WO2018159947A1 - 고강도 제올라이트 및 그의 제조방법 - Google Patents

고강도 제올라이트 및 그의 제조방법 Download PDF

Info

Publication number
WO2018159947A1
WO2018159947A1 PCT/KR2018/001755 KR2018001755W WO2018159947A1 WO 2018159947 A1 WO2018159947 A1 WO 2018159947A1 KR 2018001755 W KR2018001755 W KR 2018001755W WO 2018159947 A1 WO2018159947 A1 WO 2018159947A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
hydrothermal synthesis
slag
fly ash
present
Prior art date
Application number
PCT/KR2018/001755
Other languages
English (en)
French (fr)
Inventor
이행기
라자 칼리드함마드
이남곤
박솔뫼
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2018159947A1 publication Critical patent/WO2018159947A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/047Zeolites

Definitions

  • the present invention relates to a high-strength zeolite and a method for producing the same, and more particularly, to a zeolite having excellent strength and adsorption performance and a method for producing the same.
  • river blocks manufactured by mixing natural or synthetic zeolites with concrete are used for water purification.
  • fly ash As a method of manufacturing the zeolite, a technique of manufacturing zeolite from fly ash, which is an industrial waste of a thermal power plant or a steel manufacturing plant, has attracted attention.
  • fly ash has been known for a long time to react with sodium hydroxide (NaOH) to be zeolitic, and research has shown that it can be recycled as an adsorbent.
  • NaOH sodium hydroxide
  • Synthetic or natural zeolites have excellent adsorption and ion exchange properties. Exchange, wastewater treatment and various additives.
  • the zeolite obtained by the conventional wet method is provided in powder form and thus is limited in practical use.
  • the conventional method of adsorption by zeolite concrete is to mix and adsorb a certain amount of synthetic and natural zeolite powder in cement, there was a problem that the strength and adsorption performance is not good.
  • Republic of Korea Patent No. 10-1687349 discloses a method for producing a zeolite, which can be used to prepare a zeolite exhibiting excellent strength and adsorption performance by the phase conversion of the geopolymer mixed with fly ash and slag using a hydrothermal synthesis reaction It is described as.
  • the geopolymer slurry mixed with fly ash and slag is phased with low energy consumption and high conversion rate by using a hydrothermal reaction.
  • transforming Phase Transformation
  • Another object of the present invention is to provide a zeolite prepared by the above production method.
  • a zeolite was prepared by hydrothermal synthesis using a geopolymer slurry mixed with an alkali activator in a mixture of fly ash and slag,
  • the hydrothermal synthesis provides a method for producing a high-strength zeolite, characterized in that it is carried out under a temperature of 60 to 150 °C and pressure conditions of 0.10 to 0.65MPa.
  • the present invention is a zeolite having a compressive strength of 15 to 25 MPa and a specific surface area of 40 to 80 m 2 / g by the phase conversion of the geopolymer slurry comprising fly ash, slag and alkali activator by hydrothermal curing To provide.
  • the present invention provides a concrete block for water quality and air purification using the zeolite.
  • the zeolite according to the present invention may exhibit excellent adsorption performance because a plurality of nanopores are formed by phase-converting the geopolymer slurry mixed with industrial ash fly ash and slag to crystalline zeolite using hydrothermal synthesis.
  • the zeolite of the bulk type is directly from the geopolymer slurry under conditions such as temperature and pressure.
  • the present invention relates to a method for manufacturing a block, and has excellent efficiency and economy.
  • the zeolite can be effectively used for concrete blocks and precast products for water quality and air purification.
  • FIG. 2 is an XRD graph showing zeolites prepared by a one-step reaction according to the present invention and zeolites prepared by a two-step reaction according to the prior art
  • One embodiment of the present invention relates to a method for producing a high strength zeolite, the method of the present invention
  • a zeolite was prepared by hydrothermal synthesis using a geopolymer slurry mixed with an alkali activator in a mixture of fly ash and slag,
  • the hydrothermal reaction is characterized in that it is carried out under a temperature of 60 to 150 °C and pressure conditions of 0.10 to 0.65MPa.
  • the hydrothermal reaction temperature is 60 to 150 °C
  • the pressure is 0.10 to 0.65MPa
  • the reaction time is characterized in that 12 to 48 hours.
  • the fly ash comprises SiO 2 , Al 2 O 3 and Fe 2 O 3 , some of which may be crystalline or amorphous.
  • the slag is composed mainly of SiO 2 , Al 2 O 3 , Fe 2 O 3 and CaO, and may contain small amounts of various other metal oxides such as K 2 O, Na 2 O, MgO, TiO 2, and the like.
  • zeolite may not be formed.
  • a mixture of water glass and an aqueous sodium hydroxide (NaOH) solution may be used as the alkali activator.
  • alkali activator a mixture prepared by mixing KS three water glass (29% SiO 2 , 9.5% Na 2 O and 61.5% H 2 O) and an aqueous sodium hydroxide solution at a predetermined mass ratio may be used.
  • the molar ratio of SiO 2 / Na 2 O of the alkali activator is preferably 0.1 to 0.7.
  • the geopolymer is formed in the form of a paste or slurry by mixing fly ash, slag and alkali activator, the geopolymer in the paste or slurry form is put into a mold of a certain shape and then performing a curing process Rather, it is characterized in that the phase conversion to zeolite by performing a hydrothermal synthesis immediately.
