronic acid-aldehyde methacrylate
  • the second component of step (b) is collagen and the first component of step (a) is poly (gamma-glutamic acid) or hyaluronic acid (Hyaluronic acid).
  • the first component or the second component may be contained in each solution at a concentration of 0.1 to 50 mg / ml.
  • the mixed solution of step (c) may further comprise a material derived from Arginylglycylaspartic acid (RGD peptide) or extracellular material (ECM), and the extracellular matrix- Non-limiting examples of collagen, elastin, and gelatin.
  • RGD peptide Arginylglycylaspartic acid
  • ECM extracellular material
  • the mixed solution of step (c) may be an anti-cancer agent, an immunosuppressive factor-controlling drug, a cancer vaccine, an immunoadjuvant, And cytokines necessary for the maintenance of the activity of immune cells for chemotherapy.
  • the step (d) may be a step of pouring the mixed solution into a mold, followed by crosslinking at a low temperature.
  • the crosslinking in step (d) may be carried out at -25 to -4 ⁇ for 3 to 24 hours.
  • the step (e) is a step of administering an anti-cancer agent, an immunosuppressive factor-controlling drug, a cancer vaccine, an immunoadjuvant, And a cytokine necessary for maintaining the activity of the immune cell for chemotherapy.
  • the present invention also provides a method of treating solid cancer comprising the step of inserting the soft biodegradable element into an individual.
  • the insertion may be performed by a surgical procedure, and the soft biodegradable element may be inserted into a site where the solid cancer tissue is removed.
  • the cryocell scaffold according to the present invention is prepared by mixing two or more components having different degrees of decomposition and then crosslinking at a low temperature so that the mixing ratio of the components and their concentrations and the respective components can be controlled so as to be suitable for the purpose and purpose Resolution and / or swelling ratio. Therefore, it is expected that the use of the cryostat scaffold will be expanded by the provision of the cryostat scaffold which can control the decomposition degree.
  • the soft biodegradable element according to the present invention can inhibit the cancer cell death and cancer cell migration by loading the anti-cancer drug into the cryo-gel scaffold and removing the tumor tissue and then transplanting the tumor tissue. In particular, There is an advantage that it is effective for cancer treatment in a solid cancer microenvironment where the therapeutic effect is low due to the immunosuppressive action by loading the drug that controls the inhibitory action.
  • FIG. 1A is a process for preparing a cryocell scaffold including two or more components having different degrees of decomposition under physiochemical conditions and capable of adjusting the degree of decomposition.
  • FIG. 1B is a process for preparing a soft biocompatible device loaded with drug on a cryocell scaffold It is schematized.
  • FIG. 2 is a diagram illustrating a process of manufacturing a mold capable of forming a scaffold structure in order to manufacture a cryogen scaffold.
  • Figure 3 is a schematic representation of a chemical crosslinking reaction for preparing a hyaluronic acid-based cryocell scaffold.
  • FIGS. 4 and 5 are diagrams illustrating a method of preparing a cryocell scaffold including HA-MA and MA-ald-MA, the decomposition degree of which can be controlled, and the degree of decomposition thereof.
  • FIG. 6 is a diagram illustrating a method of preparing a cryocell scaffold including collagen and hyaluronic acid or polygamatoglutamic acid, which can control the degree of degradation, and the degree of decomposition thereof.
  • FIG. 7 is a diagram illustrating a method for preparing a cryocell scaffold including collagen, hyaluronic acid, and poly (gamma glutamic acid), which can control the degree of degradation, and the degree of decomposition thereof.
  • FIG. 8 is a graphical representation of a cryocell scaffold capable of controlling the decomposition degree by ROS generation and the degree of decomposition thereof.
  • FIG. 9 is a graphical representation of a cryocell scaffold capable of controlling the degree of decomposition by a reducing agent (DTT) and a degree of decomposition thereof.
  • DTT reducing agent
  • FIG. 10 is a graphical representation of a cryocell scaffold capable of controlling the degree of degradation by enzymes and the degree of degradation thereof.
  • FIG. 11 is a schematic diagram of a process of synthesizing hyaluronic acid methacrylate (HA-MA) and hyaluronic acid aldehyde methacrylate (HA-ald-MA).
  • HA-MA hyaluronic acid methacrylate
  • HA-ald-MA hyaluronic acid aldehyde methacrylate
  • 12A to 12D are H-NMR spectra of HA-MA (A) and HA-ald-MA (B) blend-based cryoscelet scaffolds.
  • FIG. 13 is a photograph of the external appearance (A) and the pore structure (B, C) of a cryostat scaffold including HA-MA and HA-ald-MA.
  • Figure 14 summarizes in vitro and in vivo degradation characteristics of HA-MA / HA-ald-MA blend-based cryocell scaffolds with varying mixing ratios, and Table (A) summarizes in- (B).
  • FIG. 15 is a photograph showing the shape of a scaffold disassembled after 10 days, 15 days, and 28 days after transplanting HA-MA / HA-ald-MA blend-based cryostat scaffold having various mixing ratios into the subcutaneous area of a mouse.
  • FIG. 16 is a schematic representation of a chemical cross-linking reaction for the preparation of a cryocell scaffold comprising collagen and polygamma glutamate.
  • Figure 17 is a photograph of the decomposition behavior of hyaluronic acid / collagen blend-based cryocell scaffold mixed and crosslinked at various ratios under in vitro conditions.
  • Figure 18 is a scanning electron micrograph (a) of a hyaluronic acid / collagen blend based cryogel scaffold mixed and crosslinked at various ratios and a degradation behavior (b) observed under in vivo conditions of a 5: 5 blend scaffold It is a photograph.
  • FIG. 19 is a photograph showing decomposition behavior of a collagen / poly (gamma glutamic acid) -based cryostat scaffold formed by cross-linking reaction between various concentrations of collagen solution and poly (gamma glutamic acid) under an in vitro condition (collagenase).
  • FIG. 20 is a schematic representation of a chemical crosslinking reaction for the preparation of Thiolated HA based cryocell scaffolds.
  • 21 is a schematic representation of the function of a soft biodegradable device comprising an immunosuppression regulator (immuno checkpoint inhibitor), an immunologically-activating antibody, an anti-cancer agent and an immunostimulating drug inserted in vivo.
  • an immunosuppression regulator immuno checkpoint inhibitor
  • an immunologically-activating antibody an anti-cancer agent
  • an immunostimulating drug inserted in vivo.
  • Figure 22 is a graph showing the release behavior of PTX, Antibodies (anti-CTLA4), and R837 loaded on a soft biodegradable device containing HA-MA / HA-ald-MA blend-based cryostat scaffolds with various mixing ratios .
  • FIG. 23 is a view showing the effect of activation of BMDC by PTX and Antibodies (anti-CTLA4) and / or R837-loaded soft biotissue device (SKSC1-002).
  • Figure 24 shows the results of immunoprecipitating cells and immunostimulatory cells of solid tumor microenvironment after implantation of PTX and / or Antibodies (anti-CTLA4, anti-OX40) and R837 loaded soft biotooler (SKSC1-002)
  • FIG. 24 shows the results of immunoprecipitating cells and immunostimulatory cells of solid tumor microenvironment after implantation of PTX and / or Antibodies (anti-CTLA4, anti-OX40) and R837 loaded soft biotooler (SKSC1-002)
  • Figure 25 shows the distribution of immunosuppressive and immunostimulatory cells in the spleen after implantation of PTX and / or Antibodies (anti-CTLA4, anti-OX40) and R837 loaded soft biotooler (SKSC1-002) Fig.
  • Figure 26 shows the results of a weekly (A) and two (B) week post-transplantation implantation of PTX and / or Antibodies (anti-CTLA4, anti- OX40) and R837 loaded soft biotool (SKSC1-002) And the weight of the solid tumor and the spleen.
  • FIG. 27 is a view showing survival rate after implantation of PTX and / or Antibodies (anti-CTLA4, anti-OX40) and R837-loaded soft biotooler (SKSC1-002) into an animal model of breast cancer.
  • Antibodies anti-CTLA4, anti-OX40
  • SKSC1-002 R837-loaded soft biotooler
  • FIG. 28 is a diagram illustrating a process for manufacturing a MDSC death inducing drug, a cancer vaccine, and an immuneCare-DISC loaded with an immunostimulatory substance.
  • FIG. 29 is a photograph (a) of a procedure of implanting a MDSC death inducing drug, a cancer vaccine and an immunostimulatory substance-loaded soft biodegradable element into an animal model of breast cancer, and the immunosuppression environment control using a drug- (B) the concept of inducing the anti-cancer immunity effect.
  • the photograph of the implantation of the soft biotissue element in the breast cancer animal model is shown before injection of the tumor cells on day 14 and the size of the tumor is about 300 mm 3.
  • Photo ii is a tumor resected after tumor resection (approximately 90% of all tumors) and the remaining tumor.
  • Photo iii shows the implantation of a soft biodegradable element at the tumor resection site.
  • Photo iv shows the surgical wound after the implantation of a soft biotissue device.
  • FIG. 30 is a view showing the difference in loading efficiency and loading amount of gemcitabine in the flexible biocompatible device according to the mixing ratio of collagen and hyaluronic acid.
  • FIG. 31 is a view showing the release behavior of gemcitabine released from a soft biodegradable element, and the effect on cancer cells and immune cells.
  • (a) is the result of weekly accumulation of gemcitabine from a soft biodegradable device
  • (b) is the result of death cell ratio of the bone marrow-derived inhibitory cell (MDSC) according to the change of gemcitabine concentration, 4T1)
  • d is the result of flow cytometry of dendritic cells treated with gemcitabine-treated breast cancer cell line (control group) and control (control).
  • BMDC soft biodegradable element and activation effect of immune cells
  • BMDC soft biodegradable element and activation effect of immune cells
  • (a) is the result of accumulation of breast cancer cell lysate and poly I: C-nanogel from a soft biodegradable device
  • b is the result of cell maturation (CD40, CD80) flow cytometry of dendritic cells and macrophages after 24 hours of culture
  • c (TNF- ⁇ , IL-6) concentrations in DCs and macrophages after 24-hour incubation.
  • FIG. 33 is a graph showing the effect of time-dependent dendritic cell maturity on in vivo implantation of a soft biodegradable element.
  • BLANK means a soft biodegradable element which does not contain cancer antigen
  • FIG. 37 is a view showing an effect of preventing lung metastasis of cancer cells after implantation of a soft biotissue device.
  • FIG. 38 is a graph (a) showing changes in the ratio of bone marrow-derived inhibitory cells (MDSC) measured in tumors (blue graph) and spleen (red graph) after tumor resection and soft biotransplantation device transplantation, (B) shows the change in the ratio.
  • MDSC bone marrow-derived inhibitory cells
  • FIG. 39 shows the results of immunohistochemical analysis of interferon gamma (a) and lymph node (b) extracted at 7 and 14 days after tumor resection and soft biotransplantation, And comparing the concentrations.
  • 40 is a schematic representation of an anti-cancer agent, an immunosuppressive cell, MDSC and a TAM function modulating drug, a cancer-immune activated mutant-loaded soft biotissue device.
  • FIG. 41 is a graph showing the results of immunological cell death by doxorubicin, the function of controlling the function of TAM (M2 -> M1 polarization), induction of change of MDSC, which is an immunosuppressive cell by the recipient mode (R848) Activated T-cell activation function by anti-PDL1, an york-bundle function and an immune checkpoint inhibitor.
  • 42A shows the result of measurement of the surface marker (CD86 / CD206) and the Arg / NO production rate in order to grasp the tendency that macrophage is polarized from M2 to M1 in the group treated with Resiquimod (R848) Is the result of measuring the expression of cytokines.
  • MDSC which is an immunosuppressive cell
  • antigen-presenting cells such as dendritic cells and macrophages
  • change in the expression level of inflammatory cytokines (b) .
  • FIG. 44 shows the anticancer effect in a case where doxorubicin (Dox) or recipient mode (R848-NPs) is loaded alone in a soft biodegradable device and in a combo where a doxorubicin anticancer drug is additionally loaded in the recipient mode To see, the result of measuring the weight of recurrent cancer tissue after surgery.
  • Dox doxorubicin
  • R848-NPs recipient mode
  • Figure 45 shows that the synergistic effect of doxorubicin and recipe mode increases the number of T cells and M1 macrophages involved in the treatment of cancer and the number of immunosuppressed cells MDSC and M2 macrophages decreases, (IL-12, IL-6, and IFN-gamma) and cytokine (IL-10) changes associated with the proliferation of cancer cells.
  • FIG. 46 is a graph showing the results of a comparison between a soft bioinjector (Combo) loaded with doxorubicin and recipe mode, an anti-PDLl immune checkpoint inhibitor ( ⁇ -PDL1) loaded alone and anti-PDL1, doxorubicin The result of confirming the anticancer effect of the soft biodegradable element loaded with the recipe mode is shown.
  • FIG. 47 shows the results of a comparison of the results of a comparison between the soft bioinjector (Combo) loaded with sorubicin and recipe mode, the soft bioinjector (.alpha.-PDL1) loaded with anti-PDL1 alone as an immunity checkpoint inhibitor, and anti-PDL1, doxorubicin, And relaxed mode biodegradable devices, respectively, in which the cancer cells were transplanted into the lungs.
  • the present inventors have made intensive studies on a method for producing a cryocell scaffold that satisfies the resolution and / or the swelling ratio required in various fields in order to widely utilize the cryocell scaffold in various fields.
  • the degree of degradation and / or the swelling ratio of the cryogen scaffold prepared by cross-linking at least two different components at a suitable ratio can be adjusted according to the components contained therein, the concentration of each component, and the mixing ratio of each component.
  • the present inventors have confirmed that the degradation degree can be controlled while maintaining the mechanical properties of the scaffold using the chemical structure, physiological conditions, and various external stimuli of the components constituting the cryocell scaffold.
  • the cryogel scaffold of the present invention comprises a first component that is swelled upon contact with an aqueous solution to increase the volume of the scaffold and a second component that is different from the first component and is capable of crosslinking with the first component, And a structure in which a first component and a second component capable of controlling the degree of degradation by external stimulation after crosslinking are crosslinked.
  • the cryocell scaffold of the present invention comprises: (a) preparing a solution comprising a first component that is swelled upon contact with an aqueous solution to increase the volume of the scaffold; (b) preparing a solution that is different from the first component and is capable of crosslinking with the first component, and a second component capable of controlling the degree of degradation by external stimulation after crosslinking with the first component; (c) mixing the first component and the second component solution to prepare a mixed solution; And (d) crosslinking the mixed solution at a low temperature.
  • the first component constituting the cryocell scaffold in the present invention is not limited as long as it is hydrophilic and has a property of swelling by contact with an aqueous solution to increase the volume of the scaffold, Poly-N-vinylcaprolactam, HEMA (Hydroxyethylmethacrylate), Gelatin, Collagen, Hyaluronic acid, Cellulose, Chitosan, Polysaccharide, PTAC Polyvinyl alcohol-tetraethylorthosilicate-alginate-calcium oxide, chitosan-agarose-gelatin, Carrageenan, polyacrylate, polyacrylonitrile, polyacrylamide, It can be used in the form of agarose, alginate, carboxymethyl cellulose (CMC), hydroxypropyl methylcellulose (HPMC), polyethylene glycerol ethyleneglycol, poly (hydroxyethyl methacrylate), poly (vinyl alcohol), casein, poly (amino acids), poly (glutamic acid) ), Poly
  • the second component constituting the cryocell scaffold is different from the first component and is capable of crosslinking with the first component, and the degree of decomposition can be controlled by external stimuli after crosslinking with the first component
  • Polysaccharides PTAC, CAG, Carrageenan, polyacrylate, polyacrylonitrile, polyacrylamide, agarose, alginate, ), Carboxymethyl cellulose (CMC), hydroxypropyl methylcellulose (HPMC), polyethylene glycerol, poly hydroxymethacrylate (Poly (hydrox) such as poly (vinyl alcohol), casein, poly (amino acids), poly (glutamic acid), poly (gamma-glutamic acid) acid, hyaluronic acid, hyaluronic acid aldehyde methacrylate, polygamma
  • Examples of the derivatives which can be included in the first component or the second component in the present invention include, but are not limited to, thiolated HA, HA-Tyramine, HA-adipic dihydrazide and HA-hexamethylenediamine.
  • the second component may be capable of controlling the degree of decomposition by chemical structure, physiological conditions and various external stimuli after crosslinking with the first component by a physical / chemical method, / RTI >
  • RTI ID 0.0 > a < / RTI >
  • the external stimulus for controlling the degree of degradation may be one or more stimuli selected from the group consisting of physiological conditions in the body, light, a reducing agent, and an enzyme, but the present invention is not limited thereto.
  • the light may be irradiated to the cryocell scaffold to generate reactive oxygen species (ROS) by exciting a photosensitizer contained in the scaffold
  • ROS reactive oxygen species
  • the reductase is not limited as long as it decomposes the disulfide bond of the first component and the second component, and a non-limiting example thereof is DDT (dithiothreitol).
  • the first component and / or the second component constituting the cryocell scaffold may be in the range of 10:90 to 90:10, 20:80 to 80:20, 30:70 to 70:30, 40:60 to 60: 40 or 50:50 w / v% of the first component and / or the second component, wherein the first component and / or the second component is a stimuli-responsive functional group capable of controlling the degree of degradation by the stimulus group, but is not limited thereto.
  • a cryocell scaffold in which the first component is hyaluronic acid methacrylate and the second component is hyaluronic acid aldehyde methacrylate is prepared.
  • the second component is collagen
  • the first component was polygamma glutamic acid and / or hyaluronic acid
  • the degree of decomposition of the cryosteal scaffold was different according to the mixing ratio of the first component and the second component . Specifically, it has been confirmed that as the composition ratio of hyaluronic acid aldehyde methacrylate increases, the rate of degradation rapidly increases.
  • the collagen / hyaluronic acid cryostel scaffold when the concentration of each substance is higher than 10-20 mg / ml, the polygamma glutamic acid is resistant to enzymes present in the body such as collagenase and hyaluronase, and thus, it can be used as an anti-inflammatory agent. 0.1 to 90 percent by weight, and the time for decomposing the scaffold can be remarkably reduced.
  • 'cryogel' means a porous hydrogel produced at a subzero temperature of 0 ° C or less and has interconnected pore structures connected to each other.
  • the diameter of the pore is a two- can be adjusted to 20 to 900 [mu] m by a cooling technique.
  • cryogen scaffold of the present invention can be prepared without the use of any special template or porogen material.
  • the present invention relates to the above-mentioned cryocell scaffold and an anticancer agent which inhibits the growth of a tumor, a cancer cell, an immunosuppressive factor controlling drug, a cancer vaccine, an immunoadjuvant, And at least one drug selected from the group consisting of an immunocyte and a cytokine necessary for maintaining the activity of the immune cell for cancer treatment.
  • the flexible biotissue element of the present invention may be manufactured by loading the drug into the cryocell scaffold, and the drug may be loaded before and / or after the formation of the structure of the scaffold, Or by injecting a drug directly into the cryocell scaffold.
  • the drug is to be released from the soft biodegradable element, it is possible to limit the amount of the drug to be released none.
  • the flexible biotissue insert of the present invention comprises: (a) preparing a solution comprising a first component that is swelled upon contact with an aqueous solution to increase the volume of the scaffold; (b) preparing a solution that is different from the first component, is capable of crosslinking with the first component, and is capable of controlling the degree of degradation by external stimulation after crosslinking with the first component; (c) mixing the first component solution, the second component solution, and the drug to prepare a mixed solution; And (d) crosslinking the mixed solution at a low temperature.
  • the soft biotissue element of the present invention comprises: (a) preparing a solution containing a first component which is swelled upon contact with an aqueous solution to increase the volume of the scaffold; (b) preparing a solution that is different from the first component, is capable of crosslinking with the first component, and is capable of controlling the degree of degradation by external stimulation after crosslinking with the first component; (c) mixing the first component and the second component solution to prepare a mixed solution; (d) crosslinking the mixed solution at a low temperature to prepare a cryostat scaffold; And (e) loading the drug into the cryogen scaffold.
  • the drug to be loaded in the production of the soft biodegradable element may be a drug that controls immunosuppressive action in a solid tumor microenvironment, an anti-cancer agent that inhibits the growth of tumor or cancer cells, an immunosuppressant factor control drug, a cancer vaccine, an immunoadjuvant, but is not limited to, one or more drugs selected from the group consisting of immune cells for cancer treatment and cytokines necessary for maintaining the activity of the immune cells for cancer therapy.
  • the drug that controls the immunosuppressive action in the solid tumor microenvironment may be one that inhibits the activity, survival, or proliferation of MDSC (Myeolid-Derived Suppressor Cell), Treg (Regulatory T cell), and / or TAM
  • MDSC Myeolid-Derived Suppressor Cell
  • Treg Regulatory T cell
  • TAM TAM
  • Non-limiting examples of drugs that inhibit the activity, survival or proliferation of MDSC include Tadalafil, Sildenafil, L-AME, Nitroaspirin, Celecoxib, NOHA, Bardoxolone methyl, D, L-1-methyl -tryptophan, 5-Fluorouracil, Gemcitabine, 17-DMAG, Peptide-Fc fusion proteins, ATRA, Vitamin A, Vitamin D3, Vitamin E, GR1 antibodies, Zoledronic acid, Sunitinib, Axitinib, Decetaxel, Sorafenib, Cucurbitacin B, JSI-124 , Anti-IL-17 antibodies, anti-glycan antibodies, anti-VEGF antibodies, Bevacizumab, Antracycline, Tasquinimod, Imatinib, and cyclophosphamide.
  • MDSC Myeoloid-Derived Suppressor Cell
  • Non-limiting examples of drugs that inhibit the activity, survival, or proliferation of Tregs include anti-CD25 antibodies (daclizumab), Basiliximab, LMB-2, Denileukin diftitox (Ontak), Bivalent IL- , Anti-TGF-beta antibodies, fresolimumab, TGF-betaR kinase inhibitors, LY2157299, Soluble TGF-betaR I / II, Ipilimumab, Tremelimumab, Pembrolizumab, Nivolumab, TIM-3 antibodies, (CCR4, 5, 5, 6, 7, 8, 10, 11, and 12) 6,10), cyclophosphamide, Sunitinib, Fludarabine, PI3K p110 (delta) inhibitors, CliniMACs, Mogamulizumab, Fingolimod, Regulators for miRNA (miR-155, miR-146a, miR-181a),
  • Non-limiting examples of drugs that inhibit the activity, survival, or proliferation of TAM include CCL2 / CCR2 inhibitors (Yondeli, RS102895), M- CSF or M- CSFR inhibitors (anti- Expression of inhibitors, HIFs inhibitors, bisphosphonates, Clodronate, Dasatinib, anti-FRbeta antibodies, Shigella flexneri, Legumain, and CD1d of the above biomolecule receptors, JNJ-28312141 and GW2580, chemoattractants (CCL5, CXCL-12, VEGF) And the like.
  • CCL2 / CCR2 inhibitors Yondeli, RS102895
  • M- CSF or M- CSFR inhibitors anti- Expression of inhibitors, HIFs inhibitors, bisphosphonates, Clodronate, Dasatinib, anti-FRbeta antibodies, Shigella flexneri, Legumain, and CD1d of the above biomolecule receptors
  • the drug that controls the immunosuppressive action in the solid tumor microenvironment may be one that performs the function of suppressing the immunosuppressive environmental factor in the solid tumor microenvironment
  • the immunosuppression environmental factor may be a cytosine (COX 2), indoleamine 2 (COX 2), and the like.
  • COX 2 cytosine
  • COX 2 indoleamine 2
  • the compounds of the present invention are useful in the treatment and / , 3-dioxygenase (IDO), Phosphodiesterase-5 (PDE-5), and Interleukin 10 (IL-10).
  • the drug that controls the immunosuppressive action in the solid tumor microenvironment may include an auxiliary activity factor that functions to activate T cells through direct binding in a solid tumor microenvironment.
  • the co-activating factor may be one targeting OX40, CD137, CD27, and CD40, and the like. Non-limiting examples thereof include RG7888, Urelumab, Varlilumab, and BMS-986090.
  • the drug that controls the immunosuppressive action in the solid tumor microenvironment may be one that performs a function of suppressing an immune checkpoint by activating T cells through direct binding in a solid tumor microenvironment
  • examples include PD-1, PDL-1 CTLA-4, LAG-3, TIM-3, and CEACAM1. Therefore, the drug that functions to suppress the immune checkpoint may include PD-1, PDL-1 CTLA-4, LAG-3, TIM-3, and / or CEACAM1 antibody, But are not limited to, Nivolumab, Atezolizumab, BMS-986016, TSR-022, and CM-24.
  • drugs that inhibit the growth of tumor or cancer cells include DNA methyltransferase inhibitor (DNMTi), histone deacetylase inhibitor (HDACi), and angiogenesis inhibitors inhibitors, and the like.
  • DNMTi DNA methyltransferase inhibitor
  • HDACi histone deacetylase inhibitor
  • angiogenesis inhibitors inhibitors and the like.
  • Non-limiting examples of the dienemethyltransferase inhibitor include 5-Azacytidine, 5-Aza-2-deoxycytidine, Decitabine, SGI-110, Zebularine, CP-4200, Cladribine, Fludarabine, Clofarabine, Procainamide, Procaine, Hydralazine, Disulfiram , RG108, Nanaomycin A, Genistein, Equol, Curcumin, EGCG, Resveratrol, and Parthenolide.
  • Non-limiting examples of the histone deacetylase inhibitor include Vorinostat, Abexinostat, Suberoylanilide, Hydroxamic acid, Belinostat, Panobinostat, Romidepsin, Valproic acid, Entinostat, Givinostat, Resminostat, Quisinostat, Pracinostat, Dacinostat, Pyroxamide, CHR- Trichostatin A, Oxamflatin, MC1568, Tubacin, PCI-30451, Tacedinaline, Mocetinostat, Chidamide, BML-210, M344, Butyrate, Sodium butyrate, Trapoxin A, Apicidin, Nicotinamide, Splitomicin, EX-527, Dihydrocoumarin, Tenovin-D3, AGK2 , AEM1, AEM2, Cambinol, Sirtinol, Salermide, Tenovin-6, TMP-269, Psammaplin A, Nexturastat A and RGFP966,
  • angiogenesis inhibitors include but are not limited to bevacizumab (Avastin), itraconazole, carboxyamidotriazole, TNP-470, fumagillin, CM101, IFN-alpha, IL-12, platelet factor-4, suramin, SU5416, thrombospondin, VEGFR antagonists, angiostatic (3) inhibitors, linomide, ramucirumab, tasquinimod, ranibizumab, sorafenib, thalidomide, thalidomide, thalidomide, prolactin, beta (3) inhibitors, steroids, heparin, cartilage-derived angiogenesis inhibitory factor, matrix metalloproteinase inhibitors, angiostatin, endostatin, 2-methoxyestradiol, (Nexavar), sunitinib (Sutent), pazopanib (Votrient), and everolimus (Afinitor).
  • bevacizumab
  • the drug that inhibits the growth of tumor or cancer cells may be a drug capable of improving the characteristics of M1 macrophage, a drug capable of inhibiting the mechanism of M2 macrophage-based cancer cell growth, or a macrophage in a solid tumor microenvironment May be a target drug capable of enhancing anticancer efficacy,
  • Non-limiting examples of drugs that can enhance the properties of the M1 macrophage include TLR agonists such as NF-kB agonists, anti-CD40 antibodies, Thiazolidinediones, Tasquinimod, Anti-IL-10R antibodies, Anti-IL- IL-12, and Thymosin alpha1, which are capable of inducing the M1 pathway.
  • TLR agonists such as NF-kB agonists, anti-CD40 antibodies, Thiazolidinediones, Tasquinimod, Anti-IL-10R antibodies, Anti-IL- IL-12, and Thymosin alpha1, which are capable of inducing the M1 pathway.
  • the STAT3 inhibitors sunitinib, sorafenib, WP1066, corosolic acid, oleanolic acid, and STAT6 inhibitors and the M2 pathway (c-Myc, PPAR), which are inhibitors of M2 macrophage-based cancer cell growth inhibiting mechanisms, inhibitors and HRG, CuNG, MDXAA, Silibinin, and PPZ inhibitors.
  • These inhibitors include, but are not limited to, -Alpha / gamma, PI3K, KLF4, HIFs, Ets2, DcR3,
  • the TGF-beta inhibitor may include SB-505124 and / or LY-364974
  • the Nitro aspirin may include NCX 4040
  • the COX-2 inhibitor may include Celecoxib
  • the IDO inhibitor may include Indoximod and NLG919
  • the PDE-5 inhibitor may include, but is not limited to, Tadalafil (Cialis) and the like.
  • cancer vaccine in the present invention is not limited as long as it includes a cancer cell-specific antigen, specifically, a protein selected from the group consisting of a protein, a peptide, DNA, and RNA isolated from lysates of cancer cells And preferably includes the cancer cell-specific antigen which is separated into the lysate of the cancer cells of the portion to which the soft biotissue of the present invention is to be implanted, but the present invention is not limited thereto.
  • 'immunoadjuvant' is not limited as long as it activates the immune function of an individual.
  • the immunoadjuvant include, but are not limited to, toll-like receptor agonists (TLR agonists), saponins, Like receptor antagonists, such as viral peptides, inflammatory inducers, NOD ligands, cytosolic DNA sensor (CDS) ligands, and STING (stimulator of interferon genes) ligands
  • TLR agonists toll-like receptor agonists
  • saponins include, but are not limited to, toll-like receptor agonists (TLR agonists), saponins, Like receptor antagonists, such as viral peptides, inflammatory inducers, NOD ligands, cytosolic DNA sensor (CDS) ligands, and STING (stimulator of interferon genes) ligands
  • toll-like receptor agonist refers to a component capable of causing a signal transduction pathway through
