WO2018158875A1 - 車両制御システム、車両制御方法、および車両制御プログラム - Google Patents

車両制御システム、車両制御方法、および車両制御プログラム Download PDF

Info

Publication number
WO2018158875A1
WO2018158875A1 PCT/JP2017/008080 JP2017008080W WO2018158875A1 WO 2018158875 A1 WO2018158875 A1 WO 2018158875A1 JP 2017008080 W JP2017008080 W JP 2017008080W WO 2018158875 A1 WO2018158875 A1 WO 2018158875A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
index value
host vehicle
surrounding
Prior art date
Application number
PCT/JP2017/008080
Other languages
English (en)
French (fr)
Inventor
徹 幸加木
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2019502356A priority Critical patent/JP6738957B2/ja
Priority to US16/488,953 priority patent/US11247682B2/en
Priority to CN201780087319.4A priority patent/CN110366513B/zh
Priority to PCT/JP2017/008080 priority patent/WO2018158875A1/ja
Publication of WO2018158875A1 publication Critical patent/WO2018158875A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/251Fusion techniques of input or preprocessed data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/80Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
    • G06V10/803Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of input or preprocessed data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Definitions

  • the present invention relates to a vehicle control system, a vehicle control method, and a vehicle control program.
  • Patent Document 1 a technique for predicting a surrounding vehicle that interrupts in front of the host vehicle is known (see, for example, Patent Document 1).
  • the host vehicle may be excessively decelerated with respect to surrounding vehicles that are predicted to be interrupted.
  • the present invention has been made in view of such circumstances, and provides a vehicle control system, a vehicle control method, and a vehicle control program capable of performing appropriate speed control in response to an interruption of a surrounding vehicle. Is one of the purposes.
  • the invention described in claim 1 relates to a recognition unit for recognizing one or more surrounding vehicles existing in a second lane different from the first lane in which the own vehicle exists, and the surrounding vehicle recognized by the recognition unit.
  • An index value based on a forward interruption probability of the vehicle a specifying unit that identifies a surrounding vehicle having the calculated index value equal to or greater than a threshold as an interrupting vehicle, and the presence of the interrupted vehicle specified by the specifying unit And a degree of change in the deceleration of the host vehicle based on the index value of the target interrupt vehicle when the host vehicle is decelerated.
  • a travel control unit for determining the vehicle control system.
  • the specific unit divides each of the surrounding vehicles recognized by the recognition unit and the first lane and the second lane.
  • the index value is derived based on the distance from the lane marking.
  • the travel control unit further determines a relative relationship between each of the surrounding vehicles recognized by the recognition unit and the host vehicle. Based on this, the degree of change in the deceleration of the host vehicle is determined.
  • the specifying unit refers to map information, and the vehicle from the second lane ahead of the host vehicle.
  • the identifying unit recognizes a plurality of surrounding vehicles by the recognition unit, the plurality of surroundings Among the vehicles, the surrounding vehicle having the largest index value is specified as the interrupt vehicle.
  • the travel control unit may change the deceleration of the host vehicle as the index value increases. As the degree is increased and the index value is reduced, the degree of change in the deceleration of the host vehicle is reduced.
  • a seventh aspect of the present invention is the vehicle control system according to any one of the first to sixth aspects, wherein the specifying unit repeats a process of deriving the index value for each of the surrounding vehicles at a predetermined cycle. And when the same interrupted vehicle is continuously specified in the process in which the index value is repeatedly derived by the specifying unit, the travel control unit increases the degree of change in the deceleration of the own vehicle. It is.
  • the in-vehicle computer recognizes one or more peripheral vehicles existing in a second lane different from the first lane in which the host vehicle is present, and the recognized peripheral vehicle is forward of the host vehicle. Deriving an index value based on the interruption probability of the above, identifying a surrounding vehicle whose derived index value is equal to or greater than a threshold as an interruption vehicle, decelerating the host vehicle according to the presence of the identified interruption vehicle, In the vehicle control method, when the host vehicle is decelerated, the degree of change in the deceleration of the host vehicle is determined based on the index value of the target interrupting vehicle.
  • the invention according to claim 9 is a process for recognizing one or more neighboring vehicles existing in a second lane different from the first lane in which the own vehicle exists in the in-vehicle computer, and for the recognized neighboring vehicle, A process of deriving an index value based on a forward interruption probability, a process of identifying a surrounding vehicle having the derived index value equal to or greater than a threshold value as an interrupted vehicle, and depending on the presence of the identified interrupted vehicle A process of decelerating the host vehicle and a process of determining a degree of change in the deceleration of the host vehicle based on the index value of the target interrupted vehicle when the host vehicle is decelerated It is a vehicle control program.
  • a peripheral vehicle having an index value based on an interrupt probability ahead of the host vehicle is specified as an interrupt vehicle, and the host vehicle is decelerated according to the presence of the interrupt vehicle.
  • the degree of change in the deceleration of the own vehicle based on the index value of the target interruption vehicle, it is possible to perform appropriate speed control according to the interruption of the surrounding vehicle.
  • FIG. 4 is a flowchart illustrating an example of processing executed by a specifying unit 124. It is a figure for demonstrating the derivation method of the interruption probability P.
  • FIG. It is a figure which shows an example of the scene where several surrounding vehicles exist around the own vehicle. It is a figure which shows the other example of the scene where several surrounding vehicles exist around the own vehicle.
  • FIG. 5 is a flowchart illustrating an example of processing executed by a travel control unit 141. Is a diagram illustrating an example of a jerk j which is determined in response to the interrupt probability P a certain interrupt vehicle ma. It is a figure which shows an example of the deceleration determined based on the jerk j shown in FIG. Is a diagram illustrating an example of a jerk j which is determined in response to the interrupt probability P b of the interrupt vehicle mb.
  • FIG. It is a figure which shows an example of the scene where the specific
  • FIG. It is a figure which shows an example of the 1st index value derivation
  • FIG. It is a figure which shows an example of the 2nd index value derivation map.
  • FIG. 1 is a configuration diagram of a vehicle control system 1 in the first embodiment.
  • the vehicle on which the vehicle control system 1 is mounted is, for example, a vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, or a combination thereof.
  • the electric motor operates using electric power generated by a generator connected to the internal combustion engine or electric discharge power of a secondary battery or a fuel cell.
  • the vehicle control system 1 includes, for example, a camera 10, a radar device 12, a finder 14, an object recognition device 16, a communication device 20, an HMI (Human20Machine Interface) 30, a vehicle sensor 40, and a navigation device 50. , An MPU (Micro-Processing Unit) 60, a driving operator 80, an automatic driving control unit 100, a traveling driving force output device 200, a brake device 210, and a steering device 220. These devices and devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • CAN Controller Area Network
  • serial communication line a wireless communication network
  • the camera 10 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • One or a plurality of cameras 10 are attached to any part of a vehicle (hereinafter referred to as the host vehicle M) on which the vehicle control system 1 is mounted.
  • the camera 10 When imaging the front of the host vehicle M, the camera 10 is attached to the upper part of the front window shield, the rear surface of the rearview mirror, or the like.
  • the camera 10 periodically and repeatedly images the periphery of the host vehicle M.
  • the camera 10 may be a stereo camera.
  • the radar device 12 radiates a radio wave such as a millimeter wave around the host vehicle M and detects a radio wave (reflected wave) reflected by the object to detect at least the position (distance and direction) of the object.
  • a radio wave such as a millimeter wave around the host vehicle M
  • a radio wave reflected wave
  • One or a plurality of radar devices 12 are attached to arbitrary locations of the host vehicle M.
  • the radar apparatus 12 may detect the position and speed of an object by FMCW (Frequency Modulated Continuous Wave) method.
  • FMCW Frequency Modulated Continuous Wave
  • the finder 14 is LIDAR (Light Detection and Ranging or Laser Imaging Detection and Ranging) that measures the scattered light with respect to the irradiation light and detects the distance to the target.
  • LIDAR Light Detection and Ranging or Laser Imaging Detection and Ranging
  • One or a plurality of the finders 14 are attached to arbitrary locations of the host vehicle M.
  • the object recognition device 16 performs sensor fusion processing on the detection results of some or all of the camera 10, the radar device 12, and the finder 14, and recognizes the position, type, speed, and the like of the object.
  • the object recognition device 16 provides the recognition result to the automatic driving control unit 100.
  • the communication device 20 uses, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), etc. It communicates with various server devices via a station.
  • the HMI 30 presents various information to the passenger of the host vehicle M and accepts an input operation by the passenger.
  • the HMI 30 includes a display device 31 and an operation reception unit 32.
  • the display device 31 is, for example, an LCD (Liquid Crystal Display), an organic EL (Electroluminescence) display, or the like, and is attached to any part of the instrument panel, a front passenger seat, or a rear seat.
  • the display device 31 may be a touch panel integrated with an operation receiving unit 32 described later.
  • the operation reception unit 32 receives a lane change instruction operation as one of operations input by a passenger, for example.
  • the operation reception unit 32 is a switch, an input key, or the like.
  • the operation reception unit 32 generates an operation input signal based on the received input operation, and outputs this signal to the automatic operation control unit 100.
  • the vehicle sensor 40 includes a vehicle speed sensor that detects the speed of the host vehicle M, an acceleration sensor that detects acceleration, a yaw rate sensor that detects angular velocity around the vertical axis, a direction sensor that detects the direction of the host vehicle M, and the like.
  • the vehicle sensor 40 outputs the detected information (speed, acceleration, angular velocity, direction, etc.) to the automatic driving control unit 100.
  • the navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53.
  • the first map information 54 is stored in a storage device such as an HDD (Hard Disk Drive) or a flash memory. Holding.
  • the GNSS receiver 51 specifies the position of the host vehicle M based on the signal received from the GNSS satellite.
  • the position of the host vehicle M may be specified or supplemented by INS (Inertial Navigation System) using the output of the vehicle sensor 40.
  • INS Inertial Navigation System
  • the navigation HMI 52 includes a display device, a speaker, a touch panel, input keys, and the like.
  • the navigation HMI 52 may be partly or wholly shared with the HMI 30 described above.
  • the route determination unit 53 uses, for example, the navigation HMI 52 to determine the route from the position of the host vehicle M specified by the GNSS receiver 51 (or any input position) to the destination input by the occupant. The determination is made with reference to the first map information 54.
  • the first map information 54 is information in which a road shape is expressed by, for example, a link indicating a road and nodes connected by the link.
  • the first map information 54 may include road curvature, POI (Point Of Interest) information, and the like.
  • the route determined by the route determination unit 53 is output to the MPU 60.
  • the navigation device 50 may perform route guidance using the navigation HMI 52 based on the route determined by the route determination unit 53.
  • the navigation apparatus 50 may be implement
  • the navigation device 50 may acquire the route returned from the navigation server by transmitting the current position and the destination to the navigation server via the communication device 20.
  • the MPU 60 functions as, for example, the recommended lane determining unit 61 and holds the second map information 62 in a storage device such as an HDD or a flash memory.
  • the recommended lane determining unit 61 divides the route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the second map information 62 for each block.
  • the recommended lane in which the vehicle M should travel is determined.
  • the recommended lane determination unit 61 recommends any one lane from one or more lanes included in each block. Decide as a lane.
  • the recommended lane determining unit 61 recommends that the vehicle M can travel on a reasonable travel route for proceeding to the destination at the point when there is a branch point or a junction point in the provided route. Determine the lane. For example, when there is a destination on an extension line of a lane branched from a main line including a plurality of lanes, the recommended lane determination unit 61 selects a lane toward the branch destination lane (branch lane) among the lanes included in the main line, Decide as a recommended lane.
  • the second map information 62 is map information with higher accuracy than the first map information 54.
  • the second map information 62 includes, for example, information on the center of the lane or information on the boundary of the lane.
  • the second map information 62 may include road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like.
  • Road information includes information indicating the type of road such as expressway, toll road, national road, prefectural road, road lane number, width of each lane, road gradient, road position (longitude, latitude, height). (Including three-dimensional coordinates), curvature of the lane curve, lane merging and branching points, information such as signs provided on the road.
  • the second map information 62 may be updated at any time by accessing another device using the communication device 20.
  • the driving operator 80 includes, for example, an accelerator pedal, a brake pedal, a shift lever, a steering wheel, and the like.
  • the steering wheel may accept a lane change instruction operation that can be performed on the operation accepting unit 32.
  • a sensor that detects the amount of operation or the presence or absence of an operation is attached to the driving operator 80, and the detection result is the automatic driving control unit 100, or the traveling driving force output device 200, the brake device 210, and the steering device. 220 is output to one or both of 220.
  • the automatic operation control unit 100 includes a first control unit 120 and a second control unit 140, for example.
  • Each of the first control unit 120 and the second control unit 140 is realized by a processor (CPU) such as a CPU (Central Processing Unit) executing a program (software).
  • CPU Central Processing Unit
  • Some or all of the components of the first control unit 120 and the second control unit 140 are hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), and FPGA (Field-Programmable Gate Array). It may be realized by hardware, or may be realized by cooperation of software and hardware.
  • the 1st control part 120 is provided with the external field recognition part 121, the own vehicle position recognition part 122, the action plan production
  • the external environment recognition unit 121 recognizes the position, speed, acceleration, and the like of surrounding vehicles based on information input from the camera 10, the radar device 12, and the finder 14 via the object recognition device 16.
  • the peripheral vehicle is, for example, a vehicle that travels around the host vehicle M and travels in the same direction as the traveling direction of the host vehicle M.
  • the external environment recognition unit 121 recognizes the relative position of the surrounding vehicle with respect to the lane marking that divides the lane in which the surrounding vehicle exists, or is orthogonal to the speed and the traveling direction related to the traveling direction of the surrounding vehicle and is substantially parallel to the traveling road surface. Or the speed in the lane width direction may be recognized.
  • the position of the surrounding vehicle may be represented by a representative point such as the center of gravity or corner of the surrounding vehicle, or may be represented by an area expressed by the outline of the surrounding vehicle.
  • the “state” of the surrounding vehicle may include acceleration and jerk of the surrounding vehicle, or “behavioral state” (for example, whether or not the lane is changed or is about to be changed).
  • the external environment recognition unit 142 may recognize the positions of falling objects on the roadway, guardrails, utility poles, parked vehicles, pedestrians, road surface markings, signs, and other objects.
  • the own vehicle position recognition unit 122 recognizes, for example, the lane (own lane) in which the own vehicle M is traveling, and the relative position and posture of the own vehicle M with respect to the own lane.
  • the own vehicle position recognition unit 122 for example, includes a road marking line pattern (for example, an arrangement of solid lines and broken lines) obtained from the second map information 62 and an area around the own vehicle M recognized from an image captured by the camera 10.
  • the own lane is recognized by comparing with the pattern of the road marking line. In this recognition, the position of the host vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into account.
  • FIG. 2 is a diagram illustrating a state in which the vehicle position recognition unit 122 recognizes the relative position and posture of the vehicle M with respect to the vehicle lane L1.
  • the own vehicle position recognizing unit 122 performs, for example, a line connecting the deviation OS of the reference point (for example, the center of gravity) of the own vehicle M from the own lane center CL and the own lane center CL in the traveling direction of the own vehicle M.
  • the angle ⁇ is recognized as the relative position and posture of the host vehicle M with respect to the host lane L1.