  • the hydrothermal reaction temperature is preferably 60 to 150 °C
  • the pressure is preferably 0.10 to 0.65MPa
  • the reaction time is preferably 12 to 24 hours.
  • the present invention performs hydrothermal synthesis for 12 to 24 hours at a temperature of 60 to 150 ° C. and a pressure of 0.10 to 0.65 MPa, thereby exhibiting an excellent phase conversion effect with low energy consumption.
  • the hydrothermal reaction is preferably carried out by sealing under 100% humidity in an auto-clave.
  • the hydrothermal synthesis is characterized in that the water is contained in 20 to 40% by volume relative to 100% by volume of the chamber.
  • the amount of water relative to the total volume of the autoclave chamber is preferably included in a ratio of 0.2 to 0.4.
  • the ratio is less than 0.2, sufficient moisture evaporation may not be achieved, so that the internal vapor pressure may be reduced.
  • the ratio is greater than 0.4, excessive energy consumption may occur as compared to zeolite formation.
  • the geopolymer slurry forms a plurality of nanopores while phase-converting to crystalline zeolite.
  • the zeolite may further perform a drying process.
  • the zeolite prepared by the manufacturing method according to the present invention not only shows excellent strength by forming a CASH gel at the same time as the zeolite formation, but also a large amount of nano-pores that the zeolite binder itself can adsorb heavy metals and contaminants. Since it has an excellent adsorption performance, it can be used for concrete by adding aggregate, and can also be effectively used for concrete blocks and precast products for water quality and air purification.
  • one embodiment of the present invention is prepared by the above production method, the geopolymer slurry comprising a fly ash, slag and alkali activator is hydrothermally cured and phase-converted so that the compressive strength of 15 to 25 MPa and 40 to 80 m 2 It relates to a zeolite having a specific surface area characteristic of / g.
  • the zeolite according to the invention preferably has a compressive strength of about 15 to 20 MPa, more preferably may have a compressive strength of about 16 to 17 MPa.
  • the dried zeolite was made into powder for XRD (X-ray diffraction analysis) experiments. As a result, as shown in FIG. 1, it was found that a zeolite crystal peak, which was not present before the hydrothermal synthesis reaction, was formed.
  • Zeolite was prepared in the same manner as in Example 1 except that the hydrothermal synthesis reaction was performed at 125 ° C and 0.25 MPa conditions instead of performing the hydrothermal synthesis reaction at 100 ° C and 0.1 MPa conditions.
  • Zeolite was prepared in the same manner as in Example 1 except that the hydrothermal synthesis reaction was performed at 150 ° C. and 0.65 MPa conditions instead of performing the hydrothermal synthesis reaction at 100 ° C. and 0.1 MPa conditions.
  • the geopolymer block prepared in Comparative Example 1-1 was placed in a 500 ml autoclave chamber, followed by hydrothermal synthesis. At this time, the temperature was 90 degrees, 50ml of water was filled in the chamber soaked so that the block is completely submerged in water, and the reaction was performed for 24 hours. Then, the zeolite was prepared by drying at 50 degrees for one day.
  • Zeolite was prepared in the same manner as in Example 1 except that the hydrothermal synthesis reaction was performed at 100 ° C. and 0 MPa conditions instead of the hydrothermal synthesis reaction at 100 ° C. and 0.1 MPa conditions.
  • Zeolite was prepared in the same manner as in Example 1 except that the hydrothermal synthesis reaction was performed at 150 ° C. and 1.1 MPa condition instead of performing the hydrothermal synthesis reaction at 100 ° C. and 0.1 MPa condition.
  • the one-step hydrothermal synthesis according to the present invention was made more smoothly than the two-step method Q (quartz) was reacted, it can be seen that the amorphous content around 20-30 degrees is reduced.
  • Specimen size shown in ASTM C109 was 5cm cubic size, but in Experimental Example 1, the specimens were prepared in 2.54cm cubic size, and the compressive strength (MPa) was measured at 90 days.
  • the zeolites of Examples 1 to 3 prepared through a one-step according to the present invention are prepared under conditions that are not two-step or pressure ranges according to the present invention. It was confirmed that the zeolite of Comparative Examples 1 and 2 had a superior specific surface area and a higher zeolite content.
  • the zeolite of Comparative Example 3 obtained a higher specific surface area and zeolite content than the zeolites of Examples 1 to 3, but was found to exhibit low strength.
  • the zeolite prepared by the production method of the present invention can exhibit both adsorption performance, high zeolite content and excellent compressive strength due to the excellent specific surface area.
  • the high-strength zeolite according to the present invention can be utilized in concrete blocks and precast products for water quality and air purification because a large amount of nano-pores are formed to effectively adsorb heavy metals and contaminants in the phase conversion process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

본 발명은 산업폐기물인 플라이 애시, 슬래그 및 알칼리 활성화제를 혼합한 지오폴리머 슬러리로부터 수열합성반응을 이용하여 고강도 제올라이트를 제조함으로써 다수의 나노 공극을 형성하므로 우수한 흡착성능을 나타내는 고강도 제올라이트 및 그의 제조방법에 관한 것으로, 본 발명에 따른 제올라이트는 수질 및 공기정화용 콘크리트 블록 및 프리캐스트 제품 등에 효과적으로 사용될 수 있다.