  • the toll-like receptor agonist may be a natural or synthetic toll-like receptor agonist and may include, but is not limited to, one or more combinations of toll-like agonists.
  • the term " immunoconjugate ", as used herein, may be used interchangeably with the terms " immunostimulatory mutant " and " immunostimulatory substance ".
  • the tol-like agonist may be capable of causing a signaling response through TLR-1, for example, a tri-acylated lipid peptide (LP); Phenol-soluble modulin; Mycobacterium tuberculosis LP; (S) -Ser- (S) -Lys (4) -OH < / RTI > , Bacterial lipid proteins from Borrelia burgdorfei, trihydrochloride (Pam3Cys) LP mimicking the acetylated amino terminal of OspA LP, or combinations thereof,
  • the toll-like agonist may comprise a TLR-2 agonist, for example, a Pam3Cys-Lip, and the toll-like agonist may comprise a TLR-3 agonist, C), Poly (ICLC), Poly (IC12U)) and Ampligen, and the toll-like agonist may be a TLR-4 agonist such as Shigella flexineri outer membrane protein product or AGO, CRX-527, MPLA, PHAD, 3D-PHAD, GLA or combinations thereof, wherein said toll-like agonist is a TLR-5 agonist such as flagellin or a fragment thereof
  • TLR-7 or a TLR-8 agonist such as an imidazoquinoline molecule (imiquimod, R837, Resquimod, R848), VTX-2337, CRX642, - or an imidazoquinoline covalently bonded to a phosphono lipid group or combinations thereof
  • the toll-like agonist is a TLR-9 agonist, for example
  • the saponin may also be selected from the group consisting of QS21, Quil A, QS7, QS17, beta-eskin, digitonin and combinations thereof, wherein the antiviral peptide may comprise KLK And the Nod ligand may be M-TriLYS (NOD2 agonist-synthetic muramyltrippeptide) or N-glycolylated muramyldipeptide (NOD2 agonist-synthetic muramyltryptase) ), And the CDS ligand may be Poly (dA: dT), and the STING ligand may be cGAMP, di-AMP, di-GMP, but is not limited thereto.
  • the Nod ligand may be M-TriLYS (NOD2 agonist-synthetic muramyltrippeptide) or N-glycolylated muramyldipeptide (NOD2 agonist-synthetic muramyltryptase)
  • the immunostimulatory substance may be, but is not limited to, CL401 (Dual TLR2 & TLR7 agonist) and CL429 (Dual TLR2 & NOD2 agonist) as substances having two agonists at the same time.
  • the immunostimulatory substance may be selected from the group consisting of Pam3Cys-Lip, Poly (I (C)), CRX-527, MPLA, flagellin, imiquimod, Resquimod, CpG, QS21, (MurNAc-Ala-D-isoGln-Lys), trehalose-6,6-dibehenate, 8837, Poly (dA: dT), cGAMP and combinations thereof. no.
  • 'immune cells for cancer treatment' are not limited as long as they are activated by cancer vaccines to recognize cancer antigens. Specific examples thereof include dendritic cells, natural killer cells and T Cells (T cells).
  • the immune cells for cancer treatment loaded in the soft biodegradable element of the present invention have the same activity as in vitro and can remarkably improve the therapeutic effect of inhibiting cancer growth or preventing recurrence and / or metastasis of cancer.
  • the term 'cytokine required for maintaining the activity of immune cells for cancer therapy' in the present invention is a substance that helps maintain and increase the activity of immune cells for cancer therapy.
  • the cytokine is loaded into the soft biodegradable element of the present invention,
  • the immune cells can be effectively treated with a smaller number of immune cells than in the case where only the immune cells for cancer treatment are directly injected into the individual.
  • the soft biodegradable device may further include a substance that can be inserted into the living body to enhance adhesion with the cells, and may include a substance capable of enhancing the adhesion, so that the drug can be more stably and continuously administered at the implanted site Can be released.
  • the substance capable of enhancing the adhesion may be a substance derived from Arginylglycylaspartic acid (RGD peptide) or an extracellular material (ECM), and examples of the substance derived from the extracellular matrix include collagen, elastin, and gelatin .
  • the soft biodegradable element of the present invention may be one in which the loaded drug is released in a sustained release form, but the present invention is not limited thereto.
  • the soft biodegradable device of the present invention includes a cryo-gel scaffold in which the degree of degradation is controlled, and adjusts the release behavior of the drug necessary for the control of the immunosuppressive factor and the maintenance of immunity, and / .
  • the soft biodegradable element of the present invention can be inserted into an individual to be used for the treatment of solid cancer, and the insertion of the soft biodegradable element can be performed by a surgical procedure. Specifically, Can be implanted in the vicinity.
  • 'an individual' may be a mammal such as a mouse, a livestock, a mouse, a human, and the like, and may be a dog, a horse, a human, etc., which need treatment of solid cancer.
  • the first component and the second component having different degrees of decomposition are mixed in an aqueous solution under physiochemical conditions as shown in FIG. 1A, they are poured on a mold prepared by the method shown in FIG. 2, frozen at a low temperature and slowly subjected to crosslinking
  • a cryocell scaffold having cross-linked pores was prepared by removing ice crystals using a freeze-drying method.
  • the first component was hyaluronic acid methacrylate (HA-MA) and the second component was hyaluronic acid aldehyde methacrylate (HA-ald-MA).
  • the synthetic process of HA-MA and HA-ald-MA is shown in FIG. 11. Specifically, the synthesis of HA-MA and HA-ald-MA and the synthesis of HA-MA / HA- The preparation was carried out as follows.
  • Hyaluronic acid (HA, 500 kDa, Bioland, Chungnam, South Korea) was dissolved in 100 ml of distilled water at a concentration of 10 mg / ml, and 3.85 g of methacrylic anhydride (MA, Sigma-aldrich, South Korea) was added. The pH was adjusted to 8 with 5N sodium hydroxide, stirred at room temperature in a dark room, dialyzed against distilled water (12-14 KDa cutoff) for 48 hours, and lyophilized to prepare HA-MA.
  • MA methacrylic anhydride
  • Hyaluronic acid (HA, 500 kDa, Bioland, Chungnam, South Korea) was dissolved in 100 ml of distilled water at a concentration of 10 mg / ml, and 534 mg of sodium iodonate (NaIO4, Sigma-aldrich, South Korea) The reaction was allowed to proceed for 24 hours at room temperature in a dark room to allow the oxidation reaction to take place sufficiently. To terminate the oxidation reaction, 1 g of ethylene glycol (Sigma-Aldrich, South Korea) was added, stirred for 1 hour at room temperature, dialyzed against distilled water (12-14 KDa cutoff) for 48 hours and lyophilized HA-ald was prepared.
  • ethylene glycol Sigma-Aldrich, South Korea
  • HA-ald prepared by the method of Example 1-2 was dissolved in 100 ml of distilled water and 3.85 g of methacrylic anhydride (MA, Sigma-aldrich, South Korea) was added. Then, the pH was adjusted to 8 with 5N sodium hydroxide, stirred in the dark room at room temperature, dialyzed (12-14 KDa cutoff) for 48 hours in distilled water, and lyophilized to prepare HA-ald-MA.
  • MA methacrylic anhydride
  • HA-MA prepared by the methods of Examples 1-1 and 1-3 and 100 mg of HA-ald-MA were dissolved in PBS (phosphate buffered saline) at various ratios at 4 ° C to a concentration of 10 mg /
  • PBS phosphate buffered saline
  • 30 mg of ammonium persulfate USB Corporation, USA
  • 60 ⁇ l of tetramethylethylenediamine N, N, N ', N'-tetramethylethylenediamine, Sigma-Aldrich, South Korea
  • the mixture was quickly transferred to a PDMS mold and stored at 20 ° C for 24 hours to prepare a cryoell scaffold containing HA-MA / HA-ald-MA.
  • the scaffold was sterilized using a 70% ethanol solution, and then washed three times with PBS.
  • the polymer synthesized in each step was dissolved in D2O at a concentration of 10 mg / ml, and 1H NMR spectra (Unity Inova, 500 MHz, Varian Technology, USA) were measured. The results are shown in Figs. 12A to 12D.
  • the structure of the lyophilized scaffold was observed through a scanning electron microscope (JSM6700F, JEOL Ltd., Japan) after cutting through an optical microscope (Olympus) and in cross section, and the results are shown in FIG.
  • the prepared scaffold was immersed in 1 ml of PBS or Hyaluronidase (10 U / ml), and the scaffold remained after decomposition Was filtered, frozen and its weight was measured.
  • Example 2 Made of hyaluronic acid / collagen Cryozel Scaffold Produce
  • Hyaluronic acid (HA, 500 kDa, Bioland, Chungnam, South Korea) was dissolved in sterilized PBS in 10 mg / ml of collagen (type I, Bioland, Cheonan, South Korea) 10 mg / ml, collagen: hyaluronic acid was mixed at various volume ratios and stirred at 500 rpm for 12 hours using a magnetic stirrer at 4 ⁇ . 250 [mu] l of the above mixed solution (scaffold solution) was placed in a PDMS mold, frozen at -20 DEG C for 9 hours, and lyophilized for 12 hours.
  • the sample was immersed in 2 ml of 50 mM EDC / 20 mM NHS in ethanol solution at -20 ° C for 12 hours, and then the sample was washed five times with DI for 15 minutes each and then lyophilized again for 12 hours to obtain hyaluronic acid / Collagen was prepared (Fig. 6).
  • the scaffolds were soaked in collagenase or hyaluronidase, and after 7, 14, 21, and 28 days elapsed, The degree of decomposition of folds was observed, and the results are shown in Fig.
  • FIG. 18 shows the scanning electron microscope (a) and the decomposition behavior (b) of a 5: 5 blend scaffold under in vivo conditions (subcutaneous transplantation in mice) of hyaluronic acid / collagen cryoell scaffolds mixed and crosslinked at various ratios, .
  • Collagen (type I, Bioland, Cheonan, South Korea) is dissolved in sterile PBS at 10 mg / ml (overnight at 4 ° C).
  • Polygamma glutamic acid (PGA, 500 kDa, Bioleaders, Daejeon, South Korea) was dissolved in sterilized PBS at a concentration of 10 mg / ml, collagen: polygamma glutamic acid was mixed in various volume ratios, And stirred at 500 rpm for 12 hours.
  • the sample was immersed in 2 ml of 50 mM EDC / 20 mM NHS in ethanol solution at -20 ° C for 12 hours.
  • the sample was washed five times with DI for 15 minutes each and then lyophilized for 12 hours to obtain collagen / poly
  • a cryostat scaffold composed of gamma glutamic acid was prepared (Fig. 16).
  • the scaffolds were immersed in collagenase, and the degree of degradation of the scaffold was observed over time, and the results are shown in FIG.
  • HA-DTPH was dissolved in DPBS to a concentration of 3.0% (w / v) and the pH was adjusted to 8 using 1.0N NaOH.
  • the mixture was reacted in a PDMS mold cooled to -20 ° C for 18 hours, and the resulting gel was heated to room temperature to remove ice, thereby preparing a scaffold.
  • the prepared scaffold was washed with PBS and 70% (Fig. 20).
  • the photosensitizer (20 ⁇ g, Ce6) was loaded on the prepared scaffold After irradiating 650 nm laser, the weight change was measured at intervals of 3 days while stirring the scaffold at 37 ° C and 60 rpm.
  • a prepared scaffold containing a di-sulfide bond was treated with DDT (dithiothreitol) The weight change was measured at intervals of 3 days.
  • the prepared scaffold containing an enzyme-cleavable peptide bond was treated with an enzyme, and then the weight change Were measured at intervals of 3 days.
  • Example 8 Immunosuppressive regulator (Immune checkpoint inhibitor), an immunologically-activating antibody, an anti-cancer drug, and an immunostimulating drug
  • a flexible biocompatible device including R837 and optionally PTX and / or Abs was prepared, and the release behavior of each drug and its degradation by enzymes were confirmed.
  • paclitaxel which is an anticancer agent
  • M2 macrophage having immunosuppressive function (R837), which is a tocol-like receptor 7 agonist responsible for the function of converting the amino acid sequence of the Toll-like receptor 7,
  • Anti-CTLA4 capable of controlling the immunosuppression check point
  • anti-OX40 which is an antibody for immunostimulation
  • Fig. 14 is a graph showing the results of measurement of hyaluronase degrading enzyme (10 U / ml HAdase) of a soft biodegradable element made of various composition ratios (hyaluronic acid methacrylate (HA-MA): hyaluronic acid aldehyde methacrylate ) Shows decomposition behavior.
  • Fig. 22 is a graph showing the results of measurement of PTX, Antibodies (anti-CTLA4) loaded on a soft biodegradable element manufactured with various composition ratios (hyaluronic acid methacrylate (HA-MA): hyaluronic acid aldehyde methacrylate (HA- And release behavior of R837.
  • immunoinhibitory factor regulation and anticancer effects were evaluated by cell and animal experiments using PTX, Antibodies (anti-CTLA4, anti-OX40) and R837 loaded soft bioinjector (SK-SC1-002) .
  • Dendritic cell lines (DC 2.4), macrophages (Raw 264.7), breast cancer cell lines (4T1), and bone marrow-dendritic cells (BMDC) were used in in vitro experiments.
  • the macrophage cell line (Raw 264.7) was cultured in RPMI 1640 medium supplemented with 10% FBS and 1% antibiotic-antifungal agent, DMEM medium supplemented with 10% FBS and 1% antibiotic-antifungal agent, and breast cancer cell line (4T1) 5% carbon dioxide and 37 ° C.
  • Dendritic cells derived from mouse bone marrow were separated from bone marrow and treated with 20 ng / ml GM-CSF in RPMI1640 medium supplemented with 10% FBS and 1% antibiotic-antifungal agent solution and differentiated under conditions of 5% carbon dioxide and 37 ° C.
  • MTS analysis is a method used to measure cytotoxic effects of drugs by comparing cell viability.
  • 1xlO < 4 > cells were treated in a 96-well plate (Corning Costar, USA) in 100 [mu] l of medium for each well. After the drug was dispersed in the cell culture medium at various concentrations (0.1-100 ⁇ g), 100 ⁇ l of the drug dispersed in each well was treated and cultured for 24 hours and 48 hours under the condition of 5% carbon dioxide and 37 ° C. After cell culture, 20 ⁇ l of Cell Titer 96 Aqueous One Solution was added to each well, and the cells were cultured for 2 hours. Absorbance was measured at 490 nm using VersaMax (Molecular Devices, USA).
  • Balb / c mice (female, 6-8 weeks) were maintained in the absence of a particular pathogen. Animal experiments were approved by the Experimental Animal Ethics Committee of the Sungkyunkwan University School of Medicine and adhered to the guidelines of the International Laboratory Animal Care Assessment and Accreditation Association. For in vivo experiments Balb / c mice were anesthetized by injecting 200 [mu] l of 2.5% abortin solution (2,2,2-tribromoethanol, SigmaAldrich). 1x106 breast cancer cell lines (4T1) were injected into the subcutaneous right subclavian layer of anesthetized Balb / c mice. When the size of the cancer reached approximately 200 mm 3, surgery was performed to implant the scaffold.
  • abortin solution 2,2,2-tribromoethanol
  • the mouse and spleen were separated from the mouse of Example 9-4 to make single cells, and the antibody was stained. Specifically, cancer tissues were finely dispersed using scissors, dissolved in RPMI 1640 medium, treated with 1 mg / ml of collagenase D (Sigma-aldrich, South Korea) at 80 rpm and 37 ° C for 1 hour. Then, undissolved tissues were removed using a nylon mesh to obtain cancer cells. The splenocytes were finely ground using a grinder, separated using a nylon mesh, and centrifuged.
  • red blood cell lysis solution was added to the obtained cancer cells and spleen cells, treated at 37 ° C for 10 minutes, and then the cell culture medium was added twice as much as the treated red blood cell solution to prepare a red cell solution Lt; / RTI >
  • the cells were washed twice with PBS and labeled with a specific fluorescence-conjugated antibody and fixed with 4% paraformaldehyde.
  • Prepared cell samples were analyzed using an Accuri flow cytometer (BD biosciece, USA).
  • spleen of an animal model transplanted with PTX Antibodies (anti-CTLA4, anti-OX40) and R837 loaded soft biotooler (SK-SC1-002) 25B, 25C, and 25D) in the PTX + R837 + Abs group (Fig. 25A), and that DC, CD4 +, and CD8 + T cells as immunostimulatory cells were increased.
  • PTX + R837 + Abs when PTX, Antibodies (anti-CTLA4, anti-OX40) and R837 loaded soft-tissue biopsy device (SK-SC1-002) were transplanted into a breast cancer model and survival rate was measured , It was confirmed that the survival rate was the most excellent in the group of the soft biodegradable element (Fig. 27).
  • Example 10 Immunosuppressive cells MDSC Removal drugs, cancer antigens, and immunostimulatory aztans Loaded Manufacture of soft biodegradable element
  • the mixed solution was mixed with gemcitabine (GEM), which is an immunosuppressive cell, for removing MDSC, followed by cross-linking reaction, A biocompatible device was prepared.
  • GEM gemcitabine
  • poly (I: C) loaded nanogels By additionally loading cancer cell lysates and immunoadjuvant (poly (I: C) loaded nanogels) into the soft biotissue obtained by lyophilization, the GEM, cancer vaccine, So as to prepare a soft biodegradable element containing the burnt (Fig. 28).
  • Example 11 MDSC Drugs for elimination, cancer antigen, immune activation Loaded year Methods for evaluating anticancer efficacy of patients who have sexually transmitted disease
  • BALB / c mice (6 weeks old, female) were purchased from Orient Bio (Sungnam, Korea) and were maintained in a non-pathogenic state. Animal experiments were approved by the Experimental Animal Ethics Committee of the Sungkyunkwan University School of Medicine and adhered to the guidelines of the International Laboratory Animal Care Assessment and Accreditation Association. 4T1 breast cancer cell lines were cultured in RPMI medium containing 10% FBS (Thermo Scientific), 5 ⁇ 10 5 M 2-mercaptoethanol (Sigma-Aldrich), 50 IU / ml penicillin and 50 ⁇ g / ml streptomycin (Thermo Scientific) And cultured.
  • FBS Thermo Scientific
  • 5 ⁇ 10 5 M 2-mercaptoethanol Sigma-Aldrich
  • 50 IU / ml penicillin and 50 ⁇ g / ml streptomycin Thermo Scientific
  • gemcitabine (2 mg / scaffold) was mixed with a collagen-hyaluronic acid mixed solution evenly and crosslinked at a low temperature to prepare a gemcitabine- Lt; / RTI > Then, the loading efficiency of gemcitabine was measured according to the ratio of hyaluronic acid and collagen.
  • 4T1 cell lysate 1x10 7 4T1 cells / ml were rapidly frozen using liquid nitrogen, and then dissolved at 37 ° C for 5 times. After centrifugation at 490 x g for 10 minutes, the supernatant of the cell lysate . Protein concentrations were analyzed using BCA assay (Pierce Biotechnology). Six hours before transplantation into the tumor-free space, 500 ⁇ g of cell lysate was evenly dropped on the scaffold and stored at 4 ° C. to prepare a 4T1 cell lysate-loaded soft biodegradable device.
  • the nanogel solution was first equally dropped into the poly (I: C) solution and reacted for 2 hours.
  • the ratio was 1: 2 (nano-gel: poly (I: C)) in mass ratio.
  • the poly (I: C) / nano-gel 100 ⁇ g of poly (I: C) was evenly distributed on the soft tissue biopsy device loaded with the 4T1 cell lysate and stored at 4 ° C. for 6 hours to obtain 4T1 cell lysate And a poly (I: C) / nanogel loaded flexible biocompatible device.
  • the scaffold loaded with gemcitabine, rhodamine attached poly (I: C) / nano-gel, and 4T1 cell lysate was placed in 1 ml of PBS (pH 7.4) and stored at 37 ° C and 90 rpm. At each selected time interval, the original culture was obtained and replaced with a fresh culture. The amount of gemcitabine released from the scaffold was measured using absorbance (275 nm, UV-1800; Shimadzu, Kyoto, Japan), and the Rhodamine labeled poly I: C was detected using the 5'Entag TM Nucleic Acid Labeling System (Vector Laboratories) And 4T1 cell lysates were measured using BCA assay (Pierce Biotechnology). Specifically, the poly (I: C) / nano-gel with rhodamine released from the scaffold was analyzed by measuring the excitation wavelengths of 552 nm and 575 nm using a fluorescence analyzer (PerkinElmer).
  • the shin and femur of the mouse were carefully removed to remove muscle tissue, and the collected bone was immersed in 70% ethanol for 1 minute and washed with PBS. Both ends of the bone were cut and the marrow was washed with RPMI medium using a 26G needle syringe. After centrifugation at 490 x g for 5 minutes, erythrocytes were removed using a red cell dissolution buffer to obtain bone marrow cells.
  • the obtained bone marrow cells were cultured in RPMI medium containing FBS, penicillin, streptomycin, and granulocyte macrophage colony-stimulating factor (R & D Systems) (R & D Systems) in a 100 mm petri dish, Dendritic cells were used for the experiments.
  • Bone marrow-derived dendritic cells were cultured in 6-well plates at a density of 2 ⁇ 10 6 cells / well as poly (I: C) / nanogels (10 ⁇ g / ml poly (I: C)) and 4T1 cell lysates. After 24 hours, supernatants were obtained and IL-6 and TNF-a were measured using an ELISA (BD Biosciences). Bone marrow-derived dendritic cell activation markers were then analyzed using an Acurri TM flow cytometer. Antibodies were FITC-anti-CD11b, PE-anti-CD11c, APC-anti-CD40 and APC-anti-CD80 (BD Pharmingen).
  • Gemcitabine causes cell death in bone marrow-derived inhibitory cells (MDSCs) in vitro.
  • Spleens were extracted from mice with 4T1 tumors for 28 days, and the extracted spleens were sacrificed and erythrocytes were removed using a red cell lysis buffer.
  • the spleen cells from which red blood cells have been removed were redispersed in MACS buffer (PBS, 0.5% BSA, 2 mM MEDTA), and bone marrow-derived inhibitory cells were isolated using MDSC Isolation Kit (Miltenyi Biotec). Separated bone marrow-derived inhibitory cells were seeded in 6-well plates at a density of 2 ⁇ 10 6 cells / well and cultured with various concentrations of gemcitabine. Cell death of bone marrow-derived inhibitory cells by gemcitabine was measured according to the guidelines of FITC Annexin V Apoptosis kit (BD Biosciences).
  • Activation of bone marrow-derived dendritic cells using 4T1 breast cancer cell line treated with gemcitabine was also confirmed.
  • the 4T1 cells in 2 ⁇ 10 6 cells / well density and cultured in 6-well plates as 1 ⁇ g / ml gemcitabine.
  • Cell death of 4T1 breast cancer cells by gemcitabine was measured according to the guidelines of FITC Annexin V Apoptosis kit (BD Biosciences). After 24 hours, the supernatant was collected and the supernatant was incubated with the bone marrow-derived dendritic cells.
  • Activation markers of bone marrow derived dendritic cells were analyzed using an Acurri TM flow cytometer. Antibodies were FITC-anti-CD11c and APC-anti-CD80 (BD Pharmingen).
  • a scaffold loaded with a drug-free scaffold or a poly (I: C) / nano-gel, 4T1 lysate was loaded into the side of BALB / c mice Respectively.
  • the scaffolds were separated on days 7 and 14 of transplantation.
  • the separated scaffolds were digested with collagenase D (Worthington) for 1 hour at 37 ° C to obtain cells.
  • the obtained cells were filtered using a 70 mu m strainer (BD Bioscience) and washed with PBS.
  • the dendritic cell markers CD86 and CD11c antibodies were used and analyzed using an Acurri TM flow cytometer.
  • concentrations of IL-12, IL-6, and CCL-2 were measured in the scaffold-implanted portion in order to examine changes in the secretion pattern of cytokines and chemokines by the soft biodegradable element.
  • the peripheral tissues (100 mg) of the scaffold-implanted portion were excised and homogenized using 1 ml of protein extraction buffer containing protease inhibitor. Cytokines and chemokines were measured by ELISA according to the manufacturer's instructions.
  • a scaffold loaded with a rhodamine-attached poly (I: C) / nano-gel and FITC was implanted into the side of the mouse , And 3 days and 7 days later, the inguinal lymph node of the mouse was isolated and digested with collagenase D, and the obtained cells were passed through a 70 mu m strainer and filtered. Then dendritic cells with FITC and rhodamine fluorescent signals were analyzed using flow cytometry.
  • mice were sacrificed at day 7 and 14 after removal of the tumor and implantation of the soft biodegradable element, and the tumor, spleen, and lymph nodes of the sacrificed mice were separated and weighed.
  • Tumor and lymph node were finely chopped and dispersed in DMEM culture medium containing collagenase D, stored at 37 ° C and 90 rpm for 1 hour, and filtered through a 70 ⁇ m strainer. The spleen was physically decomposed and erythrocytes were removed using a red cell dissociation buffer. Tumor and spleen dispersed in the single cell by the above method were treated with APC-anti-CD11b, PE-anti-Gr1 antibody for identifying bone marrow-derived inhibitory cells and APC-anti-CD3, PE-anti-CD4, FITC -CD8 < / RTI > antibody. All antibodies were purchased from BD Pharmingen.
  • the spleen and lymph node were dispersed in a single cell as described above, and then cultured in a 12-well plate at a density of 2 ⁇ 10 6 cells / ml. 4T1 < / RTI > After 72 hours, the supernatant was collected and IFN- ⁇ (BD Biosciences) was measured by ELISA.
  • mice were sacrificed at 14 days after tumor removal to confirm metastasis.
  • the transfer of cancer cells was confirmed by using a 3 ml Indian ink using a bronchial injection method. Specifically, lungs were extracted and destained in Fekete solution (100 ml of 70% ethanol, 10 ml of 4% formaldehyde, 5 ml of 100% acetic acid).
  • 29 shows a conceptual diagram for inducing an immunosuppression environment control and anti-cancer immunity effect using a soft biotissue device loaded with an MDSC regulatory drug, a cancer antigen and an immunostimulatory substance around a solid tumor.
  • 29A shows a process of implanting a soft biotissue element manufactured in the breast cancer model 4T1.
  • FIG. 29B is a graph showing the results of immunoinhibition of MDSC, which is an immunosuppressive cell around solid tumors transplanted with gemcitabine (GEM) and cancer vaccine released from an implanted soft biodegradable device, and activating dendritic cells, This shows the process of inducing the systemic anticancer effect through the node and spleen.
  • GEM gemcitabine
  • 30 shows the difference in loading efficiency and loading amount of the gemcitabine in the soft biodegradable device according to the ratio of collagen and hyaluronic acid. 30, it was found that the loading rate of gemcitabine was maximized in the cryocell scaffold in which collagen: hyaluronic acid was mixed 5: 5.
  • FIG. 31 shows the release behavior of gemcitabine released from the soft biodegradable element, and the effect on cancer cells and immune cells.
  • the cumulative amount of gemcitabine from the scaffold was measured.
  • the amount of the bone marrow-derived inhibitory cell (MDSC) The percentage of apoptotic cells was increased as the concentration of gemcitabine increased (FIG. 31b).
  • the death cell ratio was increased with an increase in gemcitabine concentration (FIG. 31C).
  • FIG. 32 shows release behavior of cancer antigens released from the soft biodegradable element and activation effect of immune cells (BMDC, BMDM).
  • BMDC soft biodegradable element and activation effect of immune cells
  • FIG. 32 the cell maturity (CD40, CD80) flow cytometry analysis of dendritic cells and macrophages after 24-hour culture showed that the increase in the number of cells in the experimental group including the poly I: C-nanogel and lysates synergy), indicating that cell maturity was increased (FIG. 32B).
  • cytokine TNF- ⁇ , IL-6
  • FIG. 33 shows the effect of time-dependent dendritic cell maturation by the in vivo implanted soft biodegradable device, showing excellent effect of collecting and matured dendritic cells in a soft biodegradable device including a cancer antigen on days 7 and 14 I could confirm.
  • the dendritic cell (a) and macrophage (b) ratios in tumor and spleen at 7 and 14 days after tumor resection and soft biotransplantation implantation showed that gemcitabine and poly I: C-nanogel and cell lysate lysate) and the vaccine-treated group (Fig. 35).
  • the viability test results (a) and the 14-day recurred tumor weight (b) after the implantation of the soft biotissue insert showed that gemcitabine and poly I: C-nanogel and cell lysate
  • the survival rate was the best in the included soft-tissue insert (iCD) test group, and the weight of the solid cancer was the lowest (Fig. 36).
  • Example 12 Anti-cancer drugs, immunosuppressive cells MDSC And TAM Function Modulating Drug, Cancer Immunization Activated Very Burnt, Immune Checkpoint Inhibitor Loaded Fabrication and face of soft biodegradable element As an anticancer drug Character rating
  • the mixed solution was able to control the functions of doxorubicin, immunosuppressive cells MDSC and TAM, which are anticancer agents inducing immunogenic cell death, and TLR7 agonists (R848) nanoparticles having multifunctional properties such as immunostimulatory avidity function and anti-PDL1 as an immune checkpoint inhibitor (FIGS. 40 and 41).
  • doxorubicin immunosuppressive cells
  • TAM which are anticancer agents inducing immunogenic cell death
  • TLR7 agonists R848 nanoparticles having multifunctional properties such as immunostimulatory avidity function and anti-PDL1 as an immune checkpoint inhibitor (FIGS. 40 and 41).
  • the characteristics of the soft biodegradable element thus prepared as an immuno-anticancer agent were evaluated using the methods described in Example 9 and Example 11.
  • MDSC which is an immunosuppressive cell
  • doxorubicin (Dox) anticancer drug is added to the soft biodegradable device
  • Fig. 44 the combo group in which the doxorubicin (Dox) anticancer drug was added to the soft biodegradable device showed that the recurrence of cancer was abruptly suppressed after surgery
  • This excellent anticancer effect is due to the synergistic effect of doxorubicin and recipe mode, the number of T cells and M1 macrophages involved in the treatment of cancer is increased while the number of immunosuppressive cells MDSC and M2 macrophages is decreased (Fig. 45).
  • These cytokines (IL-12, IL-6, and IFN-gamma) associated with the anticancer effect are increased by the increase of the immunostimulatory cells and the decrease of the immunosuppressive cells, ) Was decreased (Fig. 45).
  • an anti-PDL1 inhibitor anti-PDL1 was additionally loaded into a combo group in which doxorubicin and recipe mode were loaded in a soft biodegradable device.
  • the cryocell scaffold according to the present invention is prepared by mixing two or more components having different degrees of decomposition and then crosslinking at a low temperature to adjust the concentration of the component and the mixing ratio of each component so as to obtain a degree of decomposition and / It is expected that the application field of the cryogen scaffold can be further expanded.
  • the anti-cancer drug and the drug for controlling the immunosuppressive action are loaded together with the cryocell scaffold of the present invention, the therapeutic effect of the solid cancer having a low therapeutic effect can be remarkably improved, and thus it can be widely used for the treatment of various solid tumors It is expected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자 등에 관한 것이다.

