WO2018155680A1 - 高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法 - Google Patents

高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法 Download PDF

Info

Publication number
WO2018155680A1
WO2018155680A1 PCT/JP2018/006917 JP2018006917W WO2018155680A1 WO 2018155680 A1 WO2018155680 A1 WO 2018155680A1 JP 2018006917 W JP2018006917 W JP 2018006917W WO 2018155680 A1 WO2018155680 A1 WO 2018155680A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
sintered body
purity
producing
sintering
Prior art date
Application number
PCT/JP2018/006917
Other languages
English (en)
French (fr)
Inventor
正彦 田近
奨大 梅本
英郎 鵜沼
伊藤 潤
Original Assignee
株式会社白石中央研究所
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社白石中央研究所, 国立大学法人山形大学 filed Critical 株式会社白石中央研究所
Priority to JP2019501860A priority Critical patent/JP7048055B2/ja
Priority to US16/487,556 priority patent/US11161787B2/en
Priority to CN201880013576.8A priority patent/CN110325488B/zh
Priority to KR1020197021041A priority patent/KR102589421B1/ko
Priority to EP18758072.5A priority patent/EP3587376A4/en
Publication of WO2018155680A1 publication Critical patent/WO2018155680A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials

Definitions

  • the present invention relates to a high-purity calcium carbonate sintered body and a production method thereof, and a high-purity calcium carbonate porous sintered body and a production method thereof.
  • Calcium carbonate sintered body is expected to be applied to the growth nuclei of artificial pearls and biological uses.
  • a conventional method for producing a calcium carbonate sintered body it is generally produced by forming a mixture of calcium carbonate and a sintering aid into a molded body by isostatic pressing and sintering the molded body in a carbon dioxide atmosphere. (Patent Literature 1 and Non-Patent Literature 1).
  • An object of the present invention is a high-purity calcium carbonate sintered body that has a low impurity content and can be used for biological purposes, and a method for producing the same, and a high impurity content that is low and can be used for biological purposes.
  • An object of the present invention is to provide a pure calcium carbonate porous sintered body and a method for producing the same.
  • the high-purity calcium carbonate sintered body of the present invention is characterized by containing 99.7% by mass or more of calcium carbonate and having a relative density of 90% or more.
  • the method for producing a high-purity calcium carbonate sintered body of the present invention comprises compressing and molding calcium carbonate having a purity of 99.7% by mass or more, and producing the molded body, and sintering the molded body, And a step of producing a calcium carbonate sintered body.
  • the molded body contains only calcium carbonate.
  • the molded body is preferably sintered at 420 to 600 ° C.
  • the compression molding is preferably uniaxial molding.
  • the high-purity calcium carbonate porous sintered body of the present invention is characterized by containing 99.7% by mass or more of calcium carbonate and having a porosity of 50% by volume or more.
  • the high-purity calcium carbonate porous sintered body of the present invention preferably contains 99.9% by mass or more of calcium carbonate.
  • the method for producing a high-purity calcium carbonate porous sintered body according to the present invention comprises a step of preparing a dispersion containing calcium carbonate having a purity of 99.7% by mass or more, and stirring after adding a foaming agent to the dispersion And foaming and producing a foam, and sintering the foam to produce a calcium carbonate porous sintered body.
  • the foam is freeze-dried and then sintered.
  • the dispersion preferably contains 20% by volume or more of the calcium carbonate.
  • the sintering step is preferably a preliminary sintering step after the preliminary sintering step.
  • the temperature for pre-sintering is in the range of 200 to 500 ° C.
  • the temperature for main sintering is not less than the temperature during pre-sintering and in the range of 420 to 600 ° C.
  • the calcium carbonate for producing a high-purity calcium carbonate sintered body of the present invention is characterized by having a purity of 99.9% by mass or more.
  • the calcium carbonate for producing a high-purity calcium carbonate porous sintered body of the present invention is characterized by having a purity of 99.9% by mass or more.
  • the high-purity calcium carbonate sintered body of the present invention has a low impurity content and can be used for biological purposes.
  • the method for producing a high-purity calcium carbonate sintered body of the present invention since the amount of the sintering aid can be reduced, a high-purity calcium carbonate sintered body having a low impurity content can be produced.
  • the high-purity calcium carbonate porous sintered body of the present invention has a low impurity content and can be used for biological purposes.
  • a high-purity calcium carbonate porous sintered body of the present invention since the amount of the sintering aid can be reduced, a high-purity calcium carbonate porous sintered body having a small impurity content is produced. be able to.
  • FIG. 1 is a scanning electron micrograph (magnification 25 times) showing the high-purity calcium carbonate porous sintered body of Example 3.
  • FIG. 2 is a scanning electron micrograph (magnification 100 times) showing the high-purity calcium carbonate porous sintered body of Example 3.
  • FIG. 3 is a scanning electron micrograph (magnification 10,000 times) showing the high-purity calcium carbonate porous sintered body of Example 3.
  • FIG. 4 is a scanning electron micrograph (magnification 50000 times) showing the high-purity calcium carbonate porous sintered body of Example 3.
  • the calcium carbonate used in the present invention preferably has a purity of 99.7% by mass or more, more preferably 99.9% by mass or more, and still more preferably 99.95% by mass or more.
  • Such high-purity calcium carbonate can be produced, for example, by the method disclosed in Japanese Patent Application Laid-Open No. 2012-240872.
  • the amount of sintering aid necessary for sintering can be reduced.
  • the upper limit of the purity of calcium carbonate is not particularly limited, it is generally 99.9999% by mass.
  • the average particle size (D 50 ) in the particle size distribution measured by observation with a transmission electron microscope is preferably in the range of 0.05 to 0.5 ⁇ m, more preferably 0.8. It is in the range of 08 to 0.3 ⁇ m, more preferably in the range of 0.1 to 0.25 ⁇ m.
  • the particle size distribution by observation with a transmission electron microscope can be obtained by measuring 1000 or more calcium carbonates to be measured by observation with a transmission electron microscope.
  • the BET specific surface area of calcium carbonate used in the present invention is preferably 5 to 25 m 2 / g, more preferably 7 to 20 m 2 / g, and still more preferably 8 to 15 m 2 / g.
  • the BET specific surface area is preferably 5 to 25 m 2 / g, more preferably 7 to 20 m 2 / g, and still more preferably 8 to 15 m 2 / g.
  • a sintering aid may be used.