Description

고강도 제올라이트 및 그의 제조방법
본 발명은 고강도 제올라이트 및 그의 제조방법에 관한 것으로, 보다 상세하게는 우수한 강도 및 흡착성능을 가지는 제올라이트 및 그의 제조방법에 관한 것이다.
최근 도시교통 수요의 폭발적 증가와 함께 도로 건설이 확산되면서, 도시의 대기 및 하천의 수질 환경이 급격히 악화되었다. 21세기 건설분야의 지속적인 성장을 위해서도 주변 환경의 오염원을 능동적으로 완화하는 수질 및 환경정화용 고성능 및 다기능 친환경 재료에 대한 수요가 증가하고 있다.
이러한 문제를 해결하기 위한 방안으로 천연 또는 합성 제올라이트(Zeolite)를 콘크리트에 혼입하여 제조한 하천블록을 수질정화용으로 사용하고 있다.
상기 제올라이트의 제조방법으로 화력발전소나 철강 제조공장의 산업폐기물인 플라이 애시(Fly ash)로부터 제올라이트를 제조하는 기술이 주목받고 있다. 특히 플라이 애시는 수산화나트륨(NaOH)과 반응하여 제올라이트화 가능한 것으로 오래 전부터 알려져 있으며 이에 대한 연구결과 흡착제로서 재활용될 수 있음이 밝혀졌고, 합성 또는 천연 제올라이트는 흡착 및 이온교환 특성이 우수하므로 건조, 이온교환, 폐수처리 및 각종 첨가제 등으로 활용될 수 있다.
그러나, 종래 습식법에서 얻어지는 제올라이트는 분말형태로 제공되고 있어서 활용상 제한을 받는다. 또한, 기존 제올라이트 콘크리트에 의한 흡착법은 시멘트에 합성 및 천연 제올라이트 분말을 일정량 혼입하여 흡착시키는데, 강도 및 흡착성능이 좋지 않은 문제가 있었다.
대한민국 등록특허 제10-1687349호에는 제올라이트의 제조방법이 개시되어 있으며, 플라이 애시 및 슬래그를 혼합한 지오폴리머를 수열합성반응을 이용하여 상변환시켜 우수한 강도 및 흡착성능을 나타내는 제올라이트를 제조할 수 있는 것으로 기재되어 있다.
그러나, 이와 같은 제조방법은 다단계로 구성되어 효율성 및 경제성 면에서 적절치 않은 문제가 있었다. 따라서, 적정한 조건 하에서 보다 효율적, 경제적으로 제올라이트를 제조할 수 있는 방법에 대한 연구개발이 필요한 실정이다.
본 발명의 제올라이트의 제조방법에 있어서 상기한 문제점을 해결하고자 예의 연구 검토한 결과, 플라이 애시 및 슬래그를 혼합한 지오폴리머 슬러리를 수열합성반응(Hydrothermal reaction)을 이용하여 적은 에너지 소모와 높은 변환율로 상변환(Phase Transformation)시킴으로써 우수한 강도를 가질 뿐만 아니라, 상기 상변환 과정에서 중금속 및 오염물질을 효과적으로 흡착할 수 있는 나노 공극을 다량 형성하므로 우수한 흡착성능을 나타내는 고강도 제올라이트를 제조할 수 있음을 알아내고, 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 우수한 강도 및 흡착성능을 가지는 제올라이트를 제조하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 제조방법에 의해 제조된 제올라이트를 제공하는 것이다.
한편으로, 본 발명은
플라이 애시 및 슬래그의 혼합물에 알칼리 활성화제를 혼합한 지오폴리머 슬러리를 수열합성반응을 이용하여 제올라이트를 제조하되,
상기 수열합성반응은 60 내지 150℃ 의 온도 및 0.10 내지 0.65MPa의 압력 조건 하에서 수행되는 것을 특징으로 하는 고강도 제올라이트의 제조방법을 제공한다.
다른 한편으로, 본 발명은 플라이 애시, 슬래그 및 알칼리 활성화제를 포함하는 지오폴리머 슬러리가 수열 양생되어 상변환됨으로써 15 내지 25 MPa의 압축강도 및 40 내지 80 m2/g의 비표면적 특성을 가지는 제올라이트를 제공한다.
또 다른 한편으로, 본 발명은 상기 제올라이트를 사용한 수질 및 공기정화용 콘크리트 블록을 제공한다.
본 발명에 따른 제올라이트는 산업폐기물인 플라이 애시와 슬래그를 혼합한 지오폴리머 슬러리를 수열합성반응을 이용하여 결정형의 제올라이트로 상변환시킴으로써 다수의 나노 공극을 형성하므로 우수한 흡착성능을 나타낼 수 있다.
특히, 플라이애시 및 슬래그를 혼합한 지오폴리머 슬러리를 양생하여 지오폴리머 고화체를 합성하고 이후 제올라이트를 제조하는 방법이 아닌, 일정 온도, 압력 등의 조건 하에서 지오폴리머 슬러리로부터 바로 벌크(bulk)형의 제올라이트 블록을 제조할 수 있는 방법에 관한 것으로, 효율성 및 경제성이 우수하다.
