WO2018155149A1 - センサ情報提供装置、センサ情報収集装置、センサ情報収集システム、センサ情報提供方法、センサ情報収集方法、およびコンピュータプログラム - Google Patents
センサ情報提供装置、センサ情報収集装置、センサ情報収集システム、センサ情報提供方法、センサ情報収集方法、およびコンピュータプログラム Download PDFInfo
- Publication number
- WO2018155149A1 WO2018155149A1 PCT/JP2018/003837 JP2018003837W WO2018155149A1 WO 2018155149 A1 WO2018155149 A1 WO 2018155149A1 JP 2018003837 W JP2018003837 W JP 2018003837W WO 2018155149 A1 WO2018155149 A1 WO 2018155149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor information
- sensor
- unit
- information
- moving body
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/10—Detecting, e.g. by using light barriers
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M11/00—Telephonic communication systems specially adapted for combination with other electrical systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
Definitions
- the present invention relates to a sensor information providing device, a sensor information collecting device, a sensor information collecting system, a sensor information providing method, a sensor information collecting method, and a computer program.
- a sensor information providing apparatus is a sensor information providing apparatus that is mounted on a moving body that travels on a predetermined fixed course.
- a sensor information acquisition unit that acquires sensor information that is a measurement result of a physical quantity of a target by a sensor, a wireless communication unit for performing wireless communication, and the sensor information acquired by the sensor information acquisition unit, the wireless communication unit And a sensor information transmitting unit for transmitting to the sensor information collecting device.
- a sensor information collection device is installed on the moving body via wireless communication from a sensor information providing apparatus installed on the moving body traveling on a predetermined fixed course.
- a sensor information receiving unit that receives sensor information that is a measurement result of a target physical quantity by the sensor, and a storage control unit that stores the sensor information received by the sensor information receiving unit in a storage device.
- a sensor information collecting system is connected to a sensor information providing device mounted on a moving body traveling on a predetermined fixed course, and the sensor information providing device via wireless communication.
- a sensor information acquisition unit that acquires sensor information that is a measurement result of a physical quantity of a target by the sensor from a sensor installed on the moving body; and a wireless A wireless communication unit for performing communication, and a sensor information transmission unit for transmitting the sensor information acquired by the sensor information acquisition unit to the sensor information collection device via the wireless communication unit, and the sensor
- the information collecting device includes a sensor information receiving unit that receives the sensor information from the sensor information providing device via wireless communication, and the sensor information receiving unit receives the sensor information.
- the capacitors information, and a storage control unit to be stored in the storage device.
- a sensor information providing method is a sensor information providing method by a sensor information providing apparatus mounted on a moving body that travels on a predetermined fixed course, and is installed in the moving body.
- a sensor information that is a measurement result of a target physical quantity by the sensor, and a step of transmitting the acquired sensor information to a sensor information collection device by wireless communication.
- a sensor information collecting method is installed in the mobile body via wireless communication from a sensor information providing apparatus installed in the mobile body traveling on a predetermined fixed course. Receiving sensor information that is a measurement result of a physical quantity of a target by the sensor, and storing the received sensor information in a storage device.
- a computer program is a computer program for causing a computer to function as a sensor information providing device mounted on a moving body that travels on a predetermined fixed course.
- the sensor information acquisition unit that acquires sensor information that is a measurement result of the target physical quantity by the sensor from the sensor installed in the mobile body, and the sensor information acquired by the sensor information acquisition unit, by wireless communication, It is made to function as a sensor information transmission part which transmits to a sensor information collection device.
- a computer program is configured such that a computer is installed on the moving body via wireless communication from a sensor information providing apparatus installed on the moving body that runs on a predetermined fixed course.
- the sensor information receiving unit that receives the sensor information that is the measurement result of the target physical quantity by the sensor, and the storage control unit that stores the sensor information received by the sensor information receiving unit in a storage device.
- the conventional system has a problem that costs for inspection of the structure are required.
- the present disclosure has been made to solve such problems, and is a sensor information providing device, a sensor information collecting device, a sensor information collecting system, and a sensor information providing method for inspecting a structure at a low cost.
- An object is to provide a sensor information collection method and a computer program.
- a sensor information providing apparatus is a sensor information providing apparatus mounted on a moving body that travels on a predetermined fixed course, and includes a sensor installed on the moving body, A sensor information acquisition unit that acquires sensor information that is a measurement result of a physical quantity of a target by the sensor, a wireless communication unit for performing wireless communication, and the sensor information acquired by the sensor information acquisition unit, the wireless communication unit And a sensor information transmitting unit for transmitting to the sensor information collecting device.
- sensor information can be transmitted to a sensor information collection device such as a server by wireless communication by measuring a target physical quantity with a sensor installed on a route bus or train.
- sensor information can be acquired without using a dedicated vehicle for inspection of a structure by attaching the sensor to a moving body traveling on a fixed course such as a route bus or train.
- the sensor information is transmitted to the sensor information collecting device by wireless communication, it is not necessary to prepare a large-scale storage device for storing the sensor information.
- the sensor information can be analyzed by a sensor information collecting device or another device connected to the sensor information collecting device to check the structure. Therefore, the structure can be inspected at a low cost.
- the sensor information transmission unit periodically transmits the sensor information to the sensor information collection device.
- the sensor information can be periodically transmitted to the sensor information collecting device.
- the sensor information collection device can detect an abnormality of the structure from the change in the sensor information at each point.