  • the sintering aid include a sintering aid containing at least two carbonates of lithium, sodium and potassium and having a melting point of 600 ° C. or lower.
  • the melting point of the sintering aid is preferably 550 ° C. or less, more preferably 530 ° C. or less, and further preferably in the range of 450 to 520 ° C.
  • the sintering aid is preferably a mixture of potassium carbonate and lithium carbonate.
  • the melting point of the sintering aid can be determined from a phase diagram, for example, or can be measured by differential thermal analysis (DTA).
  • a mixture of potassium fluoride, lithium fluoride and sodium fluoride may be used as a sintering aid. It is preferable that such a mixture also has the melting point range described above.
  • a sintering aid include a mixture having a composition range of 10 to 60 mol% potassium fluoride, 30 to 60 mol% lithium fluoride, and 0 to 30 mol% sodium fluoride. By setting it as such a range, it can bake at lower temperature and can manufacture the calcium carbonate sintered compact of a higher density.
  • the sintering aid is mixed with calcium carbonate so that the content of the sintering aid is 1.5% by mass or less. Is preferably prepared, more preferably 1.0% by mass or less, and still more preferably 0.7% by mass or less. If the content of the sintering aid is too large, the purity and density of the calcium carbonate sintered body may not be increased.
  • the use of high-purity calcium carbonate makes it possible to lower the sintering temperature as compared with the case of using calcium carbonate with low purity.
  • the sintering temperature is preferably 600 ° C. or lower, more preferably 580 ° C. or lower, and further preferably 560 ° C. or lower. When the sintering temperature is too high, calcium carbonate is decomposed and calcium oxide is easily generated, which is not preferable.
  • the sintering temperature is preferably 420 ° C. or higher, more preferably 430 ° C. or higher, and further preferably 440 ° C. or higher. If the sintering temperature is too low, the calcium carbonate may not be sufficiently sintered.
  • a compact is produced by compression molding a calcium carbonate powder alone or a mixture of calcium carbonate powder and a sintering aid.
  • the compression molding is preferably uniaxial molding.
  • a high-purity calcium carbonate sintered body having a high density can be produced using a compact formed by uniaxial molding.
  • the present invention is not limited to uniaxial molding, and a molded body may be produced by other known molding methods such as isostatic pressing, doctor blade molding, or casting.
  • the relative density of the molded body is preferably 50% or more, more preferably 55% or more, and further preferably 58% or more.
  • the relative density of the compact is a value obtained by dividing the bulk density of the compact by the theoretical density of calcium carbonate (2.711 g / cm 3 ).
  • the bulk density of the molded body can be measured by the Archimedes method described later.
  • the relative density of the molded body is preferably obtained by uniaxial press molding at a molding pressure of 196.1 Mpa (2000 kgf / cm 2 ). By setting the relative density within the above range, a high-purity calcium carbonate sintered body having a higher density can be obtained.
  • a calcium carbonate sintered compact is manufactured by sintering said molded object.
  • the atmosphere during sintering is preferably in the air.
  • the present invention is not limited to this, and it may be sintered in a carbon dioxide atmosphere or an inert gas atmosphere such as nitrogen gas as in the prior art.
  • a high-purity calcium carbonate sintered body having a high density can be produced even when sintered in air.
  • the sintering temperature is preferably in the above range.
  • the relative density of the calcium carbonate sintered body is preferably 90% or more, more preferably 95% or more, more preferably 97% or more, further preferably 98% or more, 99 % Or more is particularly preferable.
  • the purity of the calcium carbonate sintered body is preferably 99.7% by mass or more, more preferably 99.8% by mass or more, more preferably 99.9% by mass or more, and 99.95.
  • the content is more preferably at least 9% by mass, and particularly preferably at least 99.99% by mass.
  • a calcium carbonate sintered compact can be used also for a biological use etc.
  • the upper limit of the purity of a calcium carbonate sintered compact is not specifically limited, Generally, it is 99.9999 mass%.
  • foaming agent examples include alkyl sulfate esters such as lauryl sulfate triethanolamine, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl ether acetates, and alkyl polyglucosides.
  • an excipient may be added to the dispersion.
  • an excipient By adding an excipient, the strength of the bubbles in the dispersed foam after foaming is increased, and the shape of the foam can be stabilized.
  • the excipient include starch, dextrin, polyvinyl alcohol, polypropylene glycol, pectin, alginic acids, sodium salt of carboxycellulose, and the like.
  • the present invention it is preferable to disperse calcium carbonate in the dispersion medium using a device having strong stirring power such as a disper, a mixer, or a ball mill while gradually adding calcium carbonate to the dispersion medium such as water.
  • a device having strong stirring power such as a disper, a mixer, or a ball mill
  • the content of calcium carbonate is preferably 30 to 70% by mass in the dispersion.
  • a polymer surfactant such as polyacrylate with respect to 100 parts by mass of calcium carbonate may be added as a dispersant.
  • a foam is prepared by adding a foaming agent to the dispersion and stirring and foaming.
  • the foaming agent is preferably added so that the concentration of the foaming agent in the dispersion is about 0.01 to 5% by mass.
  • Stirring is preferably performed with a hand mixer or a disper. Since stirring may raise the temperature of the dispersion, stirring may be performed while cooling the dispersion, if necessary.
  • the foam is preferably sintered after freeze-drying.
  • freeze-drying the shape of the foam can be easily maintained, and the porous sintered body can be obtained in a good shape.
  • the foam under normal pressure at ⁇ 40 ° C. or lower for 2 hours or more, and then gradually raise the temperature while sublimating ice crystals under reduced pressure.
  • the decompression condition is preferably 20 Pa or less, and more preferably 10 Pa or less.
  • the temperature is desirably gradually increased while maintaining a reduced pressure within a range where the ice crystals do not melt, and is generally controlled within a range of ⁇ 40 ° C. to 60 ° C.
  • a calcium carbonate porous sintered body is produced by sintering a foam.
  • the pre-sintering temperature is preferably in the range of 200 to 500 ° C, and more preferably in the range of 300 to 420 ° C.
  • the temperature of the main sintering is preferably equal to or higher than the temperature at the time of preliminary sintering and within a range of 420 to 600 ° C., and more preferably within a range of 450 to 540 ° C.
  • the rate of temperature increase during pre-sintering and main sintering is preferably in the range of 2 to 20 ° C./min.