따라서, 상기 제올라이트는 수질 및 공기정화용 콘크리트 블록 및 프리캐스트 제품 등에 효과적으로 사용될 수 있다.
도 1은 지오폴리머 슬러리를 본 발명에 따른 조건 하에서 수열합성반응시켜 제조된 제올라이트와 수열합성반응을 수행하지 않고 제조된 제올라이트 및 플라이 애시를 비교하여 나타낸 XRD 그래프이다(Z=제올라이트).
도 2는 본 발명에 따른 한 단계(One-step) 반응에 의해 제조된 제올라이트와 종래 기술에 따른 두 단계(Two-step) 반응에 의해 제조된 제올라이트를 비교하여 나타낸 XRD 그래프이다(P=Zeolite Na-P1, S=Sodalie, M=Mulite, Q=Quartz, C=CSH).
도 3은 본 발명에 따른 실시예 1 내지 3에서 제조된 제올라이트를 비교여 나타낸 XRD 그래프이다(P=Zeolite Na-P1, S=Sodalie, M=Mulite, Q=Quartz, C=CSH).
이하, 본 발명을 보다 상세히 설명한다.
본 발명의 일 실시형태는 고강도 제올라이트의 제조방법에 관한 것으로, 본 발명의 제조방법은
플라이 애시 및 슬래그의 혼합물에 알칼리 활성화제를 혼합한 지오폴리머 슬러리를 수열합성반응을 이용하여 제올라이트를 제조하되,
상기 수열합성반응은 60 내지 150℃ 의 온도 및 0.10 내지 0.65MPa의 압력 조건 하에서 수행되는 것을 특징으로 한다.
구체적으로는, 플라이 애시 80 내지 95 중량% 및 슬래그 5 내지 20 중량%을 건비빔하고, 상기 플라이 애시와 슬래그의 혼합물 100 중량부에 대하여 알칼리 활성화제 50 내지 150 중량부를 혼합한 후, 수열합성반응을 이용하여 제올라이트를 제조하되,
상기 수열합성반응 온도는 60 내지 150℃ 이고, 압력은 0.10 내지 0.65MPa이며, 반응시간은 12 내지 48시간인 것을 특징으로 한다.
상기 플라이 애시는 SiO2, Al2O3 및 Fe2O3를 포함하고, 일부는 결정 구조 또는 비정질 구조일 수 있다.
상기 슬래그는 주성분이 SiO2, Al2O3, Fe2O3 및 CaO로 이루어져 있으며, K2O, Na2O, MgO, TiO2 등과 같은 여러 다른 금속 산화물들이 소량 함유될 수 있다.
상기 플라이 애시 및 슬래그의 함량이 상기 범위를 만족하지 않는 경우, 제올라이트가 형성되지 않을 수 있다.
본 발명의 일 실시형태에서, 상기 알칼리 활성화제로는 물유리와 수산화나트륨(NaOH) 수용액의 혼합물을 사용할 수 있다.
구체적으로, 상기 알칼리 활성화제로는 KS 3종 물유리(29% SiO2, 9.5% Na2O 및 61.5% H2O)와 수산화나트륨 수용액을 일정 질량비로 혼합하여 제조된 혼합물을 사용할 수 있다.
상기 알칼리 활성화제의 SiO2/Na2O 몰비(ratio)는 0.1 내지 0.7인 것이 바람직하다.
상기 SiO2/Na2O 몰비가 0.1 미만인 경우 실리케이트(silicate)가 부족하여 후술하는 C-A-S-H 겔이 성장하지 못하므로 압축강도가 낮아지게 되고, 0.7 초과인 경우 C-A-S-H 겔이 과도하게 성장하여 상대적으로 제올라이트 생성이 적어지게 된다.
상기 수산화나트륨 수용액의 몰농도(molarity)는 4 내지 12M인 것이 바람직하고, 8M인 것이 보다 바람직하다.
본 발명의 일 실시형태에서, 상기 지오폴리머는 플라이 애시, 슬래그 및 알칼리 활성화제가 혼합되어 페이스트 또는 슬러리 형태로 형성되며, 상기 페이스트 또는 슬러리 형태의 지오폴리머는 일정 형태의 몰드에 넣은 다음 양생 공정을 수행하지 않고, 곧바로 수열합성반응을 수행하여 제올라이트로 상변환되는 것을 특징으로 한다.
상기 수열합성반응으로 인해 슬래그에 존재하는 CaO, Al2O3 및 SiO2가 물과 반응하여 시멘트의 특질을 가지는 C-A-S-H 겔 (C=CaO, A=Al2O3, S=SiO2, H=H2O)을 형성한다. C-A-S-H겔의 형성은 초기 단계에서 응결시간을 가속시키고 추후 단계에서 강도 발전에 기여한다.
본 발명의 일 실시형태에서, 상기 수열합성반응 온도는 60 내지 150℃가 바람직하며, 압력은 0.10 내지 0.65MPa이 바람직하고, 반응시간은 12 내지 24시간이 바람직하다.