- the sensor information providing apparatus described above further includes an instruction information receiving unit that receives instruction information related to the measurement accuracy of the target physical quantity from the sensor information collecting device via the wireless communication unit;
- a measurement accuracy adjustment unit that adjusts the measurement accuracy of the sensor based on the instruction information may be provided.
- the measurement accuracy of the sensor can be adjusted based on the instruction information received from the sensor information collection device.
- sensor information with measurement accuracy according to the instruction information can be provided to the sensor information collecting apparatus.
- sensor information with different measurement accuracy inside and outside the tunnel can be provided to the sensor information collection device.
- the senor includes a camera that captures an image of the periphery of the moving body
- the instruction information receiving unit includes, as the instruction information, instruction information related to a resolution of an image output from the camera.
- the measurement accuracy adjustment unit changes the resolution of the image output by the camera based on the instruction information.
- an image whose resolution is adjusted based on the instruction information received from the sensor information collection device can be provided to the sensor information collection device. For this reason, it is possible to provide a high-resolution image for a portion that requires detailed inspection on the sensor information collection device side. Further, by providing a low-resolution image at a location sufficient for normal inspection, the amount of communication with the sensor information collection device can be reduced.
- the sensor includes a camera that captures an image of the periphery of the moving body, and the instruction information receiving unit receives instruction information related to a frame rate of an image output from the camera as the instruction information.
- the measurement accuracy adjustment unit may change a frame rate of an image output from the camera based on the instruction information.
- an image with the frame rate adjusted can be provided to the sensor information collection device based on the instruction information received from the sensor information collection device. For this reason, an image with a high frame rate can be provided for a portion that requires detailed inspection on the sensor information collection device side. Further, in a place where normal inspection is sufficient, it is possible to reduce the amount of communication with the sensor information collection device by providing an image with a low frame rate.
- the above-described sensor information providing apparatus further includes a position information acquisition unit that acquires position information of the moving body, and the sensor information transmission unit further includes the position acquired by the position information acquisition unit. Information may be transmitted to the sensor information collection device.
- the position information of the moving body can be provided to the sensor information collection device. For this reason, when an abnormality or the like of a structure is detected on the sensor information collection device side, the position can be easily specified.
- the sensor may include a camera that captures an image of the periphery of the moving body.
- the senor may include a road surface sensor that measures a road surface state of a road surface on which the moving body travels.
- the sensor information collection device with the road surface state information of the road surface on which the mobile body travels as the sensor information.
- the road surface state information it is possible to inspect roads, provide information on places where the road surface state is bad, and the like.
- the senor may include a vibration sensor that measures vibration of the moving body.
- vibration information of the moving body can be provided as sensor information to the sensor information collection device.
- the sensor information collection device side based on the road surface state information, it is possible to inspect roads, provide information on places where the road surface state is bad, and the like.
- the above-described sensor information providing device further includes a storage device that temporarily stores the sensor information acquired by the sensor information acquisition unit, and the sensor information transmission unit includes the sensor information collection device.
- the sensor information may be read from the storage device according to the communication state of wireless communication between the sensor information and the read sensor information may be transmitted to the sensor information collection device.
- the sensor information when the communication state is poor, the sensor information is temporarily stored in the storage device, and after the communication state is improved, the sensor information stored in the storage device can be transmitted to the sensor information collecting device. it can. For this reason, even if a situation where the communication state temporarily deteriorates, such as during tunnel travel, sensor information can be reliably transmitted to the sensor information collection device.
- the storage device is for temporarily storing sensor information. For this reason, it is not necessary to store all collected sensor information as in the prior art, and a storage device having a small storage capacity can be used.
- a sensor information collection device is installed in the mobile body via wireless communication from a sensor information providing apparatus installed in the mobile body traveling on a predetermined fixed course.
- a sensor information receiving unit that receives sensor information that is a measurement result of the target physical quantity by the sensor, and a storage control unit that stores the sensor information received by the sensor information receiving unit in a storage device.
- sensor information output from a sensor installed on a moving body traveling on a predetermined fixed course can be received via wireless communication and stored in a storage device.
- sensor information output from sensors installed on a route bus or train can be received and stored in a storage device.
- the above-described sensor information collection device further detects a change event that has occurred in the surrounding environment of the mobile body based on the sensor information periodically received by the sensor information receiving unit.
- the sensor information can be received periodically. As a result, it is possible to detect a change event occurring around the moving body with high accuracy and provide the detected event to an external device.
- the change event detection unit detects an abnormal event that has occurred on the traveling path of the moving body as the change event based on the sensor information.
- the sensor information at each point on the fixed course can be periodically received. Therefore, an abnormal event (for example, a crack in the road) that occurs on the traveling path of the moving body with high accuracy from the change in the sensor information. Etc.) can be detected.
- an abnormal event for example, a crack in the road
- the sensor includes a camera that captures an image of the periphery of the moving object, and the sensor information receiving unit receives an image of the periphery of the moving object captured by the camera as the sensor information.
- the change event detection unit may detect a suspicious person existing around the moving body as the change event based on the image.
- the sensor includes a camera that captures an image of the periphery of the moving object, and the sensor information receiving unit receives an image of the periphery of the moving object captured by the camera as the sensor information.
- the change event detection unit detects a change event that has occurred in a traveling path of the moving body or a building around the traveling path based on the image, and the sensor information collection device further detects the change event. You may provide the map information update part which updates map information based on the event of the change of the said road or the said building which the part detected.