  • the atmosphere during sintering is preferably in the air.
  • the present invention is not limited to this, and sintering may be performed in a carbon dioxide gas atmosphere or an inert gas atmosphere such as nitrogen gas. According to the present invention, a high-purity calcium carbonate porous sintered body can be produced even when sintered in air.
  • the high-purity calcium carbonate porous sintered body of the present invention contains 99.7% by mass or more of calcium carbonate and has a porosity of 50% by volume or more.
  • the purity of the calcium carbonate porous sintered body is preferably 99.7% by mass or more, more preferably 99.8% by mass or more, and more preferably 99.9% by mass or more. More preferably, it is 0.995% by mass or more, and particularly preferably 99.99% by mass or more. Thereby, a calcium carbonate porous sintered compact can be used also for a biological use etc.
  • the upper limit of the purity of the calcium carbonate porous sintered body is not particularly limited, but is generally 99.9999% by mass.
  • the porosity of the calcium carbonate porous sintered body is preferably 50% by volume or more, more preferably 60% by volume or more, more preferably 70% by volume or more, and 80% by volume or more. More preferably, it is particularly preferably 85% by volume or more. Thereby, a calcium carbonate porous sintered compact can be used also for a biological use etc.
  • the upper limit of the porosity of the calcium carbonate porous sintered body is not particularly limited, but is generally 95% by volume.
  • the high-purity calcium carbonate porous sintered body of the present invention preferably has communication holes extending to the outside of the sintered body. Thereby, the calcium carbonate inside the porous sintered body can be easily brought into contact with the external atmosphere. Therefore, for example, it can be used more suitably for biological use.
  • Example 1 (Calcium carbonate) Calcium carbonate having a purity of 99.99% by mass, an average particle diameter (D 50 ) of 0.15 ⁇ m, and a BET specific surface area of 10 m 2 / g was used. Purity was derived by the difference method. Specifically, using an inductively coupled plasma optical emission spectrometer, measure the amount of impurities in a measurement sample in which a sample with a known mass is dissolved, and subtract the impurity content from the total as the impurity content. The value was taken as purity.
  • the average particle diameter (D 50 ) was determined from the particle diameter distribution by measuring 1500 particle diameters with a transmission electron microscope for the calcium carbonate particles to be measured.
  • the BET specific surface area was measured by a one-point method using a flowsorb 2200 manufactured by Shimadzu Corporation.
  • the bulk density ⁇ b [g / cm 3 ] of the calcium carbonate sintered body was determined by the Archimedes method, and the obtained bulk density was divided by the theoretical density of calcium carbonate (2.711 g / cm 3 ) to determine the relative density. .
  • the bulk density of the calcium carbonate sintered body was determined as follows. First, the dry weight W 1 of the samples of calcium carbonate sintered body was measured, after the sample was allowed to stand for about 10 minutes in paraffin was hot water, cooled to a room temperature extraction. The weight W 2 of the sample containing the paraffin after cooled was measured. Thereafter, the underwater weight W 3 of the sample was measured, and the bulk density ⁇ b of the sample was obtained from the following formula. Table 1 shows the relative density of the calcium carbonate sintered body.
  • Table 1 shows the purity of the calcium carbonate sintered body.
  • Example 2 A calcium carbonate sintered body was produced in the same manner as in Example 1 except that calcium carbonate having a purity of 99.91% by mass, an average particle diameter (D 50 ) of 0.15 ⁇ m, and a BET specific surface area of 10 m 2 / g was used. . Table 1 shows the relative density and purity of the calcium carbonate sintered body.
  • Example 1 A calcium carbonate sintered body is produced in the same manner as in Example 1 except that calcium carbonate having a purity of 99.61% by mass, an average particle diameter (D 50 ) of 0.15 ⁇ m, and a BET specific surface area of 10 m 2 / g is used. I tried to do that. However, the molded body of calcium carbonate could not be sintered.
  • Example 3 Pure water was put into a polyethylene bottle containing an appropriate amount of zirconia balls, and the calcium carbonate used in Example 1 was added to the pure water so as to be 39% by volume. Next, 0.8 parts by mass of polyvinyl alcohol as an excipient with respect to 100 parts by mass of calcium carbonate, a polymer surfactant as a dispersant (made by Kao Corporation, special polycarboxylic acid type polymer surfactant) After adding 2.5 parts by mass of the agent, trade name “Poise 520”), wet mixing was performed using a pod mill for 12 hours. To the obtained slurry, a 19% by mass aqueous solution of polyoxyethylene alkyl ether as a foaming agent was added so as to be 2 ml per 10 g of slurry to prepare a dispersion.
  • the above dispersion was foamed using a hand mixer to obtain a foam.
  • the obtained foam was poured into a mold and freeze-dried in this state.
  • the freeze-drying conditions were preliminary freezing at ⁇ 40 ° C. for 12 hours under normal pressure, and maintained at 30 ° C. for 48 hours under a reduced pressure of 10 Pa.
  • the freeze-dried foam was heated to a pre-sintering temperature (350 ° C.) at 10 ° C. per minute, and pre-sintered for 10 hours after the temperature was raised. After cooling, the temperature was raised to the main sintering temperature (510 ° C.) at the same rate of temperature rise, and after the temperature rise, main sintering was performed for 3 hours to obtain a calcium carbonate porous sintered body.
  • a pre-sintering temperature 350 ° C.
  • main sintering temperature 510 ° C.
  • Table 2 shows the purity and porosity of the obtained calcium carbonate porous sintered body. Purity was measured by the same method as for the calcium carbonate sintered body. The porosity is determined by cutting the sintered body into a rectangular parallelepiped block shape, obtaining the density from the weight of the block and the apparent volume, dividing the true density of calcium carbonate by 2.711 g / cm 3 , obtaining the relative density, and calculating the relative density from the whole. The value obtained by subtracting was taken as the porosity.
  • Example 4 A calcium carbonate porous sintered body was produced in the same manner as in Example 3 except that the calcium carbonate used in Example 2 was used. Table 2 shows the purity and porosity of the calcium carbonate porous sintered body.
  • FIGS. 1 to 4 are scanning electron micrographs of the calcium carbonate porous sintered body obtained in Example 3.
  • FIG. 1 is a magnification of 25 times
  • FIG. 2 is a magnification of 100 times
  • FIG. 3 is a magnification of 10000 times
  • FIG. 4 is a magnification of 50000 times.
  • the calcium carbonate porous sintered body has communication holes extending to the outside of the sintered body.
  • the calcium carbonate particles are densely sintered to form a porous sintered body.