상기 수열합성반응이 양생 온도 60℃ 미만에서 수행되는 경우, 제올라이트 생성이 원활하게 이루어지 않으며, 양생 온도 150℃ 초과에서 수행되는 경우, 충분한 강도가 확보되지 않는다.
또한, 수열합성반응 수행중에 물 증발이 발생하는 것을 저감시키는 것이 강도 확보 및 제올라이트 생성에 중요한 역할을 하므로, 초기 6시간 동안은 60℃에서 양생하는 것이 바람직하다.
또한, 0.65 MPa 이상의 압력을 가하기 위해서는 온도 상승이 불가피하므로, 상기 수열합성반응이 0.65 MPa 초과의 압력에서 수행되는 경우, 150℃ 이상의 온도 상승으로 인해 강도 발현이 원활하게 이루어지지 않는다.
도 1에서 보는 바와 같이, 본 발명은 60 내지 150℃의 온도, 0.10 내지 0.65MPa 의 압력에서 12 내지 24 시간동안 수열합성반응을 하므로, 적은 에너지 소모로 우수한 상변환 효과를 나타낼 수 있다.
상기 수열합성반응은 오토클레이브(Auto-clave)에서 100% 습도 하에 밀폐시켜 수행하는 것이 바람직하다.
본 발명의 일 실시형태에서, 상기 수열합성반응시 챔버 전체 100 부피%에 대하여 물은 20 내지 40 부피%로 포함되는 것을 특징으로 한다.
구체적으로는, 오토클레이브(Autoclave) 챔버 전체 용량 대비 물의 양이 0.2 내지 0.4 비율로 포함되는 것이 바람직하다.
상기 비율이 0.2 미만인 경우, 충분한 수분 증발이 이루어지지 않아 내부 증기 압력이 작아질 수 있고, 상기 비율이 0.4 초과인 경우, 제올라이트 형성에 비하여 과도한 에너지 소모가 발생할 수 있다.
본 발명에 따른 조건에서 수열합성반응을 수행하는 경우, 상기 지오폴리머 슬러리가 결정형의 제올라이트로 상변환하면서 다수의 나노 공극을 형성하게 된다.
본 발명의 일 실시형태에서, 상기 제올라이트는 건조 공정을 추가로 수행할 수 있다.
또한, 본 발명에 따른 제조방법에 의해 제조된 제올라이트는 제올라이트 형성과 동시에 C-A-S-H 겔을 형성함으로써 우수한 강도를 나타낼 뿐만 아니라, 제올라이트 바인더(Binder)자체가 중금속 및 오염물질을 흡착할 수 있는 나노 공극을 다량으로 형성하여 우수한 흡착성능을 가지므로, 골재를 첨가하여 콘크리트용으로 활용할 수 있으며, 또한 수질 및 공기정화용 콘크리트 블록 및 프리캐스트 제품 등에 효과적으로 사용될 수 있다.
따라서, 본 발명의 일 실시형태는 상기 제조방법에 의해 제조되어 플라이 애시, 슬래그 및 알칼리 활성화제를 포함하는 지오폴리머 슬러리가 수열 양생되어 상변환됨으로써 15 내지 25 MPa의 압축강도 및 40 내지 80 m2/g의 비표면적 특성을 가지는 제올라이트에 관한 것이다.
본 발명에 따른 제올라이트는 바람직하게는 약 15 내지 20 MPa의 압축강도를 가지며, 보다 바람직하게는 약 16 내지 17 MPa의 압축강도를 가질 수 있다.
이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.
제조예 1: 알칼리 활성화제의 제조
8M의 수산화나트륨 수용액과 KS 3종 물유리 (29% SiO2, 9.5% Na2O 및 61.5% H2O)를 질량비 2:1로 혼합하여 SiO2/Na2O 몰비가 0.555 인 알칼리 활성화제를 제조하였다.
실시예 1: 제올라이트의 제조
75g의 플라이 애시와 15g의 슬래그 미분말을 믹서기에서 1분 동안 건비빔하였다. 여기에 알칼리 활성화제의 중량:(플라이 애시 + 슬래그)의 중량= 1:1로 하여 제조예 1에서 제조한 알칼리 활성화제 90g을 투입하였다. 15분동안 혼합 후에 얻어진 슬러리를 테프론 몰드에 타설하고, 500ml 용량의 오토클레이브(Auto-clave) 챔버에 넣은 후, 100℃, 0.1MPa 조건 하에서 12시간 동안 수열합성반응을 수행하였다. 이때, 500ml 용량의 챔버 안에 100ml 정도의 물을 채워 넣어 물/오토클레이브 챔버 부피비는 0.2가 되도록 하였다. 그런 다음, 하루동안 50 ℃에서 건조하여 제올라이트를 제조하였다.
건조된 제올라이트는 XRD (X선 회절분석) 실험을 위해서 분말로 만들어 실험을 수행하였다. 실험 결과, 도 1에서 보는 바와 같이 수열합성반응 전에는 없었던 제올라이트 결정 피크가 생성된 것을 알 수 있었다.
실시예 2: 제올라이트의 제조