- the image of each point on the fixed course can be periodically received, the change of the image caused by the change in the image on the traveling path of the moving body and the building around the traveling path can be detected with high accuracy.
- An event can be detected.
- the map information can be updated based on the detected event. Therefore, the map information can be updated with high accuracy and speed.
- the sensor information receiving unit further receives position information of the moving body from the sensor information providing device, and the sensor information collecting device further relates to measurement accuracy of the physical quantity of the target by the sensor.
- An instruction information transmission unit that transmits the instruction information regarding the measurement accuracy according to the position information of the moving body to the sensor information providing apparatus.
- the measurement accuracy of the sensor can be changed according to the position information of the moving body, and the sensor information corresponding to the position information can be received from the sensor information providing apparatus.
- the sensor information providing device is provided with high-precision sensor information.
- low-precision sensor information is provided. It can be provided to the sensor information providing apparatus. Thereby, highly accurate sensor information can be acquired about the location which needs a detailed inspection, reducing the communication amount for sensor information transmission.
- the above-described sensor information collection device may further include a sensor information providing unit that provides the sensor information received by the sensor information receiving unit to an external device.
- the sensor information received from the sensor information providing device can be provided to other external devices. Thereby, it is possible to detect a change event that has occurred around the moving body in another external device.
- a sensor information collecting system includes a sensor information providing device mounted on a moving body traveling on a predetermined fixed course, and wireless communication with the sensor information providing device.
- a sensor information acquisition device connected to the sensor information acquisition device, wherein the sensor information providing device acquires sensor information that is a measurement result of a physical quantity of a target by the sensor from a sensor installed on the moving body;
- a wireless communication unit for performing wireless communication, and a sensor information transmission unit that transmits the sensor information acquired by the sensor information acquisition unit to the sensor information collection device via the wireless communication unit,
- the sensor information collecting device receives the sensor information from the sensor information providing device via wireless communication, and the sensor information receiving unit receives the sensor information.
- the serial sensor information, and a storage control unit to be stored in the storage device.
- sensor information can be transmitted to a sensor information collection device such as a server by wireless communication by measuring a target physical quantity with a sensor installed on a route bus or train.
- sensor information can be acquired without using a dedicated vehicle for inspection of a structure by attaching the sensor to a moving body traveling on a fixed course such as a route bus or train.
- the sensor information is transmitted to the sensor information collecting device by wireless communication, it is not necessary to prepare a large-scale storage device for storing the sensor information.
- the sensor information collection device can accumulate the received sensor information in a storage device. As a result, when a defect such as a crack in a structure or a traffic accident occurs, the cause can be investigated by searching the sensor information accumulated in the storage device afterwards.
- a sensor information providing method is a sensor information providing method by a sensor information providing apparatus mounted on a moving body that travels on a predetermined fixed course.
- the method includes a step of acquiring sensor information that is a measurement result of a target physical quantity by the sensor from an installed sensor, and a step of transmitting the acquired sensor information to a sensor information collection device by wireless communication.
- This configuration includes steps corresponding to each processing unit provided in the sensor information providing apparatus described above. For this reason, according to this structure, there can exist an effect
- a sensor information collecting method is installed in the mobile body via wireless communication from a sensor information providing apparatus installed in the mobile body traveling on a predetermined fixed course. Receiving sensor information that is a measurement result of the physical quantity of the object by the sensor, and storing the received sensor information in a storage device.
- This configuration includes steps corresponding to each processing unit provided in the sensor information collection device described above. For this reason, according to this structure, there can exist an effect
- a computer program according to another embodiment of the present invention is a computer program for causing a computer to function as a sensor information providing device mounted on a moving body that travels on a predetermined fixed course.
- the sensor information acquisition unit that acquires sensor information that is a measurement result of the target physical quantity by the sensor from the sensor installed on the mobile body, and the sensor information acquired by the sensor information acquisition unit by wireless communication And function as a sensor information transmission unit that transmits to the sensor information collection device.
- the computer can function as the sensor information providing apparatus described above. For this reason, there can exist an effect
- a computer program installs a computer on a mobile body from a sensor information providing device installed on the mobile body traveling on a predetermined fixed course via wireless communication.
- the sensor information receiving unit that receives the sensor information that is the measurement result of the physical quantity of the target by the sensor, and the sensor control unit that receives the sensor information received by the sensor information receiving unit are caused to function as a storage control unit.
- the computer can function as the sensor information collection device described above. For this reason, there can exist an effect
- FIG. 1 is a diagram showing a configuration of a sensor information collection system according to Embodiment 1 of the present invention.
- the sensor information collection system 1 includes a route bus 100, a sensor information collection device 40, and an external device 60.
- the sensor information collection system 1 may include a plurality of route buses 100.
- the route bus 100 is an example of a moving body that periodically travels on a predetermined fixed course.
- the route bus 100 runs on a fixed course several times a day according to the bus timetable.
- the route bus 100 includes a sensor 20, a sensor information providing device 10, and a storage device 30.
- the sensor 20 is installed in the route bus 100 and measures a physical quantity of a target around the route bus 100.
- the sensor 20 includes, for example, cameras 21 to 24, a vibration sensor 25, and a road surface sensor 26.
- FIG. 2 is a view of the route bus 100 as viewed from the left side
- FIG. 3 is a view of the route bus 100 as viewed from above.