Abstract

不純物含有量が少なく、生体用途などにも用いることができる高純度炭酸カルシウム焼結体及びその製造方法、並びに不純物含有量が少なく、生体用途などにも用いることができる高純度炭酸カルシウム多孔質焼結体及びその製造方法を提供する。 純度が99.7質量%以上である炭酸カルシウムを圧縮成形し、成形体を作製する工程と、前記成形体を焼結することにより、炭酸カルシウム焼結体を製造する工程とを備えることを特徴としており、純度が99.7質量%以上である炭酸カルシウムを含む分散液を調製する工程と、前記分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、前記発泡体を焼結することにより、炭酸カルシウム多孔質焼結体を製造する工程とを備えることを特徴としている。

Description

高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法
 本発明は、高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法に関する。
 炭酸カルシウム焼結体は、人工真珠の成長核や生体用途などへの応用が期待されており、その製造方法について種々研究されている。従来の炭酸カルシウム焼結体の製造方法では、一般に、炭酸カルシウムと焼結助剤の混合物を静水圧プレスにより成形体とし、この成形体を炭酸ガス雰囲気中で焼結することにより製造されている(特許文献1及び非特許文献1)。
特開2007-254240号公報
都祭聡子ら"炭酸カルシウムの焼結における出発物質の影響"無機マテリアル学会学術講演会講演要旨集 Vol.105th P.46-47 (2002.11.14)
 しかしながら、従来の炭酸カルシウム焼結体は、上記のように焼結助剤を必要とするため、不純物含有量を少なくすることが困難であった。そのため、生体用途などに用いることができない場合があった。
 本発明の目的は、不純物含有量が少なく、生体用途などにも用いることができる高純度炭酸カルシウム焼結体及びその製造方法、並びに不純物含有量が少なく、生体用途などにも用いることができる高純度炭酸カルシウム多孔質焼結体及びその製造方法を提供することにある。
 本発明の高純度炭酸カルシウム焼結体は、炭酸カルシウムが99.7質量%以上含まれており、かつ相対密度が90%以上であることを特徴としている。
 本発明の高純度炭酸カルシウム焼結体の製造方法は、純度が99.7質量%以上である炭酸カルシウムを圧縮成形し、成形体を作製する工程と、前記成形体を焼結することにより、炭酸カルシウム焼結体を製造する工程とを備えることを特徴としている。
 本発明の高純度炭酸カルシウム焼結体の製造方法においては、前記成形体が炭酸カルシウムのみを含むことが好ましい。
 本発明の高純度炭酸カルシウム焼結体の製造方法においては、前記成形体を、420~600℃で焼結することが好ましい。
 本発明の高純度炭酸カルシウム焼結体の製造方法においては、前記圧縮成形が、一軸成形であることが好ましい。
 本発明の高純度炭酸カルシウム焼結体の製造方法においては、前記成形体を空気中で焼結することが好ましい。
 本発明の高純度炭酸カルシウム多孔質焼結体は、炭酸カルシウムが99.7質量%以上含まれており、かつ気孔率が50体積%以上であることを特徴としている。
 本発明の高純度炭酸カルシウム多孔質焼結体においては、炭酸カルシウムが99.9質量%以上含まれていることが好ましい。
 本発明の高純度炭酸カルシウム多孔質焼結体においては、焼結体の外部に至る連通孔が形成されていることが好ましい。
 本発明の高純度炭酸カルシウム多孔質焼結体の製造方法は、純度が99.7質量%以上である炭酸カルシウムを含む分散液を調製する工程と、前記分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、前記発泡体を焼結することにより、炭酸カルシウム多孔質焼結体を製造する工程とを備えることを特徴としている。
 本発明の高純度炭酸カルシウム多孔質焼結体の製造方法においては、前記発泡体を凍結乾燥した後、焼結することが好ましい。
 本発明の高純度炭酸カルシウム多孔質焼結体の製造方法においては、前記分散液が、前記炭酸カルシウムを20体積%以上含有することが好ましい。
 本発明の高純度炭酸カルシウム多孔質焼結体の製造方法においては、前記焼結する工程が、仮焼結した後、本焼結する工程であることが好ましい。この場合、仮焼結の温度が200~500℃の範囲内であり、本焼結の温度が、仮焼結時の温度以上かつ420~600℃の範囲内であることが好ましい。
 本発明の高純度炭酸カルシウム焼結体製造用炭酸カルシウムは、純度が99.9質量%以上であることを特徴としている。
 本発明の高純度炭酸カルシウム多孔質焼結体製造用炭酸カルシウムは、純度が99.9質量%以上であることを特徴としている。
 本発明の高純度炭酸カルシウム焼結体は、不純物含有量が少なく、生体用途などにも用いることができる。
 本発明の高純度炭酸カルシウム焼結体の製造方法によれば、焼結助剤の量を少なくすることができるので、不純物含有量の少ない高純度炭酸カルシウム焼結体を製造することができる。
 本発明の高純度炭酸カルシウム多孔質焼結体は、不純物含有量が少なく、生体用途などにも用いることができる。
 本発明の高純度炭酸カルシウム多孔質焼結体の製造方法によれば、焼結助剤の量を少なくすることができるので、不純物含有量の少ない高純度炭酸カルシウム多孔質焼結体を製造することができる。
図1は、実施例3の高純度炭酸カルシウム多孔質焼結体を示す走査型電子顕微鏡写真(倍率25倍)である。 図2は、実施例3の高純度炭酸カルシウム多孔質焼結体を示す走査型電子顕微鏡写真(倍率100倍)である。 図3は、実施例3の高純度炭酸カルシウム多孔質焼結体を示す走査型電子顕微鏡写真(倍率10000倍)である。 図4は、実施例3の高純度炭酸カルシウム多孔質焼結体を示す走査型電子顕微鏡写真(倍率50000倍)である。
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。
 <高純度炭酸カルシウム焼結体>
 (炭酸カルシウム)
 本発明において用いる炭酸カルシウムは、純度が99.7質量%以上であるものが好ましく、99.9質量%以上であるものがより好ましく、99.95質量%以上であるものがさらに好ましい。このような高純度の炭酸カルシウムは、例えば、特開2012-240872号公報に開示された方法で製造することができる。純度の高い炭酸カルシウムを用いることにより、焼結に必要な焼結助剤の量を少なくすることができる。また、焼結助剤を用いることなく、炭酸カルシウムの焼結体を製造することが可能である。
 なお、炭酸カルシウムの純度の上限値は特に限定されるものではないが、一般には、99.9999質量%である。
 本発明に用いる炭酸カルシウムにおいて、透過型電子顕微鏡観察により測定した粒子径分布における平均粒子径(D50)は、0.05~0.5μmの範囲内であることが好ましく、より好ましくは0.08~0.3μmの範囲内であり、さらに好ましくは0.1~0.25μmの範囲内である。平均粒子径(D50)をこのような範囲内にすることにより、密度の高い成形体を作製することができ、密度の高い高純度炭酸カルシウム焼結体を製造することができる。透過型電子顕微鏡観察による粒子径分布は、測定対象である炭酸カルシウムを透過型電子顕微鏡観察で1000個以上測定することにより求めることができる。
 本発明において用いる炭酸カルシウムのBET比表面積は、5~25m/gであることが好ましく、7~20m/gであることがより好ましく、8~15m/gであることがさらに好ましい。BET比表面積を上記の範囲内にすることにより、炭酸カルシウムの焼結性を高めることができる。このため、密度の高い高純度炭酸カルシウム焼結体を製造することができる。
 (焼結助剤)
 本発明に従い、純度の高い炭酸カルシウムを用いることにより、焼結に必要な焼結助剤の量を少なくすることができる。また、焼結助剤を用いることなく、炭酸カルシウムの焼結体を製造することが可能である。従って、本発明によれば、焼結体における炭酸カルシウムの含有量を高めることができ、高純度の炭酸カルシウム焼結体を製造することができる。
 しかしながら、必要に応じて、焼結助剤を用いてもよい。焼結助剤としては、例えば、リチウム、ナトリウム及びカリウムの内の少なくとも2種の炭酸塩を含み、かつ融点が600℃以下である焼結助剤が挙げられる。焼結助剤の融点は、550℃以下であることが好ましく、530℃以下であることがより好ましく、450~520℃の範囲であることがさらに好ましい。焼結助剤の融点を上記範囲にすることにより、より低温で焼成して炭酸カルシウム焼結体を製造することができる。焼結の際には、炭酸カルシウムに添加して使用することから、実際の融点は上記の温度よりさらに低くなるため焼結助剤として十分に機能する。焼結助剤は、炭酸カリウム及び炭酸リチウムの混合物であることが好ましい。焼結助剤の融点は、例えば、相図から求めることができるし、示差熱分析(DTA)により測定することも可能である。
