WO2018155992A1 - 전해 제련용 양극 구조체, 이의 제조 방법 및 이를 포함하는 전해 제련 장치 - Google Patents

전해 제련용 양극 구조체, 이의 제조 방법 및 이를 포함하는 전해 제련 장치 Download PDF

Info

Publication number
WO2018155992A1
WO2018155992A1 PCT/KR2018/002368 KR2018002368W WO2018155992A1 WO 2018155992 A1 WO2018155992 A1 WO 2018155992A1 KR 2018002368 W KR2018002368 W KR 2018002368W WO 2018155992 A1 WO2018155992 A1 WO 2018155992A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
electrolytic smelting
coating layer
bar
support
Prior art date
Application number
PCT/KR2018/002368
Other languages
English (en)
French (fr)
Inventor
정붕익
김정식
정도원
오성국
이강인
김택훈
강진구
이지웅
Original Assignee
(주) 테크윈
주식회사 영풍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 테크윈, 주식회사 영풍 filed Critical (주) 테크윈
Publication of WO2018155992A1 publication Critical patent/WO2018155992A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an anode structure for electrosmelting used for electrosmelting of nonferrous metals.
  • electrolysis refers to electrolysis, and this electrolysis means a phenomenon in which ions included in the electrolyte move to the cathode or the anode by applying an electric current to the electrolyte.
  • electrochemical reaction causes a phenomenon in which a gas is generated in the cathode or the anode, or metal ions are reduced to precipitate a metal, and thus are widely used in industrial fields.
  • many processes for producing highly pure metallic materials through such electrolytic processes are used, and the metals produced through electrolytic processes include copper, nickel, zinc, cobalt, lead, platinum, iridium, ruthenium, palladium, gold, and silver.
  • transition metals may be produced through electrolytic smelting or electrorefining processes.
  • the positive electrode plates used for electrolytic smelting include zinc, copper, and cadmium. These materials are relatively high in electrical conductivity and relatively chemically stable, and thus are widely used in the positive electrode for electrolytic smelting.
  • the metal material of some of the positive electrode plates may be eluted, and the metal material of the eluted positive electrode plates is impurity in the metal to be produced. There is a problem that can be included.
  • An object of the present invention is to provide a positive electrode structure for electrolytic smelting that can produce a non-ferrous metal of high purity by preventing the outflow of the positive electrode used during electrolytic smelting.
  • Another object of the present invention is to provide an anode structure for electrolytic smelting that can be used for a long time.
  • Still another object of the present invention is to provide an anode structure for electrolytic smelting capable of producing a large amount of nonferrous metal at low power consumption.
  • Electrolytic smelting positive electrode structure is an electrode formed with a metal coating layer on the base material; A support for electricity supply coupled to the electrode and supporting the electrode; And a head bar coupled with the electricity support.
  • One end of the electricity support may be coupled to an electrode, and the other end of the electricity support may be coupled to a head bar.
  • the metal coating layer is selected from titanium (Ti), ruthenium (Ru), iridium (Ir), platinum (Pt), manganese (Mn), and tantalum (Ta). It may include one or more than one.
  • the thickness of the metal coating layer may be 0.5 to 50 ⁇ m.
  • the head bar may include a metal bar coating layer formed on the metal bar for electricity delivery and the metal bar for electricity delivery.
  • the metal bar coating layer is one selected from titanium (Ti), stainless steel, silver (Ag), tin (Sn), and nickel (Ni). It can contain more than one.
  • the head bar may include an electricity supply opening portion in which the electricity supply metal bar is exposed to the outside so that a current flows through the electricity supply metal bar.
  • the head bar is interposed between the conductive metal bar and the metal bar coating layer, and one selected from tin (Sn), platinum (Pt), and silver (Ag). Or two or more.
  • the positive electrode structure for electrolytic smelting is coupled by a coupling member including the base material and the current support or the current support and the head bar comprising titanium (Ti) or stainless steel. It may have been.
  • the base material includes one or two or more selected from lead (Pb), titanium (Ti), nickel (Ni), copper (Cu), and manganese (Mn). can do.
  • the support for electricity supply includes one or more support bars selected from copper (Cu), platinum (Pt), aluminum (Al), and silver (Ag) and the support. It may include a titanium (Ti) or stainless steel (stainless steel) coating layer formed on the bar.
  • the present invention also provides an anode structure for electrolytic smelting, and the method for producing an anode structure for electrolytic smelting according to the present invention
  • a head bar manufacturing step including a metal bar for electricity supply and a metal bar coating layer formed on the metal bar;
  • One end of the support for electricity transmission is coupled to an electrode, and the other end of the electricity support is coupled to be coupled to the head bar.
  • the electrode manufacturing step of forming the metal coating layer is
  • It may include; coating step of forming a metal coating layer on the surface of the base material on which the irregularities are formed.
  • the present invention also includes a nonferrous metal electrolytic smelting method using the electrolytic smelting positive electrode structure according to an embodiment of the present invention.
  • the non-ferrous metal may be zinc, copper, nickel, cobalt, lead, platinum, iridium, ruthenium, palladium, silver or gold.
  • the present invention also includes a non-ferrous metal smelting apparatus, the non-ferrous metal smelting apparatus according to the present invention may include one or more positive electrode structure for electrolytic smelting according to an embodiment of the present invention.
  • the present invention also provides an electrolytic smelting system, wherein the electrolytic smelting system according to the present invention includes an anode structure for electrolytic smelting according to an embodiment of the present invention.
  • Electrolytic smelting positive electrode structure according to the present invention can be used for a long time by protecting the base material including one or more coating layers selected from titanium, ruthenium, iridium, platinum, manganese and tantalum on the base material, elution of lead, etc. By preventing the high purity metal can be produced, there is an advantage that can be efficiently smelted non-ferrous metal even with a relatively low power consumption.
  • FIG. 1 is a schematic diagram of an anode structure for electrolytic smelting according to an embodiment of the present invention.
  • Figure 2 is a schematic of the non-ferrous metal electrolytic smelting apparatus according to an embodiment of the present invention.
  • Electrolytic smelting positive electrode structure according to the present invention
  • An electrode 300 having a metal coating layer formed on a base material; A support for electricity transmission coupled to the electrode and supporting the electrode; And a head bar 100 coupled to the support for electricity delivery.
  • One end of the electricity support may be coupled to an electrode, and the other end of the electricity support may be coupled to a head bar.
  • the electrolytic smelting positive electrode structure When performing a metal smelting process using the electrolytic smelting positive electrode structure according to the present invention, it is possible to prevent the dissolution of the base material by the metal coating layer formed on the base material, it is produced by electrolytic smelting by preventing the dissolution of the base material There is an advantage that can further improve the purity of the metal. Furthermore, since the base metal is protected by the metal coating layer, there is an advantage that the maintenance cost of the electrolytic smelting device can be significantly reduced by using the base material for a long time compared with the conventionally used positive electrode plate.
  • Electrolytic smelting positive electrode structure includes a metal coating layer formed on the base material, the metal coating layer is titanium (Ti), ruthenium (Ru), iridium (Ir), platinum (Pt), manganese ( Mn) and tantalum Ta may be included.
  • the metal coating layer is titanium (Ti), ruthenium (Ru), iridium (Ir), platinum (Pt), manganese ( Mn) and tantalum Ta may be included.
  • one or more than one includes titanium (Ti), ruthenium (Ru), iridium, platinum, manganese, and tantalum to form a metal coating layer with a single material, or one or two or more selected from these are simply mixed. It may be a mixture or an alloy formed by these metals.
  • the purity of the metal manufactured by preventing leakage of the base material by the coating layer is increased.
  • the electrical conductivity of the metal included in the metal coating layer is relatively high, thereby increasing the current conduction rate of the electrode, thereby lowering the voltage required for electrolytic smelting, and consequently significantly reducing the power consumed in electrolytic smelting.
  • the metal coating layer according to one embodiment of the present invention may include one or more selected from ruthenium, tantalum, iridium, manganese and titanium.
  • the metal coating layer according to an embodiment of the present invention includes at least one selected from ruthenium, tantalum, iridium, manganese and titanium, the effect of reducing power consumption is more excellent, and the yield of the smelting process is 90% or more. There is an advantage that can be improved.
  • the metal coating layer according to an embodiment of the present invention may be in a state in which at least one first metal selected from ruthenium, tantalum, and iridium and at least one second metal selected from manganese and titanium are mixed.
  • the mixing of the metals has the advantage of improving the binding strength of the metal coating layer and preventing the loss of the first metal.
  • the added second metal may be 10 to 50% by weight of the total metal coating layer, more specifically 20 to 40% by weight.
  • the thickness of the metal coating layer may vary depending on the type of metal to be produced by electrolytic smelting and the operating environment of the electrolytic smelting apparatus. Specifically, the thickness of the metal coating layer may be 0.5 to 50 ⁇ m, preferably 0.5 to 20 ⁇ m. In the above range there is an advantage that can protect the base material without requiring a metal coating layer of excessive thickness.
  • the base material is not particularly limited in the case of an electrically conductive metal that can be used for electrolytic smelting, but specifically one selected from lead, titanium, nickel, copper and manganese. Or two or more.
  • the shape of such a base material is not limited in the case of a shape that can ensure the electrolytic smelting efficiency.
  • the base material may be a plate shape, a plate shape including perforations, a mesh network shape, or a bent shape, but the present invention is not limited thereto.
  • the electrode including the metal coating layer may also have the same shape as the base material.
  • Such a base material is not limited in the case of supplying a current evenly on the electrode, but in the range that can ensure the electrolytic smelting efficiency, specifically, the thickness may be 0.1 to 10 mm, more specifically 0.5 to 5 mm.
  • the current can be efficiently delivered in the above range to ensure electrolytic smelting efficiency.
  • the width of the plate-shaped electrode according to an embodiment of the present invention may vary depending on the type of metal desired, the current supplied and the strength of the voltage. As a specific and non-limiting example, the width of the electrode may be 1 to 4 m 2 , more specifically, 2 to 3 m 2 , but the present invention is not limited thereto.
  • the base material according to an embodiment of the present invention may include surface irregularities, there is an advantage that can exhibit a high binding force between the base material and the metal coating layer by the surface irregularities.
  • the unevenness formed on the base material surface according to the embodiment of the present invention may have a surface roughness Ra of 0.1 to 100 ⁇ m, specifically 1 to 60 ⁇ m, and more specifically 10 to 40 ⁇ m.
  • the unevenness formed on the surface of the base material satisfies the above range, there is an advantage of preventing problems such as detachment of the coating layer by long term use by further improving the binding force between the base material and the metal coating layer.
  • the manufactured electrolytic smelting positive electrode plate can be used for a long time.
  • the positive electrode plate for electrolytic smelting according to the present invention includes a head bar combined with the support for electricity delivery.
  • the head bar is exposed to the outside without directly contacting the electrolyte during the electrolytic smelting process, it is possible to perform the electrolytic smelting process by supplying a current to the electrode through the head bar.
  • the head bar according to an embodiment of the present invention may include a metal bar covering layer formed on the metal bar 110 for electricity delivery and the metal bar for electricity delivery.
  • a metal bar coating layer formed on the metal bar 110 for electricity delivery and the metal bar for electricity delivery.
  • the conventional electrolytic smelting process is often carried out under acidic conditions such as sulfuric acid, even if the head bar does not directly contact the acid, the scattering of the electrolytic solution for sulfuric acid electrolytic smelting may occur during the electrolytic smelting process.
  • the resulting electrolyte may cause problems such as corrosion of the power supply headbar.
  • the corrosion of the headbar may be introduced into some electrolytes, and as a result, a problem may occur in that impurities are included in the metal to be finally produced.
  • the head bar according to an embodiment of the present invention includes a metal bar covering layer from the viewpoint of protecting the metal bar for electricity supply and increasing the purity of the metal produced by electrolytic smelting.
  • the metal bar coating layer may include one or two or more selected from titanium, stainless steel, silver, tin, and nickel.
  • the metal bar coating layer is not limited when the metal bar coating layer is a thickness capable of protecting the conductive metal bar from an electrolytic solution, but may be specifically 1 to 20 mm, more specifically 5 to 10 mm. In the above thickness range, there is an advantage in that the current can be uniformly supplied on the electrode by securing the thickness of the metal bars for electricity delivery without forming the metal bar coating layer of excessive thickness.
  • the conductive metal bar included in the head bar is not limited in the case of a metal material having high electrical conductivity that is commonly used, specifically, may be one or two or more selected from copper, platinum, aluminum and silver.
  • the thickness of the metal bar for electricity transmission may vary depending on the thickness of the electrode used, the width of the electrode, and the number and width of the support for power transmission, but in a non-limiting example, the width of the power supply metal bar has a cross-sectional area. 10 to 200 mm 2, and 50 to 1500 mm in length.
  • the head bar according to an embodiment of the present invention may be interposed between the current carrying metal bar and the metal bar coating layer, and may include one or two or more joints selected from tin, platinum, and silver.
  • the junction part is interposed between the metal plate for electricity delivery and the metal bar coating layer, and means one or more coating layers covering all or a part of the metal bar surface for electricity delivery.
  • Such a joint has an advantage that it can be used for a long time by preventing defects such as lifting or cracking of the copper bar coating layer due to temperature changes of the head bar and the current carrying metal bar.
  • the thickness of the junction may be 0.1 mm to 3 mm, specifically 0.1 to 2 mm.
  • the metal bar coating layer and the bonding portion are formed to the thickness of the head bar, it is possible to further improve the binding force of the head bar and the metal bar for electricity delivery, and furthermore, if the thickness of the bonding portion is in the above range, in addition to the electrolytic smelting process