  • the host vehicle position recognition unit 122 recognizes the position of the reference point of the host vehicle M with respect to one of the side edges of the host lane L1 as the relative position of the host vehicle M with respect to the host lane. Also good.
  • the relative position of the host vehicle M recognized by the host vehicle position recognition unit 122 is provided to the action plan generation unit 123.
  • the action plan generation unit 123 generates an action plan so that the vehicle travels in the lane determined as the recommended lane by the recommended lane determination unit 61 and can cope with the surrounding situation of the host vehicle M.
  • the action plan is composed of events that are sequentially executed in automatic driving.
  • Automatic driving means that the automatic driving control unit 100 controls at least one or both of acceleration / deceleration and steering of the host vehicle M.
  • the event includes, for example, a constant speed traveling event that travels in the same traveling lane at a constant speed, a following traveling event that follows the preceding vehicle, a lane change event that changes the traveling lane, an overtaking event that causes the preceding vehicle to pass.
  • the overtaking event for example, the speed of the preceding vehicle is slower than the speed of the own vehicle M by a certain speed or more, and the average speed of surrounding vehicles traveling in the adjacent lane adjacent to the own lane is constant speed than the speed of the own vehicle M. Planned under faster circumstances.
  • the own vehicle M when an overtaking event is executed, the own vehicle M temporarily moves to the adjacent lane by changing the lane, and accompanies acceleration, etc., by changing the lane in front of the preceding vehicle and to the own lane (original lane) before the lane change. Move.
  • the host vehicle M is accelerated or decelerated in the merging lane for joining the main line, and the host vehicle M is changed to the branching lane at the junction where the traveling lane is changed to the merging lane.
  • a branch event an emergency stop event that causes the host vehicle M to stop urgently according to the behavior of surrounding vehicles, a switching event (takeover event) for ending automatic driving and switching to manual driving may be included.
  • the manual driving means that the driving force output device 200, the brake device 210, and the steering device 220 are controlled by the operation of the occupant with respect to the driving operator 80. Also, during the execution of these events, avoidance to avoid obstacles etc. based on the surrounding situation of the own vehicle M (the obstacles on the roadway, the presence of surrounding vehicles, pedestrians, lane narrowing due to road construction, etc.) An event may be planned.
  • generation part 123 produces
  • the target track is expressed as a sequence of points (track points) that the host vehicle M should reach.
  • the trajectory point is a point where the host vehicle M should reach for each predetermined travel distance.
  • the target speed and target acceleration for each predetermined sampling time are the target trajectory. Generated as part of.
  • the track point may be a position to which the host vehicle M should arrive at the sampling time for each predetermined sampling time. In this case, information on the target speed and target acceleration is expressed by the interval between the trajectory points.
  • FIG. 3 is a diagram illustrating a state in which a target track is generated based on the recommended lane.
  • the recommended lane is determined so as to be convenient for traveling along the route to the destination.
  • the action plan generation unit 123 activates a lane change event, a branch event, a merge event, and the like when it reaches a predetermined distance before the recommended lane switching point.
  • the action plan generation unit 123 changes the lane of the host vehicle M to the adjacent lane as shown in the figure, and then A trajectory for avoiding an object may be generated, or a trajectory for deceleration that stops the host vehicle M before an obstacle may be generated.
  • the action plan generation unit 123 generates, for example, a plurality of target trajectory candidates, and selects an optimal target trajectory at that time based on the viewpoints of safety and efficiency. Then, the action plan generation unit 123 provides the selected target trajectory to the travel control unit 141.
  • the specifying unit 124 specifies a peripheral vehicle (hereinafter referred to as an interrupted vehicle) that has a high possibility of interrupting in front of the host vehicle M among the peripheral vehicles recognized by the external recognition unit 121.
  • the specification unit 124 interrupts a surrounding vehicle that is likely to change to the front of the own lane and the own vehicle M among the surrounding vehicles existing in a lane different from the own lane in which the own vehicle M exists. As specified.
  • FIG. 4 is a flowchart illustrating an example of processing executed by the specifying unit 124. The process of this flowchart may be repeatedly performed with a predetermined period, for example.
  • the specifying unit 124 waits until a surrounding vehicle is recognized by the outside recognition unit 121 (step S100).
  • the specifying unit 124 moves forward of the host vehicle M for each surrounding vehicle.
  • the interruption probability P that quantifies the possibility of interruption is derived (step S102).
  • FIG. 5 is a diagram for explaining a method of deriving the interrupt probability P.
  • ma represents a surrounding vehicle
  • X and Y represent a lane extending direction (vehicle traveling direction) and a lane width direction, respectively.
  • the specifying unit 124 includes a parameter L that expresses whether the blinker lamp is turned on by 1 or 0, and a lane line Ld that divides the lane L2 in which the surrounding vehicle is present, from the lane line Ld closer to the own lane L1.
  • the interruption probability P is derived using a part or all of the above.
  • the collision margin time TTC is determined from the current time when the vehicle head (front end) of the host vehicle M is the vehicle tail (rear end) of the surrounding vehicle.
  • the time to the time estimated to contact the vehicle may be obtained as a value obtained by dividing the inter-vehicle distance between the host vehicle M and the surrounding vehicles by the relative speed of these vehicles.
  • the lateral speed VY is obtained, for example, by dividing the distance that the surrounding vehicle has moved in the lane width direction until a certain observation time has passed, with the direction approaching the own lane as a plus, by the observation time. Good.
  • the specifying unit 124 derives the interrupt probability P based on the following formula (1) that considers all of the parameter L, the distance D, the lateral velocity V Y , and the collision margin time TTC.
  • w 1 is a weight for the parameter L
  • w 2 is a weight for the distance D
  • w 3 is a weight for the lateral velocity V Y
  • w 4 is a weight for the collision margin time TTC.
  • the distribution of each weight is determined such that the sum of the weights w 1 to w 4 is 1.
  • Each parameter is normalized (normalized) so that the maximum value is 1.
  • the distance D may be normalized by being divided by an assumed maximum distance (for example, the full width of the lane)
  • the lateral speed V Y is the maximum speed that the vehicle can output in the lane width direction Y.
  • the collision margin time TTC may be divided by the collision margin time TTC derived when a surrounding vehicle is detected near the limit of the detection range of the camera 10 or the finder 14, for example. May be standardized.
  • the specifying unit 124 determines whether or not the derived interrupt probability P is equal to or higher than a threshold (for example, about 0.5) for each surrounding vehicle (step S104). When there is a surrounding vehicle in which the derived interrupt probability P is equal to or greater than the threshold, the specifying unit 124 specifies the surrounding vehicle as an interrupting vehicle (a surrounding vehicle that is highly likely to interrupt in front of the host vehicle M) (step) S106). Thereby, the process of this flowchart is complete
  • a threshold for example, about 0.5
  • the specifying unit 124 may specify the surrounding vehicle having the highest interrupt probability P as the interrupting vehicle.
  • FIG. 6 is a diagram illustrating an example of a scene in which a plurality of surrounding vehicles exist around the host vehicle M.
  • ma and mb each represent a surrounding vehicle
  • V ma represents the speed of the surrounding vehicle ma
  • V mb represents the speed of the surrounding vehicle mb.
  • the peripheral vehicle ma is located on the vehicle M side from the peripheral vehicle mb
  • velocity V ma around the vehicle ma is the same rate as V mb around the vehicle mb.
  • the distance from the lane marking Ld to each surrounding vehicle is the same.
  • the collision margin time TTC mb of the own vehicle M and the surrounding vehicle mb is the collision margin time of the own vehicle M and the surrounding vehicle ma. It becomes longer than TTC ma .
  • the interruption probability P of the surrounding vehicle mb is higher than the interruption probability P of the surrounding vehicle ma. Therefore, the specifying unit 124 specifies the surrounding vehicle mb as an interrupted vehicle.
  • FIG. 7 is a diagram illustrating another example of a scene in which a plurality of surrounding vehicles exist around the host vehicle M.
  • the surrounding vehicle ma exists on the adjacent lane L2 adjacent to the right side
  • the surrounding vehicle mb exists on the adjacent lane L3 adjacent to the left side.
  • These peripheral vehicles ma and mb are located at the same distance from the host vehicle M, and the speed V ma of the peripheral vehicle ma is the same speed as the speed V mb of the peripheral vehicle mb.
  • the specifying unit 124 specifies the surrounding vehicle ma as an interrupted vehicle.
  • the specifying unit 124 refers to the second map information 62, specifies a predetermined point Q where the lane change from the adjacent lane to the own lane is necessary, and the surrounding vehicles reach the predetermined point Q (subject).
  • the interrupt probability P of the surrounding vehicle may be increased.
  • the predetermined point Q is, for example, a merging point where another lane merges with the own lane, a lane disappearing point where an adjacent lane disappears on the way, a closed point where traffic of the adjacent lane is temporarily prohibited due to construction, etc. .
  • FIG. 8 is a diagram illustrating an example of the predetermined point Q.
  • the lane disappears in the middle of the adjacent lane L3.
  • the specifying unit 124 increases the interrupt probability P of the surrounding vehicle that has reached the predetermined point Q as compared with the surrounding vehicle that has not reached the predetermined point Q.
  • the specifying unit 124 increases the interrupt probability P by multiplying the interrupt probability P obtained by the above formula (1) by a predetermined magnification A (A ⁇ 1).
  • FIG. 9 is a diagram illustrating an example of the magnification A corresponding to the distance to the predetermined point Q.
  • the specifying unit 124 increases the interrupt probability P by increasing the magnification A exponentially as the surrounding vehicle approaches the predetermined point Q.
  • an appropriate interrupt probability P can be derived even for surrounding vehicles that do not express the intention of changing lanes, such as width adjustment or turn-on of a blinker, until the predetermined point Q is reached.
  • the surrounding vehicle does not express the intention of changing the lane, it is possible to identify the surrounding vehicle that has a high possibility of interrupting in front of the host vehicle M as an interrupting vehicle.
  • the identifying unit 124 assigns the surrounding vehicle. It may be specified as an embedded vehicle.
  • the second control unit 140 includes, for example, a travel control unit 141.
  • the travel control unit 141 controls the travel driving force output device 200, the brake device 210, and the steering device 220 so that the host vehicle M passes the target track generated by the action plan generation unit 123 at a scheduled time. To do.
  • the driving force output device 200 outputs a driving force (torque) for driving the vehicle to driving wheels.
  • the travel driving force output device 200 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and an ECU that controls these.
  • the ECU controls the above-described configuration in accordance with information input from the travel control unit 141 or information input from the driving operator 80.
  • the brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU.
  • the brake ECU controls the electric motor according to the information input from the traveling control unit 141 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the brake device 210 may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal included in the driving operation element 80 to the cylinder via the master cylinder.
  • the brake device 210 is not limited to the configuration described above, and may be an electronically controlled hydraulic brake device that controls the actuator according to information input from the travel control unit 141 and transmits the hydraulic pressure of the master cylinder to the cylinder. Good.
  • the steering device 220 includes, for example, a steering ECU and an electric motor.
  • the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism.
  • the steering ECU drives the electric motor according to the information input from the travel control unit 141 or the information input from the driving operator 80, and changes the direction of the steered wheels.
  • the traveling control unit 141 when the interrupting vehicle is specified by the specifying unit 124, the traveling control unit 141 temporarily deviates from the target speed and target acceleration determined as the target track by the action plan generating unit 123, and the own vehicle M Decelerate. At this time, the traveling control unit 141 determines the degree of change in the deceleration of the host vehicle M, that is, jerk j (jumping degree) according to the interrupt probability P of the surrounding vehicle specified as the interrupted vehicle.
  • FIG. 10 is a flowchart illustrating an example of processing executed by the travel control unit 141. The process of this flowchart may be repeatedly performed with a predetermined period, for example.
  • the traveling control unit 141 waits until the interrupting vehicle is specified by the specifying unit 124 (step S200), and when the interrupting vehicle is specified by the specifying unit 124, the interrupting vehicle specified last time and the current specification are identified. It is determined whether or not the interrupted vehicles are the same vehicle (step S202).
  • the traveling control unit 141 determines the own vehicle M according to the interrupt probability P of the surrounding vehicle specified as the interrupt vehicle this time.
  • the jerk j for decelerating is determined (step S204).
  • the travel control unit 141 increases the maximum value of jerk j as the interrupt probability P increases, and decreases the maximum value of jerk j as the interrupt probability P decreases.
  • Figure 11 is a diagram showing an example of a jerk j which is determined in response to the interrupt probability P a certain interrupt vehicle ma.
  • the horizontal axis represents time t (for example, the unit is [s]), and the vertical axis represents jerk j.
  • the jerk j is standardized so that the maximum value is 1.
  • the travel control unit 141 sets a maximum value of the jerk j to 1 in response to the interrupt probability P a, decreases as the characteristics of the jerk j from the maximum value 1 over a predetermined time ⁇ T to the minimum value 0 Set the trend as follows.
  • FIG. 12 is a diagram illustrating an example of the deceleration determined based on the jerk j illustrated in FIG.
  • the horizontal axis represents time t (for example, the unit is [s])
  • the vertical axis represents the acceleration ⁇ in the negative direction as deceleration.
  • the traveling control unit 141 increases the deceleration according to the change tendency of the jerk j shown in FIG. 11 until it approaches a predetermined deceleration limit ⁇ lim .
  • Figure 13 is a diagram showing an example of a jerk j which is determined in response to the interrupt probability P b of the interrupt vehicle mb.
  • Interrupt probability P b is set to be smaller than the interrupt probability P a as described above.
  • P a > P b is, for example, that the scene in which the interrupting vehicle ma is specified is closer to the own lane than the scene in which the interrupting vehicle mb is specified, It can be assumed that the relative speed with the vehicle is greater, the relative distance with the surrounding vehicle is more open, and the surrounding vehicle expresses the intention to change the lane more strongly.
  • this situation can be considered that the scene where the interrupting vehicle ma is specified is closer to the predetermined point Q than the scene where the interrupting vehicle mb is specified.
  • the characteristic of the jerk j tends to decrease from the maximum value 1 to the minimum value 0 over a predetermined time ⁇ T.
  • the maximum value of jerk j is determined to be 0.5.
  • FIG. 14 is a diagram showing an example of the deceleration determined based on jerk j shown in FIG.
  • the traveling control unit 141 increases the deceleration according to the change tendency of the jerk j shown in FIG. 13 until it approaches a predetermined deceleration limit ⁇ lim .
  • the interrupt probability P b as compared with the cutting-into probability P a, since the maximum value of the jerk j becomes smaller, even with the same predetermined time [Delta] T, the deceleration in a more gradual trend increase Will do.
  • the traveling control unit 141 may determine the change tendency of the jerk j according to the interruption probability P of the interruption vehicle.
  • Figure 15 is a diagram showing another example of jerk j which is determined in response to the interrupt probability P b of the interrupt vehicle mb.
  • the traveling control unit 141 may provide the inflection point IF on a curve indicating the characteristic of the jerk j, and vary the change tendency of the jerk j before and after the inflection point IF.
  • FIG. 16 is a diagram showing an example of the deceleration determined based on the jerk j shown in FIG.
  • the traveling control unit 141 increases the deceleration relatively slowly at the initial stage of decelerating the host vehicle M, and decelerates more strongly at the intermediate stage.
  • the traveling control unit 141 increases the maximum value of the jerk j determined last time (step S206).
  • the traveling control unit 141 sets the maximum value of jerk j to 0.7 in the current process.
  • the traveling control unit 141 may determine whether the same vehicle has been identified as an interrupted vehicle by the identifying unit 124 a predetermined number of times or more as the process of S202. Thereby, the process of this flowchart is complete
  • the outside recognition unit 121 that recognizes one or more surrounding vehicles existing in another lane different from the own lane where the own vehicle M exists, and the surrounding vehicles recognized by the outside recognition unit 121.
  • the interrupting vehicle is specified by the specifying unit 124 that specifies a surrounding vehicle having an interrupt probability P that indicates a possibility of interrupting in front of the host vehicle M as an interrupting vehicle, and the specifying unit 124