- the camera 21 is attached near the ceiling in front of the route bus 100, images structures such as roads, tunnels, bridges, and the like located in front of the route bus 100, and outputs an image of the structure.
- the camera 22 is attached near the ceiling on the left side of the route bus 100, images the structure located on the left side of the route bus 100, and outputs an image of the structure.
- the camera 23 is mounted near the ceiling behind the route bus 100, images the structure located behind the route bus 100, and outputs an image of the structure.
- the camera 24 is attached near the ceiling on the right side of the route bus 100, images the structure located on the right side of the route bus 100, and outputs an image of the structure.
- the vibration sensor 25 is attached near the bumper behind the route bus 100, measures the vibration of the route bus 100, and outputs the vibration waveform of the electric signal.
- the road surface sensor 26 is attached in the vicinity of a bumper in front of the route bus 100, determines whether the road surface is dry, wet, frozen, snowy, or the like, and outputs a road surface state as a determination result.
- a millimeter wave radar or a LIDAR (Laser Imaging Detection and Rang) sensor may be attached to the route bus 100.
- a gas sensor that detects a gas such as exhaust gas that causes air pollution may be attached to the route bus 100.
- the camera may be installed upward in order to capture an upper wall surface of the tunnel when the route bus 100 passes through the tunnel.
- the sensor information providing apparatus 10 sends the sensor information, which is the measurement result of the target physical quantity measured by the sensor 20, and the position information of the route bus 100 to the radio base station 70 and the network 80. And provided to the sensor information collecting device 40 by wireless communication.
- the sensor information providing apparatus 10 acquires position information of the route bus 100 based on a satellite signal received from a GPS (Global Positioning System) satellite 90.
- GPS Global Positioning System
- the wireless communication system between the sensor information providing apparatus 10 and the wireless base station 70 is, for example, a “5th generation mobile communication system” (hereinafter referred to as “5G” (5th generation)) whose standardization is currently in progress. Abbreviated.)
- 5G 5th generation mobile communication system
- wireless communication with large capacity, high data rate, and low delay can be realized, and wireless communication with an effective speed of 1 Gbps or more is expected. Accordingly, for example, in 5G, about several tens of 4K-sized images can be transmitted in real time.
- the storage device 30 is a storage device for temporarily storing the sensor information output from the sensor 20, for example, a magnetic storage device such as HDD (Hard Disk Drive), flash memory or EEPROM (Electrically Erasable Programmable Read Only Memory). ) And the like, and volatile memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory).
- a magnetic storage device such as HDD (Hard Disk Drive), flash memory or EEPROM (Electrically Erasable Programmable Read Only Memory).
- EEPROM Electrically Erasable Programmable Read Only Memory
- volatile memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory).
- the wireless base station 70 is a 5G base station, and for example, a plurality of wireless base stations 70 are installed beside the road on which the route bus 100 travels.
- the network 80 is, for example, the Internet.
- the sensor information collecting device 40 receives the sensor information of the sensor 20 transmitted from the sensor information providing device 10 via the wireless base station 70 and the network 80, and based on the received sensor information, a road, a tunnel, a bridge, etc. Detect abnormalities in the structure.
- the sensor information collection device 40 may be, for example, a server installed in a facility of a road administrator who manages a road, or a server installed in a facility of a bus operator who operates a bus.
- the external device 60 receives the sensor information of the sensor 20 from the sensor information collection device 40 via the network 80, and detects an abnormality of the structure.
- the abnormality detection process of the structure may be performed by the sensor information collection device 40 or the external device 60.
- FIG. 4 is a block diagram showing a configuration of the sensor information providing apparatus 10 according to Embodiment 1 of the present invention.
- sensor information providing apparatus 10 includes wireless communication unit 11, sensor information acquisition unit 12, position information acquisition unit 13, sensor information transmission unit 14, instruction information reception unit 15, and measurement accuracy. And an adjustment unit 16.
- the wireless communication unit 11 transmits and receives data to and from the sensor information collection device 40 via the wireless base station 70 and the network 80 by performing wireless communication according to 5G with the wireless base station 70. Is a communication interface.
- the sensor information acquisition unit 12 acquires sensor information from the cameras 21 to 24 constituting the sensor 20.
- the sensor information acquisition unit 12 acquires images of structures located on the front, left side, rear and right sides of the route bus 100 from the cameras 21 to 24, respectively.
- the sensor information acquisition unit 12 acquires a vibration waveform corresponding to the vibration of the route bus 100 from the vibration sensor 25.
- the sensor information acquisition unit 12 acquires the road surface state of the road surface on which the route bus 100 travels from the road surface sensor 26.
- the sensor information acquisition unit 12 temporarily stores the acquired sensor information in the storage device 30.
- the sensor information acquisition unit 12 causes the storage device 30 to store sensor information according to a FIFO (First-In First-Out) method.
- the sensor information acquisition unit 12 causes the storage device 30 to store the position information of the route bus 100 acquired by the position information acquisition unit 13 described later together with the sensor information.
- FIFO First-In First-Out
- the storage device 30 is provided outside the sensor information providing device 10, but the storage device 30 may be provided inside the sensor information providing device 10.
- the position information acquisition unit 13 specifies the position of the route bus 100 (for example, the latitude and longitude of the route bus 100) based on the satellite signals received from the plurality of GPS satellites 90.