Description

분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자
본 발명은 분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자 등에 관한 것이다.
생체유래 소재 및 합성고분자를 이용하여 제조된 다공성 스캐폴드는 다양한 분야에 활용되고 있다. 특히 다공성 스캐폴드는 바이오 의료분야에서 세포성장 및 조직공학용 스캐폴드, 세포전달체, 약물전달체, 바이오물질 정제 등을 위한 목적으로 이용되어 왔다. 이러한 다공성 스캐폴드는 알지네이트, 젤라틴, 콜라겐, 히알루론산 등과 같은 세포외기질(extracellular matrix, ECM)의 주성분을 이용하고, 물리/화학적 가교 방법을 이용하여 제조되어 왔다. 종래에는 다공성 스캐폴드에서 기공을 형성하기 위하여 특별한 템플리트(template) 또는 포로젠(porogen) 물질을 사용하는 방법이 활발하게 이용되어 왔으나, 이러한 방법으로 제조된 다공성 스캐폴드는 모두 획일적인 분해도(degradability)를 가지고 있거나, 매우 낮은 스웰링비(swelling ratio)를 가진다는 단점을 가지고 있다. 그러나 바이오 및 의료분야에 사용되는 다공성 스캐폴드는 그 용도와 목적에 따라서, 분해도나 스웰링비가 자유롭게 조절되어야 하기 때문에, 최근에는 분해도를 조절하기 위해 저분자량(low molecular weight)의 구성물질을 사용하거나 가교밀도(crosslinking density)를 낮게 하는 시도들이 있었으나, 이러한 경우에는 기계적 물성이 낮아지는 단점이 있었다. 따라서 분해도 제어가 가능하면서 기계적 물성 및 스웰링비가 유지되는 다공성 스캐폴드는 바이오 및 의료분야에 효과적으로 사용될 수 있을 것으로 기대된다.
한편, 체내의 면역시스템을 이용하여 암을 치료하는 항암면역치료방법은 기존의 화학적 요법이나 방사선 치료방법에 비하여 부작용을 최소화할 수 있다는 장점이 있다. 이러한 항암면역치료기법 중에는 치료용 면역세포인 수지상세포(Dendritic Cells), 자연살해세포(Natural Killer Cells), T 세포(T cells) 등을 체외에서 활성화 시킨 후에 체내에 직접 주입하는 세포치료제 방법이 활발하게 연구되고 있다. 또한 암 항원과 면역활성화 물질을 체내에 주입함으로써, 체내의 치료용 면역세포를 활성화함으로써 항암효능을 높이는 암백신에 대한 연구도 활발하게 진행되고 있다. 하지만, 이러한 세포치료제나 암백신은 주로 혈액암 관련 질병에 주로 사용되고 있고, 고형암에서는 대부분 그 치료효능이 매우 낮다는 단점을 갖고 있다. 이러한 이유 중의 하나는 고형암 주위에서 면역기능을 억제하는 미세환경 요인에 기인한다. 실제로, 종양미세환경에서 면역세포의 기능을 저하시키는 세포(MDSC: myeoloid-derived stromal cells, Treg: regulatory T cell, TAM: tumor-assocaited macrophages)나 면역억제유발 사이토카인, 대사체 등이 활발하게 작용함으로써, 면역활성화 물질과 치료용 면역세포의 활성을 급격하게 저하시키는 것이다.
또한, 현재 임상에 시도되고 있는 치료용 면역세포인 수지상세포, NK 세포, T 세포 등은 복강 또는 혈관을 통하여 체내에 주입된다. 이때 주입된 많은 양이 주입 부위에 머물거나 생체 내 순환과정에서 기능을 다하지 못하고 소멸되는 단점이 있다. 따라서 실제 임상분야에서는 10(9) 이상의 많은 수의 치료용 면역세포를 생체 내 주입함으로써, 암 치료효능을 높이기 위한 시도가 진행되고 있다. 하지만, 많은 수의 세포를 체외에서 배양하는 데 많은 시간과 비용이 소요되며, 치료비용도 매우 높은 편이다. 또한 체외에서 배양된 많은 수의 세포는 지정된 기간 내에 환자에 사용되어야 하며, 그렇지 못한 경우에는 고가의 비용으로 제조된 많은 수의 치료용 세포가 폐기처분 되어야 하는 치명적 단점을 갖고 있다.
고형암 미세환경에서 면역억제작용에 관여하는 세포, 사이토카인, 메타볼라이트 등을 타겟으로 하는 약물들이 개발되어, 임상분야에서 그 효능에 대한 시험이 활발하게 진행되고 있다. 하지만, 대부분의 약물의 안정성이 매우 약하며, 고농도의 약물이 혈관 주입(intravenous injection)을 통하여 체내에 주입되었을 경우는, 정상세포 뿐만 아니라, 항암치료 기능을 담당하는 면역세포까지 사멸할 수 있는 독성 및 부작용이 가장 큰 문제가 되고 있다.
따라서, 고형암의 치료효율을 높이기 위해서는 고형암 미세환경에서 면역억제인자를 제어하면서, 치료용 면역세포의 활성화 및 그 기능을 유지시켜 줄 수 있는 새로운 치료 플랫폼 기술의 개발이 매우 시급하다. 하지만, 현재까지 이러한 고형암 미세환경에서의 면역억제인자를 제어하면서 동시에 치료용 면역세포의 활성화 유지 기능을 하는 생체삽입소자에 대한 발명은 전무하다.
최근에 미국 하버드대학의 Mooney 그룹에서는 PLGA 고분자를 이용하여 제조된 다공성 스캐폴드 내에 GM-CSF, CpG 및 암세포 라이세이트가 포함된, 새로운 형태의 암백신을 개발하여, 암 치료분야에 적용한 사례가 있다(US 6748954 B2). 이 연구에서는 다공성 스캐폴드를 제조하기 위하여 gas-foaming 공정을 사용하였다. 또한, 미국 프레드허치슨 암 연구센터의 Stephan 그룹에서는 알지네이트 매트릭스에 치료용 T 세포 및 활성화 물질을 동시에 로딩한 후에, 항암치료 기술로 활용하였다. 하지만, 이러한 선행연구에서는 수지상세포 활성화 백신 성분 및 치료용 T세포가 로딩된 스캐폴드를 제작하였을 뿐, 고형암 미세환경하의 면역억제인자를 전혀 고려하지 않았다. 따라서, 고형암 미세환경하에서 다양한 맞춤형 면역억제인자의 로컬 전달(local delivery)을 유도할 수 있는 생체 삽입형 연성소자의 개발이 시급한 실정이다.
상기와 같은 종래 기술상 문제점을 해결하기 위하여, 본 발명은 현재 활발하게 이용되고 있는 알지네이트가 아닌 다양한 생체 고분자를 기반으로, 중간체 물질(template 또는 porogen)을 이용하지 않으면서도, 서로 연결된 기공구조(interconnected pore structure)를 형성할 수 있는 저온 가교법(crosslinking at low temperature, -4 ℃ 또는 -20 ℃)을 이용하여 크라이오젤(cryogel) 스캐폴드를 제조하고, 여기에 고형암 미세환경하의 항암면역치료제의 효능을 저하시키는 다양한 면역억제인자를 제어할 수 있는 다양한 약물이 로딩된 맞춤형 연성 생체삽입소자 및 이의 제조방법을 제공하는 것을 목적으로 한다.
더욱 자세하게, 본 발명은 수용액과 접촉시 스웰링되어 부피가 증가되는 제1성분과, 상기 제1성분과 상이하고, 상기 제1성분과 저온에서 가교결합이 가능하며, 상기 제1성분과 가교 후 외부자극에 의해 분해도 제어가 가능한 제2성분이 가교된 구조를 포함하는 크라이오젤 스캐폴드 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 수용액과 접촉시 스웰링되어 부피가 증가되는 제1성분과, 상기 제1성분과 저온에서 가교 후 외부자극에 의해 분해도 제어가 가능한 제2성분이 가교된 구조를 포함하는 크라이오젤 스캐폴드; 및 고형암 미세환경에서 면역억제작용을 제어하는 약물을 포함하는 연성 생체삽입소자와 이의 제조방법을 제공하는 것을 다른 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당해 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위하여, 본 발명은 제1성분 및 제2성분이 가교된 구조를 포함하는, 크라이오젤 스캐폴드(cryogel scaffold)로서, 상기 제1성분은 수용액과 접촉시 스웰링(swelling)되어 상기 스캐폴드의 부피가 증가되며, 상기 제2성분은 상기 제1성분과는 상이한 화합물로서, 제1성분과 가교결합이 가능하며, 제1성분과 가교 후 외부 자극에 의하여 분해도 제어가 가능한 것인 크라이오젤 스캐폴드(cryogel scaffold)를 제공한다.
본 발명의 일 구현예로서, 상기 제1성분은 히알루론산, 히알루론산 메타아크릴레이트, 폴리글루탐산, 폴리감마글루탐산, 폴리아미노산, 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것일 수 있다.
본 발명의 다른 구현예로서, 상기 제2성분은 콜라겐, 히알루론산, 히알루론산 알데하이드 메타아크릴레이트, 폴리감마글루탐산, 폴리아미노산, 키토산, 셀룰로오스, 폴리아크릴레이트, 폴리아크릴산 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 제1성분은 히알루론산 메타아크릴레이트(Hyaluronic acid-methacrylate: HA-MA)이고, 상기 제2성분은 히알루론산 알데하이드 메타아크릴레이트(Hyaluronic acid-aldehyde methacrylate: HA-ald-MA)일 수 있다.
본 발명의 또 다른 구현예로서, 상기 제2성분은 콜라겐(Collagen)이고, 상기 제1성분은 폴리감마글루탐산(Poly(gamma-glutamic acid)) 또는 히알루론산(Hyaluronic acid)일 수 있다.
본 발명의 또 다른 구현예로서, 상기 제1성분 및 제2성분은 10:90 내지 90:10, 20:80 내지 80:20, 30:70 내지 70:30, 40:60 내지 60:40, 또는 50:50의 w/v%로 포함될 수 있다.
본 발명의 또 다른 구현예로서, 상기 제1성분과 제2성분의 가교된 구조는 -25 내지 -4 ℃ 에서 형성된 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 크라이오젤 스캐폴드의 기공(pore)의 직경은 20 내지 900 ㎛인 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 기공의 직경은 2단계의 쿨링(cooling) 기법을 통해 조절되는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 외부자극은 체내 생리적 조건, 빛, 환원제, 및 효소로 이루어진 군으로부터 선택된 하나 이상의 자극일 수 있다.
또한, 본 발명은 (a) 제1성분을 포함하는 제1성분 용액을 제조하는 단계; (b) 제2성분을 포함하는 제2성분 용액을 제조하는 단계; (c) 상기 제1성분 용액 및 제2성분 용액을 혼합하여 혼합용액을 제조하는 단계; 및 (d) 상기 혼합용액을 저온에서 가교시키는 단계;를 포함하는, 크라이오젤 스캐폴드(cryogel scaffold)의 제조방법으로서, 상기 제1성분은 수용액과 접촉시 스웰링(swelling)되어 상기 스캐폴드의 부피가 증가되며, 상기 제2성분은 상기 제1성분과는 상이한 화합물로서, 제1성분과 가교결합이 가능하며, 제1성분과 가교 후 외부 자극에 의하여 분해도 제어가 가능한 것인 크라이오젤 스캐폴드(cryogel scaffold)의 제조방법을 제공한다.
본 발명의 일 구현예로서, 상기 (a) 단계의 제1성분은 히알루론산, 히알루론산 메타아크릴레이트, 폴리글루탐산, 폴리감마글루탐산, 폴리아미노산, 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것일 수 있다.
본 발명의 다른 구현예로서, 상기 (b) 단계의 제2성분은 콜라겐, 히알루론산, 히알루론산 알데하이드 메타아크릴레이트, 폴리감마글루탐산, 폴리아미노산, 키토산, 셀룰로오스, 폴리아크릴레이트, 폴리아크릴산 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (a) 단계의 제1성분은 히알루론산 메타아크릴레이트(Hyaluronic acid-methacrylate: HA-MA)이고, 상기 (b) 단계의 제2성분은 히알루론산 알데하이드 메타아크릴레이트(Hyaluronic acid-aldehyde methacrylate: HA-ald-MA)일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (b) 단계의 제2성분은 콜라겐(Collagen)이고, 상기 (a) 단계의 제1성분은 폴리감마글루탐산(Poly(gamma-glutamic acid)) 또는 히알루론산(Hyaluronic acid)일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (a) 단계 및 (b) 단계에서 제1성분 또는 제2성분은 각 용액에 0.1 내지 50 ㎎/㎖의 농도로 포함되는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (d) 단계의 가교는 -25 내지 -4 ℃에서 3 내지 24 시간 동안 수행되는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (d) 단계는 상기 혼합용액을 몰드(mold)에 부은 후 저온에서 가교시키는 것일 수 있다.
또한, 본 발명은 상기 크라이오젤 스캐폴드와 고형암 미세환경에서 면역억제작용을 제어하는 약물을 포함하는 연성 생체삽입소자를 제공한다.
본 발명의 일 구현예로서, 상기 고형암 미세환경에서 면역억제작용을 제어하는 약물은 MDSC (Myeoloid-Derived Suppressor Cell), Treg(Regulatory T cell), 및/또는 TAM(tumor associated macrophage)의 활성, 생존, 또는 증식을 억제하는 것일 수 있다.
본 발명의 다른 구현예로서, 상기 고형암 미세환경에서 면역억제작용을 제어하는 약물은 고형암 미세환경에서 면역억제환경인자를 억제하는 기능을 수행하는 것이거나, 고형암 미세환경에서 직접 결합을 통해 T 세포를 활성화시킴으로써 면역체크포인트를 억제하는 기능을 수행하는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 연성 생체삽입소자는 종양의 성장을 저해하는 항암제, 면역억제인자 제어 약물, 암 백신, 면역아주번트(immunoadjuvant), 암 치료용 면역세포, 및 상기 암 치료용 면역세포의 활성 유지에 필요한 사이토카인으로 이루어진 군으로부터 선택되는 하나 이상의 약물을 더 포함하는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 종양의 성장을 저해하는 약물은 디엔에이 메틸트렌스페라아제 억제제(DNA methyltransferase inhibitor: DNMTi), 히스톤 디아세틸레이즈 억제제(histone deacetylase inhibitor: HDACi), 및 혈관신생 억제제(angiogenesis inhibitors)로 이루어진 군으로부터 선택된 하나 이상을 포함하는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 크라이오젤 스캐폴드에 상기 약물이 로딩된 것일 수 있으며, 상기 약물의 로딩은 가교 전 로딩(pre-fabricaton loading) 또는 가교 후에 로딩(post-fabrication loading)되는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 가교 전 로딩은 상기 약물을 상기 크라이오젤 스캐폴드의 구조 형성 전에 제1성분 및 제2성분의 혼합용액에 혼합한 후 가교시키는 것에 의해 수행될 수 있다.
본 발명의 또 다른 구현예로서, 상기 가교 후 로딩은 상기 크라이오젤 스캐폴드를 약물에 담그는(immersion) 방법, 상기 크라이오젤 스캐폴드에 약물을 떨어뜨리는(dropping) 방법, 또는 상기 크라이오젤 스캐폴드에 약물을 직접주입(injection)하는 방법 등을 통해 수행될 수 있다.
또한, 본 발명은 (a) 제1성분을 포함하는 제1성분 용액을 제조하는 단계; (b) 제2성분을 포함하는 제2성분 용액을 제조하는 단계; (c) 상기 제1성분 용액, 제2성분 용액, 및 약물을 혼합하여 혼합용액을 제조하는 단계; 및 (d) 상기 혼합용액을 저온에서 가교시키는 단계를 포함하는 연성 생체삽입소자 제조방법으로서, 상기 제1성분은 수용액과 접촉시 스웰링(swelling)되어 상기 스캐폴드의 부피가 증가되며, 상기 제2성분은 상기 제1성분과는 상이한 화합물로서, 제1성분과 가교결합이 가능하며, 제1성분과 가교 후 외부 자극에 의하여 분해도 제어가 가능하며, 상기 약물은 고형암 미세환경 내의 면역억제작용을 제어하는 약물인, 연성 생체삽입소자 제조방법을 제공한다.
또한, 본 발명은 (a) 제1성분을 포함하는 제1성분 용액을 제조하는 단계; (b) 제2성분을 포함하는 제2성분 용액을 제조하는 단계; (c) 상기 제1성분 용액 및 제2성분 용액을 혼합하여 혼합용액을 제조하는 단계; (d) 상기 혼합용액을 저온에서 가교시켜 크라이오젤 스캐폴드를 제조하는 단계; 및 (e) 상기 크라이오젤 스캐폴드에 약물을 로딩하는 단계를 포함하는 연성 생체삽입소자 제조방법으로서, 상기 제1성분은 수용액과 접촉시 스웰링(swelling)되어 상기 스캐폴드의 부피가 증가되며, 상기 제2성분은 상기 제1성분과는 상이한 화합물로서, 제1성분과 가교결합이 가능하며, 제1성분과 가교 후 외부 자극에 의하여 분해도 제어가 가능하며, 상기 약물은 고형암 미세환경 내의 면역억제작용을 제어하는 약물인, 연성 생체삽입소자 제조방법을 제공한다.
본 발명의 일 구현예로서, 상기 (a) 단계의 제1성분은 히알루론산, 히알루론산 메타아크릴레이트, 폴리글루탐산, 폴리감마글루탐산, 폴리아미노산, 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것일 수 있다.
본 발명의 다른 구현예로서, 상기 (b) 단계의 제2성분은 콜라겐, 히알루론산, 히알루론산 알데하이드 메타아크릴레이트, 폴리감마글루탐산, 폴리아미노산, 키토산, 셀룰로오스, 폴리아크릴레이트, 폴리아크릴산 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (a) 단계의 제1성분은 히알루론산 메타아크릴레이트(Hyaluronic acid-methacrylate: HA-MA)이고, 상기 (b) 단계의 제2성분은 히알루론산 알데하이드 메타아크릴레이트(Hyaluronic acid-aldehyde methacrylate: HA-ald-MA)일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (b) 단계의 제2성분은 콜라겐(Collagen)이고, 상기 (a) 단계의 제1성분은 폴리감마글루탐산(Poly(gamma-glutamic acid)) 또는 히알루론산(Hyaluronic acid)일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (a) 단계 및 (b) 단계에서 제1성분 또는 제2성분은 각 용액에 0.1 내지 50 ㎎/㎖의 농도로 포함되는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (c) 단계의 혼합용액은 Arginylglycylaspartic acid(RGD peptide) 또는 세포외기질(extracellular material: ECM) 유래 물질을 더 포함하는 것일 수 있으며, 상기 세포외기질 유래 물질의 비제한적인 예로서 콜라겐, 엘라스틴, 및 젤라틴 등이 있다.
본 발명의 또 다른 구현예로서, 상기 (c) 단계의 혼합용액은 종양의 성장을 저해하는 항암제, 면역억제인자 제어 약물, 암백신, 면역아주번트(immunoadjuvant), 항암 치료용 면역세포, 및 상기 항암 치료용 면역세포의 활성 유지에 필요한 사이토카인으로 이루어진 군으로부터 선택되는 하나 이상의 약물을 더 포함할 수 있다.
본 발명의 또 다른 구현예로서, 상기 (d) 단계는 상기 혼합용액을 몰드(mold)에 부은 후 저온에서 가교하는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (d) 단계의 가교는 -25 내지 -4 ℃에서 3 내지 24 시간 동안 수행되는 것일 수 있다.
본 발명의 또 다른 구현예로서, 상기 (e) 단계는 크라이오젤 스캐폴드에 종양의 성장을 저해하는 항암제, 면역억제인자 제어 약물, 암백신, 면역아주번트(immunoadjuvant), 항암 치료용 면역세포, 및 상기 항암 치료용 면역세포의 활성유지에 필요한 사이토카인으로 이루어진 군으로부터 선택되는 하나 이상의 약물을 추가로 로딩하는 것일 수 있다.
또한, 본 발명은 상기 연성 생체삽입소자를 개체에 삽입하는 단계를 포함하는 고형암 치료방법을 제공한다.
본 발명의 일 구현예에 따르면, 상기 삽입은 외과적 시술에 의해 수행되는 것일 수 있으며, 상기 연성 생체삽입소자는 고형암 조직을 제거한 부위에 삽입될 수 있다.
본 발명에 따른 크라이오젤 스캐폴드는 분해도가 서로 다른 2 이상의 성분을 혼합하여 저온에서 가교하여 제조됨으로써, 상기 성분과 그 농도 및 각 성분의 혼합비율을 조절하여 기계적 물성에 영향없이 용도와 목적에 적합한 분해도 및/또는 스웰링비를 가질 수 있다. 따라서, 분해도 조절이 가능한 크라이오젤 스캐폴드의 제공으로 크라이오젤 스캐폴드가 이용되는 분야가 확장될 것으로 기대된다. 또한, 본 발명에 따른 연성 생체삽입소자는 상기 크라이오젤 스캐폴드에 항암 약물을 로딩하여 종양 조직을 제거한 후에 이를 이식함으로써 잔존 암세포의 사멸과 암세포의 전이를 억제할 수 있으며, 특히 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩함으로써 면역억제작용에 의해 치료효과가 낮은 고형암 미세환경에서 암 치료에 효과적인 장점이 있다.
도 1a는 생리화학적 조건하에서 분해도가 서로 다른 2성분 이상의 물질을 포함하여 분해도 조절이 가능한 크라이오젤 스캐폴드의 제조과정이고, 도 1b는 크라이오젤 스캐폴드에 약물이 로딩된 연성 생체삽입소자 제조과정을 도식화한 것이다.
도 2는 크라이오젤 스캐폴드를 제조하기 위하여, 스캐폴드의 구조를 형성할 수 있는 몰드(mold)의 제조과정을 도식화한 것이다.
도 3은 히알루론산 기반 크라이오젤 스캐폴드 제조를 위한 화학 가교반응을 도식화한 것이다.
도 4 및 5는 HA-MA와 MA-ald-MA를 포함하여 분해도 조절이 가능한 크라이오젤 스캐폴드의 제조방법 및 그 분해도 조절을 도식화한 것이다.
도 6은 콜라겐과 히알루론산 또는 폴리감마글루탐산을 포함하여 분해도 조절이 가능한 크라이오젤 스캐폴드 제조방법 및 그 분해도 조절을 도식화한 것이다.
도 7은 콜라겐, 히알루론산, 및 폴리감마글루탐산을 포함하여 분해도 조절이 가능한 크라이오젤 스캐폴드 제조방법 및 그 분해도 조절을 도식화한 것이다.
도 8은 ROS 생성에 의해 분해도 조절이 가능한 크라이오젤 스캐폴드 및 그 분해도 조절을 도식화한 것이다.
도 9는 환원제(DTT)에 의해 분해도 조절이 가능한 크라이오젤 스캐폴드 및 그 분해도 조절을 도식화한 것이다.
도 10은 효소에 의해 분해도 조절이 가능한 크라이오젤 스캐폴드 및 그 분해도 조절을 도식화한 것이다.
도 11은 히알루론산 메타아크릴레이트(HA-MA) 및 히알루론산 알데하이드 메타아크릴레이트(HA-ald-MA) 합성과정의 모식도이다.
도 12a 내지 12d는 HA-MA(A)와 HA-ald-MA(B) 블랜드 기반 크라이오젤 스케폴드의 H-NMR 스펙트럼이다.
도 13은 HA-MA 및 HA-ald-MA를 포함하는 크라이오젤 스캐폴드의 외관(A) 및 기공구조(B, C)의 사진이다.
도 14는 다양한 혼합비율을 갖는 HA-MA/HA-ald-MA 블랜드 기반 크라이오젤 스캐폴드의 생체 외 및 생체 내 분해특성을 요약한 표(A) 및 생체 외 조건에서 시간이 지남에 따라 분해정도를 나타낸 그래프(B)이다.
도 15는 다양한 혼합비율을 갖는 HA-MA/HA-ald-MA 블랜드 기반 크라이오젤 스캐폴드를 마우스 피하에 이식한 후 10일, 15일 및 28일 후에 분해된 스캐폴드의 형상을 확인한 사진이다.
도 16은 콜라겐 및 폴리감마글루탐을 포함하는 크라이오젤 스캐폴드 제조를 위한 화학 가교반응을 도식화한 것이다.
도 17은 다양한 비율로 혼합되고 가교되어 제작된 히알루론산/콜라겐 블랜드 기반 크라이오젤 스캐폴드의 생체 외 조건하에서 분해거동을 관찰한 사진이다.
도 18은 다양한 비율로 혼합되고 가교되어 제작된 히알루론산/콜라겐 블랜드 기반 크라이오젤 스캐폴드의 주사전자현미경 사진(a) 및 5:5 블랜드 스캐폴드의 생체 내 조건하에서 분해거동(b)을 관찰한 사진이다.
도 19는 다양한 농도의 콜라겐 용액과 폴리감마글루탐산의 가교반응에 의해 형성된 콜라겐/폴리감마글루탐산 블랜드 기반 크라이오젤 스캐폴드의 생체 외 조건(콜라겐네이즈) 하에서 분해거동을 관찰한 사진이다.
도 20은 Thiolated HA 기반 크라이오젤 스캐폴드 제조를 위한 화학 가교반응을 도식화한 것이다.
도 21은 생체 내에 삽입된 면역억제조절인자(면역체크포인트 저해제), 면역 활성화 항체, 항암제 및 면역활성화 약물을 포함하는 연성 생체삽입소자의 기능을 도식화한 것이다.
도 22는 다양한 혼합비율을 갖는 HA-MA/HA-ald-MA 블랜드 기반 크라이오젤 스캐폴드를 포함하는 연성 생체삽입소자에 로딩된 PTX, Antibodies(anti-CTLA4) 및 R837의 방출거동을 나타낸 그래프이다.
도 23은 PTX 및 Antibodies(anti-CTLA4) 및/또는 R837이 로딩된 연성 생체삽입소자(SKSC1-002)에 의한 BMDC의 활성화 효과를 확인한 도면이다.
도 24는 PTX 및/또는 Antibodies(anti-CTLA4, anti-OX40) 및 R837이 로딩된 연성 생체삽입소자(SKSC1-002)를 유방암 동물 모델에 이식한 후에 고형암 미세환경의 면역억제세포 및 면역활성화세포의 분포를 확인한 도면이다.
도 25는 PTX 및/또는 Antibodies(anti-CTLA4, anti-OX40) 및 R837이 로딩된 연성 생체삽입소자(SKSC1-002)를 유방암 동물 모델에 이식한 후에 비장에서 면역억제세포 및 면역활성화세포의 분포를 확인한 도면이다.
도 26은 PTX 및/또는 Antibodies(anti-CTLA4, anti-OX40) 및 R837이 로딩된 연성 생체삽입소자(SKSC1-002)를 유방암 동물 모델에 이식한 후 1주일(A) 및 2주일(B)에 측정한 고형암 및 비장의 무게를 확인한 도면이다.
도 27은 PTX 및/또는 Antibodies(anti-CTLA4, anti-OX40) 및 R837이 로딩된 연성 생체삽입소자(SKSC1-002)를 유방암 동물 모델에 이식한 후 생존률을 확인한 도면이다.
도 28은 MDSC 사멸 유도 약물, 암백신 및 면역활성화 물질이 로딩된 연성 생체삽입소자(immuneCare-DISC)의 제조과정을 도식화한 것이다.
도 29는 MDSC 사멸 유도 약물, 암백신 및 면역활성화 물질이 로딩된 연성 생체삽입소자를 유방암 동물모델에 이식하는 과정의 사진(a) 및 약물이 로딩된 연성 생체삽입소자를 이용한 면역억제환경 제어 및 항암면역효과 유도 개념도(b)이다. 유방암 동물 모델에 연성 생체삽입소자를 이식하는 과정의 사진 i은 종양 세포를 주입하고 14일 차에 종양 절제 이전 모습이며, 종양은 약 300 mm 3 크기이다. 사진 ii는 종양 절제 이후 절제한 종양(전체 종양의 약 90%)과 체내 남아 있는 종양의 모습이다. 사진 iii은 종양 절제부위에 연성 생체삽입소자를 이식한 모습이다. 사진 iv는 연성 생체삽입소자를 이식한 후 수술 상처를 봉합한 모습이다.