  • the host vehicle A travel control unit 141 that decelerates M, and when decelerating the host vehicle M, travel that determines a jerk j that represents the degree of change in the deceleration of the host vehicle according to the interrupt probability P of the host vehicle.
  • the host vehicle M is decelerated at a relatively large deceleration in preparation for an interruption of a surrounding vehicle by increasing the maximum value of the jerk j, and the predetermined point In other points, the host vehicle M is slowly decelerated by reducing the maximum value of the jerk j, so that it is possible to reduce the uncomfortable braking when the prediction of interruption is missed.
  • FIG. 17 is a diagram showing an example of the maximum value of jerk j determined according to the collision allowance time TTC.
  • FIG. 18 is a figure which shows an example of the deceleration determined based on the jerk j shown in FIG.
  • the traveling control unit 141 decreases the maximum value of the jerk j as the collision margin time TTC increases, and increases as the collision margin time TTC decreases. Accordingly, as shown in FIG. 18, the deceleration gradually increases as the collision margin time TTC increases.
  • the collision margin time TTC is large, even if the interruption probability P is high, there is a time delay until the vehicle catches up with the interruption vehicle, so that it can be dealt with by a relatively slow deceleration.
  • a second embodiment when a plurality of surrounding vehicles are recognized, a first index value A that considers a collision margin time TTC between the host vehicle M and each surrounding vehicle and a collision margin time TTC between neighboring vehicles; On the basis of the second index value B in consideration of the distance D to the lane marking Ld for each peripheral vehicle and the lateral speed V Y of each peripheral vehicle, the above-described first deduction probability P of each peripheral vehicle is derived.
  • the following description will focus on differences from the first embodiment, and descriptions of functions and the like common to the first embodiment will be omitted.
  • FIG. 19 is a configuration diagram of the vehicle control system 1A in the second embodiment.
  • the vehicle control system 1A according to the second embodiment includes, for example, the camera 10, the radar device 12, the finder 14, the object recognition device 16, the communication device 20, the HMI 30, the vehicle sensor 40, the navigation device 50, the MPU 60, and the driving as described above.
  • An operating element 80, a traveling driving force output device 200, a brake device 210, a steering device 220, and an automatic driving control unit 100A are provided.
  • the automatic operation control unit 100A in the second embodiment includes the first control unit 120, the second control unit 140, and the storage unit 150 described above.
  • the storage unit 150 is realized by, for example, an HDD or a flash memory.
  • the storage unit 150 stores a first index value derivation table 152, a second index value derivation map 154, and an interrupt probability derivation map 156, which will be described later.
  • FIG. 20 is a diagram illustrating an example of a scene in which the specifying unit 124 derives the interrupt probability P in the second embodiment.
  • M1 in the drawing represents a first vehicle traveling in front of the host vehicle M in a first lane (own lane) L1 in which the host vehicle M travels, and m2 represents a second lane (adjacent to the first lane L1).
  • L2 represents a second vehicle that travels ahead of the host vehicle M
  • m3 represents a third vehicle that travels in the second lane L2 and travels behind the second vehicle m1. .
  • the specifying unit 124 determines a target peripheral vehicle from which the interrupt probability P is derived among a plurality of peripheral vehicles recognized by the external recognition unit 121, and derives the interrupt probability P of the vehicle. For example, as illustrated, when the above-described first vehicle m1, the second vehicle m2, and the third vehicle m3 are recognized by the external environment recognition unit 121, the specifying unit 124 detects the surroundings of the processing target from these vehicles. Determine the vehicle. In the following description, it is assumed that the processing target surrounding vehicle is the third vehicle m3.
  • the specifying unit 124 firstly includes a collision margin time TTC (M ⁇ m1) between the host vehicle M and the first vehicle m1, the host vehicle M, The collision margin time TTC (M-m3) with the third vehicle m3, the collision margin time TTC (m1-m3) between the first vehicle m1 and the third vehicle m3, the second vehicle m2 and the third vehicle m3
  • the collision margin time TTC (m2-m3) is derived.
  • the specifying unit 124 sets a plurality of sets of two vehicles that are targeted when the collision margin time TTC is derived.
  • a first index value A is derived for the combination of vehicles.
  • FIG. 21 is a diagram illustrating an example of the first index value derivation table 152.
  • a numerical value range that can be taken as a collision margin time TTC of each set of vehicles is associated with numerical values ⁇ 1 to ⁇ n that are predetermined as candidates for the first index value A. .
  • the collision margin time TTC (M ⁇ m1) is in the numerical range of 0.0 to 1.0
  • the collision margin time TTC (M ⁇ m3) is in the numerical range of 0.0 to 0.5
  • the collision margin is
  • the specifying unit 124 The set of the vehicle (M-m1), the vehicle (M-m3), the vehicle (m1-m3), and the vehicle (m2-m3) that are the targets when deriving the collision allowance time TTC
  • the first index value A for the combination is determined as ⁇ 1.
  • the numerical values ⁇ 1 to ⁇ n that are candidates for the first index value A are set such that when the collision margin time TTC (M ⁇ m1) between the host vehicle M and the first vehicle m1 is long, it becomes larger than when it is short. . Also, the numerical values ⁇ 1 to ⁇ n are set such that when the collision allowance time TTC (m1-m3) between the first vehicle m1 and the third vehicle m3 is long, it becomes larger than when it is short. The numerical values ⁇ 1 to ⁇ n are set such that when the collision allowance time TTC (m2-m3) between the second vehicle m2 and the third vehicle m3 is short, it tends to be larger than when it is long.
  • Numerical values ⁇ 1 to ⁇ n indicate that the collision margin time TTC (M ⁇ m1) between the host vehicle M and the first vehicle m1 is equal to the collision margin time TTC (m2 ⁇ m3) between the second vehicle m2 and the third vehicle m3. If the length is longer than the shorter time, the setting is set to be larger than that when the length is shorter.
  • the first index value derivation table 152 includes a result of observation of a third vehicle m3 that actually changes lanes in advance, a first index value A derived from an experimental method, simulation, and the like, and a set of two vehicles. May be generated in advance based on the correlation with the collision margin time TTC.
  • the set of two vehicles is, for example, the own vehicle M and the first vehicle m1, the own vehicle M and the third vehicle m3, the first vehicle m1 and the third vehicle, excluding the first vehicle m1 and the second vehicle m2. m3, the second vehicle m2, and the third vehicle m3.
  • a map or a function may be used for derivation of the first index value A instead of (or in addition to) the first index value derivation table 152.
  • the specification unit 124 based on the recognition result of the external world recognizing unit 121, and the stored third vehicle m3 and the distance D between the division line Ld, and the lateral velocity V Y of the third vehicle m3, the storage unit 150 Based on the second index value derivation map 154, the second index value B is derived.
  • FIG. 22 is a diagram illustrating an example of the second index value derivation map 154.
  • a numerical value that can be taken as the distance D for each numerical value ⁇ that is predetermined as a candidate for the second index value B, and the lateral speed V Y of the third vehicle m3 (partition line Ld A numerical value that can be taken as positive) is associated.
  • the specifying unit 124 determines the second index value B to be 3 ⁇ .
  • Each numerical value ⁇ that is a candidate for the second index value B is set so as to increase as the distance D decreases.
  • Each numerical value ⁇ is set so as to increase as the lateral speed V Y increases.
  • the second index value derivation map 154 includes a result of observation of the third vehicle m3 that actually changes lanes in advance, a second index value B derived from an experimental method, simulation, and the like, a distance D, and a third vehicle. and it is generated based on a correlation between the lateral velocity V Y of m3.
  • the specifying unit 124 determines that the third vehicle m is in the first lane L1 based on the derived first index value A and second index value B and the interrupt probability derivation map 156 stored in the storage unit 150.
  • An interruption probability P indicating the possibility of changing lanes is derived.
  • FIG. 23 is a diagram illustrating an example of the interrupt probability derivation map 156.
  • the first index value A and the second index value B are associated with each numerical value ⁇ determined in advance as a candidate for the interrupt probability P.
  • Each numerical value ⁇ that is a candidate for the interrupt probability P is set so as to increase as the first index value A or the second index value B increases.
  • the interrupt probability derivation map 156 shows the correlation between the first index value A and the second index value B derived from the observation result of the third vehicle m3 that actually changes the lane beforehand, the experimental method, the simulation, and the like. It is generated based on. Thereby, similarly to the above-described embodiment, it is possible to derive the interrupt probability P of the target surrounding vehicle (the third vehicle m3 in the above-described example).
  • the derivation of the second index value B and has been described that the distance D and the lateral velocity V Y of the third vehicle m3 is used, the derivation of the second index value B, the distance D only, or even any parameter distance in addition to D and the lateral velocity V Y may be used.
  • the derivation of the second index value B in addition to the lateral speed V Y of the distance D and the third vehicle m3 the division line Ld and the third vehicle m3, lateral (lane 3 vehicle m3 in a predetermined time A movement amount in the width direction may be used.
  • the specifying unit 124 may derive a larger second index value B as the lateral movement amount is larger.
  • the specifying unit 124 is different from the case where the movement direction in the lateral direction of the third vehicle m3 is the direction toward the first lane, as compared with the case where the movement direction in the lateral direction of the third vehicle m3 is not the direction toward the first lane L1.
  • the second index value B may be derived with a tendency to increase.
  • the collision allowance time TTC is used for deriving the first index value A.
  • the first index value A is derived.
  • at least one of a distance between the set of vehicles, a head time in the set of vehicles, or a relative speed of the set of vehicles may be used.
  • the first index value A increases as the distance between the host vehicle M and the first vehicle m1 increases.
  • the first index value A is smaller as the relative speed between the host vehicle M and the first vehicle m1 is smaller, or the first vehicle.
  • the speed of m1 is larger than the speed of the host vehicle M, it tends to increase.
  • the first index value A tends to increase as the relative speed between the first vehicle m1 and the third vehicle m3 decreases, and as the speed of the first vehicle m1 increases relative to the speed of the third vehicle m3.
  • the first index value A tends to increase as the relative speed between the second vehicle m2 and the third vehicle m3 decreases, or as the speed of the third vehicle m3 increases relative to the speed of the second vehicle m2. It becomes.
  • the first index value A has the same tendency as when the collision allowance time TTC is used for deriving the first index value A. Become.
  • the specifying unit 124 derives the first index value A based on the relationship regarding the traveling direction between the two vehicles except the relationship regarding the traveling direction between the first vehicle m1 and the second vehicle m2.
  • the present invention is not limited to this, and the first index value A may be derived using the relationship regarding the traveling direction of the first vehicle m1 and the second vehicle m2. In this case, when the first vehicle m1 is present ahead of the second vehicle m2, the first index value A is larger than when it is not present. Further, when the collision margin time TTC (or the vehicle head time) between the first vehicle m1 and the second vehicle m2 is large, the first index value A is larger than when it is small.
  • the first index value A is larger and the interruption probability P of the third vehicle m3 is higher than when it is negative. Become.
  • the first index value A increases as the relative speed increases. Thereby, the interruption probability P of the third vehicle m3 is increased.
  • the specifying unit 124 changes the lane of the third vehicle m3 from the second lane L2 to the first lane L1. May be derived higher than when no obstacle is present. Further, when the lane ahead of the third vehicle m3 disappears, the identifying unit 124 does not lose the interruption probability P when the third vehicle m3 changes the lane from the second lane L2 to the first lane L1. It may be derived higher than the case.
  • the first index value derivation table 152 corresponding to the case where the first vehicle m1 or the second vehicle m2 does not exist may be used.
  • the collision margin time TTC between the vehicle and another vehicle, the vehicle head time, and the inter-vehicle distance between the two vehicles may be regarded as a sufficiently large value or infinite.
  • the relative speed may be regarded as zero, or the set value when the first vehicle m1 or the second vehicle m2 does not exist is used. Also good.
  • the specifying unit 124 may change the interrupt probability P in accordance with the turn-on state of the blinker of the surrounding vehicle that is the target for deriving the interrupt probability P, as in the first embodiment described above.
  • the identification unit 124 refers to the second indicator value derivation map 154 # for turning on the winker instead of the above-described second indicator value derivation map 154 when the turn signal of the surrounding vehicle (the winker on the own lane side) lights up.
  • the second index value B is derived.
  • the second index value derivation map 154 # for turning the blinker may be stored in the storage unit 150 in advance.
  • FIG. 24 is a diagram showing an example of the second index value derivation map 154 # for blinker lighting.
  • a numerical value that can be taken as (corresponding to the lane marking Ld is positive) is associated.
  • Second index value derivation map 154 for turn signal lights # is different from the second index value derivation map 154, the correlation between the lateral velocity V Y of the distance D and the third vehicle m3 is also the same, the second Each numerical value ⁇ that is a candidate for the index value B is set to a large value.
  • the second indicator value derivation map 154 # for turn signal lighting is derived from observation results, experimental methods, simulations, etc., whether the third vehicle m has actually changed lanes when the turn signal of the third vehicle m3 is turned on.
  • a second index value B that is, distance and D, which have been generated on the basis of the correlation between the lateral velocity V Y of the third vehicle m3.
  • this second indicator value derivation map 154 # for turning on the blinker when the intention of changing the lane is estimated for the third vehicle m3, compared to the case where the intention of changing the lane is not estimated for the third vehicle m3. Thus, a larger second index value B is derived. As a result, when the surrounding vehicle expresses the intention to change the lane by turning on the blinker, the interrupt probability P is derived higher.
  • the first index value A in consideration of the collision margin time TTC between the host vehicle M and each neighboring vehicle and the collision margin time TTC between neighboring vehicles, and the lane marking Ld for each neighboring vehicle.
  • the second index value B in consideration of the lateral speed V Y of each surrounding vehicle, the interruption probability P of each surrounding vehicle is derived, and the surrounding vehicles having the interruption probability P equal to or greater than the threshold value are derived.
  • the third embodiment instead of controlling the steering and acceleration / deceleration of the host vehicle M as automatic driving, the driving support control is performed in which the host vehicle M simply follows the preceding vehicle traveling immediately before the host vehicle M.
  • the driving support control is performed in which the host vehicle M simply follows the preceding vehicle traveling immediately before the host vehicle M.
  • the following description will focus on differences from the first and second embodiments, and descriptions of functions and the like common to the first and second embodiments will be omitted.
  • FIG. 25 is a configuration diagram of the vehicle control system 1B according to the third embodiment.
  • the vehicle control system 1B according to the third embodiment includes, for example, the camera 10, the radar device 12, the finder 14, the object recognition device 16, the HMI 30, the vehicle sensor 40, the driving operator 80, and the driving force output device 200 as the configuration described above. , A brake device 210, a steering device 220, and a driving support control unit 100B.
  • the HMI 30 in the third embodiment is, for example, a switch for starting driving support control such as follow-up running.
  • the driving support control unit 100B in the third embodiment includes, for example, an external environment recognition unit 121, a specification unit 124, and a follow-up travel control unit 141B.
  • the following traveling control unit 141B is configured so that the inter-vehicle distance between the preceding vehicle recognized by the external recognition unit 121 and the own vehicle M becomes constant. Adjust the acceleration / deceleration of M.
  • the specifying unit 124 specifies a surrounding vehicle that may be interrupted between the host vehicle M and the preceding vehicle as an interrupted vehicle
  • the follow-up travel control unit 141B determines that the interrupting vehicle interrupts
  • the jerk j of the host vehicle M is determined according to the probability P.
  • the own vehicle according to the interrupt probability P of the interrupted vehicle, as in the first embodiment described above.
  • appropriate speed control can be performed according to the interruption of the surrounding vehicle.
  • the determination of the jerk j of the host vehicle M according to the interrupt probability P of the interrupted vehicle during the driving support control for performing the follow-up traveling is described, but the present invention is not limited to this.
  • the jerk j of the host vehicle M is determined according to the interrupt probability P of the interrupting vehicle for other driving support control such as an automatic brake system that automatically brakes according to the collision allowance time TTC with the preceding vehicle. You may apply the control to do.