100℃, 0.1MPa 조건 하에서 수열합성반응을 수행하는 것 대신 125℃, 0.25MPa 조건 하에서 수열합성반응을 수행하는 것을 제외하고는, 실시예 1과 동일한 방법으로 제올라이트를 제조하였다.
실시예 3: 제올라이트의 제조
100℃, 0.1MPa 조건 하에서 수열합성반응을 수행하는 것 대신 150℃, 0.65MPa 조건 하에서 수열합성반응을 수행하는 것을 제외하고는, 실시예 1과 동일한 방법으로 제올라이트를 제조하였다.
비교예 1: 제올라이트의 제조
비교예 1-1: 지오폴리머 블록의 제조
75g의 플라이 애시와 15g의 슬래그 미분말을 믹서기에서 1분 동안 건비빔하였다. 여기에 알칼리 활성화제의 중량:(플라이 애시 + 슬래그)의 중량= 1:1로 하여 제조예 1에서 제조한 알칼리 활성화제 90g을 투입하였다. 2분동안 혼합 후에 얻어진 페이스트를 1인치 큐빅 몰드에 넣었다. 그 후, 80도의 오븐에서 24시간 동안 양생시켰다. 그런 다음, 주위 온도로 냉각시켜 경화하고, 몰드에서 탈형하여 지오폴리머 블록을 제조하였다.
비교예 1-2: 제올라이트의 제조
비교예 1-1에서 제조한 지오폴리머 블록을 500ml 용량의 오토클레이브(Auto-clave) 챔버에 넣은 후, 수열합성반응을 수행하였다. 이 때 온도는 90도이며, 챔버 안에 50ml 정도의 물을 채워 넣어 블록이 물에 완전히 잠기도록 담근 후, 24시간 동안 반응을 수행하였다. 그런 다음, 하루 동안 50 도에서 건조하여 제올라이트를 제조하였다.
비교예 2: 제올라이트의 제조
100℃, 0.1MPa 조건 하에서 수열합성반응을 수행하는 것 대신 100℃, 0MPa 조건 하에서 수열합성반응을 수행하는 것을 제외하고는, 실시예 1과 동일한 방법으로 제올라이트를 제조하였다.
비교예 3: 제올라이트의 제조
100℃, 0.1MPa 조건 하에서 수열합성반응을 수행하는 것 대신 150℃, 1.1MPa 조건 하에서 수열합성반응을 수행하는 것을 제외하고는, 실시예 1과 동일한 방법으로 제올라이트를 제조하였다.
도 2를 참조로, 본 발명에 따른 One-step 수열합성반응이 Two-step method보다 원활하게 이루어져 Q (quartz)가 반응하였고, 20-30도 부근의 비정질 함량이 줄어든 것을 알 수 있었다.
도 3을 참조로, 본 발명에서 제시한 온도 및 압력 범위 내에서 quartz 소모가 원활하게 이루어졌으며, 제올라이트 피크가 증가하는 것을 알 수 있었다.
실험예 1: 압축강도(Compressive strength) 평가
상기 실시예 1 내지 3과 비교예 1 내지 3에서 제조된 제올라이트의 압축강도를 평가하기 위하여 아래 방법으로 평가를 진행하였다. 평가 결과는 하기 표 1에 나타내었다.
ASTM C109에 제시된 시편크기는 5cm 큐빅사이즈이나, 본 실험예 1에서는 2.54cm 큐빅사이즈로 시편을 제작하여 90일에 압축강도(MPa)를 측정하였다.
구분 실시예 1 실시예 2 실시예 3 비교예 1 비교예 2 비교예 3
비표면적 (m2/g) 53.44 47.13 71.08 7.12 15.30 80.05
Zeolite P 함량 (%) 20.82 25.03 34.663 6.5 6.91 35.09
Strength (MPa) 16.79 16.76 16.55 6.75 17.06 8.34
상기 표 1에서 보듯이, 본 발명에 따른 단일 단계(one-step)를 통해 제조된 실시예 1 내지 3의 제올라이트는 이중 단계(two-step) 또는 본 발명에 따른 압력 범위가 아닌 조건 하에서 제조된 비교예 1 및 2 의 제올라이트에 비해 우수한 비표면적과 높은 제올라이트 함량을 가지는 것을 확인하였다.
또한, 상기 비교예 3의 제올라이트는 실시예 1 내지 3의 제올라이트 보다 더 높은 비표면적 및 제올라이트 함량을 얻었지만, 낮은 강도 발현을 나타내는 것을 알 수 있었다.
따라서, 본 발명의 제조방법으로 제조된 제올라이트는 우수한 비표면적으로 인한 흡착성능, 높은 제올라이트 함량 및 우수한 압축강도를 모두 나타낼 수 있다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 고강도 제올라이트는 상변환 과정에서 중금속 및 오염물질을 효과적으로 흡착할 수 있는 나노 공극이 다량 형성되어 우수한 흡착성능을 나타내므로 수질 및 공기 정화용 콘크리트 블록 및 프리캐스트 제품 등에 활용 가능하다.