도 30은 콜라겐과 히알루론산의 혼합 비율에 따른 연성 생체삽입소자의 젬시타빈 적재효율(loading efficiency)과 적재량(loading amount) 차이를 확인한 도면이다.
도 31은 연성 생체삽입소자에서 방출되는 젬시타빈의 방출거동, 암세포 및 면역세포에 미치는 영향을 확인한 도면이다. a는 연성 생체삽입소자에서 나오는 젬시타빈의 일주일간 누적량 결과이고, b는 젬시타빈 농도 변화에 따른 골수유래억제세포(MDSC)의 사멸세포 비율 결과이고, c는 젬시타빈 농도 변화에 따른 유방암 세포주(4T1)의 사멸세포 비율 결과이며, d는 젬시타빈을 처리한 유방암 세포주(실험군)와 대조군(control)을 이용한 수지상세포의 세포성숙도 비교 유세포 분류(flow cytometry) 결과이다.
도 32는 연성 생체삽입소자에서 방출되는 암백신의 방출거동 및 면역세포(BMDC, BMDM) 활성화 효과를 확인한 도면이다. a는 연성 생체삽입소자에서 나오는 유방암 세포주 용해물과 폴리 I:C-나노겔의 누적량 결과이고, b는 24시간 배양 이후 수지상세포와 대식세포의 세포 성숙도(CD40, CD80) 유세포 분류 결과이고, c는 24시간 배양 이후 수지상세포와 대식세포에서 분비되는 사이토카인(TNF-α, IL-6) 농도 측정 결과이다.
도 33은 생체내 이식된 연성 생체삽입소자에 의한 시간별 수지상세포 성숙도 효과를 확인한 그래프이다. 그래프 가로축에 BLANK는 암 항원을 포함하지 않은 연성 생체삽입소자를 의미하고, Vaccine은 암 항원(poly(I:C)/nanogel(100 μg), 4T1 lysate(500 μg))을 포함하는 연성 생체삽입소자를 의미한다(n=5, *p<0.05, **p<0.01, ***p<0.005 ).
도 34는 유방암 동물 모델에 연성 생체삽입소자 이식 이후 7일(a), 14일(b)차 비장 무게 비교 결과이다(n=5, *p<0.05, **p<0.01, ***p<0.005).
도 35는 종양 절제와 연성 생체삽입소자 이식 이후 14일 후에 종양(적색 그래프, 왼쪽)과 비장(청색 그래프, 오른쪽)에서의 수지상세포(a)와 대식세포(b) 비율을 비교 확인한 결과이다(n=5, *p<0.05, **p<0.01, ***p<0.005).
도 36은 연성 생체삽입소자 이식 이후 생존성 테스트 결과(a)와 재발된 종양 무게(b) 비교 결과이다(n=5, *p<0.05, **p<0.01, ***p<0.005).
도 37은 연성 생체삽입소자 이식 이후 암세포의 폐 전이 방지 효과를 확인한 도면이다. a는 폐로 전이된 종양 결절 수를 비교한 그래프이고(n=5, *p<0.05, **p<0.01, ***p<0.005), b는 폐로 전이된 종양을 보여주는 폐 사진이다.
도 38은 종양 절제와 연성 생체삽입소자 이식 이후 종양(청색 그래프)과 비장(적색 그래프)에서 측정한 골수유래억제세포(MDSC)의 비율 변화를 확인한 그래프(a)와 CD8+ T 세포와 CD4+ T 세포 비율 변화를 확인한 그래프(b)이다.
도 39는 종양 절제 및 연성 생체삽입소자 이식 이후 7일, 14일 차에 비장(a)과 림프노드(b)에서 세포를 추출하여 암백신을 처리하고 72시간 동안 활성화 시킨 후에 측정한 인터페론 감마의 농도를 비교 확인한 도면이다.
도 40은 항암제, 면역억제세포인 MDSC 및 TAM 기능조절 약물, 암 면역활성화 아주번트가 로딩된 연성 생체삽입소자를 도식화한 것이다.
도 41은 독소루비신에 의한 Immunogenic cell death, 레시퀴모드(R848) 나노입자에 의한 면역억제세포인 MDSC의 항원제시 세포로의 변화 유도 및 TAM의 기능을 제어(M2 -> M1 polarization)하는 기능, 면역활성화 아주번트 기능 및 면역체크 포인트 억제제인 anti-PDL1에 의한 T 세포 활성화 기능을 도식화한 것이다.
도 42a는 레시퀴모드(Resiquimod: R848)가 처리된 그룹에서 macrophage가 M2에서 M1으로 polarization되는 경향을 파악하기 위해, 표면마커(CD86/CD206)와 Arg/NO 생성률을 측정한 결과이고, 도 42b는 사이토카인의 발현을 측정한 결과이다.
도 43은 레시퀴모드 나노입자에 의하여 면역억제세포인 MDSC가 수지상 세포 및 대식세포와 같은 항원제시 세포로의 변화 유도 경향(a)과, 이러한 변화에 의한 염증성 사이토카인의 발현 변화량(b)을 측정한 결과이다.
도 44는 연성 생체삽입소자에 독소루비신(Dox) 또는 레시퀴모드(R848-NPs)가 각각 단독으로 로딩된 경우와 레시퀴모드에 독소루비신 항암제가 추가로 로딩된 그룹(combo)에서의 항암효과를 알아보기 위해, 수술 후 재발되는 암 조직의 무게를 측정한 결과이다.
도 45는 독소루비신과 레시퀴모드의 시너지 효과에 의해, 암의 치료와 관련된 T 세포 및 M1 대식세포의 수는 증가되고, 면역억제 세포인 MDSC와 M2 대식세포의 수는 감소되는 경향, 항암 효과와 관련있는 사이토카인(IL-12, IL-6, IFN-gamma)과 암세포의 증식과 관련된 사이토카인(IL-10)의 변화량을 측정한 결과이다.
도 46은 독소루비신 및 레시퀴모드가 함께 로딩된 연성 생체삽입소자(Combo), 면역체크포인트 저해제인 anti-PDL1 단독으로 로딩된 연성 생체삽입소자(α-PDL1), 그리고 anti-PDL1, 독소루비신, 및 레시퀴모드가 함께 로딩된 연성 생체삽입소자의 항암효과를 확인한 결과이다.
도 47은 소루비신 및 레시퀴모드가 함께 로딩된 연성 생체삽입소자(Combo), 면역체크포인트 저해제인 anti-PDL1 단독으로 로딩된 연성 생체삽입소자(α-PDL1), 그리고 anti-PDL1, 독소루비신, 및 레시퀴모드가 함께 로딩된 연성 생체삽입소자를 각각 처리한 그룹에서, 암 세포의 폐로의 전이를 확인한 결과이다.
본 발명자들은 다양한 분야에서 크라이오젤 스캐폴드의 폭 넓은 활용을 위하여 각 분야에서 요구되는 분해도 및/또는 스웰링비(swelling ratio)를 만족하는 크라이오젤 스캐폴드의 제조방법을 예의 연구한 결과, 분해도가 서로 다른 2 이상의 성분을 적절한 비율로 혼합하여 저온에서 가교하여 제작된 크라이오젤 스캐폴드는 포함되는 성분, 각 성분의 농도, 및 각 성분의 혼합비율에 따라 그 분해도 및/또는 스웰링비가 조절될 수 있으며, 나아가 상기 크라이오젤 스캐폴드를 구성하는 성분의 화학적 구조, 생리학적 조건, 및 다양한 외부자극을 이용하여 스캐폴드의 기계적 물성은 유지하면서도 그 분해도를 조절할 수 있음을 확인하고 본 발명을 완성하였다.
또한, 본 발명자들은 바이오 의료 분야에서도 특히 암 치료를 위한 다공성 스캐폴드의 개발을 위해 예의 연구한 결과, 상기 분해도 조절이 가능한 크라이오젤 스캐폴드에 약물을 로딩하여 제조된 연성 생체삽입소자가 특히 고형암 치료에 탁월한 효과가 있음을 확인하여 본 발명을 완성하였다.
본 발명의 크라이오젤 스캐폴드(cryogel scaffold)는 수용액과 접촉시 스웰링되어 상기 스캐폴드의 부피가 증가되는 제1성분과, 상기 제1성분과 상이하고 상기 제1성분과 가교결합이 가능하며 상기 제1성분과 가교 후 외부자극에 의해 분해도 제어가 가능한 제2성분이 가교된 구조를 포함한다.
또한, 본 발명의 크라이오젤 스캐폴드는 (a) 수용액과 접촉시 스웰링되어 상기 스캐폴드의 부피가 증가되는 제1성분을 포함하는 용액을 제조하는 단계; (b) 상기 제1성분과 상이하고, 상기 제1성분과 가교결합 가능하며, 상기 제1성분과 가교 후 외부 자극에 의해 분해도 제어가 가능한 제2성분을 포함하는 용액을 제조하는 단계; (c) 상기 제1성분 및 제2성분 용액을 혼합하여 혼합용액을 제조하는 단계; 및 (d) 상기 혼합용액을 저온에서 가교시키는 단계를 통해 제조될 수 있다.
본 발명에서 크라이오젤 스캐폴드를 구성하는 제1성분은 친수성 물질로서 수용액과 접촉하여 스웰링(swelling)되어 상기 스캐폴드의 부피가 증가되는 특성을 갖는 것이라면 제한되지 않으나, 바람직하게는 폴리-N-비닐카프로락탐(Poly-N-vinylcaprolactam), HEMA(Hydroxyethylmethacrylate), 젤라틴(Gelatin), 콜라겐(Collagen), 히알루론산(Hyaluronic acid), 셀룰로오스(Cellulose), 키토산(Chitosan), 다당류(Polysaccharide), PTAC(Polyvinyl alcohol-tetraethylorthosilicate-alginate-calcium oxide), CAG(chitosan-agarose-gelatin), 카라지난(Carrageenan), 폴리아크릴레이트(Polyacrylate), 폴리아크릴로나이트릴(Polyacrylonitrile), 폴리아크릴아미드(Polyacrylamide), 아가로오스(Agarose), 알긴산(Alginate), 카르복시메틸 셀룰로오스(carboxymethyl cellulose: CMC), 하이드록시프로필 메틸셀룰로스(Hydroxypropyl methylcellulose: HPMC), 폴리에틸렌글리세롤(Polyethyleneglycol), 폴리하이드로에틸메타크릴레이트(Poly(hydroxyethyl methacrylate)), 폴리비닐알콜(Poly(vinyl alcohol)), 카세인(Casein), 폴리아미노산(Poly(amino acids)), 폴리글루탐산(Poly(glutamic acid)), 폴리감마글루탐산(Poly(gamma-glutamic acid)), 및 피브리노겐(Fibrinogen)으로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함할 수 있으며, 더욱 바람직하게는 히알루론산, 히알루론산 메타아크릴레이트, 폴리글루탐산, 폴리감마글루탐산, 폴리아미노산, 및 그 유도체(derivatives)로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것일 수 있고, 더욱 바람직하게는 히알루론산 메타아크릴레이트, 콜라겐, 히알루론산, 및 그 유도체로 이루어진 군으로부터 선택되는 것일 수 있다.
또한, 본 발명에서 크라이오젤 스캐폴드를 구성하는 제2성분은 상기 제1성분과 상이하고, 상기 제1성분과 가교결합이 가능하며, 상기 제1성분과 가교 후에 외부자극에 의해 분해도 제어가 가능한 것이라면 제한되지 않으나, 바람직하게는 폴리-N-비닐카프로락탐(Poly-N-vinylcaprolactam), HEMA, 젤라틴(Gelatin), 콜라겐(Collagen), 히알루론산(Hyaluronic acid), 셀룰로오스(Cellulose), 키토산(Chitosan), 다당류(Polysaccharide), PTAC, CAG, 카라지난(Carrageenan), 폴리아크릴레이트(Polyacrylate), 폴리아크릴로나이트릴(Polyacrylonitrile), 폴리아크릴아미드(Polyacrylamide), 아가로오스(Agarose), 알긴산(Alginate), 카르복시메틸 셀룰로오스(carboxymethyl cellulose: CMC), 하이드록시프로필 메틸셀룰로스(Hydroxypropyl methylcellulose: HPMC), 폴리에틸렌글리세롤(Polyethyleneglycol), 폴리하이드로에틸메타크릴레이트(Poly(hydroxyethyl methacrylate)), 폴리비닐알콜(Poly(vinyl alcohol)), 카세인(Casein), 폴리아미노산(Poly(amino acids)), 폴리글루탐산(Poly(glutamic acid)), 폴리감마글루탐산(Poly(gamma-glutamic acid)), 및 피브리노겐(Fibrinogen)으로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함할 수 있으며, 더욱 바람직하게는 콜라겐, 히알루론산, 히알루론산 알데하이드 메타아크릴레이트, 폴리감마글루탐산, 폴리아미노산, 키토산, 셀룰로오스, 폴리아크릴레이트, 폴리아크릴산 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것일 수 있다.
본 발명에서 제1성분 또는 제2성분에 포함될 수 있는 상기 유도체의 비제한적인 예로서 Thiolated HA(Hyaluronic acid), HA-Tyramine, HA-adipic dihydrazide, HA-hexamethylenediamine 등이 있다.
또한, 본 발명에서 제2성분은 물리적/화학적 기법에 의해 제1성분과 가교된 후에, 구성성분의 화학적 구조, 생리학적 조건 및 다양한 외부자극에 의해 분해도 제어가 가능한 것일 수 있으며, 상기 제1성분과의 가교를 위한 물리적/화학적 기법은 바람직하게는 저온 가교법(crosslinking at low temperature)일 수 있으나 이에 제한되는 것은 아니다.
본 발명에서 분해도를 제어하는 외부자극은 체내 생리적조건, 빛, 환원제, 및 효소로 이루어진 군으로부터 선택된 하나 이상의 자극일 수 있으나, 이에 제한되는 것은 아니다.
상기 외부자극으로서 빛은 크라이오젤 스캐폴드에 조사되어 상기 스캐폴드가 포함하고 있는 광감응제(photosensitizer)를 여기(excitation)시킴으로써 활성산소(Reactive Oxygen Species: ROS)를 발생시키는 것일 수 있으며, 상기 환원제(reductase)는 제1성분과 제2성분의 이황화결합(Di-sulfide bond)을 분해하는 것이라면 제한되지 않으며, 그 비제한적인 예로는 디디티(DDT: dithiothreitol)가 있다.
본 발명에서 크라이오젤 스캐폴드를 구성하는 제1성분 및/또는 제2성분은 10:90 내지 90:10, 20:80 내지 80:20, 30:70 내지 70:30, 40:60 내지 60:40, 또는 50:50의 w/v%로 포함됨으로써 스캐폴드의 분해도를 조율할 수 있으며, 상기 제1성분 및/또는 제2성분은 상기 자극에 의해 분해도 제어가 가능한 기능성 그룹(stimuli-responsive functional group)을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 구체적인 실시예에서는 상기 제1성분은 히알루론산 메타아크릴레이트이고, 상기 제2성분은 히알루론산 알데하이드 메타아크릴레이트인 크라이오젤 스캐폴드를 제조하였으며, 또 다른 실시예에서는 상기 제2성분은 콜라겐이고, 상기 제1성분은 폴리감마글루탐산 및/또는 히알루론산인 크라이오젤 스캐폴드를 제조하여 상기 제1성분과 제2성분의 혼합비율을 달리함에 따라 크라이오젤 스캐폴드의 분해도가 상이함을 확인하였다. 구체적으로, 히알루론산 알데하이드 메타아크릴레이트의 구성비가 증가할수록, 분해속도가 급격하게 빨라지는 것을 확인하였고, 콜라겐/히알루론산 크라이오젤 스캐폴드의 경우 각 물질의 농도가 10-20 mg/ml 이상 에서는 분해속도가 급격하게 지연됨을 확인하였으며, 폴리감마글루탐산을 포함하는 크라이오젤 스캐폴드의 경우 폴리감마글루탐산이 콜라겐네이즈(collagenase)나 히알루로네이즈(hyaluronase)와 같은 체내에 존재하는 효소에 저항성을 갖고 있어 이를 0.1 내지 90 중량퍼센트로 포함하여 스캐폴드가 분해되는 시간을 현저하게 감소시킬 수 있음을 확인하였다.
본 발명에서 '크라이오젤(cryogel)'이란 0℃ 이하(subzero temperature)에서 제조된 다공성 하이드로젤을 의미하는 것으로서, 서로 연결된 기공 구조(interconnected pore structure)를 가지며, 상기 기공의 직경은 2단계의 쿨링(cooling) 기법에 의해 20 내지 900 ㎛로 조절될 수 있다.
본 발명의 크라이오젤 스캐폴드는 특별한 템플리트(template) 또는 포로젠(porogen) 물질을 사용하지 않고도 제조될 수 있다.
본 발명은 상기 크라이오젤 스캐폴드와 고형암 미세환경에서 면역억제작용을 제어하는 약물, 종양 또는 암세포의 성장을 저해하는 항암제, 면역억제인자 제어 약물, 암백신, 면역아주번트(immunoadjuvant), 암 치료용 면역세포, 및 상기 암 치료용 면역세포의 활성 유지에 필요한 사이토카인으로 이루어진 군으로부터 선택되는 하나 이상의 약물을 포함하는 연성 생체삽입소자를 제공한다.
본 발명의 연성 생체삽입소자는 상기 크라이오젤 스캐폴드에 약물을 로딩하는 것에 의해 제조될 수 있으며, 상기 약물은 스캐폴드의 구조형성 전 및/또는 후에 로딩되는 것일 수 있고, 상기 로딩 방법은 스캐폴드에 약물을 떨어뜨리는(dropping) 방법, 또는 상기 크라이오젤 스캐폴드에 약물을 직접주입(injection)하는 방법 등을 통해 수행될 수 있으나, 연성 생체삽입소자로부터 상기 약물이 방출될 수 있도록 하는 것이라면 제한이 없다.
본 발명의 연성 생체삽입소자는 (a) 수용액과 접촉시 스웰링되어 스캐폴드의 부피가 증가되는 제1성분을 포함하는 용액을 제조하는 단계; (b) 상기 제1성분과 상이하고, 상기 제1성분과 가교결합이 가능하며, 상기 제1성분과 가교 후 외부자극에 의해 분해도 제어가 가능한 제2성분을 포함하는 용액을 제조하는 단계; (c) 상기 제1성분 용액, 제2성분 용액, 및 약물을 혼합하여 혼합용액을 제조하는 단계; 및 (d) 상기 혼합용액을 저온에서 가교시키는 단계를 통해 제조될 수 있다.
또한, 본 발명의 연성 생체삽입소자는 (a) 수용액과 접촉시 스웰링되어 스캐폴드의 부피가 증가되는 제1성분을 포함하는 용액을 제조하는 단계; (b) 상기 제1성분과 상이하고, 상기 제1성분과 가교결합이 가능하며, 상기 제1성분과 가교 후 외부 자극에 의해 분해도 제어가 가능한 제2성분을 포함하는 용액을 제조하는 단계; (c) 상기 제1성분 및 제2성분 용액을 혼합하여 혼합용액을 제조하는 단계; (d) 상기 혼합용액을 저온에서 가교시켜 크라이오젤 스캐폴드를 제조하는 단계; 및 (e) 상기 크라이오젤 스캐폴드에 약물을 로딩하는 단계를 통해 제조될 수 있다.
상기 연성 생체삽입소자의 제조시 로딩되는 약물은 고형암 미세환경에서 면역억제작용을 제어하는 약물, 종양 또는 암세포의 성장을 저해하는 항암제, 면역억제인자 제어 약물, 암백신, 면역아주번트(immunoadjuvant), 암 치료용 면역세포, 및 상기 암 치료용 면역세포의 활성 유지에 필요한 사이토카인으로 이루어진 군으로부터 선택되는 하나 이상의 약물일 수 있으나, 이에 제한되는 것은 아니다.
상기 고형암 미세환경에서 면역억제작용을 제어하는 약물은 MDSC(Myeoloid-Derived Suppressor Cell), Treg(Regulatory T cell), 및/또는 TAM(tumor associated macrophage)의 활성, 생존, 또는 증식을 억제하는 것일 수 있으며,
상기 MDSC(Myeoloid-Derived Suppressor Cell)의 활성, 생존, 또는 증식을 억제하는 약물의 비제한적인 예로는 Tadalafil, Sildenafil, L-AME, Nitroaspirin, Celecoxib, NOHA, Bardoxolone methyl, D,L-1-methyl-tryptophan, 5-Fluorouracil, Gemcitabine, 17-DMAG, Peptide-Fc fusion proteins, ATRA, Vitamin A, Vitamin D3, Vitamin E, GR1 antibodies, Zoledronic acid, Sunitinib, Axitinib, Decetaxel, Sorafenib, Cucurbitacin B, JSI-124, Anti IL-17 antibodies, Anti-glycan antibodies, Anti-VEGF antibodies, Bevacizumab, Antracycline, Tasquinimod, Imatinib, 및 cyclophosphamide 등이 있으며,
상기 Treg(Regulatory T cell)의 활성, 생존, 또는 증식을 억제하는 약물의 비제한적인 예로는 Anti-CD25 antibodies(daclizumab), Basiliximab, LMB-2, Denileukin diftitox(Ontak), Bivalent IL-2 fusion toxin, Anti-TGF-beta antibodies, fresolimumab, TGF-betaR kinase inhibitors, LY2157299, Soluble TGF-betaR I/II, Ipilimumab, Tremelimumab, Pembrolizumab, Nivolumab, TIM-3 antibodies, LAG-3 antibodies, Anti-CD39 antibodies, Anti-73 antibodies, A(2A)R inhibitors, Celecoxib, Indomethacin, Diclofenac, Ibuprofen, TNFR2 antibodies, Anti-GITR antibodies, Bevacizumab, Anti-OX40(CD134) antibodies, soluble GITR ligand, Blockades for chemokine receptors(CCR4, 5, 6,10), cyclophosphamide, Sunitinib, Fludarabine, PI3K p110(delta) inhibitors, CliniMACs, Mogamulizumab, Fingolimod, Regulators for miRNA(miR-155, miR-146a, miR-181a), 5-aza-2-deoxycytidine, paclitaxel, Imatinib, Sorafenib, Cyclosporin A, Tacrolimus, Dasatinib, Poly-G-oligonucleotide, TLR8 ligands, gemcitabine 및 5-fluorouracil 등이 있고,
상기 TAM(tumor associated macrophage)의 활성, 생존, 또는 증식을 억제하는 약물의 비제한적인 예로는 CCL2/CCR2 inhibitors(Yondeli, RS102895), M-CSF 또는 M-CSFR inhibitors(anti-M-CSF antibodies, JNJ-28312141, GW2580), chemoattractants(CCL5, CXCL-12, VEGF), 상기 생체물질의 수용체에 대한 inhibitors, HIFs inhibitors, Bisphosphonates, Clodronate, Dasatinib, anti-FRbeta antibodies, Shigella flexneri, Legumain, 및 CD1d의 발현을 유도할 수 있는 약물 등이 있다.
또한, 상기 고형암 미세환경에서 면역억제작용을 제어하는 약물은 고형암 미세환경에서 면역억제환경인자를 억제하는 기능을 수행하는 것일 수 있으며, 상기 면역억제환경인자는 고형암 미세환경에서 면역억제를 유발하는 사이토카인 및 대사체 등을 포함하는 것으로서, 상기 면역억제환경인자의 비제한적인 예로는 레시퀴모드(R837), transforming growth factor beta(TGF-β), Nitro aspirin, Cycloxygenase-2(COX2), Indoleamine 2,3-dioxygenase(IDO), Phosphodiesterase-5(PDE-5), 및 Interleukin 10(IL-10) 등이 있다.
또한, 상기 고형암 미세환경에서 면역억제작용을 제어하는 약물은 고형암 미세환경에서 직접 결합을 통해 T 세포를 활성화시키는 기능을 수행하는 보조활성인자를 포함하는 것일 수 있다. 상기 보조활성인자는 OX40, CD137, CD27, 및 CD40 등을 표적(target)으로 하는 것일 수 있으며, 그 비제한적인 예로서, RG7888, Urelumab, Varlilumab, 및 BMS-986090 등이 있다.
또한, 상기 고형암 미세환경에서 면역억제작용을 제어하는 약물은 고형암 미세환경에서 직접 결합을 통해 T 세포를 활성화시킴으로써 면역체크포인트를 억제하는 기능을 수행하는 것일 수 있으며, 상기 면역체크포인트의 비제한적인 예로는 PD-1, PDL-1 CTLA-4, LAG-3, TIM-3, 및 CEACAM1 등이 있다. 따라서, 상기 면역체크포인트를 억제하는 기능을 수행하는 약물은 PD-1, PDL-1 CTLA-4, LAG-3, TIM-3, 및/또는 CEACAM1 항체를 포함할 수 있으며, 상기 항체는 Ipilimumab, Nivolumab, Atezolizumab, BMS-986016, TSR-022, 및 CM-24 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 종양 또는 암세포의 성장을 저해하는 약물, 즉, 항암제는 디엔에이 메틸트렌스페라아제 억제제(DNA methyltransferase inhibitor: DNMTi), 히스톤 디아세틸레이즈 억제제(histone deacetylase inhibitor: HDACi), 및 혈관신생 억제제(angiogenesis inhibitors)로 이루어진 군으로부터 선택된 하나 이상을 포함하는 것일 수 있으며,
상기 디엔에이 메틸트렌스페라아제 억제제의 비제한적인 예로는 5-Azacytidine, 5-Aza-2-deoxycytidine, Decitabine, SGI-110, Zebularine, CP-4200, Cladribine, Fludarabine, Clofarabine, Procainamide, Procaine, Hydralazine, Disulfiram, RG108, Nanaomycin A, Genistein, Equol, Curcumin, EGCG, Resveratrol, 및 Parthenolide 등이 있으며,
상기 히스톤 디아세틸레이즈 억제제의 비제한적인 예로는 Vorinostat, Abexinostat, Suberoylanilide, Hydroxamic acid, Belinostat, Panobinostat, Romidepsin, Valproic acid, Entinostat, Givinostat, Resminostat, Quisinostat, Pracinostat, Dacinostat, Pyroxamide, CHR-3996, CBHA, Trichostatin A, Oxamflatin, MC1568, Tubacin, PCI-30451, Tacedinaline, Mocetinostat, Chidamide, BML-210, M344, Butyrate, Sodium butyrate, Trapoxin A, Apicidin, Nicotinamide, Splitomicin, EX-527, Dihydrocoumarin, Tenovin-D3, AGK2, AEM1, AEM2, Cambinol, Sirtinol, Salermide, Tenovin-6, TMP-269, Psammaplin A, Nexturastat A, 및 RGFP966 등이 있고,