- the satellite used for satellite positioning is not limited to the GPS satellite 90, but may be another satellite such as a quasi-zenith satellite.
- the sensor information transmission unit 14 combines the sensor information acquired by the sensor information acquisition unit 12 with the position information of the route bus 100 acquired by the position information acquisition unit 13, and transmits it to the sensor information collection device 40 via the wireless communication unit 11. Send. Since the route bus 100 travels periodically on a fixed course, the sensor information transmission unit 14 can periodically transmit sensor information and position information to the sensor information collection device 40.
- the sensor information transmission unit 14 reads out the sensor information from the storage device 30 according to the communication state of the wireless communication with the sensor information acquisition unit 12, and transmits the read sensor information to the sensor information collection device 40.
- the sensor information transmission unit 14 transmits the sensor information acquired by the sensor information acquisition unit 12 to the sensor information collection device 40 in real time.
- the sensor information transmission unit 14 cannot transmit the sensor information to the sensor information collection device 40 in real time. For this reason, the sensor information transmitting unit 14 transmits the sensor information temporarily stored in the storage device 30 to the sensor information collecting device 40 after the communication state becomes good.
- the instruction information receiving unit 15 receives instruction information related to the measurement accuracy of the target physical quantity from the sensor information collection device 40.
- the instruction information receiving unit 15 receives instruction information related to the output resolution as instruction information regarding the measurement accuracy of the cameras 21 to 24.
- the instruction information receiving unit 15 receives information indicating 4K or HD as instruction information when the cameras 21 to 24 can output a 4K size or HD (High Definition video) size image.
- the instruction information receiving unit 15 may receive instruction information related to the frame rate of the image as instruction information related to the measurement accuracy of the cameras 21 to 24.
- the instruction information receiving unit 15 receives information indicating 30 fps or 1 fps as instruction information.
- the instruction information receiving unit 15 may receive information about the time interval for acquiring sensor information as the instruction information for the vibration sensor 25 and the road surface sensor 26. For example, when the vibration sensor 25 or the road surface sensor 26 can output sensor information at 10 msec intervals or 1 sec intervals, the instruction information receiving unit 15 provides information indicating 10 msec intervals or 1 sec intervals as instruction information. Receive.
- the measurement accuracy adjusting unit 16 adjusts the measurement accuracy of the sensor 20 based on the instruction information received by the instruction information receiving unit 15.
- the measurement accuracy adjusting unit 16 outputs an image having the resolution indicated by the instruction information to the cameras 21 to 24. Send the command.
- the cameras 21 to 24 subsequently output images with the resolution indicated by the instruction information in accordance with the instructions.
- the cameras 21 to 24 output 4K size images.
- the measurement accuracy adjusting unit 16 outputs an image to the cameras 21 to 24 at the frame rate indicated by the instruction information. Send a command to Seyo.
- the cameras 21 to 24 output images at the frame rate indicated by the instruction information after that in accordance with the instruction.
- the cameras 21 to 24 output images at 30 fps.
- the measurement accuracy adjustment unit 16 receives the instruction information about the acquisition time interval of the sensor information from the vibration sensor 25 or the road surface sensor 26 when the instruction information reception unit 15 receives the vibration sensor 25 or the road surface sensor 26.
- a command to acquire sensor information is transmitted at an acquisition time interval indicated by the instruction information.
- the vibration sensor 25 or the road surface sensor 26 outputs sensor information at an acquisition time interval indicated by the instruction information thereafter in accordance with the command.
- the vibration sensor 25 when the instruction information for the vibration sensor 25 indicates a 10 msec interval, the vibration sensor 25 outputs the sensor information at a 10 msec interval.
- the instruction information for the road surface sensor 26 indicates a 1 sec interval, the road surface sensor 26 outputs the sensor information at an interval of 1 sec.
- FIG. 5 is a block diagram showing a configuration of the sensor information collecting apparatus 40 according to Embodiment 1 of the present invention.
- the sensor information collection device 40 includes a wireless communication unit 41, a sensor information reception unit 42, a storage control unit 43, an instruction information transmission unit 44, a change event detection unit 45, and a change event provision.
- Unit 46 and sensor information providing unit 47 are included in the sensor information collection device 40.
- the wireless communication unit 41 is a communication interface for connecting to the network 80.
- the wireless communication unit 41 transmits / receives data to / from the sensor information providing apparatus 10 and the external apparatus 60 via the network 80.
- the connection form between the sensor information collection device 40 and the network 80 is not limited to wireless communication, but may be wired communication.
- the sensor information receiving unit 42 receives the sensor information output from the sensor 20 from the sensor information providing apparatus 10 through the wireless communication unit 41 together with the position information of the route bus 100 at the timing when the sensor information is output.
- the sensor information receiving unit 42 receives the images output from the cameras 21 to 24 together with the position information of the positions where the images are taken. Further, the sensor information receiving unit 42 receives the vibration waveform output from the vibration sensor 25 together with the position information of the position where the vibration waveform is acquired. Further, the sensor information receiving unit 42 receives the road surface state information output from the road surface sensor 26 together with the position information of the position where the road surface state is acquired.
- the storage control unit 43 causes the storage device 50 to store the sensor information and the position information received by the sensor information receiving unit 42.
- the storage device 50 is a storage device for storing the sensor information and the position information received by the sensor information receiving unit 42.
- the storage device 50 is a magnetic storage device such as an HDD, a nonvolatile memory such as a flash memory or an EEPROME, an SRAMS or a DRAM. It is composed of volatile memory.