Claims (10)

  1. 플라이 애시 및 슬래그의 혼합물에 알칼리 활성화제를 혼합한 지오폴리머 슬러리를 수열합성반응을 이용하여 제올라이트를 제조하되,
    상기 수열합성반응은 60 내지 150℃의 온도 및 0.10 내지 0.65MPa의 압력 조건 하에서 수행되는 것을 특징으로 하는 고강도 제올라이트의 제조방법.
  2. 제1항에 있어서, 상기 수열합성반응시 챔버 전체 100 부피%에 대하여 물은 20 내지 40 부피%로 포함되는 것을 특징으로 하는 고강도 제올라이트의 제조방법.
  3. 제1항에 있어서, 상기 알칼리 활성화제는 물유리와 수산화나트륨(NaOH) 수용액의 혼합물인 것을 특징으로 하는 고강도 제올라이트의 제조방법.
  4. 제3항에 있어서, 상기 알칼리 활성화제의 SiO2/Na2O의 몰비는 0.1 내지 0.7인 것을 특징으로 하는 고강도 제올라이트의 제조방법.
  5. 제1항에 있어서, 상기 플라이 애시는 80 내지 95 중량%로 포함되고, 상기 슬래그는 5 내지 20 중량%로 포함되어 건비빔되는 것을 특징으로 하는 고강도 제올라이트의 제조방법.
  6. 제1항에 있어서, 상기 알칼리 활성화제는 상기 플라이 애시와 슬래그의 혼합물 100중량부에 대하여 50 내지 150 중량부로 포함되는 것을 특징으로 하는 고강도 제올라이트의 제조방법.
  7. 제1항에 있어서, 상기 수열합성반응은 12 내지 48시간 조건 하에서 수행되는 것을 특징으로 하는 고강도 제올라이트의 제조방법.
  8. 제1항에 있어서, 상기 제올라이트 형성과 동시에 C-A-S-H 겔이 형성되는 것을 특징으로 하는 고강도 제올라이트의 제조방법.
  9. 플라이 애시, 슬래그 및 알칼리 활성화제를 포함하는 지오폴리머 슬러리가 수열 양생되어 상변환됨으로써 15 내지 25 MPa의 압축강도 및 40 내지 80 m2/g의 비표면적 특성을 가지는 제올라이트.
  10. 제9항에 따른 제올라이트를 사용한 수질 및 공기정화용 콘크리트 블록.
PCT/KR2018/001755 2017-02-28 2018-02-09 고강도 제올라이트 및 그의 제조방법 WO2018159947A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0026429 2017-02-28
KR1020170026429A KR101984862B1 (ko) 2017-02-28 2017-02-28 고강도 제올라이트 및 그의 제조방법

Publications (1)

Publication Number Publication Date
WO2018159947A1 true WO2018159947A1 (ko) 2018-09-07

Family

ID=63370504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001755 WO2018159947A1 (ko) 2017-02-28 2018-02-09 고강도 제올라이트 및 그의 제조방법

Country Status (2)