  • the increase in temperature can produce an effect similar to that of the alloy, and accordingly, there is an advantage in that the binding force between the metal bar and the metal bar coating layer is significantly improved.
  • the head bar may include an opening portion 120 through which the current-only metal bar is exposed to the outside so that current flows through the current-only metal bar.
  • the energized opening allows the energized metal bar to be in direct contact with the current source, thereby preventing power loss that may be caused by passing through the metal bar covering layer 130 or the junction having a relatively low electrical conductivity.
  • the openings for each current flow included in each positive electrode plate for electrolytic smelting may be in electrical communication, but the present invention is not limited thereto.
  • the positive electrode structure for electrolytic smelting may further include a mounting member 140 for mounting the positive electrode structure for electrolytic smelting when the electrolytic smelting process is performed.
  • a mounting member 140 for mounting the positive electrode structure for electrolytic smelting when the electrolytic smelting process is performed.
  • the mounting member may be a hook made of titanium or stainless steel, but the present invention is not limited thereto.
  • Electrolytic smelting positive electrode structure is coupled to the electrode, and includes a support for energizing the electrode, one end of the support for electricity is coupled to the electrode, the other end of the support for electricity is coupled to the head bar There may be.
  • the support for electricity transmission may include a conductive material through which a current may flow, and the current supplied to the headbar, specifically, the metal bars for electricity transmission, may flow to the electrode by the conductive material.
  • the support for electricity transmission may include a support bar including one or two selected from copper, platinum, aluminum, and silver, and a titanium or stainless steel coating layer formed on the support bar.
  • the positive electrode structure for electrolytic smelting may include one or more, in particular, 1 to 20 conductive supports, each of which may have a bar shape.
  • each power support may be spaced apart from each other in parallel on the electrode. Furthermore, the spacing between each support may be the same or different.
  • the direction of separation between the support bodies for electricity transmission arranged in parallel and spaced apart is called a 1st direction
  • vertical to a 1st direction is called a 2nd direction.
  • An anode structure for electrolytic smelting according to an embodiment of the present invention may specifically satisfy the following Equation 1.
  • Equation 1 The value of may be 0.05 to 0.2, more specifically 0.07 to 0.15.
  • the cathode structure for electrolytic smelting according to an embodiment of the present invention may specifically satisfy the following Equation 2 simultaneously with Equation 1 above.
  • the value of may be 0.5 to 0.95, more specifically 0.6 to 0.9.
  • the electrolytic smelting electrode structure according to the embodiment of the present invention satisfies Equation 1 and Equation 2 at the same time, it is possible to supply a current uniformly to the electrode surface to further improve the electrolytic smelting efficiency, accordingly As a result, a large amount of metal can be produced with low power consumption.
  • the electrolytic smelting electrode structure according to the embodiment of the present invention satisfies Equation 1 and Equation 2 simultaneously, there is an advantage that can reduce the power consumption by up to 15%.
  • the positive electrode structure for electrolytic smelting may satisfy Equation 1 and Equation 2 above, and may include 2 to 5 energizing supports per 1 m of electrode based on the first direction.
  • the support for electricity delivery is included in 2 to 5 per electrode, there is an advantage that the current can be uniformly supplied to the electrode without including too many electricity support.
  • the support is less than two, it is difficult to apply electricity evenly to the electrode surface, and if more than five, there may be a problem that excessive cost is required for the production of the anode structure for electrolytic smelting.
  • the parent material and the electricity support or the electricity support and the head bar may be coupled by a coupling member including titanium or stainless steel.
  • the coupling member is not limited in the case of a means capable of mechanically coupling the base material and the electricity support or the electricity support and the headbar, specifically, may be a bolt or screw including titanium or stainless steel.
  • the present invention also provides a method for producing an anode structure for electrolytic smelting.
  • a head bar manufacturing step including a metal bar for electricity supply and a metal bar coating layer formed on the metal bar;
  • One end of the support for electricity transmission is coupled to an electrode, and the other end of the electricity support is coupled to be coupled to the head bar.
  • the electrode manufacturing step, the headbar manufacturing step and the power supply support manufacturing step may be performed independently of each other, the order of performing each step does not affect the scope of the present invention.
  • the electrolytic smelting positive electrode structure manufactured by the method for manufacturing the positive electrode structure for electrolytic smelting according to the present invention can be used for a long time through a coating layer formed on the electrode, and the electrolytic smelting process of the metal by preventing elution of a conventionally used electrode plate It has the advantage of significantly lowering the impurity content and increasing the purity.
  • the metal coating layer may include one or two or more selected from titanium, ruthenium, iridium, platinum, manganese, and tantalum.
  • the metal coating layer may include one or two or more selected from titanium, ruthenium, iridium, platinum, manganese, and tantalum.
  • the electrical conductivity of the above-described metal is high, so that the current passivation rate can be increased to lower the voltage required for electrolytic smelting, and consequently, there is an advantage that the power consumed for electrolytic smelting can be significantly reduced.
  • the metal coating layer according to an embodiment of the present invention may include one or two or more selected from ruthenium, tantalum, iridium, manganese, and titanium, and the metal coating layer according to an embodiment of the present invention is ruthenium , Tantalum, iridium, manganese and titanium, when including one or more selected to reduce the power consumption is more excellent, there is an advantage to improve the yield of the smelting process to more than 90%.
  • the metal coating layer according to an embodiment of the present invention may be a mixture of one or more first metals selected from ruthenium, tantalum and iridium and one or more second metals selected from manganese and titanium,
  • the mixing of the two metals has the advantage of improving the binding strength of the metal coating layer and preventing the loss of the first metal.
  • the added second metal may be 10 to 50% by weight of the total metal coating layer, more specifically 20 to 40% by weight.
  • It may be prepared, including; coating step of forming a metal coating layer on the surface of the base material on which the irregularities are formed.
  • the step of forming the unevenness is not limited in the case of the method of forming the unevenness on the base material, it may be formed by using a physical method such as polishing, or by etching (etching).
  • the etching may be dry etching or wet etching, but the step of forming the irregularities may vary depending on the type of the base material and the type of metal to be produced by electrolytic smelting, but the present invention is not limited thereto.
  • the unevenness formed by the unevenness forming step may have a surface roughness Ra of 0.1 to 100 ⁇ m, specifically 1 to 60 ⁇ m, and more specifically 10 to 40 ⁇ m.
  • a surface roughness Ra of 0.1 to 100 ⁇ m, specifically 1 to 60 ⁇ m, and more specifically 10 to 40 ⁇ m.
  • the method for manufacturing an anode structure for electrolytic smelting may include a coating step of forming a metal coating layer on the surface of the base material on which the unevenness is formed.
  • This coating step is not limited when the method of forming one or more metal coating layers selected from the above-described titanium, ruthenium, iridium, platinum, manganese and tantalum on the base material.
  • the metal coating layer may be formed on the base material by a plating method such as electroless plating or electrolytic plating, brushing, dipping or spraying, but the present invention is not limited thereto.
  • the thickness of the metal coating layer may vary depending on the type of metal to be produced by electrolytic smelting and the operating environment of the electrolytic smelting apparatus, but may be specifically 0.5 to 50 ⁇ m, preferably 0.5 to 20 ⁇ m. In the above range there is an advantage that can protect the base material without requiring a metal coating layer of excessive thickness.
  • a head bar manufacturing step comprising a metal bar for electricity supply and a metal bar coating layer formed on the metal bar.
  • the head bar in which the coating layer is formed can be used for a long time to prevent corrosion by the electrolyte solution, and can prevent a problem such that impurities are introduced into the metal to be manufactured through the electrolytic smelting process by corrosion of the current carrying metal bar.
  • the metal bar coating layer may include one or two or more selected from titanium, stainless steel, silver, tin, and nickel.
  • the metal bar coating layer is not limited when the metal bar coating layer is a thickness capable of protecting the conductive metal bar from an electrolytic solution, but may be specifically 1 to 20 mm, more specifically 5 to 10 mm. In the above thickness range, there is an advantage in that the current can be uniformly supplied on the electrode by securing the thickness of the metal bars for electricity delivery without forming the metal bar coating layer of excessive thickness.
  • the metal bar for electricity transmission is not limited in the case of a metal material having high electrical conductivity, which is commonly used, and specifically, may be one or two or more selected from copper, platinum, aluminum, and silver.
  • the thickness of the metal bar for electricity transmission may vary depending on the thickness of the electrode used, the width of the electrode, and the number and width of the support for power transmission, but in a non-limiting example, the width of the power supply metal bar has a cross-sectional area. 10 to 200 mm 2, and 50 to 1500 mm in length.
  • the manufacturing of the head bar on which the metal bar coating layer is formed may be performed by a conventional method, but specifically, a metal mold may be used.
  • the current passing support includes a support bar comprising one or more selected from copper, platinum, aluminum and silver and a titanium or stainless steel coating layer formed on the support bar. can do.
  • a support bar comprising one or more selected from copper, platinum, aluminum and silver and a titanium or stainless steel coating layer formed on the support bar. can do.
  • the step of manufacturing the support for electricity transmission is not particularly limited in the case of using a method for forming a coating layer on a support bar.
  • a titanium or stainless coating layer may be formed on the support bar using a metal mold or the like. .
  • One end of the support for electricity delivery according to the present invention is coupled to an electrode, the other end of the electricity support is coupled to be coupled to the head bar;
  • the head bar is coupled by a coupling member comprising titanium or stainless steel Can be.
  • This coupling step is not limited in the case of using a means capable of mechanically coupling the base material and the electricity support or the electricity support and the headbar, specifically, may use a bolt or screw including titanium or stainless steel.
  • the present invention also provides a non-ferrous metal electrolytic smelting method comprising a positive electrode plate for electrolytic smelting prepared according to an embodiment of the present invention.
  • the non-ferrous metal means a metal material other than iron, and specifically, may be one or more selected from a group of copper, nickel, zinc, cobalt, lead, platinum, iridium, ruthenium, palladium, gold, silver or transition metals.
  • the present invention is not limited thereto.
  • the present invention also provides an electrolytic smelting apparatus comprising a positive electrode plate for electrolytic smelting prepared according to one embodiment of the present invention.
  • the electrolytic smelting apparatus may include one or more, preferably 1 to 200, electrolytic smelting positive plate according to an embodiment of the present invention.
  • the positive electrode plate and the negative electrode plate according to one embodiment of the present invention may be arranged to cross each other, but the present invention is not limited thereto.
  • the present invention also provides an electrolytic smelting system, wherein the electrolytic smelting system according to the present invention includes at least one positive electrode structure for electrosmelting according to an embodiment of the present invention.
  • Electrolytic smelting system may include at least one positive electrode structure, at least one negative electrode, a receiving container including the positive electrode structure and the negative electrode and a positive electrode structure and a current supply for supplying current to the negative electrode, By filling an electrolyte in which the target metal to be produced is dissolved in a container, the target metal of high purity can be produced by supplying a current through the current supply unit.
  • the positive electrode structure and the negative electrode may be disposed to cross each other in terms of improving the efficiency of electrolytic smelting, but the present invention is not limited thereto.
  • the cathode potential based on the cathode may vary depending on the target metal to be produced. As a specific and non-limiting example, the cathode potential may be -1.0 V to -0.01 V, but the present invention is not limited thereto.
  • the electrolytic smelting system according to an embodiment of the present invention may further include, in addition to the positive electrode structure for electrolytic smelting according to an embodiment of the present invention, a conventional apparatus required for driving the electrolytic smelting system.
  • the present invention is not limited thereto.
  • a copper bar having a length of 674 mm, a thickness of 6 mm, and a height of 72 mm was prepared.
  • the prepared copper bar was placed in a mold for forming an open portion for energization, poured with molten aluminum, and hardened to prepare a head bar.
  • an iridium coating layer having a thickness of 5 ⁇ m was formed thereon by spraying, and an electrode was manufactured by heat treatment at 400 ° C. for 2 hours.
  • a titanium coating layer having a thickness of 1 mm was formed on the prepared copper rod to prepare an electricity support.
  • the positive electrode structure was manufactured by bonding the head bar to the other end of the support for electricity transmission not coupled to the electrode, and fixing the head bar and the electricity support to each other using titanium bolts.
  • a positive electrode structure for electrolytic smelting was manufactured by using the same method as in the above example, but using an untreated lead plate having a width of 670 mm, a length of 1150 mm, and a thickness of 7 mm instead of the electrode.
  • the purity of the metal produced is higher than that of the electrolytic smelting positive electrode structure according to the comparative example, and problems such as an increase in power consumption even after long-term use There is an advantage that does not occur.
  • the smelting process was performed using the electrolytic smelting positive electrode structure according to the comparative example, there was a problem of relatively low purity and low power consumption.
  • power consumption required to produce the same amount of metal was An increasing problem has arisen.