- the storage device 50 is provided outside the sensor information collection device 40, but the storage device 50 may be provided inside the sensor information collection device 40.
- the instruction information transmission unit 44 is instruction information related to the measurement accuracy of the target physical quantity by the sensor 20, and provides the instruction information related to the measurement accuracy corresponding to the position information of the route bus 100 via the wireless communication unit 41. 10 to send.
- the instruction information transmission unit 44 refers to the latest position information of the route bus 100 stored in the storage device 50, and the route bus 100 moves from outside the predetermined range to within the range. Or, when moving from the inside of the range to the outside of the range, the instruction information regarding the measurement accuracy is transmitted.
- the instruction information transmitting unit 44 transmits instruction information for setting the resolution and frame rate of the cameras 21 to 24 to 4K and 30 fps, respectively.
- the instruction information transmission unit 44 transmits instruction information for setting the resolution and frame rate of the cameras 21 to 24 to HD and 1 fps, respectively.
- the change event detection unit 45 detects a change event that has occurred in the surrounding environment of the route bus 100 based on the sensor information stored in the storage device 50.
- the storage device 50 stores sensor information at each point on the fixed course that is periodically acquired. Therefore, the change event detection unit 45 detects a change in sensor information by comparing current and past sensor information at the same location on the fixed course. In addition, the change event detection unit 45 detects an abnormal event (for example, a crack in the road) of the structure on the traveling road from the change in the sensor information.
- an abnormal event for example, a crack in the road
- the change event detection unit 45 performs threshold processing on the difference image between the latest image and the image of the same location captured one day ago, and identifies the location where the change has occurred on the image. By analyzing this image, it is possible to detect the slope failure of the slope.
- the change event detection unit 45 compares the latest vibration waveform with the vibration waveform at the same location one day ago to detect a location where a change in vibration has occurred, and details the vibration waveform at the location. By analyzing, it is also possible to detect a crack in the road.
- the change event providing unit 46 provides the change event detected by the change event detecting unit 45 to the external device 60 via the wireless communication unit 41.
- the road administrator can be notified of the abnormality of the structure quickly. it can.
- the sensor information providing unit 47 transmits the sensor information and the position information stored in the storage device 50 to the external device 60 via the wireless communication unit 41. This is because the external device 60 may execute an abnormality detection process based on the sensor information.
- FIG. 6 is a flowchart showing a processing procedure of the sensor information providing apparatus 10 according to Embodiment 1 of the present invention.
- the sensor information acquisition unit 12 acquires sensor information from the cameras 21 to 24, the vibration sensor 25, and the road surface sensor 26 (S1).
- the acquisition of sensor information may be executed at regular intervals while the route bus 100 is traveling on a fixed course, or may be performed only when traveling on a predetermined range of the fixed course. .
- the position information acquisition unit 13 acquires the position information of the route bus 100 based on the satellite signal received from the GPS satellite 90 at the timing when the sensor information acquisition unit 12 acquires the sensor information (S 2).
- the sensor information acquisition unit 12 temporarily stores the acquired sensor information in the storage device 30 together with the position information of the route bus 100 acquired by the position information acquisition unit 13 (S3).
- the sensor information acquisition unit 12 deletes old sensor information from the storage device 30 and stores new sensor information in the storage device 30 according to the FIFO method.
- the sensor information transmission unit 14 obtains the sensor information acquired by the sensor information acquisition unit 12 and the position information acquired by the position information acquisition unit 13 in real time. Is transmitted to the sensor information collecting device 40.
- the sensor information transmission unit 14 transmits the sensor information and the position information temporarily stored in the storage device 30 to the sensor information collection device 40 after the communication state becomes good. (S4).
- the measurement accuracy adjusting unit 16 receives the instruction information received by the instruction information receiving unit 15. Based on the above, the measurement accuracy of the sensor 20 is adjusted (S6).
- the sensor information providing apparatus 10 determines whether or not the end condition is satisfied (S7).
- the case where the end condition is satisfied is, for example, a case where the route bus 100 finishes traveling on a fixed course, or a case where the engine switch of the route bus 100 is turned off.
- step S7 If the end condition is not satisfied (NO in S7), the processes after step S1 are repeatedly executed until the end condition is satisfied.
- FIG. 7 is a flowchart showing a processing procedure of the sensor information collecting apparatus 40 according to Embodiment 1 of the present invention.
- the storage control unit 43 uses the sensor information and position information received by the sensor information receiving unit 42 as It memorize
- the instruction information transmission unit 44 determines whether or not the measurement accuracy of the sensor 20 needs to be updated (S13). That is, the instruction information transmission unit 44 refers to the latest and temporally previous position information stored in the storage device 50, and the route bus 100 moves from outside the predetermined range to within the range. Or when it moves out of the range, it is determined that the measurement accuracy needs to be updated.
- the instruction information transmission unit 44 determines that the measurement accuracy of the sensor 20 needs to be updated (YES in S14), the instruction information transmission unit 44 transmits instruction information regarding the measurement accuracy (S15). For example, when the route bus 100 moves from outside the tunnel to inside the tunnel, the instruction information transmission unit 44 transmits instruction information that sets the resolution and frame rate of the cameras 21 to 24 to 4K and 30 fps, respectively.
- the sensor information collection device 40 determines whether or not the end condition is satisfied (S16).