 また、焼結助剤として、フッ化カリウム、フッ化リチウム及びフッ化ナトリウムの混合物を用いてもよい。このような混合物も、上記の融点の範囲を有するものであることが好ましい。このような焼結助剤として、例えば、フッ化カリウム10~60モル%、フッ化リチウム30~60モル%、及びフッ化ナトリウム0~30モル%の組成範囲を有する混合物が挙げられる。このような範囲とすることにより、より低い温度で焼成し、より高い密度の炭酸カルシウム焼結体を製造することができる。
 焼結助剤を用いる場合、炭酸カルシウムと焼結助剤の混合物において、焼結助剤の含有割合が1.5質量%以下となるように、炭酸カルシウムに焼結助剤を混合して混合物を調製することが好ましく、より好ましくは1.0質量%以下であり、さらに好ましくは0.7質量%以下である。焼結助剤の含有割合が多すぎると、炭酸カルシウム焼結体の純度及び密度を高めることができない場合がある。
 本発明に従い、純度の高い炭酸カルシウムを用いることにより、純度が高くない炭酸カルシウムを用いた場合に比べ、焼結温度を低くすることができる。
 (焼結温度)
 焼結温度は、600℃以下であることが好ましく、より好ましくは580℃以下であり、さらに好ましくは560℃以下である。焼結温度が高すぎると、炭酸カルシウムが分解し酸化カルシウムが生成しやすくなるため好ましくない。焼結温度は、420℃以上であることが好ましく、より好ましくは430℃以上であり、さらに好ましくは440℃以上である。焼結温度が低すぎると、炭酸カルシウムが十分に焼結しない場合がある。
 (成形体)
 本発明においては、炭酸カルシウム粉末単体、または炭酸カルシウム粉末と焼結助剤の混合物を圧縮成形して成形体を作製する。圧縮成形は、一軸成形であることが好ましい。本発明によれば、一軸成形による成形体を用いて、高い密度を有する高純度炭酸カルシウム焼結体を製造することができる。しかしながら、本発明においては、一軸成形に限定されるものではなく、静水圧プレス成形、あるいはドクターブレード成形、鋳込み成形など他に知られた成形方法により成形体を作製してもよい。
 本発明において、成形体の相対密度は、50%以上であることが好ましく、55%以上であることがより好ましく、58%以上であることがさらに好ましい。成形体の相対密度は、成形体のかさ密度を、炭酸カルシウムの理論密度(2.711g/cm)で割った値である。成形体のかさ密度は、後述するアルキメデス法により測定することができる。上記成形体の相対密度は、196.1Mpa(2000kgf/cm)の成形圧で、一軸プレス成形したときに得られるものであることが好ましい。上記範囲の相対密度にすることにより、より高い密度の高純度炭酸カルシウム焼結体を得ることができる。
 (炭酸カルシウム焼結体の製造)
 本発明においては、上記の成形体を焼結することにより、炭酸カルシウム焼結体を製造する。より簡易な工程で焼結するという観点からは、焼結の際の雰囲気は、空気中であることが好ましい。しかしながら、本発明はこれに限定されるものではなく、従来と同様に、炭酸ガス雰囲気中、あるいは窒素ガスなどの不活性ガス雰囲気中で焼結してもよい。本発明によれば、空気中で焼結させても、高い密度を有する高純度炭酸カルシウム焼結体を製造することができる。焼結温度は、上記の範囲であることが好ましい。
 また、本発明においては、レーザーを照射して成形体を焼結させてもよい。また、3次元プリンターを用いて、レーザーを照射し成形体を焼結させてもよい。
 炭酸カルシウム焼結体の相対密度は、90%以上であることが好ましく、95%以上であることがより好ましく、97%以上であることがより好ましく、98%以上であることがさらに好ましく、99%以上であることが特に好ましい。
 炭酸カルシウム焼結体の純度は、99.7質量%以上であることが好ましく、99.8質量%以上であることがより好ましく、99.9質量%以上であることがより好ましく、99.95質量%以上であることがさらに好ましく、99.99質量%以上であることが特に好ましい。これにより、炭酸カルシウム焼結体を、生体用途などにも用いることができる。なお、炭酸カルシウム焼結体の純度の上限値は特に限定されるものではないが、一般には、99.9999質量%である。
 <高純度炭酸カルシウム多孔質焼結体>
 (炭酸カルシウム)
 炭酸カルシウムとしては、上記の高純度炭酸カルシウム焼結体の製造において説明した炭酸カルシウムを用いることができる。炭酸カルシウム多孔質焼結体の製造においても、純度の高い炭酸カルシウムを用いることにより、焼結に必要な焼結助剤の量を少なくすることができる。また、焼結助剤を用いることなく、炭酸カルシウムの多孔質焼結体を製造することが可能である。焼結助剤を用いる場合、上記と同様の焼結助剤の種類及び含有量にすることができる。
 (発泡剤)
 本発明において用いる発泡剤としては、ラウリル硫酸トリエタノールアミンなどのアルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテル酢酸塩、アルキルポリグルコシドなどが挙げられる。
 (賦形剤)
 本発明においては、分散液に賦形剤を添加してもよい。賦形剤を添加することにより発泡後の分散発泡体中の気泡の強度が上がり、発泡体の形状を安定化することができる。賦形剤としては、デンプン、デキストリン、ポリビニルアルコール、ポリプロピレングリコール、ペクチン、アルギン酸類、カルボキシセルロースのナトリウム塩などが挙げられる。
 (分散液)
 本発明においては、水などの分散媒に炭酸カルシウムを徐々に添加しながら、ディスパー、ミキサー、ボールミル等の攪拌力の強い装置を用いて、炭酸カルシウムを分散媒に分散することが好ましい。炭酸カルシウムの含有量は、一般に、分散液中において30~70質量%であることが好ましい。このとき、必要であれば炭酸カルシウム100質量部に対して0~3質量部程度のポリアクリル酸塩などの高分子界面活性剤を分散剤として添加してもよい。
 (発泡体の作製)
 本発明では、上記分散液に発泡剤を添加した後撹拌し泡立てることにより発泡体を作製する。発泡剤は、分散液中の発泡剤の濃度が0.01~5質量%程度となるように添加することが好ましい。攪拌は、ハンドミキサーやディスパーなどで行うことが好ましい。撹拌を行うことで分散液の温度が上昇することがあるため、必要であれば、分散液を冷却しながら撹拌を行ってもよい。
 (凍結乾燥)
 本発明においては、上記発泡体を凍結乾燥した後、焼結することが好ましい。凍結乾燥することにより、発泡体の形状を容易に維持することができ、多孔質焼結体を良好な形状で得ることができる。
 具体的には、発泡体を常圧下に-40℃以下で2時間以上予備凍結を行い、次に減圧条件下において氷晶を昇華させながら、徐々に温度を上げていくことが好ましい。減圧の条件は、20Pa以下が好ましく、10Pa以下がより好ましい。温度は、氷晶が融解をしない範囲で減圧を維持しながら徐々に高くしていくことが望ましく、一般的には-40℃~60℃の範囲で制御を行う。
 (発泡体の焼結)
 本発明においては、発泡体を焼結することにより、炭酸カルシウム多孔質焼結体を製造する。本発明においては、仮焼結した後、本焼結することが好ましい。これにより、発泡体中に含まれている有機分が残存、炭化して黒ずんだり、有機分が急激に分解を起こすことで、焼結体にヒビの発生を生じることを防ぐことができる。
 仮焼結の温度は200~500℃の範囲内であることが好ましく、300~420℃の範囲内であることがより好ましい。本焼結の温度は仮焼結時の温度以上かつ420~600℃の範囲内であることが好ましく、450~540℃の範囲内であることがより好ましい。
 また、仮焼結及び本焼結の際の昇温速度は、2~20℃/分の範囲内であることが好ましい。これにより、有機分が急激に分解を起こすことで、焼結体にヒビの発生を生じることを防ぐことができる。
 焼結の際の雰囲気は、空気中であることが好ましい。しかしながら、本発明はこれに限定されるものではなく、炭酸ガス雰囲気中、あるいは窒素ガスなどの不活性ガス雰囲気中で焼結してもよい。本発明によれば、空気中で焼結させても、高純度炭酸カルシウム多孔質焼結体を製造することができる。
 (炭酸カルシウム多孔質焼結体)
 本発明の高純度炭酸カルシウム多孔質焼結体は、炭酸カルシウムが99.7質量%以上含まれており、かつ気孔率が50体積%以上である。