Abstract

본 발명에 의한 전해 제련용 양극 구조체는 모재 상에 금속 코팅층이 형성된 전극; 상기 전극과 결합되며, 전극을 지지하는 통전용 지지체; 및 상기 통전용 지지체와 결합된 헤드바;를 포함하며, 상기 통전용 지지체의 일단부는 전극과 결합되며, 상기 통전용 지지체의 타단부는 헤드바와 결합된 것으로, 본 발명에 의한 전해 제련용 양극 구조체는 모재를 보호하여 장기간 사용이 가능하며, 납 등의 용출을 방지하여 순도 높은 금속을 제조할 수 있을 뿐만 아니라, 상대적으로 낮은 소비전력으로도 비철금속을 효율적으로 제련할 수 있는 장점이 있다.

Description

전해 제련용 양극 구조체, 이의 제조 방법 및 이를 포함하는 전해 제련 장치
본 발명은 비철금속의 전해 제련에 사용되는 전해 제련용 양극 구조체에 관한 것이다.
일반적으로 전해란 전기분해를 의미하는 것으로, 이러한 전기분해는 전해액에 전류를 가함으로써, 전해액에 포함된 이온들이 음극 또는 양극으로 이동하는 현상을 의미한다. 이러한 전기 화학적 반응에 의해 음극 또는 양극에서는 가스가 발생하거나, 금속 이온이 환원되어 금속이 석출되는 등의 현상을 일으켜, 산업분야에서 다양하게 이용되고 있다. 특히 이러한 전해 공정을 통해 순도 높은 금속 물질을 제조하는 공정이 다수 이용되고 있으며, 전해 공정을 통해 생산되는 금속들은 구리, 니켈, 아연, 코발트, 납, 백금, 이리듐, 루테늄, 팔라듐, 금 및 은 뿐만 아니라 다수의 전이금속이 전해 제련 또는 전해 정련 공정을 통해 생산될 수 있다.
이러한 전해 제련은 여러 가지 방법이 있으나, 통상적으로 전해액이 수용된 전해조 내에서 수행되며, 여러 개의 양극판 및 음극판을 설치하여 수행되는 것이 통상적이다. 이러한 전해 제련에 이용되는 양극판은 아연, 구리 및 카드뮴 등이 있으며, 이러한 물질들은 상대적으로 전기 전도도가 높으며 비교적 화학적으로 안정하여 전해 제련용 양극에 다수 이용되고 있다. 그러나, 전해 제련의 특성상 산성 환경이며, 전기, 화학적 반응이 동시에 수반되는 공정 특성상 비교적 화학적으로 안정하다 하더라도 일부 양극판의 금속 물질이 용출될 수 있으며, 용출된 양극판의 금속 물질은 생산하고자 하는 금속에 불순물로 포함될 수 있는 문제점이 있다.
본 발명의 목적은 전해 제련 시 이용되는 양전극의 유출을 방지하여 순도 높은 비철금속을 제조할 수 있는 전해 제련용 양극 구조체를 제공하는 것이다.
본 발명의 다른 목적은 장기간 사용 가능한 전해 제련용 양극 구조체를 제공하는 것이다.
본 발명의 또 다른 목적은 낮은 소비전력으로 다량의 비철금속을 생산할 수 있는 전해 제련용 양극 구조체를 제공하는 것이다.
본 발명에 의한 전해 제련용 양극 구조체는 모재 상에 금속 코팅층이 형성된 전극; 상기 전극과 결합되며, 전극을 지지하는 통전용 지지체; 및 상기 통전용 지지체와 결합된 헤드바;를 포함하며,
상기 통전용 지지체의 일단부는 전극과 결합되며, 상기 통전용 지지체의 타단부는 헤드바와 결합된 것일 수 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체에서 상기 금속 코팅층은 티타늄(Ti), 루테늄(Ru), 이리듐(Ir), 백금(Pt), 망간(Mn) 및 탄탈럼(Ta)에서 선택되는 하나 또는 둘 이상을 포함할 수 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체에서 상기 금속 코팅층의 두께는 0.5 내지 50 ㎛일 수 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체에서 상기 헤드바는 통전용 금속바 및 상기 통전용 금속바 상에 형성된 금속바 피복층을 포함할 수 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체에서 상기 금속바 피복층은 티타늄(Ti), 스테인레스 스틸(stainless steel), 은(Ag), 주석(Sn) 및 니켈(Ni)에서 선택되는 하나 또는 둘 이상을 포함할 수 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체에서 상기 헤드바는 통전용 금속바에 전류가 흐를 수 있도록 통전용 금속바가 외부에 노출된 통전용 개방부를 포함할 수 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체에서 상기 헤드바는 상기 통전용 금속바와 상기 금속바 피복층 사이에 개재되며, 주석(Sn), 백금(Pt) 및 은(Ag)에서 선택되는 하나 또는 둘 이상을 포함할 수 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체는 상기 모재와 상기 통전용 지지체 또는 상기 통전용 지지체와 상기 헤드바는 티타늄(Ti) 또는 스테인레스 스틸(stainless steel)을 포함하는 결합부재에 의해 결합된 것일 수 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체에서 상기 모재는 납(Pb), 티타늄(Ti), 니켈(Ni), 구리(Cu) 및 망간(Mn)에서 선택되는 하나 또는 둘 이상을 포함할 수 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체에서 상기 통전용 지지체는 구리(Cu), 백금(Pt), 알루미늄(Al) 및 은(Ag)에서 선택되는 하나 또는 둘 이상의 지지바 및 상기 지지바 상에 형성된 티타늄(Ti) 또는 스테인레스 스틸(stainless steel) 코팅층을 포함할 수 있다.
본 발명은 또한 전해 제련용 양극 구조체를 제공하며, 본 발명에 의한 전해 제련용 양극 구조체 제조방법은
금속 코팅층이 형성된 전극 제조 단계;
통전용 금속바 및 상기 금속바 상에 형성된 금속바 피복층을 포함하는 헤드바 제조 단계;
전류가 흐를 수 있는 통전용 지지체 제조단계; 및
상기 통전용 지지체의 일단부는 전극과 결합되며, 상기 통전용 지지체의 타단부는 헤드바와 결합되도록 결합하는 단계;를 포함한다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체 제조방법에서, 상기 금속 코팅층이 형성된 전극 제조 단계는
모재 표면에 요철을 형성하는 요철 형성 단계; 및
상기 요철이 형성된 모재의 표면에 금속 코팅층을 형성하는 코팅단계;를 포함할 수 있다.
본 발명은 또한 본 발명의 일 실시예에 의한 전해 제련용 양극 구조체를 이용한 비철금속 전해 제련 방법을 포함한다.
본 발명의 일 실시예에 의한 비철금속 전해 제련 방법에서, 상기 비철금속은 아연, 구리, 니켈, 코발트, 납, 백금, 이리듐, 루테늄, 팔라듐, 은 또는 금일 수 있다.
본 발명은 또한 비철금속 전해 제련 장치를 포함하며, 본 발명에 의한 비철금속 전해 제련 장치는 본 발명의 일 실시예에 의한 전해 제련용 양극 구조체를 1개 이상 포함할 수 있다.
본 발명은 또한 전해 제련 시스템을 제공하며, 본 발명에 의한 전해 제련 시스템은 본 발명의 일 실시예에 의한 전해 제련용 양극 구조체를 포함한다.
본 발명에 의한 전해 제련용 양극 구조체는 모재 상에 티타늄, 루테늄, 이리듐, 백금, 망간 및 탄탈럼에서 선택되는 하나 또는 둘 이상의 코팅층을 포함하여 모재를 보호함으로써 장기간 사용이 가능하며, 납 등의 용출을 방지하여 순도 높은 금속을 제조할 수 있을 뿐만 아니라, 상대적으로 낮은 소비전력으로도 비철금속을 효율적으로 제련할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 의한 전해 제련용 양극 구조체의 개략도이다.
도 2는 본 발명의 일 실시예에 의한 비철금속 전해 제련 장치를 도식화한 것이다.
*부호의 설명
100 헤드바 110 통전용 금속바
120 통전용 개방부 130 금속바 피복층
140 거치부재 200 통전용 지지체
300 전극
이하 첨부한 도면들을 참조하여 본 발명에 따른 전해 제련용 양극 구조체에 대해 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 발명에 의한 전해 제련용 양극 구조체는
모재 상에 금속 코팅층이 형성된 전극(300); 상기 전극과 결합되며, 전극을 지지하는 통전용 지지체(200); 및 상기 통전용 지지체와 결합된 헤드바(100);를 포함하며,
상기 통전용 지지체의 일단부는 전극과 결합되며, 상기 통전용 지지체의 타단부는 헤드바와 결합된 것일 수 있다.