- the case where the end condition is satisfied is, for example, a case where sensor information is not received from the same sensor information providing apparatus 10 for a certain time or more.
- step S11 If the end condition is not satisfied (NO in S16), the processes after step S11 are repeatedly executed until the end condition is satisfied.
- the sensor information providing unit 47 transmits the sensor information and the position information stored in the storage device 50 to the external device 60 via the wireless communication unit 41 (S17). ).
- the sensor information and the position information acquired from the route bus 100 traveling on the fixed course are stored in the storage device 50 and transmitted to the external device 60 by the processing shown in FIG.
- FIG. 8 is a flowchart showing another processing procedure of the sensor information collecting apparatus 40 according to Embodiment 1 of the present invention.
- the process shown in FIG. 8 is executed in a state where sensor information and position information are stored in the storage device 50 according to the process procedure shown in FIG. For example, after the traveling on the fixed course of the route bus 100 is completed, the processing shown in FIG. 8 is executed.
- execution timing of the process shown in FIG. 8 is not limited to the above, and may be executed in parallel with the process of FIG.
- the sensor information collecting device 40 repeatedly executes the processing of steps S21 to S25 for each point of interest on the fixed course of the route bus 100 (loop A).
- the change event detection unit 45 reads sensor information corresponding to the point of interest from the storage device 50 (S21). For example, the change event detection unit 45 reads the latest sensor information corresponding to the position information of the point of interest and the sensor information one day ago from the storage device 50. Hereinafter, the latter sensor information is referred to as “reference sensor information”. The date and time of the sensor information can be determined from the time stamp information attached to the sensor information.
- the change event detection unit 45 compares the latest sensor information read from the storage device 50 with the reference sensor information (S22). For example, as described above, when the sensor information is an image, the change event detection unit 45 identifies the change region from the difference image between the latest image and the image at the same location captured one day ago.
- the change event detection unit 45 determines that a change has occurred in the sensor information (YES in S23)
- the change event detection unit 45 based on the comparison result and the sensor information read from the storage device 50, A change event occurring in the surrounding environment of the route bus 100 is detected (S24). For example, as described above, the change event detection unit 45 analyzes the image of the place where the change has occurred on the image, and if the soil-colored area is increasing on the side of the road, A landslide is detected as an event of change.
- FIG. 9 is a diagram illustrating an example of an analysis result obtained by the change event detection unit 45.
- the change event detection unit 45 identifies the crack area 120 or the landslide area 130 as the changed area. To do.
- the change event detection unit 45 detects a crack in the road or a landslide as an event of change by analyzing the image of the specified change area.
- the change event providing unit 46 provides the change event detected by the change event detecting unit 45 to the external device 60 via the wireless communication unit 41 (S25).
- the sensor information providing apparatus 10 acquires sensor information of a target physical quantity from a sensor 20 installed on a route bus 100 traveling on a predetermined fixed course, and acquires the acquired sensor information. Can be transmitted to the sensor information collecting device 40 by wireless communication.
- a road administrator or the like acquires sensor information without using a dedicated vehicle for inspecting the structure. be able to.
- the sensor information providing apparatus 10 transmits the sensor information to the sensor information collecting apparatus 40 by wireless communication.
- the sensor information can be analyzed by another device such as the sensor information collecting device 40 or the external device 60 connected to the sensor information collecting device 40 to inspect the structure. Therefore, the structure can be inspected at a low cost.
- the sensor information providing apparatus 10 can periodically transmit sensor information to the sensor information collecting apparatus 40.
- the sensor information collection device 40 can detect an abnormality of the structure from the change in the sensor information at each point on the fixed course, based on the sensor information on the fixed course acquired periodically.
- the sensor information collection device 40 transmits instruction information for changing the measurement accuracy of the sensor 20 according to the position information of the route bus 100 to the sensor information provision device 10, and the sensor information provision device 10 collects the sensor information.
- the measurement accuracy of the sensor 20 for example, the resolution or frame rate of the cameras 21 to 24
- the sensor information providing apparatus 10 can provide the sensor information collecting apparatus 40 with sensor information with measurement accuracy according to the instruction information. Therefore, high-resolution images can be provided for portions that require detailed inspection by the sensor information collection device 40. Further, by providing a low-resolution image at a location sufficient for normal inspection, the amount of communication for image transmission can be reduced.
- the sensor information providing device 10 provides the sensor information collecting device 40 with the position information of the route bus 100 together with the sensor information. Therefore, when the sensor information collection device 40 detects a change event such as an abnormality in the structure, the sensor information collection device 40 can easily specify the occurrence position of the event.
- the route bus 100 includes a storage device 30 for temporarily storing sensor information. Therefore, the sensor information providing device 10 temporarily stores the sensor information in the storage device 30 when the communication state is poor, and collects the sensor information stored in the storage device 30 after the communication state is improved. Can be transmitted to the device 40. For this reason, the sensor information can be reliably transmitted to the sensor information collecting device 40 even when a situation in which the communication state temporarily deteriorates, such as during tunnel traveling, occurs. Further, the storage device 30 does not need to store all the collected sensor information as in the conventional case, and may have a storage area with a small storage capacity.
- the sensor information collecting device 40 can accumulate the sensor information received from the sensor information providing device 10 in the storage device 50. For this reason, the sensor information collection device 40 investigates the cause by searching the sensor information stored in the storage device 50 afterwards when a failure such as a crack in a structure or a traffic accident occurs. be able to.