상기 혈관신생 억제제의 비제한적인 예로는 bevacizumab(Avastin), itraconazole, carboxyamidotriazole, TNP-470, fumagillin, CM101, IFN-alpha, IL-12, platelet factor-4, suramin, SU5416, thrombospondin, VEGFR antagonists, angiostatic steroids, heparin, cartilage-derived angiogenesis inhibitory factor, matrix metalloproteinase inhibitors, angiostatin, endostatin, 2-methoxyestradiol, tecogalan, tetrathiomolybdate, thalidomide, prolactin, alpha(v)beta(3) inhibitors, linomide, ramucirumab, tasquinimod, ranibizumab, sorafenib(Nexavar), sunitinib(Sutent), pazopanib(Votrient), 및 everolimus(Afinitor) 등이 있다.
본 발명에서 상기 종양 또는 암세포의 성장을 저해하는 약물은 M1 macrophage의 특성을 향상시킬 수 있는 약물, M2 macrophage 기반의 암세포 성장을 돕는 메커니즘을 저해할 수 있는 약물, 또는 고형암 미세환경하에서 Macrophage를 타겟팅 함으로서 항암효능을 높힐 수 있는 타겟 약물일 수 있으며,
상기 M1 macrophage의 특성을 향상시킬 수 있는 약물의 비제한적인 예로는 NF-kB 아고니스트인 TLR아고니스트, Anti-CD40 antibodies, Thiazolidinediones, Tasquinimod, Anti-IL-10R antibodies, Anti-IL-10 antibodies, 올리고뉴클레오타이드(Anti-IL-10R Anti-IL-10), STAT1 아고니스트인 인터페론(interferon), M1 pathway를 유도할 수 있는 SHIP과 GM-CSF, IL-12, Thymosin alpha1 등이 있고,
상기 M2 macrophage 기반의 암세포 성장을 돕는 메커니즘을 저해할 수 있는 약물의 비제한적인 예로는, STAT3 inhibitor인 sunitinib, sorafenib, WP1066, corosolic acid, oleanolic acid, STAT6 inhibitors들과 M2 pathway(c-Myc, PPAR-alpha/gamma, PI3K, KLF4, HIFs, Ets2, DcR3, mTOR) inhibitors와 HRG, CuNG, MDXAA, Silibinin, 및 PPZ 등이 있으며,
상기 고형암 미세환경하에서 Macrophage를 타겟팅 함으로서 항암효능을 높힐 수 있는 타겟 약물의 비제한적인 예로는 Paclitaxel, Docetaxel, 5-Flurouracil, Alendronate, Doxorubicin, Simvastatin, Hydrazinocurcumin, Amphotericin B, Ciprofloxacin, Rifabutin, Rifampicin, Efavirenz, Cisplatin, Theophyline, Pseudomonas exotoxin A, Zoledronic acid, Trabectedin, Siltuximab(Anti-IL-6 antibodies), Dasatinib, CpG-ODN, Interferon-alpha, beta, gamma, GM-CSF, IL-12, Thymosin alpha-1, Sunitinib, Bisphosphonates, 5,6-Dimethylxanthenone-4-acetic acid, Silibinin, CCL2-CCR2 inhibitors (PF-04136309, Trabectedin, Carlumab), CSF1-CSF1R 신호전달 blocker(BLZ945, PLX3397, Emactuzumab(RG7155), AMG-820, IMC-CS4, GW3580, PLX6134)와 톨유사수용체7의 리간드(imiquimod, 852A), NF-kB inhibitors(N-acetyl-l-cystein, Vitamin C, bortezomib, aspirin, salicylates, Indolecarboxamide derivatives, quinazoline analogues, Thalidomide, prostaglandin metabolites), HIF-1 inhibitors (2ME2, 17-AAG, Camptothecin, Topotecan, Pleurotin, 1-methylpropyl, 2-imidazolyl dissulphide, YC-1), 및 CXCR4 아고니스트(AMD3100, AMD1498, ALX40-4C, T22, T140, CGP64222, KRH-1636) 등이 있다.
더욱 구체적으로, 상기 TGF-beta inhibitor는 SB-505124 및/또는 LY-364974 등을 포함할 수 있으며, 상기 Nitro aspirin은 NCX 4040 등을 포함할 수 있고, 상기 COX-2 inhibitor는 Celecoxib 등을 포함할 수 있으며, 상기 IDO inhibitor는 Indoximod 및 NLG919 등을 포함할 수 있고, 상기 PDE-5 inhibitor는 Tadalafil(Cialis) 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 '암 백신(cancer vaccine)'이란 암세포 특이적 항원을 포함하는 것이라면 제한되지 않으며, 구체적으로 암세포의 용해물(lysates)로부터 분리되는 단백질, 펩타이드, DNA, 및 RNA로 이루어진 군으로부터 선택된 하나 이상을 포함하는 것일 수 있고, 바람직하게는 본 발명의 연성 생체삽입소자가 이식될 부분의 암 세포의 용해물로 분리되는 암세포 특이적 항원을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 '면역아주번트(immunoadjuvant)'란 개체의 면역기능을 활성화시키는 물질이라면 제한이 없으며, 그 비제한적인 예로는 톨유사 수용체 아고니스트(toll-like receptor agonist: TLR agonist), 사포닌, 항바이러스성 펩티드, 인플라머좀 인듀서(inflammasome inducer), NOD 리간드(NOD ligands), Cytosolic DNA sensor(CDS) 리간드, 및 STING(stimulator of interferon genes) 리간드 등이 있으며, 상기 톨-유사 수용체 아고니스트(toll-like receptor agonist)는 직접적 리간드로서 또는 간접적으로 내인성 또는 외인성 리간드의 생성을 통해, TLR 신호전달 경로를 통한 신호전달 반응을 야기시킬 수 있는 성분을 의미한다. 상기 톨-유사 수용체 아고니스트는 천연 또는 합성 톨-유사 수용체 아고니스트일 수 있으며, 하나 또는 둘 이상의 톨-유사 아고니스트의 조합을 포함할 수 있으나, 이에 제한되는 것은 아니다. 본 명세서 내에서 용어 '면역아주번트'는 '면역활성화 아주번트' 및 '면역활성화 물질'과 혼용될 수 있다.
상기 톨-유사 아고니스트는 TLR-1을 통해 신호전달 반응을 야기시킬 수 있는 것일 수 있으며, 예를 들어, 트리-아실화된 지질펩티드(LP); 페놀-가용성 모듈린(modulin); 코박테리움튜베르쿨로시스 (Mycobacteriumtuberculosis) LP; S-(2,3-비스(팔미토일옥시)-(2-RS)-프로필)-N-팔미토일-(R)-Cys-(S)-Ser-(S)-Lys(4)-OH, 보렐리아 부르그도르페이(Borrelia burgdorfei)로부터의 박테리아 지질단백질, OspA LP의 아세틸화된 아미노 말단을 모방하는 트리히드로클로라이드(Pam3Cys) LP 또는 이들의 조합들을 포함할 수 있으며,
상기 톨 유사 아고니스트는 TLR-2 아고니스트, 예를 들어, Pam3Cys-Lip을 포함할 수 있고, 상기 톨 유사 아고니스트는 TLR-3 아고니스트, 예를 들어, 폴리아이시 계열(Poly(I:C),Poly(ICLC), Poly(IC12U)) 및 Ampligen 등을 포함할 수 있으며, 상기 톨 유사 아고니스트는 TLR-4 아고니스트, 예를 들어, 시겔라 플렉시네리(Shigella flexineri) 외막 단백질 제조물 또는 AGP, CRX-527, MPLA, PHAD, 3D-PHAD, GLA 또는 이들의 조합들을 포함할 수 있고, 상기 톨 유사 아고니스트는 TLR-5 아고니스트, 예를 들어, 플라젤린(flagellin) 또는 이의 단편을 포함할 수 있으며, 상기 톨 유사 아고니스트는 TLR-7 또는 TLR-8 아고니스트, 예를 들어, 이미다조퀴놀린 분자(이미퀴모드, R837, 레스퀴모드, R848), VTX-2337, CRX642, 인- 또는 포스포노지질 기에 공유적으로 결합된 이미다조퀴놀린 또는 이들의 조합들을 포함할 수 있고, 상기 톨 유사 아고니스트는 TLR-9 아고니스트, 예를 들어, 면역자극성 올리고뉴클레오티드, 특히 하나 이상의 CpG 모티프를 포함하는 면역자극성 올리고뉴클레오티드를 포함할 수 있으나, 이에 제한되지 않는다.
또한, 상기 사포닌은 QS21, Quil A, QS7, QS17, β-에스킨, 디지토닌 및 이들의 조합들로 이루어진 군으로부터 선택된 것일 수 있고, 상기 항바이러스성 펩티드는 케이엘케이(KLK) 를 포함할 수 있으며, 상기 인플러머좀 인듀서는 TDB(trehalose-6,6-dibehenate)일 수 있고, 상기 NOD 리간드는 M-TriLYS(NOD2 아고니스트- 합성 무라밀 트리펩티드) 또는 NOD2 아고니스트(N-glycolylated muramyldipeptid) 일 수 있으며, 상기 CDS 리간드는 Poly(dA:dT) 일 수 있고, 상기 STING 리간드는 cGAMP, di-AMP, di-GMP 일 수 있으나, 이에 제한되지 않는다.
또한, 상기 면역활성화 물질은 두가지 아고니스트를 동시에 갖는 물질로서 CL401(Dual TLR2 & TLR7 아고니스트)와 CL429(Dual TLR2 & NOD2 아고니스트)일 수 있으나, 이에 제한되지 않는다.
또한, 상기 면역활성화 물질은 Pam3Cys-Lip, 폴리아이시(Poly(I:C)), CRX-527, MPLA, 플라젤린(flagellin), 이미퀴모드, 레스퀴모드, CpG, QS21, M-TriLys(MurNAc-Ala-D-isoGln-Lys), TDB(trehalose-6,6-dibehenate), 8837, Poly(dA:dT), cGAMP 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 '암 치료용 면역세포'란 암백신으로 인해 활성화 되어 암 항원을 인지할 수 있는 면역세포라면 제한되지 않으며, 구체적으로 수지상세포(Dendritic Cells), 자연살해세포(Natural Killer Cells) 및 T 세포 (T cells)로 이루어진 군으로부터 선택된 하나 이상의 세포를 포함하는 것일 수 있다.
본 발명의 연성 생체삽입소자에 로딩된 암 치료용 면역세포는 체외에서와 같은 활성을 가지며, 암의 성장을 저해하거나 암의 재발 및/또는 전이를 방지하는 치료 효능을 현저하게 향상시킬 수 있다.
본 발명에서 '암 치료용 면역세포의 활성 유지에 필요한 사이토카인'이란 상기 암 치료용 면역세포의 활성 유지 및 증가에 도움이 되는 물질로서, 본 발명의 연성 생체삽입소자에 로딩되어 개체에 삽입되는 경우 암 치료를 위한 면역세포만을 개체에 직접 주입하는 경우보다 더 적은 수의 면역세포만으로도 개체 내에서 항암 면역기능을 효과적으로 수행할 수 있도록 한다.
또한, 상기 연성 생체삽입소자는 생체 내에 삽입되어 세포와 부착성을 높일 수 있는 물질을 더 포함할 수 있으며, 상기 부착성을 높일 수 있는 물질을 포함함으로써 이식된 부위에서 더욱 안정적이고 지속적으로 약물을 방출할 수 있다. 상기 부착성을 높일 수 있는 물질은 Arginylglycylaspartic acid(RGD peptide) 또는 세포외기질(extracellular material: ECM) 유래 물질일 수 있으며, 상기 세포외기질 유래 물질의 비제한적인 예로는 콜라겐, 엘라스틴, 및 젤라틴 등이 있다.
본 발명의 연성 생체삽입소자는 로딩된 약물이 서방형으로 방출되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 연성 생체삽입소자는 분해도가 조절되는 크라이오젤 스캐폴드를 포함하여 그 분해도 조절에 따라 면역억제인자 조절 및 면역활성화 유지에 필요한 약물의 방출거동을 조율하거나/ 및 유효지속 시간을 현저하게 증가시킬 수 있다.
본 발명의 연성 생체삽입소자는 개체에 삽입되어 고형암 치료에 이용될 수 있으며, 상기 연성 생체삽입 소자의 삽입은 외과적 시술에 의해 수행될 수 있으며, 구체적으로 고형암 조직 부근 또는 고형암 조직을 제거하고 그 부근에 이식될 수 있다.
본 발명에서 '개체'는 쥐, 가축, 생쥐, 인간 등 포유류일 수 있으며, 구체적으로 고형암의 치료가 필요한 반려견, 경주마, 인간 등일 수 있으며, 바람직하게는 인간일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[ 실시예 ]
실시예 1. 히알루론산 메타아크릴레이트(HA-MA)와 히알루론산 알데하이드 메타아크릴레이트(HA-ald-MA)를 포함하는 크라이오젤 스캐폴드 제조
도 1a에 나타낸 바와 같이 생리화학적 조건하에서 분해도가 서로 다른 제1성분 및 제2성분을 수용액상에서 혼합한 후에, 도 2에 나타낸 방법으로 제조된 몰드 위에 붓고, 저온에서 동결시키고 가교를 서서히 진행한 후에 동결건조방법을 이용하여 얼음층(ice crystal)을 제거함으로써 서로 연결된(cross-linked) 구조의 기공(pore)을 갖는 크라이오젤 스캐폴드를 제조하였다. 본 실시예에서는 제1성분은 히알루론산 메타아크릴레이트(HA-MA)로 하였고, 제2성분은 히알루론산 알데하이드 메타아크릴레이트(HA-ald-MA)로 하였다. HA-MA와 HA-ald-MA의 합성과정 모식도는 도 11에 나타내었고, 구체적으로 HA-MA와 HA-ald-MA의 합성과 HA-MA/HA-ald-MA를 포함하는 크라이오젤 스캐폴드 제조는 하기와 같이 수행하였다.
1-1. HA-MA 합성
히알루론산(Hyaluronic acid: HA, 500 kDa, Bioland, Chungnam, South Korea)을 10㎎/㎖의 농도로 100㎖의 증류수에 녹이고, 3.85g의 메타크릴 무수화물(Methacrylic anhydride: MA, Sigma-aldrich, South Korea)을 첨가하였다. 그리고 5N의 수산화나트륨을 사용하여 pH를 8로 맞추고, 상온, 암실에서 교반시킨 후, 48시간 동안 증류수에 투석(12-14 KDa cutoff)하고 동결건조하여 HA-MA을 제조하였다.
1-2. HA- ald 합성
히알루론산(HA, 500 kDa, Bioland, Chungnam, South Korea)을 10㎎/㎖의 농도로 100㎖의 증류수에 녹이고, 과아이오딘산나트륨(NaIO4, Sigma-aldrich, South Korea) 534㎎을 첨가하여 24시간 동안 암실, 상온에서 교반하여 산화반응이 충분히 일어나도록 하였다. 그리고 산화반응을 종결시키기 위해 에틸렌 글리콜(Ethylene glycol, Sigma-aldrich, South Korea) 1g을 첨가하여 1시간 동안 상온에서 교반시킨 후, 48시간 동안 증류수에 투석(12-14 KDa cutoff)하고 동결건조하여 HA-ald을 제조하였다.
1-3. HA- ald -MA 합성
상기 실시예 1-2의 방법으로 제조한 HA-ald 1g을 100㎖의 증류수에 녹이고, 3.85g의 메타크릴 무수화물(Methacrylic anhydride: MA, Sigma-aldrich, South Korea)을 첨가하였다. 이어서 5N의 수산화나트륨을 사용하여 pH를 8로 맞추고 암실, 실온에서 교반시킨 후, 48시간 동안 증류수에 투석(12-14 KDa cutoff)하고, 동결건조하여 HA-ald-MA을 제조하였다.
1-4. HA-MA/HA- ald -MA 블랜드 기반 크라이오젤 스캐폴드 제조
상기 실시예 1-1 및 1-3의 방법으로 제조한 HA-MA 100㎎과 HA-ald-MA 100㎎ 을 10㎎/㎖의 농도가 되도록 4℃에서 다양한 비율로 PBS(phosphate buffered saline)에 용해시켜 다양한 비율의 혼합 용액을 제조하였다. 그리고 상기 혼합 용액에 30㎎의 과산화황산암모늄(ammonium persulfate, USB Corporation, USA)을 첨가하여 섞어준 후에,. HA-MA과 HA-ald-MA의 교차결합 반응을 유도하기 위해 테트라메틸에틸디아민(N,N,N',N'-tetramethylethylenediamine, Sigma-Aldrich, South Korea) 60㎕를 상기 혼합용액에 첨가하여 완전히 섞어주었다. 상기 혼합물을 재빨리 PDMS 몰드(mold)에 옮기고 20℃에 24시간 동안 보관하여 HA-MA/HA-ald-MA를 포함하는 크라이오젤 스캐폴드를 제조하였다. 상기 스캐폴드는 70% 에탄올 용액을 이용하여 살균한 후, PBS를 이용하여 3번 세척하였다.
1-5. 특성화
각 단계에서 합성된 고분자는 D2O에 10㎎/㎖의 농도로 녹인 후에, 1H NMR spectra(Unity Inova, 500 MHz, Varian Technology, USA)를 측정하였다. 그 결과는 도 12a 내지 12d에 나타내었다. 동결건조된 스캐폴드의 구조는 광학현미경(Olympus)을 통하여, 그리고 단면으로 절단한 후에 주사전자현미경(JSM6700F, JEOL Ltd., Japan)을 통하여 관찰하였고, 그 결과는 도 13에 나타내었다. 상기 스캐폴드의 체외 환경에서의 생분해도를 측정하기 위하여, 제조된 스캐폴드를 1㎖의 PBS 또는 Hyaluronidase(10U/㎖)에 담근 후에, 시간에 따라(3일 간격), 분해되지 않고 남은 스캐폴드를 필터링 한 후에, 동결하고, 그 무게를 측정하였다. 그 결과는 도 14에 나타내었다. 이어서, 체내 환경에서 상기 스캐폴드의 생분해도 측정을 위하여, 제조된 스캐폴드를 70% EtOH 용액과 증류수를 이용하여 3번 이상 세척한 후에 Balb/c mice(female, 6 week, Charles River Laboratories, South Korea)의 피하에 주입하고 10일, 15일 및 28일 후에 스캐폴드의 형상변화를 관찰하였고, 그 결과는 도 15에 나타내었다.
실시예 2. 히알루론산/콜라겐으로 구성된 크라이오젤 스캐폴드 제조
콜라겐(type I, Bioland, Cheonan, South Korea)을 멸균된 PBS에 10㎎/㎖로 녹이고(4 ℃에서 overnight), 히알루론산(HA, 500 kDa, Bioland, Chungnam, South Korea)을 멸균된 PBS에 10㎎/㎖의 농도로 녹인 후, 콜라겐:히알루론산을 다양한 부피 비율로 섞어 4 ℃에서 magnetic stirrer를 이용하여 12시간 동안 500rpm으로 교반시켰다. 상기 혼합용액(scaffold solution) 250㎕를 PDMS mold에 넣고 -20 ℃에 서 9시간 동안 얼린 후에 12시간 동안 동결건조시켰다. 상기 sample을 2㎖의 50mM EDC/20mM NHS in ethanol solution에 -20 ℃에서 12시간 동안 담가둔 후, 상기 Sample을 DI를 이용하여서 15분씩 5번 세척한 뒤, 12시간 동안 다시 동결건조시켜 히알루론산/콜라겐으로 구성된 크라이오젤 스캐폴드를 제조하였다(도 6). 상기 스캐폴드의 체외 환경에서의 생분해도를 측정하기 위하여, 제조된 스캐폴드를 콜라겐네이즈 (Collagenase) 또는 히알루로네이즈(Hyaluronidase)에 담근 후에, 7, 14, 21, 및 28일이 경과한 때 스캐폴드의 분해도를 관찰하여 그 결과를 도 17에 나타내었다. 이어서, 체내 환경에서의 상기 스캐폴드의 생분해도 측정을 위하여, 제조된 스캐폴드를 70% EtOH 용액과 증류수를 이용하여 3번 이상 세척한 후에 Balb/c mice(female, 6 week, Charles River Laboratories, South Korea)의 피하에 주입하였다. 그리고 시간에 따른 형상변화를 관찰하여 그 결과를 도 15에 나타내었다. 도 18은 다양한 비율로 혼합되고 가교되어 제작된 히알루론산/콜라겐 크라이오젤 스캐폴드의 주사전자현미경 사진(a) 및 5:5 블랜드 스캐폴드의 생체 내 조건(마우스 피하 이식)하에서 분해거동(b)을 나타낸다.
실시예 3. 콜라겐/ 폴리감마글루탐산으로 구성된 크라이오젤 스캐폴드 제조
콜라겐(type I, Bioland, Cheonan, South Korea)을 멸균된 PBS에 10㎎/㎖로 녹이고(4 ℃에서 overnight). 폴리감마글루탐산(PGA, 500 kDa, Bioleaders, Daejeon, South Korea)을 멸균된 PBS에 10㎎/㎖의 농도로 녹인 후, 콜라겐:폴리감마글루탐산을 다양한 부피 비율로 섞고 4 ℃에서 magnetic stirrer를 이용하여 12시간 동안 500rpm으로 교반하였다. 상기 혼합용액(scaffold solution) 250㎕을 PDMS mold에 넣고 -20 ℃에서 9시간 동안 얼린 후에 12시간 동안 동결건조시켰다. 상기 sample을 2㎖의 50mM EDC/20mM NHS in ethanol solution에 -20 ℃에서 12시간 동안 담가둔 후, 상기 sample을 DI를 이용하여서 15분씩 5번 세척한 뒤, 12시간 동안 동결건조시켜 콜라겐/폴리감마글루탐산으로 구성된 크라이오젤 스캐폴드를 제조하였다(도 16). 상기 스캐폴드의 체외 환경에서의 생분해도를 측정하기 위하여, 제조된 스캐폴드를 Collagenase에 담근 후에, 시간에 따라, 스캐폴드의 분해도를 관찰하여 그 결과를 도 19에 나타내었다.
실시예 4. Thiolated HA 기반 크라이오젤 스캐폴드 제조
HA 20.0g을 2L의 물에 녹이고, HA 용액을 교반 시키면서 23.8g의 3,3′-dithiobis(propanoic hydrazide)(DTP)를 첨가하였다. 이어서, 1.0N HCl을 이용하여 pH를 4.75로 맞추고, 19.2g의 EDC를 첨가한 후 1.0N HCl을 이용하여 pH를 4.75로 맞추었다. 그 다음 1.0N NaOH를 이용하여 pH를 7.0으로 높여서 반응을 종결시켰다. 그리고 100g의 DTT(ca. 650mmol)(Diagnostic Chemicals Limited, Oxford, USA)을 넣고 1.0N NaOH를 이용하여 pH를 8.5까지 높인 후, 24시간 동안 교반하였다. 이어서 1.0N HCl을 넣어서 pH를 3.5로 맞춰주고 상기 용액을 dialysis tubing(Mw cutoff 3500)에 옮기고, 100mM의 NaCl이 포함된 저농도의 HCl(pH=3.5, approximately 0.3mM)에서 투석하였다. 그 후 저농도의 HCl(pH=3.5)에서 투석한 후에 원심분리하여 그 상층액을 동결건조시켰다. HA-DTPH를 DPBS에 3.0%(w/v)의 농도로 녹이고 1.0N NaOH를 이용하여 pH를 8로 맞추었다. 상기 혼합물을 -20 ℃로 냉각된 PDMS mold에서 18시간 반응시켜 제조된 겔을 상온으로 온도를 올려 주면서 얼음을 제거하여 스캐폴드를 제조하였다, 제조된 스캐폴드를 PBS와 70% ethanol을 이용하여 3번 세척하였다(도 20).
실시예 5. ROS 생성에 의한 크라이오젤 스캐폴드의 분해도 조절
광 조사(light illumination)에 의한 ROS(Reactive Oxygen Species) 생성을 통한 크라이오젤 스캐폴드의 분해도를 측정하기 위하여(도 8), 광감응제(20 ㎍, Ce6)를 제조된 스캐폴드에 로딩한 후에, 650nm 레이져를 조사한 후에, 상기 스캐폴드를 37 ℃에서 60rpm으로 교반시키면서, 그 무게변화를 3일 간격으로 측정하였다.
실시예 6. 환원작용(reduction)에 의한 크라이오젤 스캐폴드의 분해도 조절
환원작용(reduction)에 의한 크라이오젤 스캐폴드의 분해도를 측정하기 위하여(도 9), 이중황하결합(Di-sulfide bond)을 포함하는 제조된 스캐폴드에 디디티(DDT: dithiothreitol)를 처리한 후에, 그 무게변화를 3일 간격으로 측정하였다.
실시예 7. 효소(enzyme)에 의한 크라이오젤 스캐폴드의 분해도 조절
효소(enzyme)에 의한 크라이오젤 스캐폴드의 분해도를 측정하기 위하여(도 10), 효소 특이적 펩타이드 결합(enzyme-cleavable peptide bond)을 포함하는 제조된 스캐폴드에 효소를 처리한 후에, 그 무게변화를 3일 간격으로 측정하였다.
실시예 8. 면역억제조절인자 (면역체크포인트 저해제), 면역활성화 항체, 항암제 및 면역활성화 약물을 포함하는 연성 생체삽입소자 제조
본 실시예에서는 R837를 포함하면서, 선택적으로 PTX 및/또는 Abs를 포함하는 연성 생체삽입소자를 제조하여 각 약물의 방출거동 및 효소에 의한 그 분해도를 확인하였다. 구체적으로, 상기 실시예 1-4에서 HA-MA/HA-ald-MA 스캐폴드를 제조하는 과정에서 혼합용액에 항암제인 파크리탁셀(Paclitaxel: PTX) 및 면역억제기능이 있는 M2 macrophage를 M1 macrophage로 변환시키는 기능을 담당하는 톨유사 수용체 7 아고니스트인 이미퀴모드(R837)를 혼합한 후에, 가교반응을 진행하였다. 면역억제 체크포인트를 제어할 수 있는 anti-CTLA4, 면역활성화용 항체인 Anti-OX40는 가교가 완성된 스캐폴드에 로딩하여, 연성 생체삽입소자를 제조하였다(도 1b, 도 21). 도 14는 다양한 조성비(히알루론산 메타아크릴레이트(HA-MA): 히알루론산 알데하이드 메타아크릴레이트(HA-ald-MA))로 제조된 연성 생체삽입소자의 히알루론네이즈 분해효소(10 U/㎖ HAdase)에 의한 분해거동을 나타낸다. 도 22는 이렇게 다양한 조성비(히알루론산 메타아크릴레이트(HA-MA): 히알루론산 알데하이드 메타아크릴레이트(HA-ald-MA))로 제조된 연성 생체삽입소자에 로딩된 PTX, Antibodies(anti-CTLA4) 및 R837의 방출거동을 나타낸다.
실시예 9. 연성 생체삽입소자에 의한 면역억제인자 조절 및 항암효과 검증
본 실시예에서는 PTX, Antibodies(anti-CTLA4, anti-OX40) 및 R837이 로딩된 연성 생체삽입소자(SK-SC1-002)를 이용하여 세포 및 동물실험을 통하여, 면역억제인자 조절 및 항암효과를 증명하였다.
9-1. 세포의 준비 및 배양
수지상세포주(DC 2.4), 대식세포주(Raw 264.7), 유방암세포주(4T1), 마우스 골수유래 수지상세포(Bone marrow-dendritic cell: BMDC)를 생체 외 실험에서 사용했다. 대식세포주(Raw 264.7)는 10% FBS와 1% 항생제-항진균제가 첨가된 DMEM 배지, 유방암세포주(4T1)와 수지상세포주(DC 2.4)는 10% FBS와 1% 항생제-항진균제가 첨가된 RPMI1640 배지로 5% 이산화탄소, 37 ℃의 조건에서 배양하였다. 마우스 골수유래 수지상세포는 골수에서 분리하여 10% FBS와 1% 항생제-항진균제 용액이 첨가된 RPMI1640 배지에 20ng/㎖ GM-CSF를 처리하여 5% 이산화탄소, 37 ℃의 조건에서 분화시켰다.