본 발명에 의한 전해 제련용 양극 구조체를 이용하여 금속 제련 공정을 수행하는 경우, 모재 상에 형성된 금속 코팅층에 의해 모재의 용출을 방지할 수 있으며, 이러한 모재의 용출 방지에 의해 전해 제련에 의해 제조되는 금속의 순도를 더욱 향상시킬 수 있는 장점이 있다. 나아가, 모재를 금속 코팅층이 보호함으로써 종래 사용되던 양극판 대비 오랜 기간 사용함으로써 전해 제련 장치의 유지비용을 현저히 줄일 수 있는 장점이 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체는 모재 상에 형성된 금속 코팅층을 포함하며, 이러한 금속 코팅층은 티타늄(Ti), 루테늄(Ru), 이리듐(Ir), 백금(Pt), 망간(Mn) 및 탄탈럼(Ta)에서 선택되는 하나 또는 둘 이상을 포함할 수 있다. 이때 하나 또는 둘 이상을 포함한다 함은 티타늄(Ti), 루테늄(Ru), 이리듐, 백금, 망간 및 탄탈럼은 단일 물질로 금속 코팅층을 형성하거나, 이들 중에서 선택되는 하나 또는 둘 이상이 단순히 혼합된 혼합물이거나, 이들 금속에 의해 형성된 합금일 수 있음을 의미한다. 상술한 바와 같이 티타늄, 루테늄, 이리듐, 백금, 망간 및 탄탈럼에서 선택되는 하나 또는 둘 이상의 금속이 모재 상에 코팅층을 형성하는 경우, 코팅층에 의해 모재의 유출을 방지함으로써 제조되는 금속의 순도를 높일 수 있을 뿐만 아니라, 상기 금속 코팅층에 포함되는 금속의 전기 전도도가 상대적으로 높아 전극의 통전률을 높임으로써 전해 제련에 필요한 전압을 낮출 수 있고, 결과적으로 전해 제련에 소비되는 전력을 현저히 감소시킬 수 있는 장점이 있다.
더욱 좋게는, 본 발명의 일 실시예에 의한 금속 코팅층은 루테늄, 탄탈럼, 이리듐, 망간 및 티타늄에서 선택되는 하나 이상을 포함할 수 있다. 본 발명의 일 실시예에 의한 금속 코팅층이 루테늄, 탄탈럼, 이리듐, 망간 및 티타늄에서 선택되는 하나 이상을 포함하는 경우, 소요전력의 저감효과가 더욱 우수하며, 제련공정의 수율을 90% 이상으로 향상시킬 수 있는 장점이 있다.
나아가, 본 발명의 일 실시예에 의한 금속 코팅층은 루테늄, 탄탈럼 및 이리듐에서 선택되는 하나 이상의 제 1 금속 및 망간 및 티타늄에서 선택되는 하나 이상의 제 2 금속이 혼합된 상태일 수 있으며, 이러한 제 2 금속의 혼합으로 금속 코팅층의 결착력을 향상시키고 제 1 금속의 소실을 방지할 수 있는 장점이 있다. 이때 첨가되는 제 2 금속은 전체 금속 코팅층 중 10 내지 50 중량% 더욱 구체적으로는 20 내지 40 중량%일 수 있다.
구체적으로, 상기 금속 코팅층의 두께는 전해 제련에 의해 생산하고자 하는 금속의 종류 및 전해 제련 장치의 운전 환경에 따라 달라질 수 있으나, 구체적으로 0.5 내지 50 ㎛, 바람직하게는 0.5 내지 20 ㎛일 수 있다. 상기 범위에서 과도한 두께의 금속 코팅층을 필요로 하지 않으면서도 모재를 보호할 수 있는 장점이 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극판에서 상기 모재는 통상적으로 전해 제련용으로 이용될 수 있는 통전 가능한 금속인 경우 제한이 없으나, 구체적으로 납, 티타늄, 니켈, 구리 및 망간에서 선택되는 하나 또는 둘 이상일 수 있다. 아울러, 이러한 모재의 형상은 전해 제련 효율을 확보할 수 있는 형상인 경우 제한이 없다. 구체적이고 비한정적인 일예로 상기 모재는 판형, 타공을 포함하는 판형, 메시망 형태, 절곡된 형태일 수 있으나 본 발명이 이에 제한되는 것은 아니다. 나아가, 상기 금속 코팅층을 포함하는 전극 역시 모재와 동일한 형상일 수 있다. 이러한 모재는 전극 상에 고르게 전류를 공급하면서도, 전해 제련 효율을 확보할 수 있는 범위인 경우 제한이 없으나 구체적으로 두께가 0.1 내지 10 ㎜, 더욱 구체적으로는 0.5 내지 5 ㎜일 수 있다. 상기 범위에서 전류를 효율적으로 전달하여 전해 제련 효율을 확보할 수 있다. 이에 더하여, 본 발명의 일 실시예에 의한 판형 전극의 넓이는 목적하는 금속의 종류, 공급되는 전류 및 전압의 세기에 의해 달라질 수 있다. 구체적이고 비한정적인 일 예로 상기 전극의 넓이는 1 내지 4 m2, 더욱 구체적으로는 2 내지 3 m2일 수 있으나 본 발명이 이에 제한되는 것은 아니다.
나아가, 본 발명의 일 실시예에 의한 상기 모재는 표면 요철을 포함할 수 있으며, 이러한 표면 요철에 의해 모재와 금속 코팅층간의 높은 결착력을 나타낼 수 있는 장점이 있다. 구체적으로, 본 발명의 일 실시예에 의한 상기 모재표면에 형성된 요철은 표면 조도(Ra)가 0.1 내지 100 ㎛, 구체적으로는 1 내지 60 ㎛, 더욱 구체적으로는 10 내지 40 ㎛일 수 있다. 모재 표면에 형성된 요철이 상기 범위를 만족하는 경우, 모재와 금속 코팅층의 결착력을 더욱 향상시킴으로써 장기간 사용에 의한 코팅층의 이탈과 같은 문제점을 예방할 수 있는 장점이 있다. 나아가, 전해 제련 공정의 수행 시 발생할 수 있는 온도 변화에 의한 팽창 및 수축의 반복에도 높은 결착력을 나타내어, 열팽창계수 차이에 의한 크랙 등의 발생을 예방할 수 있으며, 결과적으로 본 발명의 일 실시예에 의해 제조된 전해 제련용 양극판을 오랜 기간 사용할 수 있는 장점이 있다.
본 발명에 의한 전해 제련용 양극판은 상기 통전용 지지체와 결합된 헤드바를 포함한다. 이러한 헤드바는 전해 제련 공정의 수행 시 전해액과 직접 접촉하지 않고 외부에 노출되며, 이러한 헤드바를 통해 상기 전극에 전류를 공급함으로써 전해 제련 공정의 수행이 가능하다.
나아가, 본 발명의 일 실시예에 의한 상기 헤드바는 통전용 금속바(110) 및 상기 통전용 금속바 상에 형성된 금속바 피복층을 포함할 수 있다. 이러한 금속바 피복층을 통해, 통전용 헤드바의 손상을 예방할 수 있다. 구체적으로, 통상적인 전해 제련 공정은 황산 등의 산 조건에서 수행되는 경우가 많으며, 상기 헤드바가 산과 직접 접촉하지 않는다 하더라도 전해 제련 공정의 수행 중 황산 전해 제련용 전해액의 비산이 발생할 수 있으며, 이렇게 비산된 전해액에 의해 통전용 헤드바가 부식되는 등의 문제가 발생할 수 있다. 나아가 이러한 부식에 의해 헤드바가 일부 전해액에 유입될 수 있으며, 결과적으로 이는 최종적으로 생산되는 금속에 포함되어 불순물이 유입되는 문제가 발생할 수 있다.
즉, 본 발명의 일 실시예에 의한 상기 헤드바는 통전용 금속바를 보호하고, 전해 제련에 의해 생산되는 금속의 순도를 높이기 위한 관점에서 금속바 피복층을 포함한다. 이때 금속바 피복층은 티타늄, 스테인레스 스틸, 은, 주석 및 니켈에서 선택되는 하나 또는 둘 이상을 포함할 수 있다. 상술한 물질을 금속바 피복층에 이용함으로써, 생산비용을 절감하면서도 금속바의 부식을 방지할 수 있는 장점이 있다.
나아가, 상기 금속바 피복층은 상기 통전용 금속바를 전해액 등으로부터 보호할 수 있는 두께인 경우 제한이 없으나, 구체적으로 1 내지 20 ㎜, 더욱 구체적으로는 5 내지 10 ㎜일 수 있다. 상기 두께 범위에서 과도한 두께의 금속바 피복층을 형성하지 않으면서도 상대적으로 통전용 금속바의 두께를 확보하여 전극상에 전류를 균일하게 공급할 수 있는 장점이 있다.
또한 상기 헤드바에 포함되는 통전용 금속바는 통상적으로 이용되는 전기 전도도가 높은 금속 물질인 경우 제한이 없으나, 구체적으로 구리, 백금, 알루미늄 및 은에서 선택되는 하나 또는 둘 이상일 수 있다. 아울러, 상기 통전용 금속바의 두께는 사용되는 전극의 두께, 전극의 넓이 및 통전용 지지체의 개수와 너비 등에 따라 달라질 수 있으나, 구체적으로 비한정적인 일 예로 상기 통전용 금속바는 단면적의 넓이가 10 내지 200 ㎟이며, 길이가 50 내지 1500 ㎜일 수 있다.
아울러 본 발명의 일 실시예에 의한 상기 헤드바는 상기 통전용 금속바와 상기 금속바 피복층 사이에 개재되며, 주석, 백금 및 은에서 선택되는 하나 또는 둘 이상의 접합부를 포함할 수 있다. 이때 접합부는 상기 통전용 금속바와 금속바 피복층 사이에 개재되며, 통전용 금속바 표면의 전부 또는 일부를 감싸는 한층 이상의 코팅층을 의미한다. 이러한 접합부에 의해 상기 헤드바 및 상기 통전용 금속바의 온도 변화에 따른 구리바 피복층의 들뜸이나 갈라짐과 같은 결함이 발생하는 것을 방지하여 오랜 기간 사용할 수 있는 장점이 있다.
나아가, 본 발명의 일 실시예에 의한 상기 헤드바가 접합부를 포함하는 경우, 상기 접합부의 두께는 0.1 mm 내지 3 mm, 구체적으로는 0.1 내지 2 ㎜일 수 있다. 헤드바에 금속바 피복층 및 접합부가 상기 두께로 형성되는 경우, 헤드바 및 통전용 금속바의 결착력을 더욱 향상시킬 수 있으며, 나아가 상기 접합부의 두께가 상기 범위내인 경우, 이에 더하여 전해 제련 공정으로 인한 온도 상승에 의해 합금과 비슷한 효과를 낼 수 있으며, 이에 따라 통전용 금속바와 금속바 피복층과의 결착력을 현저히 향상시킬 수 있는 장점이 있다.
나아가, 본 발명의 일 실시예에 의한 상기 헤드바는 통전용 금속바에 전류가 흐를 수 있도록 통전용 금속바가 외부에 노출된 통전용 개방부(120)를 포함할 수 있다. 이러한 통전용 개방부에 의해 통전용 금속바가 전류 공급원과 직접 접촉할 수 있으며, 이에 따라 상대적으로 전기 전도도가 낮은 금속바 피복층(130)이나 접합부를 거침으로써 유발될 수 있는 전력 손실을 예방할 수 있다. 이에 더하여, 추후 전해 제련용 양극판을 다수 개 포함하는 전해 제련 장치 내에서, 각각의 전해 제련용 양극판에 포함된 각각의 통전용 개방부가 전기적으로 연통되어 있을 수 있으나 본 발명이 이에 제한되는 것은 아니다.