 炭酸カルシウム多孔質焼結体の純度は、99.7質量%以上であることが好ましく、99.8質量%以上であることがより好ましく、99.9質量%以上であることがより好ましく、99.95質量%以上であることがさらに好ましく、99.99質量%以上であることが特に好ましい。これにより、炭酸カルシウム多孔質焼結体を、生体用途などにも用いることができる。なお、炭酸カルシウム多孔質焼結体の純度の上限値は特に限定されるものではないが、一般には、99.9999質量%である。
 炭酸カルシウム多孔質焼結体の気孔率は、50体積%以上であることが好ましく、60体積%以上であることがより好ましく、70体積%以上であることがより好ましく、80体積%以上であることがさらに好ましく、85体積%以上であることが特に好ましい。これにより、炭酸カルシウム多孔質焼結体を、生体用途などにも用いることができる。なお、炭酸カルシウム多孔質焼結体の気孔率の上限値は特に限定されるものではないが、一般には、95体積%である。
 本発明の高純度炭酸カルシウム多孔質焼結体は、焼結体の外部に至る連通孔が形成されていることが好ましい。これにより、多孔質焼結体内部の炭酸カルシウムを外部の雰囲気と容易に接触させることができる。従って、例えば、生体用途などにさらに好適に用いることができる。
 以下、本発明に従う具体的な実施例を説明するが、本発明はこれらの実施例に限定されるものではない。
 <炭酸カルシウム焼結体の製造>
 <実施例1>
 (炭酸カルシウム)
 純度99.99質量%、平均粒子径(D50)0.15μm、BET比表面積10m/gである炭酸カルシウムを用いた。純度は、差分法により導出した。具体的には、誘導結合プラズマ発光分析装置を用いて、質量既知の試料を溶解した測定検液中の不純物量を測定し、得られた結果の和を不純物含量として、全体から不純物含量を引いた値を純度とした。
 平均粒子径(D50)は、測定対象である炭酸カルシウム粒子について、透過型電子顕微鏡観察により1500個の粒子径を測定し、粒子径分布から求めた。
 BET比表面積は、島津製作所製のフローソーブ2200を用いて、1点法により測定した。
 上記の炭酸カルシウムを用いて、以下のようにして、炭酸カルシウム焼結体を製造した。
 (成形体の作製)
 炭酸カルシウムを適量のジルコニアボールが入ったポリエチレン瓶に入れ、一晩乾式混合を行い、原料粉末とした。この原料粉末を円筒状の金型内に入れ、プレス機を用いて一軸プレス成形した。98Mpa(1000kgf/cm)の成形圧で1分間予備プレス成形した後、196.1Mpa(2000kgf/cm)の成形圧で1分間プレス成形した。
 (成形体の焼成)
 得られた成形体を、空気中で540℃の焼成温度で3時間焼成し焼結させた。なお、焼成温度に達するまで毎分10℃で昇温させた。この焼成により、炭酸カルシウム焼結体を得た。
 (炭酸カルシウム焼結体の相対密度の測定)
 アルキメデス法より炭酸カルシウム焼結体のかさ密度ρb[g/cm]を求め、得られたかさ密度を炭酸カルシウムの理論密度(2.711g/cm)で割り、その相対密度を求めた。炭酸カルシウム焼結体のかさ密度は、次のように求めた。先ず、炭酸カルシウム焼結体の試料の乾燥重量Wを測定し、湯煎したパラフィン中にその試料を10分程度静置した後、取り出して常温になるまで冷やした。冷めた後にパラフィンを含有した試料の重量Wを測定した。その後、その試料の水中重量Wを測定し、下記の式より試料のかさ密度ρbを求めた。炭酸カルシウム焼結体の相対密度を表1に示す。
 かさ密度ρb[g/cm]=WρW/(W2-W3
 ρW:水の密度[g/cm
 W:試料の乾燥重量[g]
 W:パラフィンを含有した試料の重量[g]
 W:試料の水中重量[g]
 (炭酸カルシウム焼結体の純度の測定)
 炭酸カルシウム焼結体の純度は、上記の差分法により導出した。
 炭酸カルシウム焼結体の純度を表1に示す。
 <実施例2>
 純度99.91質量%、平均粒子径(D50)0.15μm、BET比表面積10m/gである炭酸カルシウムを用いる以外は、実施例1と同様にして、炭酸カルシウム焼結体を製造した。炭酸カルシウム焼結体の相対密度及び純度を表1に示す。
 <比較例1>
 純度99.61質量%、平均粒子径(D50)0.15μm、BET比表面積10m/gである炭酸カルシウムを用いる以外は、実施例1と同様にして、炭酸カルシウム焼結体を製造することを試みた。しかしながら、炭酸カルシウムの成形体を焼結させることができなかった。
 <比較例2>
 比較例1の炭酸カルシウムと焼結助剤とを、焼結助剤の含有量が0.7質量%となるように混合し、この混合粉末を上記のように乾式混合して原料粉末とした。この原料粉末を用いる以外は、実施例1と同様にして、炭酸カルシウム焼結体を製造した。
 焼結助剤として、炭酸カリウムと炭酸リチウムの混合物を用いた。混合割合は、モル比で、炭酸カリウム:炭酸リチウム=38:62である。混合物の融点(共融温度)は、488℃である。炭酸カルシウム焼結体の相対密度及び純度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明に従う実施例1及び実施例2においては、炭酸カルシウムが99.7質量%以上含まれており、かつ相対密度が90%以上である高純度炭酸カルシウム焼結体が得られている。これに対し、純度が99.7質量%未満である炭酸カルシウムを用いた比較例1では、相対密度が68.0%であり、炭酸カルシウム焼結体が得られていない。比較例2に示すように、純度が99.7質量%未満である炭酸カルシウムを用いた場合でも、焼結助剤を用いることにより炭酸カルシウム焼結体を製造することができるが、焼結助剤を添加するため、炭酸カルシウムの含有量が低下し、高純度炭酸カルシウム焼結体にすることができない。
 <炭酸カルシウム多孔質焼結体の製造>
 <実施例3>
 適量のジルコニアボールが入ったポリエチレン瓶に純水を入れ、39体積%になるように実施例1で用いた炭酸カルシウムを純水に添加した。次に、炭酸カルシウム100質量部に対して、賦形剤としてのポリビニルアルコールを0.8質量部、分散剤としての高分子界面活性剤(花王株式会社製、特殊ポリカルボン酸型高分子界面活性剤、商品名「ポイズ520」)を2.5質量部添加した後、ポッドミルを用いて12時間湿式混合を行った。得られたスラリーに、スラリー10gあたり2mlとなるように、発泡剤としてのポリオキシエチレンアルキルエーテル19質量%水溶液を添加して分散液とした。
 上記分散液をハンドミキサーを用いて発泡し、発泡体を得た。得られた発泡体を型枠に流し込み、この状態で凍結乾燥を行った。凍結乾燥の条件は、常圧下に-40℃で12時間の予備凍結を行い、10Paの減圧下で30℃で48時間保持した。
 凍結乾燥した発泡体を、仮焼結温度(350℃)まで毎分10℃で昇温させ、昇温後10時間仮焼結を行った。冷却した後、同様の昇温速度で本焼結温度(510℃)まで昇温させ、昇温後3時間本焼結を行い、炭酸カルシウム多孔質焼結体を得た。
 得られた炭酸カルシウム多孔質焼結体の純度及び気孔率を表2に示す。純度は、炭酸カルシウム焼結体と同様の方法で測定した。気孔率は、焼結体を直方体ブロック状に切出し、ブロックの重量と見かけの体積から密度を求め、炭酸カルシウムの真密度2.711g/cmで除し、相対密度を求め、全体から相対密度を引いた値を気孔率とした。
 <実施例4>
 実施例2で用いた炭酸カルシウムを用いる以外は、実施例3と同様にして、炭酸カルシウム多孔質焼結体を製造した。炭酸カルシウム多孔質焼結体の純度及び気孔率を表2に示す。
 <比較例3>
 比較例1で用いた炭酸カルシウムを用いる以外は、実施例3と同様にして、炭酸カルシウム多孔質焼結体を製造することを試みた。しかしながら、発泡体を焼結させることができなかった。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明に従う実施例3及び実施例4においては、炭酸カルシウムが99.7質量%以上含まれており、かつ気孔率が50体積%以上である高純度炭酸カルシウム多孔質焼結体が得られている。これに対し、純度が99.7質量%未満である炭酸カルシウムを用いた比較例3では、炭酸カルシウム多孔質焼結体が得られていない。
 <炭酸カルシウム多孔質焼結体の走査型電子顕微鏡観察>
 図1~図4は、実施例3で得られた炭酸カルシウム多孔質焼結体の走査型電子顕微鏡写真である。図1は倍率25倍、図2は倍率100倍、図3は倍率10000倍、図4は倍率50000倍である。図1及び図2から明らかのように、炭酸カルシウム多孔質焼結体は、焼結体の外部に至る連通孔を有していることがわかる。また、図3及び図4から明らかなように、炭酸カルシウム粒子が緻密に焼結されて、多孔質焼結体が形成されていることがわかる。