9-2. PTX 및 R837의 세포독성 확인
MTS 분석은 세포의 생존율을 비교하여 약의 세포독성 효과를 측정하기 위해서 사용되는 방법이다. 96-웰 플레이트(well plate, Corning Costar, USA)에 각각의 웰(well)마다 1x10 4 개의 세포를 100㎕의 배지에 분산시켜서 처리하였다. 다양한 농도(0.1-100μg)로 세포 배양배지에 약을 분산시킨 뒤 각각의 웰에 분산시킨 약을 100㎕씩 처리하여 5% 이산화탄소, 37 ℃의 조건에서 24시간, 48시간 동안 세포를 배양하였다. 세포 배양 후, Cell Titer 96 Aqueous One Solution을 각 웰마다 20㎕씩 첨가하여 2시간 동안 세포를 배양하고, VersaMax(Molecular Devices, USA)를 이용하여 490nm에서 흡광도를 측정하였다.
9-3. 골수유래 수지상세포 활성화 및 성숙
12-웰 플레이트(Corning Costar, USA)에 각 웰마다 상기 실시예 9-1의 방법으로 분화시킨 1x10 6 개의 마우스 골수유래 수지상세포 1㎖를 처리하였다. 각각의 약물이 로딩된 연성 생체삽입소자를 세포에 처리한 후 5% 이산화탄소, 37 ℃의 조건에서 24시간 동안 세포 배양하였다. 이어서, 원심분리를 통해 배양 상층액을 모은 후, 상층액에 존재하는 사이토카인을 ELISA kit(BD bioscience, USA)를 통해서 분석하였다. 성숙한 마우스 골수유래 수지상세포 마커를 확인하기 위해서 세포를 모아서 형광이 결합된 항체 CD40, CD80, MHC2(eBioscience, USA)를 첨가하고 4 ℃에서 1시간 동안 배양하였다. 각 샘플은 PBS로 2번씩 세척한 후 4% 파라포름알데하이드로 고정시켰다. 준비된 샘플은 Accuri 유세포측정기(BD biosciece, USA)를 통해 분석하였다. 그 결과는 도 23에 나타내었다.
도 23에 나타난 바와 같이, PTX, Antibodies(anti-CTLA4, anti-OX40) 및/또는 R837이 로딩된 연성 생체삽입소자(SK-SC1-002)에 의한 마우스 골수유래 수지상세포의 활성화 효과를 검증하였을 때, TNF-α, IL-12 (p70) 및 CD40, CD80의 발현율이 PTX와 R837을 동시에 처리한 그룹에서 가장 많이 증가함을 확인하였다.
9-4. 유방암 동물 모델의 제작
Balb/c 마우스(암컷, 6-8주)는 특정 병원체가 없는 상태에서 관리하였다. 동물실험은 성균관대학교 의과대학 실험동물윤리위원회의 승인을 받았으며, 국제실험동물관리평가인증협회의 가이드라인을 준수하였다. 생체내 실험을 위해, Balb/c 마우스는 2.5% 애버틴용액(2,2,2-tribromoethanol, SigmaAldrich) 200㎕을 주입하여 마취시켰다. 마취된 Balb/c 마우스의 우측 옆구리 피하층에 1x10 6 개의 유방암세포주(4T1)를 주입하였으며 암의 크기가 대략 200㎜ 3 가 되었을 때 수술을 진행하여 스캐폴드를 이식하였다.
9-5. 유세포분석
상기 실시예 9-4의 마우스로부터 암과 비장을 분리하여 단세포로 만든 후 항체를 염색하였다. 구체적으로, 암 조직을 가위를 이용하여 잘게 산산조각 낸 후 RPMI1640배지에 녹여낸 후, 1㎎/㎖의 collagenase D(Sigma-aldrich, South Korea)를 첨가하여 80rpm, 37 ℃에서 1시간 동안 처리하였다. 이어서, 나일론 그물망(mesh)을 이용하여 용해되지 않은 조직을 제거하여 암세포를 획득하였다. 비장 세포는 그라인더(grinder)를 이용하여 잘게 간 후 나일론 그물망(mesh)을 이용하여 분리하고 원심분리하여 획득하였다. 이어서, 획득된 암세포와 비장세포에 적혈구 용해 용액(red blood cell lysis buffer)을 첨가하고 37 ℃에서 10분간 처리한 후, 처리한 적혈구 용해 용액의 2배만큼의 세포배양배지를 넣어 적혈구 용해 용액을 비활성화시켰다. 상기 세포는 PBS로 2번 세척하고 특정 형광이 결합된 항체로 표지하여 4% 파라포름알데하이드로 고정하였다. 준비된 세포 샘플은 Accuri 유세포측정기(BD biosciece, USA)를 통해 분석하였다.
그 결과, PTX, Antibodies(anti-CTLA4, anti-OX40) 및 R837이 로딩된 연성생체삽입소자(SK-SC1-002)를 유방암 모델에 이식한 후에 고형암 주위에서 면역억제 세포인 MDSC 및 M2 세포가 PTX+R837+Abs 그룹에서 현저하게 감소하고(도 24A 및 24B), 면역활성화 세포인 DC 및 effective T 세포는 증가함을 확인할 수 있었다(도 24C 및 24D).
또한, PTX, Antibodies(anti-CTLA4, anti-OX40) 및 R837이 로딩된 연성 생체삽입소자(SK-SC1-002)를 유방암 모델에 이식한 동물모델의 비장(spleen)에서도 면역억제세포인 MDSC 세포가 PTX+R837+Abs 그룹에서 현저하게 감소하고(도 25A), 면역활성화 세포인 DC, CD4+, CD8+ T 세포는 증가함을 확인할 수 있었다 (도 25B, 25C, 및 25D).
또한, PTX, Antibodies(anti-CTLA4, anti-OX40) 및 R837이 로딩된 연성 생체삽입소자(SK-SC1-002)를 유방암 모델에 이식한 후 1주일 및 2주일에 고형암 및 비장의 무게를 측정했을 때도 PTX+R837+Abs 그룹에서 그 무게가 가장 작아서, 항암치료 효과가 가장 우수함을 확인할 수 있었다(도 26).
아울러, PTX, Antibodies(anti-CTLA4, anti-OX40) 및 R837이 로딩된 연성 생체삽입소자(SK-SC1-002)를 유방암 모델에 이식한 후 생존률을 측정하였을 때, PTX+R837+Abs를 포함하는 연성 생체삽입소자 그룹에서, 생존률이 가장 우수함을 확인할 수 있었다(도 27).
9-6. 통계처리
각 그룹 간의 차이는 분산분석법(ANOVA)에 의해서 분석하였으며, 평균값은 t-test에 의해 비교하였다. P 값 < 0.05, <0.01, <0.001은 의미가 있게 여겨졌다. 동물생존율은 GraphPad Prism 5.0(GraphPad Software, USA)를 사용하여 로그 순위 검정에 의해 비교하였다.
실시예 10. 면역억제세포인 MDSC 제거용 약물, 암 항원, 및 면역활성화 아주번트가 로딩된 연성 생체삽입소자의 제조
상기 실시예 2에서 히알루론산/콜라겐 스캐폴드를 제조하는 과정에서 혼합용액에, 면역억제세포인 MDSC 제거용 약물인 젬시타빈(GEM)을 혼합한 후에, 가교반응을 진행함으로써, GEM을 포함하는 연성 생체삽입소자를 제조하였다. 동결건조하여 얻은 연성생체 삽입소자에 암세포 라이세이트(lysates)와 면역활성화 아주번트(immunoadjuvant, Poly(I:C)가 로딩된 나노젤)를 추가로 로딩해 줌으로써, GEM, 암백신, 및 면역아주번트를 포함하는 연성 생체삽입소자를 제조하였다(도 28).
실시예 11. MDSC 제거용 약물, 암 항원, 면역활성화 아주번트가 로딩된 성생체상입소자의 항암치료 효능 평가 방법
11-1. 마우스와 세포주
BALB/c 마우스(6주령, 암컷)를 오리엔트바이오(성남, 대한민국)에서 구입하였고, 무병원체 상태에서 관리하였다. 동물실험은 성균관대학교 의과대학 실험동물윤리위원회의 승인을 받았으며, 국제실험동물관리평가인증협회의 가이드라인을 준수하였다. 4T1 유방암 세포주는 10% FBS(Thermo Scientific)와 5 × 105 M 2-머캅토 에탄올(Sigma-Aldrich), 50IU/㎖ 페니실린과 50㎍/㎖ 스트렙토마이신(Thermo Scientific)이 포함된 RPMI 배양액을 사용하여 배양하였다.
11-2. 젬시타빈이 로딩된 연성 생체삽입소자의 제조 및 젬시타빈 적재효율(loading efficiency) 측정
상기 실시예 2에서 히알루론산/콜라겐 스캐폴드를 제조하는 과정에서 젬시타빈(2mg/스캐폴드)을 콜라겐-히알루론산 혼합용액과 균등하게 섞어 저온에서 가교(crosslinking)하여 젬시타빈이 로딩된 연성 생체삽입소자의 제조하였다. 이어서, 히알루론산과 콜라겐의 비율에 따른 젬시타빈의 적재효율을 측정하였다.
11-3. 4T1 세포 용해물 폴리 ( I:C )/ 나노겔이 로딩된 연성 생체삽입소자의 제조
4T1 세포 용해물을 얻기 위해 1x107개의 4T1 세포/㎖를 액체질소를 사용하여 빠르게 얼렸다가 37 ℃에서 녹이는 것을 5번 반복하고 490×g에서 10분간 원심분리를 하여, 세포 용해물의 상층액을 획득하였다. 단백질 농도는 BCA 분석법(Pierce Biotechnology)을 사용하여 분석하였다. 종양을 제거한 공간에 이식하기 6시간 전에 세포 용해물 500㎍을 스캐폴드에 균등하게 떨어뜨리고(dropping) 4 ℃에서 보관하여 4T1 세포 용해물이 로딩된 연성 생체삽입소자를 제조하였다. 이어서, 폴리(I:C)/나노겔을 스캐폴드에 로딩하기 위하여, 우선 나노겔 용액을 폴리 (I:C)용액에 균등하게 떨어뜨리고 2시간 동안 반응시켰다. 비율은 질량비로 1:2(나노겔 :폴리 (I:C))로 하였다. 상기 폴리 (I:C)/나노겔(폴리 (I:C) 100㎍)을 상기 4T1 세포 용해물이 로딩된 연성 생체삽입소자에 균등하게 떨어뜨리고 4 ℃에서 6시간 동안 보관하여 4T1 세포 용해물 및 폴리 (I:C)/나노겔이 로딩된 연성 생체삽입소자를 제조하였다.
11-4. In vitro 에서 연성 생체삽입소자의 약물 방출거동 확인
젬시타빈, 로다민이 붙어있는 폴리 (I:C)/나노겔, 및 4T1 세포 용해물이 로딩된 스캐폴드를 PBS (pH 7.4) 1㎖에 넣고 37 ℃, 90rpm에서 보관하였다. 선택한 시간 간격마다, 원래 배양액을 얻고, 새로운 배양액으로 교환하였다. 스캐폴드에서 방출되는 젬시타빈 양은 흡광도를 사용하여 측정하였으며(275nm, UV-1800; Shimadzu, Kyoto, Japan), 로다민이 붙어있는 폴리 I:C는 5'EenTag™ Nucleic Acid Labeling System(Vector Laboratories)의 지침에 따라 측정하였고, 4T1 세포 용해물은 BCA 분석 방법(Pierce Biotechnology)을 사용하여 측정하였다. 구체적으로 스캐폴드에서 방출되는 로다민이 붙어있는 폴리 (I:C)/나노겔은 형광 분석 장비(PerkinElmer)를 이용하여 여기 552nm와 방출 575nm 파장을 측정하여 분석하였다.
11-5. 골수 유래 수지상세포 획득 및 폴리 ( I:C )/ 나노겔과 4T1 용해물에 의한 수지상세포의 활성화 확인
마우스의 정강이와 대퇴골을 채취하여 근육 조직을 조심스럽게 제거하고, 채취한 뼈를 70% 에탄올에 1분간 담가 살균하고 PBS로 세정하였다. 뼈의 양 끝을 자른 다음, 26G 바늘의 주사기를 사용하여 RPMI 배양액으로 골수를 씻어내었다. 490 ×g에서 5분간 원심분리 후, 적혈구 용해 버퍼를 사용하여 적혈구를 제거하여 골수세포를 획득하였다. 상기 획득된 골수세포를 100mm 페트리디쉬에 FBS, 페니실린, 스트렙토마이신, 및 GM-CSF(Granulocyte macrophage colony-stimulating factor; R&D Systems)가 포함된 RPMI 배양액을 사용하여 배양하고, 7일 후에 배양된 골수 유래 수지상세포를 실험에 사용하였다.
골수 유래 수지상세포를 6-웰 플레이트에 2 × 106 cells/well 밀도로 폴리(I:C)/나노겔(폴리(I:C) 10㎍/㎖) 및 4T1 세포 용해물과 같이 배양하였다. 24시간 후, 상층액을 얻어서 IL-6와 TNF-α를 ELISA(BD Biosciences)를 사용하여 측정하였다. 이어서 Acurri™ 유세포 분석기를 사용하여 골수 유래 수지상세포 활성화 마커를 분석하였다. 항체는 FITC-anti-CD11b, PE-anti-CD11c, APC-anti-CD40, APC-anti-CD80(BD Pharmingen)을 사용하였다.
11-6. In vitro 에서 젬시타빈의 효과 확인
젬시타빈은 in vitro에서 골수유래억제세포(MDSC)의 세포사멸을 유발한다. 28일 동안 4T1 종양을 가진 마우스에서 비장을 추출하고, 추출된 비장을 갈은 다음 적혈구 용해 버퍼를 사용하여 적혈구를 제거하였다. 적혈구가 제거된 상기 비장세포를 MACS 버퍼(PBS, 0.5% BSA, 2mM MEDTA)에 재분산하고, MDSC Isolation Kit(Miltenyi Biotec)를 사용하여 골수유래억제세포를 분리하였다. 분리된 골수유래억제세포를 6-웰 플레이트에 2 × 10 6 cells/well 밀도로 분주하였으며, 다양한 농도의 젬시타빈을 첨가하여 배양하였다. 젬시타빈에 의한 골수유래억제세포의 세포사멸은 FITC Annexin V Apoptosis kit(BD Biosciences)의 지침을 따라 측정하였다.
또한, 젬시타빈을 처리한 4T1 유방암 세포주를 사용한 골수 유래 수지상세포의 활성화를 확인하였다. 4T1 세포를 2×106 cells/well 밀도로 1㎍/㎖ 젬시타빈과 같이 6-웰 플레이트에 배양하였다. 젬시타빈에 의한 4T1 유방암 세포의 세포사멸은 FITC Annexin V Apoptosis kit(BD Biosciences)의 지침을 따라 측정하였다. 24시간 후, 상층액을 수거하여 상기 상층액을 골수유래수지상세포와 같이 배양하였다. 골수 유래 수지상세포의 활성화 마커는 Acurri™ 유세포 분석기를 사용하여 분석하였다. 항체는 FITC-anti-CD11c 와 APC-anti-CD80(BD Pharmingen)을 사용하였다.
11-7. 연성 생체삽입소자의 이식 절차
1×106개의 4T1 세포주를 주입하고 14일차에 생성된 종양 크기가 300mm³ 일 때, 부분적으로 종양을 절제한다. 마우스를 2,2,2-Tribromoethanol을 사용하여 마취한다. 수술 부위를 70% 에탄올을 사용하여 소독하고, 종양의 90%를 절제하고 10%를 남겨둔다. 스캐폴드는 남아있는 종양 곁에 이식한다.
11-8. In vivo 에서 연성 생체삽입소자 이식에 의한 효과 확인
연성 생체삽입소자에 의한 수지상세포의 성숙도 확인을 확인하기 위하여, 약물이 로딩되지 않은 스캐폴드 또는 폴리 (I:C)/나노겔, 4T1 용해물이 로딩된 스캐폴드를 BALB/c 마우스의 옆구리에 이식하였다. 상기 스캐폴드는 이식 7일차와 14일차에 분리하였고, 분리한 스캐폴드는 콜라겐분해효소 D(Worthington) 를 사용하여 37 ℃에서 1시간 동안 분해하고 세포를 얻었다. 얻어진 세포는 70㎛ 스트레이너(BD Bioscience)를 사용하여 거르고 PBS로 세척하였다. 수지상세포 마커인 CD86과 CD11c 항체를 사용하였고 Acurri™ 유세포 분석기를 이용하여 분석하였다.
이어서, 연성 생체삽입소자에 의해 사이토카인과 케모카인의 분비양상 변화를 확인하기 위하여, 스캐폴드를 이식한 부분에서 IL-12, IL-6, CCL-2의 농도를 측정하였다. 구체적으로, 스캐폴드가 이식된 부분의 주변부 조직(100㎎)을 절제하고, 단백질분해효소 억제제가 포함된 단백질 추출 버퍼 1㎖을 사용하여 균질화하였다. 사이토카인과 케모카인은 제조사의 지침에 따라 ELISA 방법으로 측정하였다.
이어서, 연성 생체삽입소자에 의해 림프노드로 이동하는 수지상세포를 확인하기 위하여, 로다민이 붙어 있는 폴리 (I:C)/나노겔과 FITC를 사용한 용해물이 로딩된 스캐폴드를 마우스 옆구리에 이식하고, 3일 후와 7일 후, 상기 마우스의 서혜부 림프노드를 분리하고 콜라겐분해효소 D를 사용하여 분해한 다음 얻어진 세포를 70㎛ 스트레이너에 통과시켜 걸러내었다. 그 다음 FITC와 로다민 형광신호를 갖는 수지상세포를 유세포 분석기를 사용하여 분석하였다.
11-9. In vivo 에서 연성 생체삽입소자 이식에 의한 항암효과 확인
종양의 제거와 연성 생체삽입소자의 이식 후 7일차와 14일차에 마우스를 희생시키고, 상기 희생된 마우스의 종양, 비장, 및 림프노드를 분리하여 무게를 재었다.
종양과 림프노드는 잘게 자르고 콜라겐분해효소 D를 포함한 DMEM 배양액에 분산시킨 다음 1시간 동안 37 ℃, 90rpm에서 보관한 후 70㎛ 스트레이너에 통과시켜 걸러내었다. 비장은 물리적으로 분해한 뒤 적혈구 분해 버퍼를 사용하여 적혈구를 제거하였다. 상기 방법에 의해 단세포로 분산된 종양과 비장은 골수유래억제세포 확인을 위한 APC-anti-CD11b, PE-anti-Gr1 항체와 T 세포 확인을 위한 APC-anti-CD3, PE-anti-CD4, FITC-CD8 항체를 사용하여 분석하였다. 모든 항체는 BD Pharmingen에서 구입하였다.
또한, Ex vivo에서 항암 반응을 측정하기 위해, 상기와 같은 방법으로 비장과 림프노드를 단세포로 분산시킨 후 2×106 cells/㎖ 밀도로 12-웰 플레이트에 배양하고 80㎍/㎖ 농도의 4T1 용해물로 활성화시켰다. 72시간 뒤, 상층액을 수거하여 ELISA 방법으로 IFN-γ(BD Biosciences)를 측정하였다.
또한, 종양의 전이를 확인하기 위하여, 종양 제거 후 14일 차에 마우스를 희생시켜 전이를 확인하였다. 암세포의 전이는 3㎖ 인디언 잉크를 기관지 주입 방법을 사용하여 확인하였다. 구체적으로, 폐를 추출하여 Fekete 용액(70% 에탄올 100㎖, 4%포름알데하이드 10㎖, 100% 아세트산 5㎖)에 담가 destain하였다.
11-10. 결과 확인
도 29는 고형암 주위에서 MDSC 조절 약물, 암 항원 및 면역활성화 물질이 로딩된 연성 생체삽입소자를 이용한 면역억제환경 제어 및 항암면역효과 유도 개념도를 나타낸다. 도 29a는 유방암 모델(4T1)에서 제조된 연성 생체삽입소자를 이식하는 과정을 나타낸다. 도 29b는 이식된 연성생체 삽입소자에서 방출된 젬시타빈(GEM)과 암 백신(caner vaccine)이 이식된 고형암 주위의 면역억제세포인 MDSC를 제어하고, 항원제시세포인 수지상세포를 활성화함으로써, 림프노드와 비장을 거쳐서 systemic 항암효과를 유도하는 과정을 나타낸다.
도 30은 콜라겐과 히알루론산 비율에 따른 연성생체 삽입소자의 젬시타빈 적재효율(loading efficiency)과 적재량(loading amount) 차이를 나타낸다. 도 30에 나타난 바와 같이 콜라겐:히알루론산이 5:5 혼합된 크라이오젤 스캐폴드에서 젬시타빈의 로딩율이 최대가 됨을 알 수 있었다.
도 31는 연성 생체삽입소자에서 방출되는 젬시타빈의 방출거동, 암세포 및 면역세포에 미치는 영향을 나타낸 것이다. 도 31a에서 알 수 있듯이, 스캐폴드에서 나오는 젬시타빈의 일주일간 누적량을 측정한 결과, 일주일내 90% 가까운 젬시타빈이 스캐폴드에서 방출되었으며, 젬시타빈 농도변화에 따른 골수유래억제세포(MDSC)의 사멸세포 비율을 측정한 결과 젬시타빈 농도증가에 따라 사멸세포 비율이 증가하였다(도 31b). 또한, 젬시타빈 농도변화에 따른 유방암 세포주(4T1)에서의 사멸세포 비율 결과를 측정한 결과, 젬시타빈 농도증가에 따라 사멸세포 비율이 증가하였다(도 31c). 이어서 실시한 젬시타빈을 처리한 유방암 세포주(실험군)와 대조군을 이용한 수지상세포의 세포성숙도 비교 유세포 분류(flow cytometry) 결과에서는 실험군에서 수지상세포의 세포 성숙도가 증가함을 확인할 수 있었다(도 31d).
도 32는 연성 생체삽입소자에서 방출되는 암 항원의 방출거동 및 면역세포(BMDC, BMDM) 활성화 효과를 나타낸 것이다. 도 32에 나타난 바와 같이, 24시간 배양 이후 수지상세포와 대식세포의 세포 성숙도 (CD40, CD80) 유세포 분석 결과, 폴리 I:C-나노겔과 용해물(lysates)이 동시에 포함된 실험군에서 동반 상승(synergy)효과를 보여 세포성숙도가 높아짐을 확인할 수 있었다(도 32b). 또한, 24시간 배양 이후 수지상세포와 대식세포에서 분비되는 사이토카인(TNF-α, IL-6) 농도 측정 결과, 폴리 I:C-나노겔과 용해물(lysate)이 동시에 포함된 실험군에서 동반 상승(synergy)효과를 보여 분비되는 사이토카인 양이 증가함을 확인할 수 있었다(도 32c).
도 33은 생체내 이식된 연성 생체삽입소자에 의한 시간별 수지상세포 성숙도 효과를 나타내는데, 7일과 14일에 암 항원(vaccine)을 포함하는 연성 생체삽입소자에서 수지상세포를 모으고 성숙하게 만드는 효과가 우수함을 확인할 수 있었다.
또한, 종양 절제와 연성 생체삽입소자 이식 이후 7일(a), 14일(b) 차 비장 무게 비교 결과, 젬시타빈 및 폴리 I:C-나노겔과 세포용해물(lysate)이 동시에 포함된 실험군(combo)에서 면역 동반 상승 효과를 보이며, 비장 무게가 크게 늘어나지 않음을 확인할 수 있었다(도 34).
이어서, 종양 절제와 연성 생체삽입소자 이식 이후 7일과 14일 종양과 비장에서의 수지상세포(a)와 대식세포(b) 비율 비교 결과, 젬시타빈 및 폴리 I:C-나노겔과 세포용해물(lysate)이 동시에 포함된 실험군과 vaccine 실험군에서 수지상세포와 대식세포 비율이 현저하게 증가함을 확인할 수 있었다(도 35).
이어서, 연성 생체삽입소자 이식 이후 생존성 테스트 결과(a)와 7일, 14일차 재발된 종양 무게(b) 비교 결과, 젬시타빈 및 폴리 I:C-나노겔과 세포용해물(lysate)이 동시에 포함된 연성 생체삽입소자(iCD) 실험군에서 생존률이 가장 우수했으며, 고형암의 무게도 가장 적음을 확인할 수 있었다(도 36).
이어서, 연성 생체삽입소자 이식 이후 암세포의 폐 전이 방지 효과를 관찰한 결과, 폐로 전이된 종양 결절 수가, 젬시타빈 및 폴리 I:C-나노겔과 세포용해물(lysate)이 동시에 포함된 연성 생체삽입소자 (iCD) 실험군에서 가장 적음을 확인할 수 있었다(도 37).
또한, 종양 절제 및 연성 생체삽입소자 이식 이후 7일, 14일차에 종양과 비장에서 측정한 골수유래억제세포(MDSC)의 비율 변화(도 38a)와 CD8+ T 세포와 CD4+ T 세포 비율 결과(도 38b)에서 알 수 있듯이, 젬시타빈 및 폴리 I:C-나노겔과 세포 용해물(lysate)이 동시에 포함된 연성 생체삽입소자를 처리한 실험군에서 골수유래억제세포 비율이 현저하게 줄어든 것을 확인할 수 있었다. 또한, 젬시타빈이 골수유래억제세포 사멸 기능을 가지기 때문에 젬시타빈이 처리된 실험군에서 골수유래억제세포 비율이 감소됨을 확인할 수 있었다(도 38a). 그리고, 종양 절제 및 스캐폴드 이식 이후 7일, 14일차에 종양과 비장에서 측정한 CD8+ T 세포와 CD4+ T 세포 비율 결과, 젬시타빈 및 폴리 I:C-나노겔과 세포용해물(lysate)이 동시에 포함된 연성 생체삽입소자를 처리한 실험군에서 T 세포 비율이 증가함을 확인할 수 있었다(도 38b).
또한, 종양 절제 및 연성 생체삽입소자 이식 이후 7일, 14일차에 비장(도 39a)과 림프노드(도 39b)에서 세포를 추출하여 용해물을 처리하여 72시간 활성화시킨 후 측정한 인터페론 감마 농도를 비교한 결과, 젬시타빈 및 폴리 I:C-나노겔과 세포용해물(lysates)이 동시에 포함된 연성 생체삽입소자를 처리한 실험군에서 인터페론 감마의 농도가 가장 현저하게 증가함을 확인할 수 있었다.
실시예 12. 항암제, 면역억제세포인 MDSC 및 TAM 기능조절 약물, 암 면역활성화 아주번트, 면역체크포인트 저해제가 로딩된 연성 생체삽입소자의 제조 및 면 역항암제로서의 특성 평가
상기 실시예 2에서 히알루론산/콜라겐 스캐폴드를 제조하는 과정에서 혼합용액에, Immunogenic cell death를 유도하는 항암제인 독소루비신, 면역억제세포인 MDSC 및 TAM의 기능을 제어하는 기능을 하면서도, TLR7 아고니스트로서 면역활성화 아주번트 기능 등 다기능 특성을 갖고 있는 레시퀴모드(R848) 나노입자 및 면역체크포인트 저해제인 anti-PDL1을 포함하는 연성 생체삽입소자를 제조하였다(도 40, 도 41). 이렇게 제조된 연성 생체삽입소자의 면역항암제로의 특성은 실시예 9 및 실시예 11에서 기술된 방법을 이용하여 평가하였다. 도 42a 및 42b에서 볼 수 있듯이, Resiquimod가 처리된 그룹에서 macrophage가 M2에서 M1으로 polarization되는 경향을 표면마커(CD86/CD206)와 Arg/NO 생성률(도 42a)과 사이토카인 발현(도 42b)을 측정함으로써 관찰할 수 있었다. 면역활성화와 관련된 염증성 사이토카인은 증가한 반면, IL-10과 같은 면역억제와 관련된 사이토카인의 양은 감소하는 것을 관찰할 수 있다. 또한, 순수한 resiquimod에 비하여, 나노입자에 로딩된 레시퀴모드(R848-NPs)에 의해 M1 polarization이 향상되는 것을 알 수 있었다.
또한, 레시퀴모드 나노입자에 의하여 면역억제세포인 MDSC가 수지상 세포 및 대식세포와 같은 항원제시 세포로의 변화 유도(도 43a) 되는 것과, 이러한 변화에 의해 염증성 사이토카인의 발현(도 43b)이 증가되는 것을 관찰할 수 있었다. 연성생체삽입소자에 독소루비신(Dox) 항암제가 추가로 로딩된 그룹(combo)에서는 독소루비신이나 레시퀴모드가 각각 단독으로 로딩된 경우와 비교하여, 수술 후에 암의 재발이 급격하게 억제되는 것을 관찰할 수 있었다(도 44). 이렇게 우수한 항암효과는 독소루비신과 레시퀴모드의 시너지 효과에 의해, 암의 치료와 관련된 T 세포, M1 대식세포의 수는 증가하는 반면에, 면역억제 세포인 MDSC와 M2 대식세포의 수는 감소하기 때문임을 유추할 수 있었다(도 45). 이러한 면역활성화 세포의 증가와 면역억제세포의 감소로, 항암효과와 관련있는 사이토카인(IL-12, IL-6, IFN-gamma)은 증가하는 반면, 암세포의 증식과 관련된 사이토카인(IL-10)의 양은 감소함을 확인할 수 있었다(도 45). 면역체크포인트 저해제인 anti-PDL1과의 시너지 효과를 검증하기 위해서, 연성 생체삽입소자에 독소루비신과 레시퀴모드가 함께 로딩되었던 combo 그룹에, anti-PDL1을 추가적으로 로딩한 후에 항암효과를 검증하였다. 도 46에서 볼 수 있듯이, anti-PDL1이 추가적으로 로딩된 그룹에서 tumor-free mice가 생겼으며, 도 47에서 볼 수 있듯이, 폐로의 전이도 급격하게 억제됨을 확인할 수 있었다. 이러한 실험결과는 anti-PDL1과 같은 면역체크포인트 저해제의 효과가 적은 종양모델에서, 약물이 로딩된 생체 삽입형 연성소자가 시너지 효과를 유도할 수 있다는 것을 검증해 준다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가지는 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명에 따른 크라이오젤 스캐폴드는 분해도가 서로 다른 2 이상의 성분을 혼합하여 저온에서 가교하여 제조됨으로써, 상기 성분의 농도 및 각 성분의 혼합비율을 조절하여 용도와 목적에 적합한 분해도 및/또는 스웰링비를 가질 수 있기 때문에, 크라이오젤 스캐폴드의 적용 분야가 더욱 확장될 수 있을 것으로 기대된다. 또한, 본 발명의 크라이오젤 스캐폴드에 항암 약물 및 면역억제작용을 제어하는 약물을 함께 로딩함으로써 치료효과가 낮은 고형암 치료 효과를 현저히 향상시킬 수 있는 것을 확인하였기 때문에 다양한 고형암의 치료에도 폭넓게 사용가능할 것으로 기대된다.