이에 더하여, 본 발명의 일 실시예에 의한 전해 제련용 양극 구조체는 추후 전해 제련 공정의 수행 시 전해 제련용 양극 구조체의 거치를 위한 거치부재(140)를 더 포함할 수 있으며, 이러한 거치부재는 전해 제련용 양극 구조체를 고정할 수 있는 형상 또는 재질인 경우 제한이 없다. 구체적이고 비한정적인 일예로 상기 거치부재는 티타늄 또는 스테인레스 스틸 재질의 후크일 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명에 의한 전해 제련용 양극 구조체는 상기 전극과 결합되며, 전극을 지지하는 통전용 지지체를 포함하며, 이러한 통전용 지지체의 일단부는 전극과 결합되며, 통전용 지지체의 타단부는 헤드바와 결합되어 있을 수 있다. 구체적으로는 상기 통전용 지지체는 전류가 흐를 수 있는 전도성 물질을 포함할 수 있으며, 이러한 전도성 물질에 의해 헤드바, 구체적으로 통전용 금속바로 공급된 전류가 전극까지 흐를 수 있도록 할 수 있다.
상세하게는, 상기 통전용 지지체는 구리, 백금, 알루미늄 및 은에서 선택되는 하나 또는 둘 이상을 포함하는 지지바 및 상기 지지바 상에 형성된 티타늄 또는 스테인레스 스틸 코팅층을 포함할 수 있다. 이러한 구조를 가짐으로써, 지지바에 의해 전류 이동이 원활할 뿐만 아니라 티타늄 또는 스테인레스 코팅층에 의해 장기간 통전률의 저하 없이 본 발명에 의한 전해 제련용 양극판을 이용할 수 있는 장점이 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체는 1개 이상, 구체적으로 1 내지 20 개의 통전용 지지체를 포함할 수 있으며, 이러한 통전용 지지체는 각각 바 형상일 수 있다. 이렇게 다수개의 통전용 지지체를 포함하는 경우 각 통전용 지지체는 상기 전극 상에 평행하게 서로 이격 배열되어 있을 수 있다. 나아가, 각 지지체간의 간격은 서로 같거나 다를 수 있다.
이하, 평행하여 이격 배열된 통전용 지지체간의 이격 방향을 제 1 방향, 제 1방향에 수직인 방향을 제 2방향이라 한다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체는 구체적으로 하기 식 1을 만족할 수 있다.
[식 1]
Figure PCTKR2018002368-appb-I000001
구체적으로, 식 1에서
Figure PCTKR2018002368-appb-I000002
의 값은 0.05 내지 0.2, 더욱 구체적으로는 0.07 내지 0.15일 수 있다. 식 1에서,
Figure PCTKR2018002368-appb-I000003
은 임의로 선택된 하나의 지지체 및 이와 인접한 지지체의 제 1 방향 기준 간격이며,
Figure PCTKR2018002368-appb-I000004
은 제1 방향을 기준으로 한 전극의 길이이다.
나아가, 본 발명의 일 실시예에 의한 전해 제련용 양극 구조체는 구체적으로 상기 식 1과 동시에 하기 식 2를 만족할 수 있다.
[식 2]
Figure PCTKR2018002368-appb-I000005
구체적으로, 식 2의
Figure PCTKR2018002368-appb-I000006
의 값은 0.5 내지 0.95, 더욱 구체적으로는 0.6 내지 0.9일 수 있다. 식 2에서,
Figure PCTKR2018002368-appb-I000007
는 임의로 선택된 하나의 지지체와 상기 전극이 오버랩된 제 2 방향 길이이며,
Figure PCTKR2018002368-appb-I000008
는 제 2방향을 기준으로 한 전극의 길이이다.
본 발명의 일 실시예에 의한 전해 제련용 전극 구조체가 상기 식 1 및 식 2를 동시에 만족하는 경우, 전극 표면에 균일하게 전류의 공급이 가능하여 전해 제련 효율을 더욱 향상시킬 수 있으며, 이에 따라 상대적으로 낮은 소비 전력으로도 다량의 금속을 생산할 수 있는 장점이 있다. 구체적으로, 본 발명의 일 실시예에 의한 전해 제련용 전극 구조체가 상기 식 1 및 식 2를 동시에 만족하는 경우, 전력 소비량을 최대 15% 까지 저감할 수 있는 장점이 있다.
나아가, 본 발명의 일 실시예에 의한 전해 제련용 양극 구조체는 상기 식 1 및 식 2를 만족하는 동시에, 제 1 방향을 기준으로 전극 1 m 당 2 내지 5 개의 통전용 지지체를 포함할 수 있다. 통전용 지지체가 전극 1 m 당 2 내지 5 개 포함되는 경우, 지나치게 많은 통전용 지지체를 포함하지 않으면서도 전극에 균일하게 전류 공급이 가능한 장점이 있다. 나아가, 상기 지지체가 2개 미만일 경우 전극 면에 전기를 고르게 인가하기 어려우며, 5개를 초과하는 경우 전해 제련용 양극 구조체의 생산에 과도한 비용이 소요되는 문제가 있을 수 있다.
나아가, 본 발명의 일 실시예에 의한 상기 모재와 상기 통전용 지지체 또는 상기 통전용 지지체와 상기 헤드바는 티타늄 또는 스테인레스 스틸을 포함하는 결합부재에 의해 결합되어 있을 수 있다. 이때 결합부재는 모재와 통전용 지지체 또는 통전용 지지체와 헤드바를 기계적으로 결합 가능한 수단인 경우 제한이 없으나, 구체적으로 티타늄 또는 스테인레스 스틸을 포함하는 볼트 또는 나사일 수 있다.
본 발명은 또한 전해 제련용 양극 구조체의 제조방법을 제공한다.
본 발명에 의한 전해 제련용 양극 구조체의 제조방법은
금속 코팅층이 형성된 전극 제조 단계;
통전용 금속바 및 상기 금속바 상에 형성된 금속바 피복층을 포함하는 헤드바 제조 단계;
전류가 흐를 수 있는 통전용 지지체 제조단계; 및
상기 통전용 지지체의 일단부는 전극과 결합되며, 상기 통전용 지지체의 타단부는 헤드바와 결합되도록 결합하는 단계;를 포함한다. 구체적으로, 상기 전극 제조단계, 헤드바 제조 단계 및 통전용 지지체 제조 단계는 서로 독립적으로 수행될 수 있으며, 각 단계를 수행하는 순서는 본 발명의 권리범위에 영향을 미치지 않는다.
본 발명에 의한 전해 제련용 양극 구조체 제조방법을 통해 제조된 전해 제련용 양극 구조체는, 전극 상에 형성된 코팅층을 통해 장기간 사용이 가능하며, 종래 이용되던 전극판의 용출을 방지함으로써 금속의 전해 제련 공정에 이용 시 불순물함량을 현저히 낮추고 순도를 높일 수 있는 장점이 있다.
본 발명의 일 실시예에 의한 전해 제련용 양극 구조체 제조방법에서 상기 금속 코팅층은 티타늄, 루테늄, 이리듐, 백금, 망간 및 탄탈럼에서 선택되는 하나 또는 둘 이상을 포함할 수 있다. 티타늄, 루테늄, 이리듐, 백금, 망간 및 탄탈럼에서 선택되는 하나 또는 둘 이상의 금속이 모재 상에 코팅층을 형성하는 경우, 코팅층에 의해 모재의 유출을 방지함으로써 제조되는 금속의 순도를 높일 수 있을 뿐만 아니라, 상술한 금속의 전기 전도도가 높아 통전률을 높임으로써 전해 제련에 필요한 전압을 낮출 수 있고, 결과적으로 전해 제련에 소비되는 전력을 현저히 감소시킬 수 있는 장점이 있다.
더욱 좋게는, 본 발명의 일 실시예에 의한 금속 코팅층은 루테늄, 탄탈럼, 이리듐, 망간 및 티타늄에서 선택되는 하나 또는 둘 이상을 포함할 수 있으며, 본 발명의 일 실시예에 의한 금속 코팅층이 루테늄, 탄탈럼, 이리듐, 망간 및 티타늄에서 선택되는 하나 이상을 포함하는 경우 소요전력의 저감효과가 더욱 우수하며, 제련공정의 수율을 90% 이상으로 향상시킬 수 있는 장점이 있다.
좋게는, 본 발명의 일 실시예에 의한 금속 코팅층은 루테늄, 탄탈럼 및 이리듐에서 선택되는 하나 이상의 제 1 금속 및 망간 및 티타늄에서 선택되는 하나 이상의 제 2 금속이 혼합된 상태일 수 있으며, 이러한 제 2 금속의 혼합으로 금속 코팅층의 결착력을 향상시키고 제 1 금속의 소실을 방지할 수 있는 장점이 있다. 이때 첨가되는 제 2 금속은 전체 금속 코팅층 중 10 내지 50 중량% 더욱 구체적으로는 20 내지 40 중량%일 수 있다.
나아가, 본 발명의 일 실시예에 의한 상기 전극 제조 단계는
모재 표면에 요철을 형성하는 요철 형성 단계; 및
상기 요철이 형성된 모재의 표면에 금속 코팅층을 형성하는 코팅 단계;를 포함하여 제조될 수 있다.
상술한 바와 같이 모재 표면에 요철을 형성한 뒤, 이러한 요철 상에 금속 코팅층을 형성하는 경우, 모재와 금속 코팅층의 결착력을 강화할 수 있을 뿐만 아니라, 요철이 없는 경우 대비 금속 코팅층의 표면적이 넓어지게 되므로 보다 높은 통전률을 나타낼 수 있으며, 결과적으로 전해 제련에 필요한 전력소비를 줄일 수 있는 장점이 있다.
이때, 상기 요철 형성 단계는 모재 상에 요철을 형성할 수 있는 방법인 경우 제한이 없으나, 연마 등과 같은 물리적인 방법을 이용하거나, 식각(etching)을 통해 요철을 형성할 수 있다. 이때 식각은 건식 식각 또는 습식 식각일 수 있으나, 이러한 요철 형성 단계는 모재의 종류 및 전해 제련에 의해 생산하고자 하는 금속의 종류에 따라 달라질 수 있으며, 본 발명이 이에 제한되는 것은 아니다.
이때, 상기 요철 형성 단계에 의해 형성되는 요철은 표면 조도(Ra)가 0.1 내지 100 ㎛ 구체적으로는 1 내지 60 ㎛, 더욱 구체적으로는 10 내지 40 ㎛일 수 있다. 모재 표면에 상기 표면 조도를 만족하는 요철을 형성하는 경우, 모재와 금속 코팅층의 결착력을 더욱 향상시킴으로써 장기간 사용에 의한 크랙이나 코팅층의 이탈과 같은 문제점을 예방할 수 있는 장점이 있다. 나아가, 전해 제련 공정의 수행 시 발생할 수 있는 온도 변화에 의한 팽창 및 수축의 반복에도 높은 결착력을 나타내어, 본 발명의 일 실시예에 의해 제조된 전해 제련용 양극판을 오랜 기간 사용할 수 있는 장점이 있다.