Claims (16)

  1.  炭酸カルシウムが99.7質量%以上含まれており、かつ相対密度が90%以上である、高純度炭酸カルシウム焼結体。
  2.  純度が99.7質量%以上である炭酸カルシウムを圧縮成形し、成形体を作製する工程と、
     前記成形体を焼結することにより、炭酸カルシウム焼結体を製造する工程とを備える、高純度炭酸カルシウム焼結体の製造方法。
  3.  前記成形体が炭酸カルシウムのみを含む、請求項2に記載の高純度炭酸カルシウム焼結体の製造方法。
  4.  前記成形体を、420~600℃で焼結する、請求項2または3に記載の高純度炭酸カルシウム焼結体の製造方法。
  5.  前記圧縮成形が、一軸成形である、請求項2~4のいずれか一項に記載の高純度炭酸カルシウム焼結体の製造方法。
  6.  前記成形体を空気中で焼結する、請求項2~5のいずれか一項に記載の高純度炭酸カルシウム焼結体の製造方法。
  7.  炭酸カルシウムが99.7質量%以上含まれており、かつ気孔率が50体積%以上である、高純度炭酸カルシウム多孔質焼結体。
  8.  炭酸カルシウムが99.9質量%以上含まれている、請求項7に記載の高純度炭酸カルシウム多孔質焼結体。
  9.  焼結体の外部に至る連通孔が形成されている、請求項7または8に記載の高純度炭酸カルシウム多孔質焼結体。
  10.  純度が99.7質量%以上である炭酸カルシウムを含む分散液を調製する工程と、
     前記分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、
     前記発泡体を焼結することにより、炭酸カルシウム多孔質焼結体を製造する工程とを備える、高純度炭酸カルシウム多孔質焼結体の製造方法。
  11.  前記発泡体を凍結乾燥した後、焼結する、請求項10に記載の高純度炭酸カルシウム多孔質焼結体の製造方法。
  12.  前記分散液が、前記炭酸カルシウムを20体積%以上含有する、請求項10または11に記載の高純度炭酸カルシウム多孔質焼結体の製造方法。
  13.  前記焼結する工程が、仮焼結した後、本焼結する工程である、請求項10~12のいずれか一項に記載の高純度炭酸カルシウム多孔質焼結体の製造方法。
  14.  仮焼結の温度が200~500℃の範囲内であり、本焼結の温度が仮焼結時の温度以上かつ420~600℃の範囲内である、請求項13に記載の高純度炭酸カルシウム多孔質焼結体の製造方法。
  15.  純度が99.9質量%以上である、高純度炭酸カルシウム焼結体製造用炭酸カルシウム
  16.  純度が99.9質量%以上である、高純度炭酸カルシウム多孔質焼結体製造用炭酸カルシウム。
PCT/JP2018/006917 2017-02-27 2018-02-26 高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法 WO2018155680A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019501860A JP7048055B2 (ja) 2017-02-27 2018-02-26 高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法
US16/487,556 US11161787B2 (en) 2017-02-27 2018-02-26 High-purity calcium carbonate sintered body and production method thereof, and high-purity calcium carbonate porous sintered body and production method thereof
CN201880013576.8A CN110325488B (zh) 2017-02-27 2018-02-26 高纯度碳酸钙烧结体及其制造方法以及高纯度碳酸钙多孔烧结体及其制造方法
KR1020197021041A KR102589421B1 (ko) 2017-02-27 2018-02-26 고순도 탄산칼슘 소결체 및 그 제조 방법, 그리고 고순도 탄산칼슘 다공질 소결체 및 그 제조 방법
EP18758072.5A EP3587376A4 (en) 2017-02-27 2018-02-26 HIGHLY PURE Sintered CALCIUM CARBONATE Sintered BODIES AND MANUFACTURING METHODS FOR IT AND HIGHLY PURE POROUS CALCIUM CARBONATE Sintered BODIES AND MANUFACTURING METHODS FOR THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017035245 2017-02-27
JP2017-035245 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018155680A1 true WO2018155680A1 (ja) 2018-08-30

Family

ID=63252878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006917 WO2018155680A1 (ja) 2017-02-27 2018-02-26 高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法

Country Status (6)