Claims (26)

  1. 제1성분 및 제2성분이 가교된 구조를 포함하는, 크라이오젤 스캐폴드(cryogel scaffold)로서,
    상기 제1성분은 수용액과 접촉시 스웰링(swelling)되어 상기 스캐폴드의 부피가 증가되며,
    상기 제2성분은 상기 제1성분과는 상이한 화합물로서, 제1성분과 가교결합이 가능하며, 제1성분과 가교 후 외부 자극에 의하여 분해도 제어가 가능한 것인, 크라이오젤 스캐폴드.
  2. 제1항에 있어서,
    상기 제1성분은 히알루론산(Hyaluronic acid), 히알루론산 메타아크릴레이트(Hyaluronic acid-methacrylate), 폴리글루탐산(Poly(glutamic acid)), 폴리감마 글루탐산(Poly(gamma-glutamic acid)), 폴리아미노산(Poly(amino acid)), 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것이고, 상기 제2성분은 콜라겐(Collagen), 히알루론산, 히알루론산 알데하이드 메타아크릴레이트(Hyaluronic acid-aldehyde methacrylate), 폴리감마글루탐산(Poly(gamma-glutamic acid)), 폴리아미노산, 키토산(Chitosan), 셀룰로오스(Cellulose), 폴리아크릴레이트(Polyacrylate), 폴리아크릴산(Polyacrylic acid) 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것이며, 상기 제1성분 및 제2성분은 10:90 내지 90:10, 20:80 내지 80:20, 30:70 내지 70:30, 40:60 내지 60:40, 또는 50:50의 w/v%로 포함된 것인, 크라이오젤 스캐폴드.
  3. 제1항에 있어서,
    상기 제1성분은 히알루론산 메타아크릴레이트이고, 상기 제2성분은 히알루론산 알데하이드 메타아크릴레이트인, 크라이오젤 스캐폴드.
  4. 제1항에 있어서,
    상기 제2성분은 콜라겐이고, 상기 제1성분은 폴리감마글루탐산 또는 히알루론산인, 크라이오젤 스캐폴드.
  5. 제1항에 있어서,
    상기 제1성분 및 제2성분의 가교된 구조는 -25 ℃ 내지 -4 ℃ 에서 형성된 것인, 크라이오젤 스캐폴드.
  6. 제1항에 있어서,
    상기 외부자극은 체내의 생리적 조건, 빛, 환원제, 및 효소로 이루어진 군으로부터 선택된 하나 이상의 자극인 것을 특징으로 하는, 크라이오젤 스캐폴드.
  7. (a) 제1성분을 포함하는 제1성분 용액을 제조하는 단계;
    (b) 제2성분을 포함하는 제2성분 용액을 제조하는 단계;
    (c) 상기 제1성분 용액 및 제2성분 용액을 혼합하여 혼합용액을 제조하는 단계; 및
    (d) 상기 혼합용액을 저온에서 가교시키는 단계;를 포함하는, 크라이오젤 스캐폴드(cryogel scaffold)의 제조방법으로서,
    상기 제1성분은 수용액과 접촉시 스웰링(swelling)되어 상기 스캐폴드의 부피가 증가되며,
    상기 제2성분은 상기 제1성분과는 상이한 화합물로서, 제1성분과 가교결합이 가능하며, 제1성분과 가교 후 외부 자극에 의하여 분해도 제어가 가능한 것인, 크라이오젤 스캐폴드의 제조방법.
  8. 제7항에 있어서,
    상기 (a) 단계의 제1성분은 히알루론산, 히알루론산 메타아크릴레이트, 폴리글루탐산, 폴리감마글루탐산, 폴리아미노산, 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것이고, 상기 (b) 단계의 제2성분은 콜라겐, 히알루론산, 히알루론산 알데하이드 메타아크릴레이트, 폴리감마글루탐산, 폴리아미노산, 키토산, 셀룰로오스, 폴리아크릴레이트, 폴리아크릴산 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것이며,
    상기 (a) 단계 및 (b) 단계에서 제1성분 또는 제2성분은 각 용액에 0.1 내지 50 ㎎/㎖의 농도로 포함된 것인, 크라이오젤 스캐폴드의 제조방법.
  9. 제7항에 있어서,
    상기 (a) 단계의 제1성분은 히알루론산 메타아크릴레이트(Hyaluronic acid-methacrylate: HA-MA)이고, 상기 (b) 단계의 제2성분은 히알루론산 알데하이드 메타아크릴레이트(Hyaluronic acid-aldehyde methacrylate: HA-ald-MA)인, 크라이오젤 스캐폴드의 제조방법.
  10. 제7항에 있어서,
    상기 (b) 단계의 제2성분은 콜라겐(Collagen)이고, 상기 (a) 단계의 제1성분은 폴리감마글루탐산(Poly(gamma-glutamic acid)) 또는 히알루론산 (Hyaluronic acid)인, 크라이오젤 스캐폴드의 제조방법.
  11. 제7항에 있어서,
    상기 (d) 단계의 가교는 -25 내지 -4 ℃ 에서 3 내지 24 시간 동안 수행되는 것인, 크라이오젤 스캐폴드의 제조방법.
  12. 제1성분 및 제2성분이 가교된 구조를 포함하는 크라이오젤 스캐폴드; 및 약물을 포함하는, 연성 생체삽입소자로서,
    상기 제1성분은 수용액과 접촉시 스웰링(swelling)되어 상기 스캐폴드의 부피가 증가되며,
    상기 제2성분은 상기 제1성분과는 상이한 화합물로서, 제1성분과 가교결합이 가능하며, 제1성분과 가교 후 외부 자극에 의하여 분해도 제어가 가능하며,
    상기 약물은 고형암 미세환경 내의 면역억제작용을 제어하는 약물인, 연성생체삽입소자.
  13. 제12항에 있어서,
    상기 약물은 MDSC(Myeoloid-Derived Suppressor Cell), Treg(Regulatory T cell), 또는 TAM(tumor associated macrophage)의 활성, 생존, 또는 증식을 억제하는 것을 특징으로 하는, 연성 생체삽입소자.
  14. 제12항에 있어서,
    상기 연성 생체삽입소자는 항암제, 면역억제인자 제어 약물, 암 백신, 면역 아주번트(immunoadjuvant), 암 치료용 면역세포, 면역체크포인트 억제 약물, 면역세포 활성 보조인자, 암 치료용 항체 및 상기 암 치료용 면역세포의 활성 유지에 필요한 사이토카인으로 이루어진 군으로부터 선택되는 하나 이상의 약물을 더 포함하는 것인, 연성 생체삽입소자.
  15. 제12항에 있어서,
    상기 제1성분과 제2성분의 가교된 구조는 -25 내지 -4℃ 에서 형성된 것인, 연성 생체삽입소자.
  16. 제12항에 있어서,
    상기 연성 생체삽입소자는 Arginylglycylaspartic acid(RGD peptide) 또는 세포외기질(extracellular material: ECM) 유래 물질을 더 포함하는 것인, 연성 생체삽입소자.
  17. (a) 제1성분을 포함하는 제1성분 용액을 제조하는 단계;
    (b) 제2성분을 포함하는 제2성분 용액을 제조하는 단계;
    (c) 상기 제1성분 용액, 제2성분 용액, 및 약물을 혼합하여 혼합용액을 제조하는 단계; 및
    (d) 상기 혼합용액을 저온에서 가교시키는 단계를 포함하는 연성 생체삽입소자 제조방법으로서,
    상기 제1성분은 수용액과 접촉시 스웰링(swelling)되어 상기 스캐폴드의 부피가 증가되며,
    상기 제2성분은 상기 제1성분과는 상이한 화합물로서, 제1성분과 가교결합이 가능하며, 제1성분과 가교 후 외부 자극에 의하여 분해도 제어가 가능하며,
    상기 약물은 고형암 미세환경 내의 면역억제작용을 제어하는 약물인, 연성 생체삽입소자 제조방법.
  18. (a) 제1성분을 포함하는 제1성분 용액을 제조하는 단계;
    (b) 제2성분을 포함하는 제2성분 용액을 제조하는 단계;
    (c) 상기 제1성분 용액 및 제2성분 용액을 혼합하여 혼합용액을 제조하는 단계;
    (d) 상기 혼합용액을 저온에서 가교시켜 크라이오젤 스캐폴드를 제조하는 단계; 및
    (e) 상기 크라이오젤 스캐폴드에 약물을 로딩하는 단계를 포함하는 연성 생체삽입소자 제조방법으로서,
    상기 제1성분은 수용액과 접촉시 스웰링(swelling)되어 상기 스캐폴드의 부피가 증가되며,
    상기 제2성분은 상기 제1성분과는 상이한 화합물로서, 제1성분과 가교결합이 가능하며, 제1성분과 가교 후 외부 자극에 의하여 분해도 제어가 가능하며,
    상기 약물은 고형암 미세환경 내의 면역억제작용을 제어하는 약물인, 연성 생체삽입소자 제조방법.
  19. 제17항 또는 제18항에 있어서,
    상기 약물은 MDSC(Myeoloid-Derived Suppressor Cell), Treg(Regulatory T cell), 또는 TAM(tumor associated macrophage)의 활성, 생존, 또는 증식을 억제하는 것을 특징으로 하는, 연성 생체삽입소자 제조방법.
  20. 제17항 또는 제18항에 있어서,
    상기 (a) 단계의 제1성분은 히알루론산, 히알루론산 메타아크릴레이트, 폴리글루탐산, 폴리감마글루탐산, 폴리아미노산, 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것이고, 상기 (b) 단계의 제2성분은 콜라겐, 히알루론산, 히알루론산 알데하이드 메타아크릴레이트, 폴리감마글루탐산, 폴리아미노산, 키토산, 셀룰로오스, 폴리아크릴레이트, 폴리아크릴산 및 그 유도체로 이루어진 군으로부터 선택되는 하나 이상의 성분을 포함하는 것이며, 상기 (a) 단계 및 (b) 단계에서 제1성분 또는 제2성분은 각 용액에 0.1 내지 50 ㎎/㎖의 농도로 포함된 것인, 연성 생체삽입소자 제조방법.
  21. 제17항 또는 제18항에 있어서,
    상기 (a) 단계의 제1성분은 히알루론산 메타아크릴레이트(Hyaluronic acid-methacrylate: HA-MA)이고, 상기 (b) 단계의 제2성분은 히알루론산 알데하이드 메타아크릴레이트(Hyaluronic acid-aldehyde methacrylate: HA-ald-MA)인, 연성 생체삽입소자 제조방법.
  22. 제17항 또는 제18항에 있어서,
    상기 (b) 단계의 제2성분은 콜라겐(Collagen)이고, 상기 (a) 단계의 제1성분은 폴리감마글루탐산(Poly(gamma-glutamic acid)) 또는 히알루론산(Hyaluronic acid)인, 연성 생체삽입소자 제조방법.
  23. 제17항 또는 제18항에 있어서,
    상기 (c) 단계의 혼합용액은 Arginylglycylaspartic acid(RGD peptide) 또는 세포외기질(extracellular material: ECM) 유래 물질을 더 포함하는 것인, 연성 생체삽입소자 제조방법.
  24. 제17항 또는 제18항에 있어서,
    상기 (c) 단계의 혼합용액은 항암제, 면역억제인자 제어 약물, 암 백신, 면역아주번트(immunoadjuvant), 암 치료용 면역세포, 면역체크포인트 억제 약물, 면역세포 활성 보조인자, 암 치료용 항체 및 상기 암 치료용 면역세포의 활성 유지에 필요한 사이토카인으로 이루어진 군으로부터 선택되는 하나 이상을 더 포함하여 제조되는 것인, 연성 생체삽입소자 제조방법.
  25. 제17항 또는 제18항에 있어서,
    상기 (d) 단계의 가교는 -25 내지 -4 ℃에서 3 내지 24 시간 동안 수행되는 것인, 연성 생체삽입소자 제조방법.
  26. 제18항에 있어서,
    상기 (e) 단계는 크라이오젤 스캐폴드에 항암제, 면역억제인자 제어 약물, 암 백신, 면역아주번트(immunoadjuvant), 암 치료용 면역세포, 면역체크포인트 억제 약물, 면역세포 활성 보조인자, 암 치료용 항체 및 상기 암 치료용 면역세포의 활성 유지에 필요한 사이토카인으로 이루어진 군으로부터 선택되는 하나 이상의 약물을 추가로 로딩하는 것인, 연성 생체삽입소자 제조방법.
PCT/KR2018/015921 2017-12-18 2018-12-14 분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자 WO2019124886A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/954,324 US11590076B2 (en) 2017-12-18 2018-12-14 Cryogel scaffold capable of controlling degree of degradation and soft bio-integrated device in which drug modulating immunosuppressive action in solid microenvironment is loaded in same scaffold