아울러, 본 발명의 일 실시예에 의한 전해 제련용 양극 구조체 제조방법은 상기 요철이 형성된 모재의 표면에 금속 코팅층을 형성하는 코팅단계;를 포함할 수 있다. 이러한 코팅단계는 모재 상에 상술한 티타늄, 루테늄, 이리듐, 백금, 망간 및 탄탈럼에서 선택되는 하나 또는 둘 이상의 금속 코팅층을 형성할 수 있는 방법인 경우 제한이 없다. 구체적이고 비한정적인 일예로 상기 모재상에 무전해 도금 또는 전해 도금 등의 도금법, 브러싱, 침지 또는 스프레이 등의 방법으로 금속 코팅층을 형성할 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
나아가, 이러한 금속 코팅층의 두께는 전해 제련에 의해 생산하고자 하는 금속의 종류 및 전해 제련 장치의 운전 환경에 따라 달라질 수 있으나, 구체적으로 0.5 내지 50 ㎛, 바람직하게는 0.5 내지 20 ㎛일 수 있다. 상기 범위에서 과도한 두께의 금속 코팅층을 필요로 하지 않으면서도 모재를 보호할 수 있는 장점이 있다.
본 발명에 의한 전해 제련용 양극 구조체 제조방법은
통전용 금속바 및 상기 금속바 상에 형성된 금속바 피복층을 포함하는 헤드바 제조 단계;를 포함한다.
이렇게 피복층이 형성된 헤드바는 전해액에 의한 부식의 예방으로 장기간 사용이 가능하며, 통전용 금속바의 부식에 의해 전해 제련 공정을 통해 제조하고자 하는 금속에 불순물이 유입되는 문제 등을 예방할 수 있다.
이때 금속바 피복층은 티타늄, 스테인레스 스틸, 은, 주석 및 니켈에서 선택되는 하나 또는 둘 이상을 포함할 수 있다. 상술한 물질을 금속바 피복층에 이용함으로써, 생산비용을 절감하면서도 헤드바의 부식을 방지할 수 있는 장점이 있다.
나아가, 상기 금속바 피복층은 상기 통전용 금속바를 전해액 등으로부터 보호할 수 있는 두께인 경우 제한이 없으나, 구체적으로 1 내지 20 ㎜, 더욱 구체적으로는 5 내지 10 ㎜일 수 있다. 상기 두께 범위에서 과도한 두께의 금속바 피복층을 형성하지 않으면서도 상대적으로 통전용 금속바의 두께를 확보하여 전극상에 전류를 균일하게 공급할 수 있는 장점이 있다.
또한 상기 통전용 금속바는 통상적으로 이용되는 전기 전도도가 높은 금속 물질인 경우 제한이 없으나, 구체적으로 구리, 백금, 알루미늄 및 은에서 선택되는 하나 또는 둘 이상일 수 있다. 아울러, 상기 통전용 금속바의 두께는 사용되는 전극의 두께, 전극의 넓이 및 통전용 지지체의 개수와 너비 등에 따라 달라질 수 있으나, 구체적으로 비한정적인 일 예로 상기 통전용 금속바는 단면적의 넓이가 10 내지 200 ㎟이며, 길이가 50 내지 1500 ㎜일 수 있다. 나아가, 이러한 금속바 피복층이 형성된 헤드바의 제조는 통상적인 방법으로 수행될 수 있으나, 구체적으로 금속 몰드를 이용할 수 있다.
본 발명에 의한 상기 통전용 지지체 제조단계에서, 상기 통전용 지지체는 구리, 백금, 알루미늄 및 은에서 선택되는 하나 또는 둘 이상을 포함하는 지지바 및 상기 지지바 상에 형성된 티타늄 또는 스테인레스 스틸 코팅층을 포함할 수 있다. 이러한 구조를 가짐으로써, 지지바에 의해 전류 이동이 원활할 뿐만 아니라 티타늄 또는 스테인레스 코팅층에 의해 장기간 통전률의 저하 없이 본 발명에 의한 전해 제련용 양극판을 이용할 수 있는 장점이 있다. 나아가, 이러한 통전용 지지체 제조단계는 통상적으로 지지바 상에 코팅층을 형성할 수 있는 방법을 이용하는 경우 제한이 없으나, 구체적으로 금속 몰드 등을 이용하여 지지바 상에 티타늄 또는 스테인레스 코팅층을 형성할 수 있다.
본 발명에 의한 상기 통전용 지지체의 일단부는 전극과 결합되며, 상기 통전용 지지체의 타단부는 헤드바와 결합되도록 결합하는 단계;는 헤드바는 티타늄 또는 스테인레스 스틸을 포함하는 결합부재에 의해 결합하는 단계일 수 있다. 이러한 결합단계는 모재와 통전용 지지체 또는 통전용 지지체와 헤드바를 기계적으로 결합 가능한 수단을 이용하는 경우 제한이 없으나, 구체적으로 티타늄 또는 스테인레스 스틸을 포함하는 볼트 또는 나사를 이용할 수 있다.
본 발명은 또한 본 발명의 일 실시예에 의해 제조된 전해 제련용 양극판을 포함하는 비철금속 전해 제련 방법을 제공한다.
본 발명에 의한 비철금속 전해 제련 방법을 통해 비철금속 전해 제련 공정을 수행하는 경우, 순도 높은 비철금속 제련이 가능하며, 장기간 균일한 품질의 비철금속을 생산할 수 있는 장점이 있다. 본 발명에 있어서 비철금속이라 함은 철이 아닌 금속물질을 의미하며, 구체적으로 구리, 니켈, 아연, 코발트, 납, 백금, 이리듐, 루테늄, 팔라듐, 금, 은 또는 전이금속 군에서 선택되는 하나 이상일 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명은 또한 본 발명의 일 실시예에 의해 제조된 전해 제련용 양극판을 포함하는 전해 제련 장치를 제공한다. 구체적으로, 본 발명의 일 실시예에 의한 전해 제련 장치는 본 발명의 일 실시예에 의한 전해 제련용 양극판을 1개 이상, 좋게는 1 내지 200개 포함할 수 있다. 나아가, 전해 제련 효율의 향상을 위하여 본 발명의 일 실시예에 의한 양극판 및 음극판이 서로 교차하여 배열될 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명은 또한 전해 제련 시스템을 제공하며, 본 발명에 의한 전해 제련 시스템은 본 발명의 일 실시예에 의한 전해 제련용 양극 구조체를 1개 이상 포함한다.
본 발명의 일 실시예에 의한 전해 제련 시스템은 하나 이상의 양극 구조체, 하나 이상의 음극, 상기 양극 구조체 및 음극을 포함하는 수용용기 및 양극 구조체 및 음극에 전류를 공급하는 전류 공급부를 포함할 수 있으며, 상기 수용용기에 생산하고자 하는 목적금속이 용해된 전해질을 충진하고, 전류 공급부를 통하여 전류를 공급함으로써 순도 높은 목적금속을 생산할 수 있다.
좋게는, 전해제련의 효율 향상을 위한 관점에서 상기 양극 구조체 및 음극은 서로 교차하여 배치될 수 있으나, 본 발명이 이에 제한되는 것은 아니다. 또한, 본 발명의 일 실시예에 의한 전해 제련 시스템의 구동에서, 음극을 기준으로 한 캐소드 포텐셜(cathod potential)은 생성되는 목적금속에 따라 달라질 수 있음은 물론이다. 구체적이고 비한정적인 일예로 캐소드 포텐셜은 -1.0 V 내지 -0.01 V일 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
나아가 본 발명의 일 실시예에 의한 전해 제련 시스템은 본 발명의 일 실시예에 의한 전해 제련용 양극 구조체 외에, 통상적으로 전해 제련 시스템의 구동을 위해 필요한 통상적인 장치를 더 포함할 수 있음은 물론이나, 본 발명이 이에 제한되는 것은 아니다.
이하 본 발명을 실시예에 의해 구체적으로 설명한다. 아래에서 설명하는 실시예는 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 실시예에 한정되지 않는다.
[실시예]
-헤드바의 제조
길이 674 ㎜, 두께 6 ㎜, 높이 72 ㎜의 구리바를 준비한다. 준비된 구리바를 통전용 개방부가 형성 가능하도록 성형된 틀에 넣고 용융 알루미늄을 부은 다음 굳혀서 헤드바를 제조하였다.
-전극의 제조
가로 670 ㎜, 세로 1150 ㎜, 두께 1 ㎜인 티타늄 판을 준비한 뒤, 여기에 스프레이를 통해 두께 5 ㎛의 이리듐 코팅층을 형성하고, 400 ℃에서 2 시간 동안 열처리 하여 전극을 제조하였다.
-통전용 지지체의 제조
길이 1200 ㎜, 두께 6 ㎜의 구리막대를 준비한 뒤, 준비된 구리막대 상에 두께 1 ㎜의 티타늄 코팅층을 형성하여 통전용 지지체를 제조하였다.
-전해 제련용 양극 구조체의 제조
상기 전극 상에 5개의 통전용 지지체를 균일한 간격으로 위치한 뒤, 각 통전용 지지체 당 20 개의 용접을 통하여 통전용 지지체와 전극을 고정하였다. 전극과 결합되지 않은 통전용 지지체의 다른 일단부에 상기 헤드바를 결합하고, 헤드바와 통전용 지지체를 각각 티타늄 볼트를 이용하여 고정하는 방법으로 양극 구조체를 제조하였다.
[비교예]
상기 실시예와 같은 방법으로 제조하되, 상기 전극 대신 가로 670 ㎜, 세로 1150 ㎜, 두께 7 ㎜인 별도의 처리가 되지 않은 납 판을 이용하여 전해 제련용 양극 구조체를 제조하였다.
실시예에 의한 전해 제련용 양극 구조체를 이용하여 전해 제련 공정을 수행하는 경우 비교예에 의한 전해 제련용 양극 구조체를 이용하는 경우 대비 생산되는 금속의 순도가 높으며, 장기간 사용하여도 소비전력 증가 등의 문제가 발생하지 않는 장점이 있다. 그러나 비교예에 의한 전해 제련용 양극 구조체를 이용하여 제련 공정을 수행한 경우, 상대적으로 순도가 낮고 소비전력이 낮은 문제점이 발생하였으며, 나아가 장기간 사용하는 경우 동일한 양의 금속을 생산하는데 필요한 소비전력이 증가하는 문제점이 발생하였다.