Country Link
US (1) US11161787B2 (ja)
EP (1) EP3587376A4 (ja)
JP (1) JP7048055B2 (ja)
KR (1) KR102589421B1 (ja)
CN (1) CN110325488B (ja)
WO (1) WO2018155680A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189366A1 (ja) * 2019-03-19 2020-09-24 株式会社白石中央研究所 炭酸カルシウム焼結体及びその製造方法並びに骨補填材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CO2022000142A1 (es) * 2022-01-12 2022-01-17 Univ Los Andes Material cerámico coralino, sensor y método para la obtención de dicho material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236021A (ja) * 1985-08-09 1987-02-17 Nippon Sekkai Kogyosho:Kk ストロンチウム含有量の少ない炭酸カルシウムの製造方法
JPH04231367A (ja) * 1990-12-27 1992-08-20 Mitsubishi Materials Corp 鋳込成形によるカルシア焼結体
JPH05310469A (ja) * 1992-05-08 1993-11-22 Mitsubishi Materials Corp 高純度カルシア焼結体
JPH07242415A (ja) * 1994-03-02 1995-09-19 Inax Corp 炭酸カルシウムの常圧焼結法
JPH08198623A (ja) * 1995-01-18 1996-08-06 Shiraishi Chuo Kenkyusho:Kk 多孔質炭酸カルシウムの製造方法
JP2007254250A (ja) 2006-03-27 2007-10-04 Tateho Chem Ind Co Ltd 高純度水酸化マグネシウム粉末及びその製造方法
JP2011251886A (ja) * 2010-06-04 2011-12-15 Inoac Corp 炭酸カルシウム多孔質体の製造方法
JP2012240872A (ja) 2011-05-18 2012-12-10 Shiraishi Chuo Kenkyusho:Kk 高純度炭酸カルシウムの製造方法
JP2017214237A (ja) * 2016-05-31 2017-12-07 株式会社白石中央研究所 炭酸カルシウム焼結体の製造方法及び炭酸カルシウム焼結体製造用炭酸カルシウム
JP2017214238A (ja) * 2016-05-31 2017-12-07 株式会社白石中央研究所 炭酸カルシウム焼結体の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290554A (ja) * 1988-05-16 1989-11-22 Kochi Pref Gov 鋳込み成形によるカルシア焼結体及びその製造方法
JP2834341B2 (ja) * 1990-09-28 1998-12-09 マリーンバイオ株式会社 炭酸カルシウム焼結体の製造方法および炭酸カルシウム焼結体
NL194793C (nl) * 1994-03-02 2003-03-04 Inax Corp Werkwijze ter vervaardiging van gesinterde calciumcarbonaatproducten.
JP3803742B2 (ja) * 1995-10-31 2006-08-02 清家 捷二 人造大理石
JP2007063085A (ja) 2005-09-01 2007-03-15 Shoji Seike 炭酸カルシウム組成物
JP4788433B2 (ja) 2006-03-24 2011-10-05 吉澤石灰工業株式会社 高密度炭酸カルシウム焼結体の製造方法
JP2011241123A (ja) * 2010-05-20 2011-12-01 Tateho Chemical Industries Co Ltd 酸化マグネシウム焼結体及びその製造方法
US9537081B2 (en) * 2012-11-02 2017-01-03 Canon Kabushiki Kaisha Piezoelectric material, piezoelectric element, multilayered piezoelectric element, liquid discharge head, liquid discharge apparatus, ultrasonic motor, optical apparatus, vibratory apparatus, dust removing device, image pickup apparatus, and electronic equipment
US9698337B2 (en) * 2015-01-09 2017-07-04 Canon Kabushiki Kaisha Piezoelectric ceramic, piezoelectric element, and electronic appliance
CN104876641B (zh) * 2015-05-12 2017-03-22 苏州大学 一种多孔材料的组合浇铸制备方法
CN105503107B (zh) * 2015-12-10 2017-11-10 朱晓燕 一种石灰质飞机越界捕获材料及其制备工艺
CN106116687B (zh) * 2016-06-30 2018-10-23 昆明理工大学 一种羟基磷灰石晶须多孔陶瓷支架材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236021A (ja) * 1985-08-09 1987-02-17 Nippon Sekkai Kogyosho:Kk ストロンチウム含有量の少ない炭酸カルシウムの製造方法
JPH04231367A (ja) * 1990-12-27 1992-08-20 Mitsubishi Materials Corp 鋳込成形によるカルシア焼結体
JPH05310469A (ja) * 1992-05-08 1993-11-22 Mitsubishi Materials Corp 高純度カルシア焼結体
JPH07242415A (ja) * 1994-03-02 1995-09-19 Inax Corp 炭酸カルシウムの常圧焼結法
JPH08198623A (ja) * 1995-01-18 1996-08-06 Shiraishi Chuo Kenkyusho:Kk 多孔質炭酸カルシウムの製造方法
JP2007254250A (ja) 2006-03-27 2007-10-04 Tateho Chem Ind Co Ltd 高純度水酸化マグネシウム粉末及びその製造方法
JP2011251886A (ja) * 2010-06-04 2011-12-15 Inoac Corp 炭酸カルシウム多孔質体の製造方法
JP2012240872A (ja) 2011-05-18 2012-12-10 Shiraishi Chuo Kenkyusho:Kk 高純度炭酸カルシウムの製造方法
JP2017214237A (ja) * 2016-05-31 2017-12-07 株式会社白石中央研究所 炭酸カルシウム焼結体の製造方法及び炭酸カルシウム焼結体製造用炭酸カルシウム
JP2017214238A (ja) * 2016-05-31 2017-12-07 株式会社白石中央研究所 炭酸カルシウム焼結体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATOKO TOMATSURI ET AL.: "Effect of Starting Materials on Liquid Phase Sintering of Calcium Carbonate", PROCEEDINGS FOR THE ACADEMIC CONFERENCE OF THE SOCIETY OF INORGANIC MATERIALS, vol. 105th, 14 November 2002 (2002-11-14), pages 46 - 47

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020189366A1 (ja) * 2019-03-19 2020-09-24 株式会社白石中央研究所 炭酸カルシウム焼結体及びその製造方法並びに骨補填材
JP2020152600A (ja) * 2019-03-19 2020-09-24 株式会社白石中央研究所 炭酸カルシウム焼結体及びその製造方法並びに骨補填材
CN113677647A (zh) * 2019-03-19 2021-11-19 株式会社白石中央研究所 碳酸钙烧结体及其制造方法、以及植骨材料
EP3943467A4 (en) * 2019-03-19 2022-12-14 Shiraishi Central Laboratories Co. Ltd. CALCIUM CARBONATE SINTERED BODY AND METHOD FOR PRODUCING IT, AND BONE GRAFT MATERIAL
JP7330484B2 (ja) 2019-03-19 2023-08-22 株式会社白石中央研究所 炭酸カルシウム焼結体及び骨補填材

Also Published As

Publication number Publication date
JP7048055B2 (ja) 2022-04-05
EP3587376A1 (en) 2020-01-01
KR102589421B1 (ko) 2023-10-13
US20190375687A1 (en) 2019-12-12
US11161787B2 (en) 2021-11-02
CN110325488B (zh) 2022-09-06
EP3587376A4 (en) 2020-12-23
JPWO2018155680A1 (ja) 2019-12-19
KR20190124702A (ko) 2019-11-05
CN110325488A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
Sun et al. Fabrication of transparent Y2O3 ceramics via aqueous gelcasting
US11097987B2 (en) Production method of calcium carbonate porous sintered body
Wang et al. Densification and microstructural evolution of yttria transparent ceramics: The effect of ball milling conditions
Chesnaud et al. Preparation of transparent oxyapatite ceramics by combined use of freeze-drying and spark-plasma sintering
JP2017518253A (ja) 透光性金属フッ化物セラミック
WO2018155680A1 (ja) 高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法
JP2021116202A (ja) 六方晶窒化ホウ素粉末、及び焼結体原料組成物
JP2012126618A (ja) 導電性マイエナイト化合物の製造方法
JP6618853B2 (ja) 炭酸カルシウム焼結体の製造方法
JP6442436B2 (ja) 炭酸カルシウム焼結体の製造方法及び炭酸カルシウム焼結体製造用炭酸カルシウム
Tatli et al. Low temperature densification of silicon nitride using Li2O-based surface coatings
WO2020189366A1 (ja) 炭酸カルシウム焼結体及びその製造方法並びに骨補填材
Kakade et al. Combustion synthesis, powder treatment, dispersion and tape casting of lanthanum strontium manganite
JPH1072250A (ja) 酸化アルミニウム−セラミック成形体の製造方法、酸化アルミニウム−セラミック成形体およびそれからなるイオン導体
WO2023013551A1 (ja) 焼結体原料炭酸カルシウム、炭酸カルシウム多孔質焼結体、炭酸カルシウム緻密質焼結体ならびにそれらの製造方法
JP3656899B2 (ja) 高密度ジルコニウム酸バリウム焼結体および製造法
Li Fabrication of transparent yttrium aluminum garnet ceramic
US20200369572A1 (en) Apatite body and preparing method thereof
CN117902916A (zh) 一种多孔TaC陶瓷材料及其制备方法
JP4452810B2 (ja) 透明マグネシア焼結体の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501860

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197021041

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018758072

Country of ref document: EP