Abstract

車両制御システムは、自車両が存在する第1車線と異なる第2車線に存在する一以上の周辺車両を認識する認識部と、前記認識部により認識された周辺車両について、前記自車両の前方への割込確率に基づく指標値を導出し、前記導出した指標値が閾値以上の周辺車両を割込車両として特定する特定部と、前記特定部により特定された前記割込車両の存在に応じて前記自車両を減速させる走行制御部であって、前記自車両を減速させる際に、対象となる割込車両の前記指標値に基づいて、前記自車両の減速度の変化の度合を決定する走行制御部と、を備える。

Description

車両制御システム、車両制御方法、および車両制御プログラム
 本発明は、車両制御システム、車両制御方法、および車両制御プログラムに関する。
 従来、自車両の前方に割り込む周辺車両を予測する技術が知られている(例えば、特許文献1参照)。
特開2003-288691号公報
 しかしながら、従来の技術では、割り込みが予測された周辺車両に対して、自車両を過度に減速させてしまう場合があった。
 本発明は、このような事情を考慮してなされたものであり、周辺車両の割り込みに応じて適切な速度制御を行うことができる車両制御システム、車両制御方法、および車両制御プログラムを提供することを目的の一つとする。
 請求項1記載の発明は、自車両が存在する第1車線と異なる第2車線に存在する一以上の周辺車両を認識する認識部と、前記認識部により認識された周辺車両について、前記自車両の前方への割込確率に基づく指標値を導出し、前記導出した指標値が閾値以上の周辺車両を割込車両として特定する特定部と、前記特定部により特定された前記割込車両の存在に応じて前記自車両を減速させる走行制御部であって、前記自車両を減速させる際に、対象となる割込車両の前記指標値に基づいて、前記自車両の減速度の変化の度合を決定する走行制御部と、を備える車両制御システムである。
 請求項2記載の発明は、請求項1記載の車両制御システムにおいて、前記特定部が、前記認識部により認識された周辺車両のそれぞれと、前記第1車線と前記第2車線の間を区画する区画線との距離に基づいて、前記指標値を導出するものである。
 請求項3記載の発明は、請求項1または2に記載の車両制御システムにおいて、前記走行制御部が、更に、前記認識部により認識された周辺車両のそれぞれと、前記自車両との相対関係に基づいて、前記自車両の減速度の変化の度合を決定するものである。
 請求項4記載の発明は、請求項1から3のうちいずれか1項に記載の車両制御システムにおいて、前記特定部が、地図情報を参照し、前記自車両の前方に前記第2車線から前記第1車線への車線変更が必要となる地点が存在する場合、前記地点に近い周辺車両ほど、大きな前記指標値を導出するものである。
 請求項5記載の発明は、請求項1から4のうちいずれか1項に記載の車両制御システムにおいて、前記特定部が、前記認識部により複数の周辺車両が認識された場合、前記複数の周辺車両のうち、最も指標値が大きい周辺車両を前記割込車両として特定するものである。
 請求項6記載の発明は、請求項1から5のうちいずれか1項に記載の車両制御システムにおいて、前記走行制御部が、前記指標値が大きくなるにつれて、前記自車両の減速度の変化の度合を大きくし、前記指標値が小さくなるにつれて、前記自車両の減速度の変化の度合を小さくするものである。
 請求項7記載の発明は、請求項1から6のうちいずれか1項に記載の車両制御システムにおいて、前記特定部が、前記周辺車両のそれぞれについて前記指標値を導出する処理を所定周期で繰り返し行い、前記走行制御部が、前記特定部により繰り返し前記指標値が導出される過程で、同じ割込車両が継続して特定される場合、前記自車両の減速度の変化の度合を大きくするものである。
 請求項8記載の発明は、車載コンピュータが、自車両が存在する第1車線と異なる第2車線に存在する一以上の周辺車両を認識し、前記認識した周辺車両について、前記自車両の前方への割込確率に基づく指標値を導出し、前記導出した指標値が閾値以上の周辺車両を割込車両として特定し、前記特定した前記割込車両の存在に応じて前記自車両を減速させ、前記自車両を減速させる際に、対象となる割込車両の前記指標値に基づいて、前記自車両の減速度の変化の度合を決定する車両制御方法である。
 請求項9記載の発明は、車載コンピュータに、自車両が存在する第1車線と異なる第2車線に存在する一以上の周辺車両を認識する処理と、前記認識した周辺車両について、前記自車両の前方への割込確率に基づく指標値を導出する処理と、前記導出した指標値が閾値以上の周辺車両を割込車両として特定する処理と、前記特定した前記割込車両の存在に応じて前記自車両を減速させる処理と、前記自車両を減速させる際に、対象となる割込車両の前記指標値に基づいて、前記自車両の減速度の変化の度合を決定する処理と、を実行させる車両制御プログラムである。
 各請求項に記載の発明によれば、自車両の前方への割込確率に基づく指標値が閾値以上の周辺車両を割込車両として特定し、割込車両の存在に応じて自車両を減速させる際に、対象となる割込車両の指標値に基づいて、自車両の減速度の変化の度合を決定することにより、周辺車両の割り込みに応じて適切な速度制御を行うことができる。
第1実施形態における車両制御システム1の構成図である。 自車位置認識部122により自車線L1に対する自車両Mの相対位置および姿勢が認識される様子を示す図である。 推奨車線に基づいて目標軌道が生成される様子を示す図である。 特定部124により実行される処理の一例を示すフローチャートである。 割込確率Pの導出方法を説明するための図である。 自車両Mの周囲に複数の周辺車両が存在する場面の一例を示す図である。 自車両Mの周囲に複数の周辺車両が存在する場面の他の例を示す図である。 所定地点Qの一例を示す図である。 所定地点Qまでの距離に応じた倍率Aの一例を示す図である。 走行制御部141により実行される処理の一例を示すフローチャートである。 ある割込車両maの割込確率Pに応じて決定されるジャークjの一例を示す図である。 図11に示すジャークjに基づいて決定される減速度の一例を示す図である。 割込車両mbの割込確率Pに応じて決定されるジャークjの一例を示す図である。 図13に示すジャークjに基づいて決定される減速度の一例を示す図である。 割込車両mbの割込確率Pに応じて決定されるジャークjの他の例を示す図である。 図15に示すジャークjに基づいて決定される減速度の一例を示す図である。 衝突余裕時間TTCに応じて決定されるジャークjの最大値の一例を示す図である。 図17に示すジャークjに基づいて決定される減速度の一例を示す図である。 第2実施形態における車両制御システム1Aの構成図である。 第2実施形態における特定部124が割込確率Pを導出する場面の一例を示す図である。 第1指標値導出テーブル152の一例を示す図ある。 第2指標値導出マップ154の一例を示す図である。 割込確率導出マップ156の一例を示す図ある。 ウィンカー点灯用の第2指標値導出マップ154#の一例を示す図である。 第3実施形態における車両制御システム1Bの構成図である。
 以下、図面を参照し、本発明の車両制御システム、車両制御方法、および車両制御プログラムの実施形態について説明する。
 <第1実施形態>
 図1は、第1実施形態における車両制御システム1の構成図である。車両制御システム1が搭載される車両は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
 車両制御システム1は、例えば、カメラ10と、レーダ装置12と、ファインダ14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、車両センサ40と、ナビゲーション装置50と、MPU(Micro-Processing Unit)60と、運転操作子80と、自動運転制御ユニット100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
 カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両制御システム1が搭載される車両(以下、自車両Mと称する)の任意の箇所に一つまたは複数が取り付けられる。自車両Mの前方を撮像する場合、カメラ10は、フロントウィンドウシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し自車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
 レーダ装置12は、自車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、自車両Mの任意の箇所に一つまたは複数が取り付けられる。レーダ装置12は、FMCW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
 ファインダ14は、照射光に対する散乱光を測定し、対象までの距離を検出するLIDAR(Light Detection and Ranging、或いはLaser Imaging Detection and Ranging)である。ファインダ14は、自車両Mの任意の箇所に一つまたは複数が取り付けられる。
 物体認識装置16は、カメラ10、レーダ装置12、およびファインダ14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を自動運転制御ユニット100に提供する。
 通信装置20は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、自車両Mの周辺に存在する車両と通信したり、無線基地局を介して各種サーバ装置と通信したりする。
 HMI30は、自車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。例えば、HMI30は、表示装置31と、操作受付部32とを備える。
 表示装置31は、例えば、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)ディスプレイなどであり、インストルメントパネルの各部、助手席や後部座席の任意の箇所に取り付けられる。なお、表示装置31は、後述する操作受付部32と一体となったタッチパネルであってもよい。
 操作受付部32は、例えば、乗員により入力される操作の一つとして、車線変更の指示操作を受け付ける。例えば、操作受付部32は、スイッチや入力キーなどである。操作受付部32は、受け付けた入力操作に基づく操作入力信号を生成し、この信号を自動運転制御ユニット100に出力する。
 車両センサ40は、自車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。車両センサ40は、検出した情報(速度、加速度、角速度、方位等)を自動運転制御ユニット100に出力する。
 ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備え、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。
 GNSS受信機51は、GNSS衛星から受信した信号に基づいて、自車両Mの位置を特定する。自車両Mの位置は、車両センサ40の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。
 ナビHMI52は、表示装置、スピーカ、タッチパネル、入力キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。
 経路決定部53は、例えば、ナビHMI52を用いて、GNSS受信機51により特定された自車両Mの位置(或いは入力された任意の位置)から、乗員により入力された目的地までの経路を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(Point Of Interest)情報などを含んでもよい。経路決定部53により決定された経路は、MPU60に出力される。
 また、ナビゲーション装置50は、経路決定部53により決定された経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。なお、ナビゲーション装置50は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。また、ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから返信された経路を取得してもよい。
 MPU60は、例えば、推奨車線決定部61として機能し、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに自車両Mが走行すべき推奨車線を決定する。
 例えば、推奨車線決定部61は、ナビゲーション装置50から提供された経路が複数の車線を有する場合、各ブロックにおいて、各ブロックに含まれる一つ以上の車線の中から、いずれか一つの車線を推奨車線として決定する。推奨車線決定部61は、提供された経路において分岐地点や合流地点などが存在する場合、自車両Mが、その地点において目的地に進行するための合理的な走行経路を走行できるように、推奨車線を決定する。例えば、複数の車線を含む本線から分岐した車線の延長線上に目的地がある場合、推奨車線決定部61は、本線に含まれる車線のうち、分岐先の車線(分岐車線)に向かう車線を、推奨車線として決定する。