Country Link
KR (1) KR101984862B1 (ko)
WO (1) WO2018159947A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114272910A (zh) * 2021-11-15 2022-04-05 中煤科工集团西安研究院有限公司 粉煤灰基多孔地质聚合物-沸石复合材料、制备及应用
CN115350692A (zh) * 2022-09-19 2022-11-18 北京林业大学 一种具有脱氮除磷功能的改性地聚合物-沸石及其制备方法与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021116981A1 (en) 2019-12-11 2021-06-17 Hung Van Pham Synthetic soil and methods for producing same from waste
KR20220116798A (ko) 2021-02-15 2022-08-23 한국과학기술원 수산화인회석-제올라이트 복합체 및 그 제조 방법
CN113398980B (zh) * 2021-06-15 2022-07-15 东北大学 一种粉煤灰基X沸石-TiO2复合光催化剂的制备方法
CN114907049B (zh) * 2022-05-26 2023-05-02 四川能投建工集团有限公司 一种碱矿渣水泥泛碱抑制剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296205A (ja) * 1997-02-27 1998-11-10 Inax Corp 産業廃棄物の固化方法及び産業廃棄物の固化体
KR100600939B1 (ko) * 1999-08-24 2006-07-13 케이.이.엠 코퍼레이션 슬러리 반응법에 의한 인조 제올라이트의 제조 방법
KR101565549B1 (ko) * 2014-03-03 2015-11-03 한국과학기술원 합성 제올라이트가 혼입된 저강도 고유동성 무시멘트 채움재 및 그 제조방법
JP2016074552A (ja) * 2014-10-03 2016-05-12 一般財団法人電力中央研究所 ゼオライト含有硬化体の製造条件決定方法及びゼオライト含有硬化体の製造方法
KR101687349B1 (ko) * 2015-06-19 2016-12-16 한국과학기술원 제올라이트 및 그의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020043386A (ko) * 2000-12-04 2002-06-10 손재익 고탄소 석탄회를 이용한 오폐수 처리용 a타입제올라이트의 건식 제조방법
KR20130027299A (ko) 2011-09-07 2013-03-15 유림엔마텍(주) 석탄회와 탄산나트륨 및 고로슬래그나 생석회, 현무암이나 벤토나이트 중에서 선택되는 복합여재를 이용하여 오토클레이브에서의 수열합성반응으로 수 처리용 성형성 제올라이트를 얻는 제조방법 및 그 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296205A (ja) * 1997-02-27 1998-11-10 Inax Corp 産業廃棄物の固化方法及び産業廃棄物の固化体
KR100600939B1 (ko) * 1999-08-24 2006-07-13 케이.이.엠 코퍼레이션 슬러리 반응법에 의한 인조 제올라이트의 제조 방법
KR101565549B1 (ko) * 2014-03-03 2015-11-03 한국과학기술원 합성 제올라이트가 혼입된 저강도 고유동성 무시멘트 채움재 및 그 제조방법
JP2016074552A (ja) * 2014-10-03 2016-05-12 一般財団法人電力中央研究所 ゼオライト含有硬化体の製造条件決定方法及びゼオライト含有硬化体の製造方法
KR101687349B1 (ko) * 2015-06-19 2016-12-16 한국과학기술원 제올라이트 및 그의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114272910A (zh) * 2021-11-15 2022-04-05 中煤科工集团西安研究院有限公司 粉煤灰基多孔地质聚合物-沸石复合材料、制备及应用
CN115350692A (zh) * 2022-09-19 2022-11-18 北京林业大学 一种具有脱氮除磷功能的改性地聚合物-沸石及其制备方法与应用

Also Published As

Publication number Publication date
KR20180100008A (ko) 2018-09-06
KR101984862B1 (ko) 2019-06-04

Similar Documents

Publication Publication Date Title
WO2018159947A1 (ko) 고강도 제올라이트 및 그의 제조방법
Liu et al. Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash
US3501324A (en) Manufacturing aqueous slurry of hydrous calcium silicate and products thereof
Tchakoute et al. Synthesis of geopolymers from volcanic ash via the alkaline fusion method: Effect of Al2O3/Na2O molar ratio of soda–volcanic ash
Grutzeck et al. Zeolite formation in alkali-activated cementitious systems
Istuque et al. Behaviour of metakaolin-based geopolymers incorporating sewage sludge ash (SSA)
JPH08325074A (ja) 珪酸カルシウム板及びその製造方法
KR101687349B1 (ko) 제올라이트 및 그의 제조방법
CN111606731A (zh) 一种高性能自密实水泥配重块及其制备方法
CN111217566A (zh) 一种利用二氧化碳制备耐高温混凝土砌块的方法
Waijarean et al. The effect of the Si/Al ratio on the properties of water treatment residue (WTR)-based geopolymers
CN111018477A (zh) 硫氧镁胶凝材料改性剂和其制备方法以及改性硫氧镁胶凝材料与其制备方法
KR20200070701A (ko) 지오폴리머성 하이브리드 제올라이트-ldh 복합체 및 그 제조 방법
WO2019050138A1 (ko) 방수형 기포콘크리트 블록의 습식 제조방법
CN112521122A (zh) 一种耐火保温无机板及其制备方法
CN108530015B (zh) 一种利用铝土矿尾矿制造的蒸养砖及其制备方法
US4033783A (en) Method for making lime-silica insulation from perlite
Tashima et al. Spent FCC catalyst for preparing alkali-activated binders: an opportunity for a high-degree valorization
CN115286270A (zh) 一种单宁酸改性氯氧镁水泥及其制备方法
CN112979261A (zh) 一种磷石膏防火石膏板及其制备方法
CN112341053A (zh) 一种高延性地聚合物及其制备方法
CN113620659A (zh) 一种利用粉煤灰制备免蒸压疏水性纤维增强硅酸钙板的方法
Tsitouras et al. The effect of synthesis parameters on the structure and properties of metakaolin based geopolymers
ABDULLAH et al. Synthesis of geopolymer binder from the partially de-aluminated metakaolinite by-product resulted from alum industry.
Khamlue et al. The effects of Biochar additive on the properties of Geopolymer materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761571

Country of ref document: EP

Kind code of ref document: A1