Claims (16)

  1. 모재 상에 금속 코팅층이 형성된 전극; 상기 전극과 결합되며, 전극을 지지하는 통전용 지지체; 및 상기 통전용 지지체와 결합된 헤드바;를 포함하며,
    상기 통전용 지지체의 일단부는 전극과 결합되며, 상기 통전용 지지체의 타단부는 헤드바와 결합된 전해 제련용 양극 구조체.
  2. 제 1항에 있어서,
    상기 금속 코팅층은 티타늄, 루테늄, 이리듐, 백금, 망간 및 탄탈럼에서 선택되는 하나 또는 둘 이상을 포함하는 전해 제련용 양극 구조체.
  3. 제 1항에 있어서,
    상기 금속 코팅층의 두께는 0.5 내지 50 ㎛인 전해 제련용 양극 구조체.
  4. 제 1항에 있어서,
    상기 헤드바는 통전용 금속바 및 상기 통전용 금속바 상에 형성된 금속바 피복층을 포함하는 전해 제련용 양극 구조체.
  5. 제 4항에 있어서,
    상기 금속바 피복층은 티타늄, 스테인레스 스틸, 은, 주석 및 니켈에서 선택되는 하나 또는 둘 이상을 포함하는 전해 제련용 양극 구조체.
  6. 제 4항에 있어서,
    상기 헤드바는 통전용 금속바에 전류가 흐를 수 있도록 통전용 금속바가 외부에 노출된 통전용 개방부를 포함하는 전해 제련용 양극 구조체.
  7. 제 1항에 있어서,
    상기 헤드바는 상기 통전용 금속바와 상기 금속바 피복층 사이에 개재되며, 주석, 백금 및 은에서 선택되는 하나 또는 둘 이상을 포함하는 접합부를 포함하는 전해 제련용 양극 구조체.
  8. 제 1항에 있어서,
    상기 모재와 상기 통전용 지지체 또는 상기 통전용 지지체와 상기 헤드바는 티타늄 또는 스테인레스 스틸을 포함하는 결합부재에 의해 결합된 것인 전해 제련용 양극 구조체.
  9. 제 1항에 있어서,
    상기 모재는 납, 티타늄, 니켈, 구리 및 망간에서 선택되는 하나 또는 둘 이상을 포함하는 전해 제련용 양극 구조체.
  10. 제 1항에 있어서,
    상기 통전용 지지체는 구리, 백금, 알루미늄 및 은에서 선택되는 하나 또는 둘 이상의 지지바 및 상기 지지바 상에 형성된 티타늄 또는 스테인레스 스틸 코팅층을 포함하는 전해 제련용 양극 구조체.
  11. 금속 코팅층이 형성된 전극 제조 단계;
    통전용 금속바 및 상기 금속바 상에 형성된 금속바 피복층을 포함하는 헤드바 제조 단계;
    전류가 흐를 수 있는 통전용 지지체 제조단계; 및
    상기 통전용 지지체의 일단부는 전극과 결합되며, 상기 통전용 지지체의 타단부는 헤드바와 결합되도록 결합하는 단계;를 포함하는 전해 제련용 양극 구조체 제조방법.
  12. 제 11항에 있어서,
    상기 금속 코팅층이 형성된 전극 제조 단계는
    모재 표면에 요철을 형성하는 요철 형성 단계; 및
    상기 요철이 형성된 모재의 표면에 금속 코팅층을 형성하는 코팅단계;를 포함하는 전해 제련용 양극 구조체 제조방법.
  13. 제 1항 내지 제 10항에서 선택되는 어느 한 항의 전해 제련용 양극 구조체를 이용한 비철금속 전해 제련 방법.
  14. 제 13항에 있어서,
    상기 비철금속은 아연, 구리, 니켈, 코발트, 납, 백금, 이리듐, 루테늄, 팔라듐, 은 또는 금인 비철금속 전해 제련 방법.
  15. 제 1항 내지 제 10항에서 선택되는 어느 한 항의 전해 제련용 양극 구조체를 1개 이상 포함하는 비철금속 전해 제련 장치.
  16. 제 1항 내지 제 10항에서 선택되는 어느 한 항의 전해 제련용 양극 구조체를 1개 이상 포함하는 전해 제련 시스템.
PCT/KR2018/002368 2017-02-27 2018-02-27 전해 제련용 양극 구조체, 이의 제조 방법 및 이를 포함하는 전해 제련 장치 WO2018155992A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0025743 2017-02-27
KR1020170025743A KR101819219B1 (ko) 2017-02-27 2017-02-27 전해 제련용 양극 구조체, 이의 제조 방법 및 이를 포함하는 전해 제련 장지