 第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。道路情報には、高速道路、有料道路、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐地点の位置、道路に設けられた標識等の情報が含まれる。第2地図情報62は、通信装置20を用いて他装置にアクセスすることにより、随時、アップデートされてよい。
 運転操作子80は、例えば、アクセルペダルや、ブレーキペダル、シフトレバー、ステアリングホイール等を含む。例えば、ステアリングホイールは、操作受付部32に対してなされ得る車線変更の指示操作を受け付けてもよい。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御ユニット100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一方または双方に出力される。
 自動運転制御ユニット100は、例えば、第1制御部120と、第2制御部140とを備える。第1制御部120および第2制御部140は、それぞれ、CPU(Central Processing Unit)などのプロセッサがプログラム(ソフトウェア)を実行することで実現される。また、第1制御部120および第2制御部140の構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
 第1制御部120は、例えば、外界認識部121と、自車位置認識部122と、行動計画生成部123と、特定部124とを備える。
 外界認識部121は、カメラ10、レーダ装置12、およびファインダ14から物体認識装置16を介して入力される情報に基づいて、周辺車両の位置、速度、加速度等の状態を認識する。周辺車両とは、例えば、自車両Mの周辺を走行する車両であって、自車両Mの進行方向と同じ方向に走行する車両である。
 例えば、外界認識部121は、周辺車両が存在する車線を区画する区画線に対する周辺車両の相対位置を認識したり、周辺車両の進行方向に関する速度や進行方向と直交し、走行する路面と略平行な車線幅方向に関する速度を認識したりしてよい。周辺車両の位置は、その周辺車両の重心やコーナー等の代表点で表されてもよいし、周辺車両の輪郭で表現された領域で表されてもよい。周辺車両の「状態」とは、周辺車両の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か等)を含んでもよい。また、外界認識部142は、周辺車両に加えて、車道の落下物やガードレール、電柱、駐車車両、歩行者、道路路面の標示、標識、その他の物体の位置を認識してもよい。
 自車位置認識部122は、例えば、自車両Mが走行している車線(自車線)、並びに自車線に対する自車両Mの相対位置および姿勢を認識する。自車位置認識部122は、例えば、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、自車線を認識する。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。
 そして、自車位置認識部122は、例えば、自車線に対する自車両Mの位置や姿勢を認識する。図2は、自車位置認識部122により自車線L1に対する自車両Mの相対位置および姿勢が認識される様子を示す図である。自車位置認識部122は、例えば、自車両Mの基準点(例えば重心)の自車線中央CLからの乖離OS、および自車両Mの進行方向の自車線中央CLを連ねた線に対してなす角度θを、自車線L1に対する自車両Mの相対位置および姿勢として認識する。なお、これに代えて、自車位置認識部122は、自車線L1のいずれかの側端部に対する自車両Mの基準点の位置などを、自車線に対する自車両Mの相対位置として認識してもよい。自車位置認識部122により認識される自車両Mの相対位置は、行動計画生成部123に提供される。
 行動計画生成部123は、推奨車線決定部61により推奨車線として決定された車線を走行するように、且つ、自車両Mの周辺状況に対応できるように、行動計画を生成する。行動計画とは、自動運転において順次実行されるイベントで構成される。自動運転とは、自車両Mの加減速または操舵の少なくとも一方または双方を、自動運転制御ユニット100が制御することをいう。
 イベントには、例えば、一定速度で同じ走行車線を走行する定速走行イベント、先行車両に追従する追従走行イベント、走行車線を変更させる車線変更イベント、先行車両を追い越させる追い越しイベントなどを含む。追い越しイベントは、例えば、先行車両の速度が自車両Mの速度よりも一定速度以上遅く、且つ自車線に隣接する隣接車線を走行する周辺車両の平均速度などが自車両Mの速度よりも一定速度以上速い状況下で計画される。例えば、追い越しイベントが実行される場合、自車両Mは、一旦隣接車線に車線変更によって移り、加速などを伴いながら、先行車両の前方、且つ車線変更前の自車線(元車線)に車線変更によって移る。
 また、イベントには、本線に合流するための合流車線において自車両Mを加減速させ、合流車線へと走行車線を変更させる合流イベント、分岐地点において分岐先の車線に自車両Mを車線変更させる分岐イベント、周辺車両などの挙動に合わせて自車両Mを緊急停止させる緊急停止イベント、自動運転を終了して手動運転に切り替えるための切替イベント(テイクオーバイベント)などが含まれてよい。手動運転とは、運転操作子80に対する乗員の操作によって、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220が制御されることをいう。また、これらのイベントの実行中に、自車両Mの周辺状況(車道の障害物、周辺車両、歩行者の存在、道路工事による車線狭窄など)に基づいて、障害物などを回避するための回避イベントが計画されてもよい。
 そして、行動計画生成部123は、自車両Mが将来走行する目標軌道を生成する。目標軌道は、自車両Mの到達すべき地点(軌道点)を順に並べたものとして表現される。軌道点は、所定の走行距離ごとの自車両Mの到達すべき地点であり、それとは別に、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとの目標速度および目標加速度が、目標軌道の一部として生成される。また、軌道点は、所定のサンプリング時間ごとの、そのサンプリング時刻における自車両Mの到達すべき位置であってもよい。この場合、目標速度や目標加速度の情報は軌道点の間隔で表現される。
 図3は、推奨車線に基づいて目標軌道が生成される様子を示す図である。図示するように、推奨車線は、目的地までの経路に沿って走行するのに都合が良いように決定される。行動計画生成部123は、推奨車線の切り替わり地点の所定距離手前に差し掛かると、車線変更イベント、分岐イベント、合流イベントなどを起動する。各イベントの実行中(起動中)に、障害物を回避する必要が生じた場合には、行動計画生成部123は、図示するように、一旦隣接車線へと自車両Mを車線変更させて障害物を回避させる軌道を生成してもよいし、障害物の手前で自車両Mを停止させるような減速のための軌道を生成してもよい。
 行動計画生成部123は、例えば、目標軌道の候補を複数生成し、安全性と効率性の観点に基づいて、その時点での最適な目標軌道を選択する。そして、行動計画生成部123は、選択した目標軌道を走行制御部141に提供する。
 特定部124は、外界認識部121により認識された周辺車両のうち、自車両Mの前方に割り込む可能性の高い周辺車両(以下、割込車両と称する)を特定する。言い換えれば、特定部124は、自車両Mが存在する自車線と異なる車線に存在する周辺車両のうち、自車線且つ自車両Mの前方へと車線変更する可能性の高い周辺車両を割込車両として特定する。
 図4は、特定部124により実行される処理の一例を示すフローチャートである。本フローチャートの処理は、例えば、所定の周期で繰り返し行われてよい。
 まず、特定部124は、外界認識部121により周辺車両が認識されるまで待機し(ステップS100)、外界認識部121により周辺車両が認識されると、周辺車両ごとに、自車両Mの前方へと割り込む可能性を定量化した割込確率Pを導出する(ステップS102)。
 図5は、割込確率Pの導出方法を説明するための図である。図中maは、周辺車両を表し、X、Yは、それぞれ車線延在方向(車両進行方向)と車線幅方向を表している。例えば、特定部124は、ウィンカーランプの点灯の有無を1または0で表現するパラメータLと、周辺車両が存在する車線L2を区画する区画線のうち自車線L1に近い方の区画線Ldから周辺車両までの距離Dと、周辺車両の車線幅方向Yの速度V(以下、横速度Vと称する)と、自車両Mと周辺車両との衝突余裕時間TTC(Time-To-Collision)とのうち一部または全部を用いて、割込確率Pを導出する。衝突余裕時間TTCは、現在の自車両Mと周辺車両の相対速度が維持されると仮定した場合に、現時刻から自車両Mの車頭部(前端)が周辺車両の車尾部(後端)に接触すると推定される時刻までの時間であり、自車両Mと周辺車両との間の車間距離をこれらの車両の相対速度で除算した値として求められてよい。横速度Vは、例えば、自車線に近づく方向をプラスとして、ある観測時間が経過するまでの間に周辺車両が車線幅方向に関して移動した距離を、その観測時間で除算することで求められてよい。
 例えば、特定部124は、パラメータL、距離D、横速度V、および衝突余裕時間TTCの全てを考慮した以下の数式(1)に基づいて、割込確率Pを導出する。
Figure JPOXMLDOC01-appb-M000001
 式中wは、パラメータLに対する重みであり、wは、距離Dに対する重みであり、wは、横速度Vに対する重みであり、wは、衝突余裕時間TTCに対する重みである。各重みの配分は、重みw~wの総和が1となるように決められる。また、各パラメータは、その最大値が1となるように規格化(正規化)される。例えば、距離Dは、想定される最大距離(例えば車線の全幅)で除算されることで規格化されてよいし、横速度Vは、車両が車線幅方向Yに対して出力可能な最大速度で除算されることで規格化されてよいし、衝突余裕時間TTCは、例えばカメラ10やファインダ14の検知範囲の限界付近で周辺車両が検知されたときに導出された衝突余裕時間TTCで除算されることで規格化されてよい。
 次に、特定部124は、周辺車両ごとに、導出した割込確率Pが閾値(例えば0.5程度)以上となるか否かを判定する(ステップS104)。特定部124は、導出した割込確率Pが閾値以上となる周辺車両が存在する場合、その周辺車両を割込車両(自車両Mの前方に割り込む可能性の高い周辺車両)として特定する(ステップS106)。これによって、本フローチャートの処理が終了する。
 なお、S104の処理の結果として、割込確率Pが閾値以上となる周辺車両が複数存在する場合、特定部124は、最も割込確率Pが大きい周辺車両を割込車両として特定してよい。
 図6は、自車両Mの周囲に複数の周辺車両が存在する場面の一例を示す図である。図中ma、mbは、それぞれ周辺車両を表し、Vmaは、周辺車両maの速度を表し、Vmbは、周辺車両mbの速度を表している。図示の例では、周辺車両maは、周辺車両mbよりも自車両M側に位置し、周辺車両maの速度Vmaは、周辺車両mbの速度Vmbと同じ速度である。また、区画線Ldから各周辺車両までの距離は同じである。図示の例のような場合、周辺車両mbが周辺車両maよりも自車両Mから遠いため、自車両Mおよび周辺車両mbの衝突余裕時間TTCmbは、自車両Mおよび周辺車両maの衝突余裕時間TTCmaよりも長くなる。この場合、周辺車両maの割込確率Pと比べて、周辺車両mbの割込確率Pの方が高くなる。従って、特定部124は、周辺車両mbを割込車両として特定する。
 図7は、自車両Mの周囲に複数の周辺車両が存在する場面の他の例を示す図である。図示の例では、自車線L1に対して隣接する二つの車線のうち、右隣の隣接車線L2上に周辺車両maが存在し、左隣の隣接車線L3上に周辺車両mbが存在している。これらの周辺車両maおよびmbは、自車両Mから等距離に位置し、周辺車両maの速度Vmaは、周辺車両mbの速度Vmbと同じ速度である。また、図示の例では、隣接車線L2を区画する区画線のうち自車線L1側の区画線Ld1から周辺車両maまでの距離Dmaは、隣接車線L3を区画する区画線のうち自車線L1側の区画線Ld2から周辺車両mbまでの距離Dmbよりも短い。このような場合、周辺車両maの割込確率Pと比べて、周辺車両mbの割込確率Pの方が低くなる。従って、特定部124は、周辺車両maを割込車両として特定する。
 また、特定部124は、例えば、第2地図情報62を参照して、隣接車線から自車線への車線変更が必要となる所定地点Qを特定し、周辺車両が所定地点Qに到達する(差し掛かる)場合に、その周辺車両の割込確率Pを高くしてよい。所定地点Qとは、例えば、他車線が自車線に合流する合流地点や、隣接車線が途中で消失する車線消失地点、工事などにより一時的に隣接車線の通行が禁止された通行止め地点などである。
 図8は、所定地点Qの一例を示す図である。図示の例では、隣接車線L3の途中で車線が消失している。このような場合、隣接車線L3上を走行する周辺車両maが、いずれかのタイミングで自車線L1に車線変更することが予測される。従って、特定部124は、所定地点Qに到達していない周辺車両と比べて、所定地点Qに到達している周辺車両の割込確率Pを高くする。例えば、特定部124は、上述した数式(1)などにより求めた割込確率Pに所定の倍率A(A≧1)を乗算することで割込確率Pを高くする。