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170173848 2017-12-18
KR10-2017-0173848 2017-12-18
KR1020180143015A KR102227745B1 (ko) 2017-12-18 2018-11-19 분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자
KR10-2018-0143015 2018-11-19

Publications (2)

Publication Number Publication Date
WO2019124886A2 true WO2019124886A2 (ko) 2019-06-27
WO2019124886A3 WO2019124886A3 (ko) 2019-08-15

Family

ID=66994910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015921 WO2019124886A2 (ko) 2017-12-18 2018-12-14 분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자

Country Status (1)

Country Link
WO (1) WO2019124886A2 (ko)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675561B2 (en) * 2011-04-28 2017-06-13 President And Fellows Of Harvard College Injectable cryogel vaccine devices and methods of use thereof
KR101383527B1 (ko) * 2012-05-07 2014-04-08 영남대학교 산학협력단 합성 고분자, 폴리사카라이드 및 단백질을 포함하는 크라이오젤 스캐폴드 및 상기 스캐폴드를 이용한 조직 재생방법
WO2016010114A1 (ja) * 2014-07-16 2016-01-21 国立大学法人大阪大学 腫瘍免疫又は感染免疫を増強させる免疫増強剤

Also Published As

Publication number Publication date
WO2019124886A3 (ko) 2019-08-15

Similar Documents

Publication Publication Date Title
WO2012026712A4 (ko) Nod2의 아고니스트를 처리한 줄기세포 또는 그 배양물을 포함하는 면역질환 또는 염증질환의 예방 또는 치료용 약학조성물
WO2013094988A1 (en) Method for producing natural killer cells, natural killer cells produced thereby, and composition for treating cancers and infectious diseases containing the same
KR102227745B1 (ko) 분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자
Ullm et al. Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties
ES2751692T3 (es) Poblaciones de células que tienen actividad inmunorreguladora, método de aislamiento y usos
WO2018097540A9 (ko) 무혈청면역세포배양용 배지첨가키트, 상기 키트를 이용한 면역세포배양방법, 상기 키트 또는 배양방법에 의해 얻어진 무혈청면역세포배양액 및 상기 배양액을 포함하는 화장료조성물
WO2016122147A1 (ko) 자연살해세포의 대량생산 방법 및 상기 방법으로 수득된 자연살해세포의 항암제로서의 용도
US8592364B2 (en) CCR7 ligand delivery and co-delivery in immunotherapy
WO2016209021A1 (ko) 자연살해세포의 증식 방법 및 자연살해세포 증식용 조성물
WO2018026198A1 (ko) 연골 재생용 조성물 및 이의 제조방법
WO2011142514A1 (ko) Pias3을 유효성분으로 포함하는 암 또는 면역질환의 예방 또는 치료용 조성물
WO2015167243A1 (ko) 면역질환 치료효과를 갖는 신규한 화합물 및 이의 용도
WO2017034244A1 (ko) 중추신경계 질환에 대한 예방 또는 치료효과를 갖는 펩타이드 및 이를 유효성분으로 하는 중추신경계 질환 예방 및 치료용 약학적 조성물
WO2021162529A1 (ko) 페놀 유도체가 수식된 콘드로이틴 설페이트 하이드로젤 및 이의 용도
WO2019124886A2 (ko) 분해도 제어가 가능한 크라이오젤 스캐폴드 및 상기 스캐폴드에 고형암 미세환경에서 면역억제작용을 제어하는 약물을 로딩한 연성 생체삽입소자
WO2017146538A1 (ko) 조절 t 세포 매개성 질환의 예방 또는 치료용 약학적 조성물
WO2015076430A1 (ko) 메트포민을 유효성분으로 포함하는 면역질환의 예방 또는 치료용 조성물
WO2017078277A1 (ko) 약물 지속 방출형 나노 입자 및 상기 나노입자로 표면 개질된 췌장소도세포를 포함하는 당뇨병 치료용 약학 조성물
WO2016117960A1 (ko) 면역질환 치료 효능을 갖는 grim19이 과발현된 중간엽줄기세포 및 이의 용도
WO2022030973A1 (ko) 종양 침윤성 림프구로부터 역분화된 줄기세포 기억 t세포를 포함하는 세포치료제 조성물 및 그 제조 방법
WO2018008941A1 (ko) 연골 무세포 파쇄물 및 줄기세포를 포함하는 연골분화 촉진용 복합체 및 그의 용도
WO2011037416A2 (ko) 세포이식술을 위한 혼합세포복합체인 세포스페로이드의 제조방법 및 이의 이용방법
WO2023239200A1 (ko) 폴리(유기포스파젠) 고분자를 포함하는 염증성 질환의 예방 또는 치료용 조성물
WO2015199416A1 (ko) 피부 또는 혈관 조직 손상 치료용 약학 조성물 및 이의 이용
WO2021085696A1 (ko) 작은 지질 나노 입자 및 이를 포함하는 암 백신

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892969

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892969

Country of ref document: EP

Kind code of ref document: A2