Publications (1)

Publication Number Publication Date
WO2018155992A1 true WO2018155992A1 (ko) 2018-08-30

Family

ID=61066697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002368 WO2018155992A1 (ko) 2017-02-27 2018-02-27 전해 제련용 양극 구조체, 이의 제조 방법 및 이를 포함하는 전해 제련 장치

Country Status (2)

Country Link
KR (1) KR101819219B1 (ko)
WO (1) WO2018155992A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101986693B1 (ko) * 2018-12-28 2019-06-07 케이에스티 주식회사 하스텔로이 티타늄코팅막을 이용한 이온제거 전극판 구조
KR102250142B1 (ko) * 2019-09-18 2021-05-11 건국대학교 산학협력단 구리펠렛의 전해정련 보조장치 및 이를 이용한 전해정련장치
KR102160807B1 (ko) * 2020-05-04 2020-09-29 임명규 아연니켈 전해도금장치용 양극 모듈 및 이를 이용한 아연니켈 도금 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204895A (ja) * 1984-02-24 1985-10-16 ヘラエウス・エレクトローデン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツンク 金属又は金属酸化物の電解抽出のための電極
JP2001158988A (ja) * 1999-11-30 2001-06-12 Nippon Mining & Metals Co Ltd 陰極板
KR101155179B1 (ko) * 2011-03-31 2012-06-13 한국수력원자력 주식회사 사용후핵연료 재활용을 위한 전해제련기의 양극장치
KR101629918B1 (ko) * 2014-12-04 2016-06-13 한국원자력연구원 백금족 금속의 제련 및 재활용을 위한 전해장치 및 방법
KR20160122826A (ko) * 2014-02-19 2016-10-24 인두스트리에 데 노라 에스.피.에이. 금속 전해 채취 셀들을 위한 애노드 구조

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204895A (ja) * 1984-02-24 1985-10-16 ヘラエウス・エレクトローデン・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツンク 金属又は金属酸化物の電解抽出のための電極
JP2001158988A (ja) * 1999-11-30 2001-06-12 Nippon Mining & Metals Co Ltd 陰極板
KR101155179B1 (ko) * 2011-03-31 2012-06-13 한국수력원자력 주식회사 사용후핵연료 재활용을 위한 전해제련기의 양극장치
KR20160122826A (ko) * 2014-02-19 2016-10-24 인두스트리에 데 노라 에스.피.에이. 금속 전해 채취 셀들을 위한 애노드 구조
KR101629918B1 (ko) * 2014-12-04 2016-06-13 한국원자력연구원 백금족 금속의 제련 및 재활용을 위한 전해장치 및 방법

Also Published As

Publication number Publication date
KR101819219B1 (ko) 2018-01-16

Similar Documents

Publication Publication Date Title
WO2018155992A1 (ko) 전해 제련용 양극 구조체, 이의 제조 방법 및 이를 포함하는 전해 제련 장치
CN102016124B (zh) 包含减小电压降的设备的用于制铝的电解槽
WO2018128304A1 (ko) 마스크의 제조 방법 및 이에 사용되는 모판
EA011904B1 (ru) Анодное поддерживающее устройство
WO2011046332A2 (ko) 접촉 비표면적을 증대시킨 유가금속 회수용 전해조
US20190032232A1 (en) Systems and methods of protecting electrolysis cells
WO2018117590A1 (ko) 철-니켈 합금 포일 제조장치
WO2017195929A1 (ko) 도전성 막 형성용 은 합금 조성물 및 이의 제조 방법
WO2012020964A2 (ko) 내부식성 태양전지 모듈
WO2018084448A2 (ko) 모판, 모판의 제조 방법, 마스크의 제조 방법 및 oled 화소 증착 방법
US20080067060A1 (en) Cermet inert anode assembly heat radiation shield
WO2019009526A1 (ko) 마스크 및 마스크의 제조 방법, 모판
WO2013058449A1 (ko) 증착 공정용 전극 및 그 제조 방법
WO2017078287A1 (ko) 구리 이온을 이용한 초전도선재의 접합방법 및 이를 통해 적층 접합되는 초전도선재유니트
CN107779912B (zh) 一种稀土氧化物熔盐电解槽
CN208183087U (zh) 一种不溶性阳极法电解制备高纯金属的钛涂钌网阳极板
WO2017158501A1 (en) Device for holding anode assemblies during electrical preheating of hall-héroult cells, and process for preheating hall-héroult cells using such device
WO2019012376A1 (en) ELECTROLYSIS CELL FOR HALL-HEROL PROCESS, WITH COOLING PIPES FOR FORCED AIR COOLING
CN108642526B (zh) 一种电解铝阳极安装定位设备
WO2018182167A1 (ko) 자석 구조체, 자석 유닛 및 이를 포함하는 마그네트론 스퍼터링 장치
WO2022231143A1 (ko) 금속박막 제조장치
CN217628667U (zh) 一种镁电解槽阳极装置
JPH1015659A (ja) 銅電解用アノードの鋳造方法および溶融金属の金型鋳造用離型剤水溶液
CA3143359C (en) Apparatus and method for operating an electrolytic cell
WO2022203095A1 (ko) 황산계 철 전기도금용액의 제2철 이온 제거 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18756618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18756618

Country of ref document: EP

Kind code of ref document: A1