 図9は、所定地点Qまでの距離に応じた倍率Aの一例を示す図である。図示の例のように、特定部124は、所定地点Qに周辺車両が近づくほど、指数関数的に倍率Aを大きくすることで、割込確率Pを高くする。これによって、所定地点Qに到達するまでに、幅寄せやウィンカーの点灯などの車線変更の意思を表さないような周辺車両に対しても適切な割込確率Pを導出することができる。この結果、車線変更の意思を表さない周辺車両であっても、自車両Mの前方に割り込む可能性が潜在的に高い周辺車両については割込車両として特定することができる。
 また、特定部124は、通信装置20により周辺車両と車車間通信が行われ、通信相手の周辺車両から、自車両Mの前方に車線変更するという事前予告がなされた場合、この周辺車両を割込車両として特定してもよい。
 第2制御部140は、例えば、走行制御部141を備える。走行制御部141は、行動計画生成部123によって生成された目標軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220を制御する。
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するECUとを備える。ECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。
 ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、走行制御部141から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、走行制御部141から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
 ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
 また、走行制御部141は、特定部124により割込車両が特定された場合、一時的に、行動計画生成部123により目標軌道として決定された目標速度および目標加速度を逸脱して、自車両Mを減速させる。このとき、走行制御部141は、割込車両として特定された周辺車両の割込確率Pに応じて、自車両Mの減速度の変化の度合、すなわちジャークj(躍度)を決定する。
 図10は、走行制御部141により実行される処理の一例を示すフローチャートである。本フローチャートの処理は、例えば、所定の周期で繰り返し行われてよい。
 まず、走行制御部141は、特定部124により割込車両が特定されるまで待機し(ステップS200)、特定部124により割込車両が特定されると、前回特定された割込車両と今回特定された割込車両が同じ車両であるか否かを判定する(ステップS202)。
 前回特定された割込車両と今回特定された割込車両が同じ車両でない場合、走行制御部141は、今回割込車両として特定された周辺車両の割込確率Pに応じて、自車両Mを減速させる際のジャークjを決定する(ステップS204)。
 例えば、走行制御部141は、割込確率Pが大きくなるにつれて、ジャークjの最大値を大きくし、割込確率Pが小さくなるにつれて、ジャークjの最大値を小さくする。
 図11は、ある割込車両maの割込確率Pに応じて決定されるジャークjの一例を示す図である。図中横軸は、時間t(例えば単位は[s])を表し、縦軸は、ジャークjを表している。図示の例では、ジャークjは最大値が1となるように規格化されている。例えば、走行制御部141は、割込確率Pに応じてジャークjの最大値を1に設定すると共に、そのジャークjの特性を所定時間ΔTかけて最大値1から最小値0へと減少するような傾向に設定する。
 図12は、図11に示すジャークjに基づいて決定される減速度の一例を示す図である。図中横軸は、時間t(例えば単位は[s])を表し、縦軸は、マイナス方向の加速度αを減速度として表している。図示のように、走行制御部141は、予め決められ減速度のリミットαlimに近づくまで、図11に示すジャークjの変化傾向に応じて減速度を大きくする。
 図13は、割込車両mbの割込確率Pに応じて決定されるジャークjの一例を示す図である。割込確率Pは、上述した割込確率Pよりも小さいものとする。このようなP>Pとなる状況は、例えば、割込車両mbが特定された場面よりも割込車両maが特定された場面の方が、周辺車両が自車線寄りであったり、周辺車両との相対速度がより大きかったり、周辺車両との相対距離がより開いていたり、と周辺車両が車線変更する意思をより強く表していると見做すことができる。また、この状況は、割込車両mbが特定された場面よりも割込車両maが特定された場面の方が所定地点Qにより近いと見做すこともできる。この場合、走行制御部141は、ジャークjの最大値を、割込車両maが特定された場面で決定されたジャークjの最大値(上述した数値例では最大値=1)よりも小さくすると共に、そのジャークjの特性を所定時間ΔTかけて最大値1から最小値0へと減少するような傾向にする。図示の例では、ジャークjの最大値は0.5に決定されている。
 図14は、図13に示すジャークjに基づいて決定される減速度の一例を示す図である。図示のように、走行制御部141は、予め決められ減速度のリミットαlimに近づくまで、図13に示すジャークjの変化傾向に応じて減速度を大きくする。図示のように、割込確率Pと比べて割込確率Pの場合では、ジャークjの最大値が小さくなるため、同じ所定時間ΔTであっても、より緩やかな傾向で減速度が増加することになる。
 また、走行制御部141は、割込車両の割込確率Pに応じて、ジャークjの変化傾向を決定してもよい。
 図15は、割込車両mbの割込確率Pに応じて決定されるジャークjの他の例を示す図である。例えば、走行制御部141は、ジャークjの特性を示す曲線上に変曲点IFを設け、変曲点IF前後でジャークjの変化傾向を異ならせてよい。
 図16は、図15に示すジャークjに基づいて決定される減速度の一例を示す図である。上述したように、ジャークjの特性を示す曲線上において、ジャークjの減少度合を異ならせる変曲点IFを設けたことにより、減速度が増加する過程で、その増加傾向がより顕著に変化する。そのため、走行制御部141は、自車両Mを減速させる最初の段階では、比較的緩やかに減速を強めていき、途中の段階でより強く減速させることになる。
 ここで、フローチャートの説明に戻る。S202の処理において、前回特定された割込車両と今回特定された割込車両が同じ車両である場合、走行制御部141は、前回決定したジャークjの最大値を大きくする(ステップS206)。
 例えば、走行制御部141は、前回の処理でジャークjの最大値を0.5とした場合、今回の処理ではジャークjの最大値を0.7とする。これによって、所定の周期で処理を繰り返す間、何度も割り込みの意思を表している周辺車両に対しては、速やかに自車両Mを減速させることで道を譲ることができる。この結果、周辺車両により配慮した速度制御を行うことができる。
 なお、走行制御部141は、S202の処理として、特定部124により所定回数以上に亘って同じ車両が割込車両として特定されたか否かを判定してもよい。これによって、本フローチャートの処理が終了する。
 以上説明した第1実施形態によれば、自車両Mが存在する自車線と異なる他車線に存在する一以上の周辺車両を認識する外界認識部121と、外界認識部121により認識された周辺車両について、自車両Mの前方に割り込む可能性を示す割込確率Pが閾値以上の周辺車両を割込車両として特定する特定部124と、特定部124により割込車両が特定された場合、自車両Mを減速させる走行制御部141であって、自車両Mを減速させる際に、割込車両の割込確率Pに応じて、自車両の減速度の変化の度合を表すジャークjを決定する走行制御部141と、を備えることにより、周辺車両の割り込みに応じて適切な速度制御を行うことができる。
 例えば、車線減少地点や合流地点などの所定地点では、ジャークjの最大値を大きくすることで、周辺車両の割り込みに備えて比較的大きな減速度で自車両Mを減速させておき、上記所定地点以外の地点では、ジャークjの最大値を小さくすることで緩やかに自車両Mを減速させるため、割り込みの予測が外れたときの違和感のあるブレーキを軽減させることができる。
 また、上述した第1実施形態によれば、処理を繰り返した結果、同じ周辺車両が継続して割込車両として特定される場合、割込確率Pに関わらずにジャークjの最大値を大きくすることにより、何度も割り込みの意思を表している周辺車両に対しては、速やかに自車両Mを減速させることで道を譲ることができる。この結果、周辺車両により配慮した速度制御を行うことができる。
 <第1実施形態の変形例>
 以下、第1実施形態の変形例について説明する。第1実施形態の変形例では、割込車両として特定された周辺車両の割込確率Pに応じてジャークjを決定する場合、その割込確率Pを決める一つの要素である衝突余裕時間TTCの大きさに応じて、ジャークjの最大値を決定する。
 図17は、衝突余裕時間TTCに応じて決定されるジャークjの最大値の一例を示す図である。また、図18は、図17に示すジャークjに基づいて決定される減速度の一例を示す図である。図17の例のように、走行制御部141は、ジャークjの最大値を、衝突余裕時間TTCが大きいほど小さくし、衝突余裕時間TTCが小さいほど大きくする。これによって、図18に示すように、衝突余裕時間TTCが大きくなるほど、減速度は緩やかに増加することになる。このように、衝突余裕時間TTCが大きければ、割込確率Pは高くても割込車両に追いつくまで時間的猶予があるため、比較的緩やかな減速で対処させることができる。
 <第2実施形態>
 以下、第2実施形態について説明する。第2実施形態では、複数台の周辺車両が認識された場合に、自車両Mと各周辺車両との衝突余裕時間TTCや周辺車両同士の衝突余裕時間TTCを考慮した第1指標値Aと、各周辺車両に対する区画線Ldまでの距離Dおよび各周辺車両の横速度Vを考慮した第2指標値Bとに基づいて、各周辺車両の割込確率Pを導出する点で、上述した第1実施形態と異なる。以下、第1実施形態との相違点を中心に説明し、第1実施形態と共通する機能等についての説明は省略する。
 図19は、第2実施形態における車両制御システム1Aの構成図である。第2実施形態における車両制御システム1Aは、例えば、上述した構成として、カメラ10、レーダ装置12、ファインダ14、物体認識装置16、通信装置20、HMI30、車両センサ40、ナビゲーション装置50、MPU60、運転操作子80、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220と、自動運転制御ユニット100Aとを備える。
 第2実施形態における自動運転制御ユニット100Aは、上述した第1制御部120および第2制御部140と、記憶部150とを備える。記憶部150は、例えば、HDDやフラッシュメモリにより実現される。記憶部150には、後述する、第1指標値導出テーブル152、第2指標値導出マップ154、および割込確率導出マップ156が格納される。
 図20は、第2実施形態における特定部124が割込確率Pを導出する場面の一例を示す図である。図中のm1は、自車両Mが走行する第1車線(自車線)L1において自車両Mの前方を走行する第1車両を表し、m2は、第1車線L1に隣接する第2車線(隣接車線)L2を走行し且つ自車両Mよりも前方を走行する第2車両を表し、m3は、第2車線L2を走行し且つ第2車両m1よりも後方を走行する第3車両を表している。
 特定部124は、外界認識部121により認識された複数の周辺車両のうち、割込確率Pを導出する対象の周辺車両を決定し、この車両の割込確率Pを導出する。例えば、図示のように、外界認識部121により、上述した第1車両m1、第2車両m2、および第3車両m3が認識された場合、特定部124は、これらの車両から、処理対象の周辺車両を決定する。以下の説明では、処理対象の周辺車両は第3車両m3であるものとして説明する。
 特定部124は、処理対象の第3車両m3の割込確率Pを導出するために、まず、自車両Mと第1車両m1との衝突余裕時間TTC(M-m1)と、自車両Mと第3車両m3との衝突余裕時間TTC(M-m3)と、第1車両m1と第3車両m3との衝突余裕時間TTC(m1-m3)と、第2車両m2と第3車両m3との衝突余裕時間TTC(m2-m3)とを導出する。
 特定部124は、導出した各衝突余裕時間TTCと、記憶部150に格納された第1指標値導出テーブル152とに基づいて、衝突余裕時間TTCの導出時に対象とした2台一組の複数の車両の組み合わせに対して、第1指標値Aを導出する。
 図21は、第1指標値導出テーブル152の一例を示す図ある。第1指標値導出テーブル152には、第1指標値Aの候補として予め決められた数値α1~αnに対して、各組の車両の衝突余裕時間TTCとして取り得る数値範囲が対応付けられている。例えば、衝突余裕時間TTC(M-m1)が0.0から1.0の数値範囲であり、衝突余裕時間TTC(M-m3)が0.0から0.5の数値範囲であり、衝突余裕時間TTC(m1-m3)が0.0から1.0の数値範囲であり、衝突余裕時間TTC(m2-m3)が0.0から1.0の数値範囲である場合、特定部124は、衝突余裕時間TTCの導出時に対象とした車両(M-m1)の組と、車両(M-m3)の組と、車両(m1-m3)の組と、車両(m2-m3)の組との組み合わせに対する第1指標値Aをα1に決定する。
 第1指標値Aの候補となる数値α1~αnは、自車両Mと第1車両m1の衝突余裕時間TTC(M-m1)が長い場合、短い場合に比して大きくなる傾向で設定される。また、数値α1~αnは、第1車両m1と第3車両m3の衝突余裕時間TTC(m1-m3)が長い場合、短い場合に比して大きくなる傾向で設定される。また、数値α1~αnは、第2車両m2と第3車両m3との衝突余裕時間TTC(m2-m3)が短い場合、長い場合に比して大きくなる傾向で設定される。また、数値α1~αnは、自車両Mと第1車両m1との衝突余裕時間TTC(M-m1)が、第2車両m2と第3車両m3との衝突余裕時間TTC(m2-m3)に比して長い場合、短い場合に比して大きくなる傾向で設定される。
 第1指標値導出テーブル152は、予め実際に車線変更する第3車両m3が観測された結果や、実験的手法、シミュレーション等から導出された第1指標値Aと、2台一組とした車両の衝突余裕時間TTCとの相関に基づいて、予め生成されたものであってよい。2台一組の車両とは、例えば、第1車両m1と第2車両m2とを除く、自車両Mと第1車両m1、自車両Mと第3車両m3、第1車両m1と第3車両m3、第2車両m2と第3車両m3である。なお、第1指標値Aの導出には、第1指標値導出テーブル152に代えて(或いは加えて)、マップや関数が用いられてもよい。
 次に、特定部124は、外界認識部121の認識結果に基づいて、第3車両m3と区画線Ldとの距離Dと、第3車両m3の横速度Vと、記憶部150に格納された第2指標値導出マップ154とに基づいて、第2指標値Bを導出する。
 図22は、第2指標値導出マップ154の一例を示す図である。第2指標値導出マップ154には、第2指標値Bの候補として予め決められた各数値βに対して、距離Dとして取り得る数値と、第3車両m3の横速度V(区画線Ldに近づく方向が正)として取り得る数値とが対応付けられている。例えば、距離DがD1であり、横速度VがV1である場合、特定部124は、第2指標値Bを3βに決定する。
 第2指標値Bの候補となる各数値βは、距離Dが短いほど大きくなる傾向で設定される。また、各数値βは、横速度Vが大きいほど大きくなる傾向で設定される。第2指標値導出マップ154は、予め実際に車線変更する第3車両m3が観測された結果や、実験的手法、シミュレーション等から導出された第2指標値Bと、距離Dと、第3車両m3の横速度Vとの相関に基づいて生成されたものである。
 次に、特定部124は、導出した第1指標値Aおよび第2指標値Bと、記憶部150に格納された割込確率導出マップ156とに基づいて、第3車両mが第1車線L1に車線変更する可能性を示す割込確率Pを導出する。
 図23は、割込確率導出マップ156の一例を示す図ある。割込確率導出マップ156には、割込確率Pの候補として予め決められた各数値γに対して、第1指標値Aと、第2指標値Bとが対応付けられている。割込確率Pの候補となる各数値γは、第1指標値Aまたは第2指標値Bが大きいほど大きくなる傾向で設定される。割込確率導出マップ156は、予め実際に車線変更する第3車両m3が観測された結果や、実験的手法、シミュレーション等から導出された第1指標値Aと第2指標値Bとの相関に基づいて生成されたものである。これによって、上述した実施形態と同様に、着目する周辺車両(上述した例では第3車両m3)の割込確率Pを導出することができる。
 なお、上述した例では、第2指標値Bの導出には、距離Dおよび第3車両m3の横速度Vが用いられるものとして説明したが、第2指標値Bの導出には、距離Dのみ、または距離Dと横速度Vとに加えて更に任意のパラメータが用いられてもよい。例えば、第2指標値Bの導出には、第3車両m3と区画線Ldとの距離Dおよび第3車両m3の横速度Vに加え、所定の時間における第3車両m3の横方向(車線幅方向)の移動量が用いられてもよい。例えば、特定部124は、上記の横方向の移動量が大きいほど、第2指標値Bを大きく導出してよい。
 また、特定部124は、第3車両m3の横方向に関する移動方向が第1車線に向く方向である場合、第3車両m3の横方向に関する移動方向が第1車線L1に向く方向でない場合に比して、大きくなる傾向で第2指標値Bを導出してもよい。これにより、第3車両m3の横方向に関する移動方向が第1車線に向く方向である場合、第3車両m3の横方向に関する移動方向が第1車線L1に向く方向でない場合に比して、第3車両m3の割込確率Pが高く導出される。
 また、上述した例では、第1指標値Aの導出には、衝突余裕時間TTCが用いられるものとして説明したが、第1指標値Aの導出には、衝突余裕時間TTCに代えて(或いは加えて)、一組の車両間の距離、一組の車両における車頭時間、または一組の車両の相対速度のうち少なくとも一つが用いられてもよい。
 例えば、2台の車両間の距離が第1指標値Aの導出に用いられる場合、第1指標値Aは、自車両Mと第1車両m1の距離が長いほど、第1車両m1と第3車両m3の距離が長いほど、または第2車両m2と第3車両m3との距離が短いほど、大きくなる傾向となる。
 また、例えば、2台の車両の相対速度が第1指標値Aの導出に用いられる場合、第1指標値Aは、自車両Mと第1車両m1の相対速度が小さいほど、または第1車両m1の速度が自車両Mの速度に比して大きいほど、大きくなる傾向となる。また、第1指標値Aは、第1車両m1と第3車両m3の相対速度が小さいほど、第1車両m1の速度が第3車両m3の速度に比して大きいほど、大きくなる傾向となる。また、第1指標値Aは、第2車両m2と第3車両m3との相対速度が小さいほど、または第3車両m3の速度が第2車両m2の速度に比して大きいほど、大きくなる傾向となる。
 また、2台の車両の車頭時間が第1指標値Aの導出に用いられる場合、第1指標値Aは、衝突余裕時間TTCが第1指標値Aの導出に用いられる場合と同様の傾向となる。
 また、上述した例では、特定部124は、第1車両m1と第2車両m2との進行方向に関する関係を除く2台の車両の間の進行方向に関する関係に基づいて第1指標値Aを導出するものとしたがこれに限られず、第1車両m1と第2車両m2との進行方向に関する関係を用いて第1指標値Aを導出してもよい。この場合、第1車両m1が第2車両m2より前方に存在するとき、存在しない場合に比して第1指標値Aは大きくなる。また、第1車両m1と第2車両m2との衝突余裕時間TTC(または車頭時間)が大きい場合に、小さい場合に比して第1指標値Aは大きくなる。また、第1車両m1に対する第2車両m2の相対速度が正である場合に、負である場合に比して、第1指標値Aは大きくなり、第3車両m3の割込確率Pは高くなる。また、第1車両m1に対する第2車両m2の相対速度が正である場合において、相対速度が大きいほど、第1指標値Aは大きくなる。これにより、第3車両m3の割込確率Pは高くなる。
 また、第3車両m3の前方に障害物(例えば停車した車両や落下物等)が存在する場合、特定部124は、第3車両m3が第2車線L2から第1車線L1に車線変更する際の割込確率Pを、障害物が存在しない場合に比して高く導出してもよい。また、第3車両m3の前方の車線が消失する場合、特定部124は、第3車両m3が第2車線L2から第1車線L1に車線変更する際の割込確率Pを、車線が消失しない場合に比して高く導出してもよい。
 また、第1車両m1または第2車両m2が存在しない場合、第1車両m1または第2車両m2が存在しない場合に対応した第1指標値導出テーブル152が用いられてもよいし、存在しない車両と他の車両との衝突余裕時間TTCや、車頭時間、2台の車両間の車間距離は、十分に大きな値または無限大と見做してもよい。また、第1車両m1または第2車両m2が存在しない場合、相対速度は、ゼロと見做してもよいし、第1車両m1または第2車両m2が存在しない場合の設定値が用いられてもよい。
 また、特定部124は、上述した第1実施形態と同様に、割込確率Pの導出対象とする周辺車両のウィンカーの点灯状態に応じて、割込確率Pを変更してよい。例えば、特定部124は、周辺車両のウィンカー(自車線側のウィンカー)が点灯した場合、上述した第2指標値導出マップ154に代えて、ウィンカー点灯用の第2指標値導出マップ154#を参照することで、第2指標値Bを導出する。ウィンカー点灯用の第2指標値導出マップ154#は、予め記憶部150に格納されていてよい。
 図24は、ウィンカー点灯用の第2指標値導出マップ154#の一例を示す図である。ウィンカー点灯用の第2指標値導出マップ154#には、第2指標値Bの候補として予め決められた数値βに対して、距離Dとして取り得る数値と、第3車両m3の横速度V(区画線Ldに近づく方向が正)として取り得る数値とが対応付けられている。
 ウィンカー点灯用の第2指標値導出マップ154#は、第2指標値導出マップ154に比して、距離Dと第3車両m3の横速度Vとの相関が同一であっても、第2指標値Bの候補となる各数値βが大きい値で設定されている。ウィンカー点灯用の第2指標値導出マップ154#は、第3車両m3のウィンカーが点灯した場合に第3車両mが実際に車線変更したかどうかの観測結果や、実験的手法、シミュレーション等から導出された第2指標値Bと、距離Dと、第3車両m3の横速度Vとの相関に基づいて生成されたものである。このウィンカー点灯用の第2指標値導出マップ154#を参照することにより、第3車両m3に車線変更の意思が推認される場合、第3車両m3に車線変更の意思が推認されない場合に比して、より大きな第2指標値Bが導出される。この結果、周辺車両がウィンカーの点灯により車線変更の意思を表した場合には、割込確率Pがより高く導出される。
 以上説明した第2実施形態によれば、自車両Mと各周辺車両との衝突余裕時間TTCおよび周辺車両同士の衝突余裕時間TTCを考慮した第1指標値Aと、各周辺車両に対する区画線Ldまでの距離Dおよび各周辺車両の横速度Vを考慮した第2指標値Bとに基づいて、各周辺車両の割込確率Pを導出し、この割込確率Pが閾値以上の周辺車両を割込車両として特定し、割込車両の割込確率Pに応じて、自車両Mの減速度の変化の度合を表すジャークjを決定することにより、上述した第1実施形態と同様に、周辺車両の割り込みに応じて適切な速度制御を行うことができる。
 <第3実施形態>
 以下、第3実施形態について説明する。第3実施形態では、自動運転として自車両Mの操舵および加減速を制御する代わりに、単に自車両Mの直前を走行する先行車両に自車両Mを追従させる運転支援制御を行う点で、上述した第1および第2実施形態と異なる。以下、第1および第2実施形態との相違点を中心に説明し、第1および第2実施形態と共通する機能等についての説明は省略する。
 図25は、第3実施形態における車両制御システム1Bの構成図である。第3実施形態における車両制御システム1Bは、例えば、上述した構成として、カメラ10、レーダ装置12、ファインダ14、物体認識装置16、HMI30、車両センサ40、運転操作子80、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220と、運転支援制御ユニット100Bとを備える。
 第3実施形態におけるHMI30は、例えば、追従走行などの運転支援制御を開始するためのスイッチなどである。
 第3実施形態における運転支援制御ユニット100Bは、例えば、外界認識部121と、特定部124と、追従走行制御部141Bとを備える。追従走行制御部141Bは、例えば、HMI30が操作されて運転支援制御が開始されると、外界認識部121により認識された先行車両と自車両Mとの車間距離が一定となるように、自車両Mの加減速を調整する。このとき、例えば、特定部124により、自車両Mと先行車両との間に割り込み可能性がある周辺車両が割込車両として特定された場合、追従走行制御部141Bは、割込車両の割込確率Pに応じて自車両Mのジャークjを決定する。
 以上説明した第3実施形態によれば、追従走行の運転支援制御が行われている間にも、上述した第1実施形態と同様に、割込車両の割込確率Pに応じて、自車両の減速度の変化の度合を表すジャークjを決定するため、周辺車両の割り込みに応じて適切な速度制御を行うことができる。
 なお、上述した第3実施形態では、追従走行を行う運転支援制御中に、割込車両の割込確率Pに応じて自車両Mのジャークjを決定することについて説明したがこれに限られず、例えば、先行車両との衝突余裕時間TTCに応じて自動的にブレーキを行う自動ブレーキシステムなどの他の運転支援制御に、割込車両の割込確率Pに応じて自車両Mのジャークjを決定する制御を適用してもよい。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
 1、1A、1B…車両制御システム、10…カメラ、12…レーダ装置、14…ファインダ、16…物体認識装置、20…通信装置、30…HMI、40…車両センサ、50…ナビゲーション装置、51…GNSS受信機、52…ナビHMI、53…経路決定部、54…第1地図情報、60…MPU、61…推奨車線決定部、62…第2地図情報、80…運転操作子、100、100A…自動運転制御ユニット、100B…運転支援制御ユニット、120…第1制御部、121…外界認識部、122…自車位置認識部、123…行動計画生成部、124…特定部、140…第2制御部、141…走行制御部、141B…追従走行制御部、200…走行駆動力出力装置、210…ブレーキ装置、220…ステアリング装置

Claims (9)

  1.  自車両が存在する第1車線と異なる第2車線に存在する一以上の周辺車両を認識する認識部と、
     前記認識部により認識された周辺車両について、前記自車両の前方への割込確率に基づく指標値を導出し、前記導出した指標値が閾値以上の周辺車両を割込車両として特定する特定部と、
     前記特定部により特定された前記割込車両の存在に応じて前記自車両を減速させる走行制御部であって、前記自車両を減速させる際に、対象となる割込車両の前記指標値に基づいて、前記自車両の減速度の変化の度合を決定する走行制御部と、
     を備える車両制御システム。
  2.  前記特定部は、前記認識部により認識された周辺車両のそれぞれと、前記第1車線と前記第2車線の間を区画する区画線との距離に基づいて、前記指標値を導出する、
     請求項1に記載の車両制御システム。
  3.  前記走行制御部は、更に、前記認識部により認識された周辺車両のそれぞれと、前記自車両との相対関係に基づいて、前記自車両の減速度の変化の度合を決定する
     請求項1または2に記載の車両制御システム。
  4.  前記特定部は、地図情報を参照し、前記自車両の前方に前記第2車線から前記第1車線への車線変更が必要となる地点が存在する場合、前記地点に近い周辺車両ほど、大きな前記指標値を導出する、
     請求項1から3のうちいずれか1項に記載の車両制御システム。
  5.  前記特定部は、前記認識部により複数の周辺車両が認識された場合、前記複数の周辺車両のうち、最も指標値が大きい周辺車両を前記割込車両として特定する、
     請求項1から4のうちいずれか1項に記載の車両制御システム。
  6.  前記走行制御部は、前記指標値が大きくなるにつれて、前記自車両の減速度の変化の度合を大きくし、前記指標値が小さくなるにつれて、前記自車両の減速度の変化の度合を小さくする、
     請求項1から5のうちいずれか1項に記載の車両制御システム。
  7.  前記特定部は、前記周辺車両のそれぞれについて前記指標値を導出する処理を所定周期で繰り返し行い、
     前記走行制御部は、前記特定部により繰り返し前記指標値が導出される過程で、同じ割込車両が継続して特定される場合、前記自車両の減速度の変化の度合を大きくする、
     請求項1から6のうちいずれか1項に記載の車両制御システム。
  8.  車載コンピュータが、
     自車両が存在する第1車線と異なる第2車線に存在する一以上の周辺車両を認識し、
     前記認識した周辺車両について、前記自車両の前方への割込確率に基づく指標値を導出し、
     前記導出した指標値が閾値以上の周辺車両を割込車両として特定し、
     前記特定した前記割込車両の存在に応じて前記自車両を減速させ、
     前記自車両を減速させる際に、対象となる割込車両の前記指標値に基づいて、前記自車両の減速度の変化の度合を決定する、
     車両制御方法。
  9.  車載コンピュータに、
     自車両が存在する第1車線と異なる第2車線に存在する一以上の周辺車両を認識する処理と、
     前記認識した周辺車両について、前記自車両の前方への割込確率に基づく指標値を導出する処理と、
     前記導出した指標値が閾値以上の周辺車両を割込車両として特定する処理と、
     前記特定した前記割込車両の存在に応じて前記自車両を減速させる処理と、
     前記自車両を減速させる際に、対象となる割込車両の前記指標値に基づいて、前記自車両の減速度の変化の度合を決定する処理と、
     を実行させる車両制御プログラム。
PCT/JP2017/008080 2017-03-01 2017-03-01 車両制御システム、車両制御方法、および車両制御プログラム WO2018158875A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019502356A JP6738957B2 (ja) 2017-03-01 2017-03-01 車両制御システム、車両制御方法、および車両制御プログラム
US16/488,953 US11247682B2 (en) 2017-03-01 2017-03-01 Vehicle control system, vehicle control method, and vehicle control program
CN201780087319.4A CN110366513B (zh) 2017-03-01 2017-03-01 车辆控制系统、车辆控制方法及存储介质
PCT/JP2017/008080 WO2018158875A1 (ja) 2017-03-01 2017-03-01 車両制御システム、車両制御方法、および車両制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008080 WO2018158875A1 (ja) 2017-03-01 2017-03-01 車両制御システム、車両制御方法、および車両制御プログラム

Publications (1)

Publication Number Publication Date
WO2018158875A1 true WO2018158875A1 (ja) 2018-09-07

Family

ID=63371277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008080 WO2018158875A1 (ja) 2017-03-01 2017-03-01 車両制御システム、車両制御方法、および車両制御プログラム

Country Status (4)

Country Link
US (1) US11247682B2 (ja)
JP (1) JP6738957B2 (ja)
CN (1) CN110366513B (ja)
WO (1) WO2018158875A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111090A (ja) * 2019-01-08 2020-07-27 本田技研工業株式会社 車両の制御システム、車両の制御方法、およびプログラム
JP2022074252A (ja) * 2020-11-04 2022-05-18 本田技研工業株式会社 周囲車両監視装置及び周囲車両監視方法
WO2023073772A1 (ja) * 2021-10-25 2023-05-04 株式会社Subaru 走行制御装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102463720B1 (ko) * 2017-12-18 2022-11-07 현대자동차주식회사 차량의 경로 생성 시스템 및 방법
CN110308717B (zh) * 2018-03-27 2020-12-22 广州汽车集团股份有限公司 控制自主式移动机器移动的方法、装置、机器及存储介质
JP6930483B2 (ja) * 2018-04-17 2021-09-01 株式会社デンソー 走行制御装置
US11815799B2 (en) * 2018-09-13 2023-11-14 Sony Semiconductor Solutions Corporation Information processing apparatus and information processing method, imaging apparatus, mobile device, and computer program
DE102018122825A1 (de) * 2018-09-18 2020-03-19 Wabco Gmbh Verfahren zum Koordinieren eines Fahrzeugverbundes, Auswerteeinheit, Fahrzeug sowie Fahrzeugverbund
DE102018122824A1 (de) * 2018-09-18 2020-03-19 Wabco Gmbh Verfahren zum Koordinieren eines Fahrzeugverbundes, Auswerteeinheit, Fahrzeug sowie Fahrzeugverbund
CN110884490B (zh) * 2019-10-28 2021-12-07 广州小鹏汽车科技有限公司 一种车辆侵入判断及辅助行驶的方法、系统、车辆及存储介质
KR20210114689A (ko) * 2020-03-11 2021-09-24 주식회사 만도 차량 및 그 제어 방법
CN111645682B (zh) * 2020-04-20 2021-12-28 长城汽车股份有限公司 一种巡航控制方法、系统及车辆
CN111619564B (zh) * 2020-05-29 2022-06-07 重庆长安汽车股份有限公司 一种车辆自适应巡航车速控制方法、装置、处理器、汽车及计算机可读存储介质
KR20220032708A (ko) * 2020-09-08 2022-03-15 현대자동차주식회사 차량 및 그 제어방법
CN112216146B (zh) * 2020-09-16 2022-06-03 浙江吉利控股集团有限公司 一种车辆风险预警方法、装置、设备及车辆
JP7201657B2 (ja) * 2020-12-28 2023-01-10 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN114013438B (zh) * 2021-07-29 2024-04-16 东风汽车集团股份有限公司 一种基于gps系统的acc控制系统
CN116740984A (zh) * 2023-05-23 2023-09-12 广州汽车集团股份有限公司 车辆加塞的处理方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288691A (ja) * 2002-03-27 2003-10-10 Toyota Central Res & Dev Lab Inc 割り込み予測装置
JP2006069343A (ja) * 2004-09-01 2006-03-16 Mazda Motor Corp 車両の走行制御装置
JP2010158924A (ja) * 2009-01-06 2010-07-22 Toyota Motor Corp 車間距離制御装置
JP2013177054A (ja) * 2012-02-28 2013-09-09 Nippon Soken Inc 車間距離制御装置
JP2014041434A (ja) * 2012-08-21 2014-03-06 Toyota Motor Corp 割込予測装置、割込予測方法、及び運転支援システム
JP2015225546A (ja) * 2014-05-28 2015-12-14 本田技研工業株式会社 物体検出装置、運転支援装置、物体検出方法、および物体検出プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070171B2 (ja) * 2008-09-19 2012-11-07 日立オートモティブシステムズ株式会社 車両制御装置
EP2711909B1 (en) * 2011-05-20 2018-07-18 Honda Motor Co., Ltd. Lane change assistant information visualization system
JPWO2014192368A1 (ja) * 2013-05-31 2017-02-23 日立オートモティブシステムズ株式会社 車両の制御装置及び車両の走行制御システム
JP5994755B2 (ja) * 2013-09-06 2016-09-21 トヨタ自動車株式会社 車両走行制御装置
KR102365272B1 (ko) * 2015-09-24 2022-02-21 현대모비스 주식회사 차량 자동 주행 제어 장치 및 방법
JP6642413B2 (ja) * 2016-12-27 2020-02-05 トヨタ自動車株式会社 車両走行制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288691A (ja) * 2002-03-27 2003-10-10 Toyota Central Res & Dev Lab Inc 割り込み予測装置
JP2006069343A (ja) * 2004-09-01 2006-03-16 Mazda Motor Corp 車両の走行制御装置
JP2010158924A (ja) * 2009-01-06 2010-07-22 Toyota Motor Corp 車間距離制御装置
JP2013177054A (ja) * 2012-02-28 2013-09-09 Nippon Soken Inc 車間距離制御装置
JP2014041434A (ja) * 2012-08-21 2014-03-06 Toyota Motor Corp 割込予測装置、割込予測方法、及び運転支援システム
JP2015225546A (ja) * 2014-05-28 2015-12-14 本田技研工業株式会社 物体検出装置、運転支援装置、物体検出方法、および物体検出プログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111090A (ja) * 2019-01-08 2020-07-27 本田技研工業株式会社 車両の制御システム、車両の制御方法、およびプログラム
JP2022074252A (ja) * 2020-11-04 2022-05-18 本田技研工業株式会社 周囲車両監視装置及び周囲車両監視方法
JP7216695B2 (ja) 2020-11-04 2023-02-01 本田技研工業株式会社 周囲車両監視装置及び周囲車両監視方法
WO2023073772A1 (ja) * 2021-10-25 2023-05-04 株式会社Subaru 走行制御装置

Also Published As

Publication number Publication date
CN110366513B (zh) 2022-09-13
US11247682B2 (en) 2022-02-15
JPWO2018158875A1 (ja) 2019-12-12
JP6738957B2 (ja) 2020-08-12
CN110366513A (zh) 2019-10-22
US20200010088A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6738957B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6494121B2 (ja) 車線変更推定装置、車線変更推定方法、およびプログラム
JP6811303B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP6972294B2 (ja) 車両制御システム、車両制御方法、およびプログラム
US11225249B2 (en) Vehicle control device, vehicle control method, and storage medium
US20190359209A1 (en) Vehicle control device, vehicle control method, and vehicle control program
WO2018123344A1 (ja) 車両制御装置、車両制御方法、及びプログラム
JP6738437B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6692930B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018131290A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JPWO2018096644A1 (ja) 車両用表示制御装置、車両用表示制御方法、および車両用表示制御プログラム
US11402844B2 (en) Vehicle control apparatus, vehicle control method, and storage medium
JPWO2017158731A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
US20190278285A1 (en) Vehicle control device, vehicle control method, and storage medium
JP7085371B2 (ja) 車両制御装置、車両制御方法、およびプログラム
US20200339156A1 (en) Vehicle control device, vehicle control method, and storage medium
US20200406892A1 (en) Vehicle control device, vehicle control method, and storage medium
US10854083B2 (en) Vehicle control device, vehicle control method, and storage medium
US11505193B2 (en) Vehicle control apparatus, vehicle control method, and storage medium
JP7098366B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021015428A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2021041759A (ja) 車両制御装置、車両制御方法、およびプログラム
JP7080091B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7123867B2 (ja) 車両制御装置、車両制御装方法、およびプログラム
JP2022056602A (ja) 車両制御装置、車両制御方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502356

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899123

Country of ref document: EP

Kind code of ref document: A1