- the sensor information collection device 40 can detect a change event (for example, a road crack or the like) that has occurred around the moving body with high accuracy, and can provide the detected event to the external device 60 or the like.
- the sensor information collecting device 40 can provide the sensor information received from the sensor information providing device 10 to another external device 60.
- the external device 60 can also detect a change event that has occurred around the moving body.
- the sensor information collection device 40 detects an abnormality in a structure such as a road, a tunnel, or a bridge as an event of a change that has occurred in the surrounding environment of the route bus 100.
- the change event detected by the sensor information collecting device 40 is not limited to these. For example, a suspicious person present around the route bus 100 may be detected.
- the change event detection unit 45 of the sensor information collection device 40 performs a threshold process on the difference image between the latest image and the image of the same location captured one day ago, thereby causing a change in the image. Is identified.
- the change event detection unit 45 may detect a suspicious person by analyzing the image of the change area.
- FIG. 10 is a diagram illustrating an example of an analysis result obtained by the change event detection unit 45.
- an area 140 where entry of people is prohibited is registered in the sensor information collection device 40 in advance.
- the sensor information collection device 40 identifies the change area 150 from the image obtained by imaging the area 140.
- the sensor information collection device 40 recognizes the face of the image of the change area 150 and detects a face from the image of the change area 150, the sensor information collection device 40 detects the suspicious person using the change area 150 as the suspicious person's area.
- the sensor information collection device 40 can periodically receive images of each point on the fixed course, a suspicious person existing around the route bus 100 with high accuracy from the change of the image. Can be detected.
- the sensor information collection device 40 detects a change event from the sensor information.
- map information is updated based on a detected change event.
- the configuration of the sensor information collection system according to Embodiment 2 of the present invention is the same as that shown in FIG. Therefore, detailed description thereof will not be repeated here. However, it differs from the first embodiment in that a sensor information collecting device 40A (FIG. 11) described below is used instead of the sensor information collecting device 40.
- the configuration of the sensor information providing apparatus 10 is the same as that shown in FIG.
- FIG. 11 is a block diagram showing a configuration of a sensor information collecting apparatus 40A according to Embodiment 2 of the present invention.
- the sensor information collection device 40A includes a wireless communication unit 41, a sensor information reception unit 42, a storage control unit 43, an instruction information transmission unit 44, a change event detection unit 45, and a change event provision.
- the sensor information collecting device 40A has a configuration further including a map information updating unit 48 and a map information providing unit 49 in the configuration of the sensor information collecting device 40 shown in FIG.
- the change event detection unit 45 detects a change event of the traveling road and the building as a change event. For example, the change event detection unit 45 compares the latest image with an image of the same location captured one month ago, and changes in the buildings on the roadside of the travel route on which the route bus 100 travels or the travel route itself. Change is detected.
- the map information update unit 48 updates the map information stored in advance in the storage device 50 based on the traveling path and structure change event detected by the change event detection unit 45, and updates the updated map information.
- the data is stored in the storage device 50.
- the map information providing unit 49 reads the map information updated by the map information updating unit 48 from the storage device 50 and provides it to the external device 60 and the in-vehicle communication device mounted on the vehicle via the network 80.
- the external device 60 may be a server installed in a business provider that provides a car navigation service.
- the map information of the car navigation system may be updated by providing the updated map information to the in-vehicle communication device.
- the processing procedure executed by the sensor information providing apparatus 10 is the same as that shown in FIG.
- the sensor information collection device 40A executes the processing of the processing procedure shown in the flowchart of FIG. Thereafter, the sensor information collecting apparatus 40A executes processing described below.
- FIG. 12 is a flowchart showing a processing procedure of the sensor information collecting apparatus 40A according to Embodiment 2 of the present invention.
- the process shown in FIG. 12 is executed in a state where the sensor information and the position information are stored in the storage device 50 by the process procedure shown in FIG.
- the process shown in FIG. 12 is performed after the fixed course of the route bus 100 is completed.
- execution timing of the process shown in FIG. 12 is not limited to the above, and may be executed in parallel with the process of FIG.
- the sensor information collection device 40A repeatedly executes the processing of steps S31 to S36 for each point of interest on the fixed course of the route bus 100 (loop B).
- the change event detection unit 45 reads an image corresponding to the point of interest from the storage device 50 (S31). For example, the change event detection unit 45 reads the latest image corresponding to the position information of the point of interest and the image one month ago from the storage device 50. The latter image is hereinafter referred to as “reference image”.
- the change event detection unit 45 compares the latest image read from the storage device 50 with the reference image (S32). For example, the change event detection unit 45 specifies a change region by performing threshold processing on a difference image between the latest image and an image at the same location captured one month ago. The change event detection unit 45 determines that a change has occurred in the image if the size of the change area is equal to or greater than a predetermined area threshold, and if the size is equal to or less than the area threshold, the change has not occurred in the image. to decide.
- the change event detection unit 45 determines that a change has occurred in the image (YES in S33), a change has occurred on the image based on the comparison result and the image read from the storage device 50. By analyzing the image of the location, a change in the building on the road side of the travel route of the route bus 100, a change in the travel route itself, etc. are detected (S34).
- FIG. 13 is a diagram illustrating an example of an analysis result obtained by the change event detection unit 45. As illustrated in FIG. 13, when a new home region 160 appears on the road side of the travel route of the route bus 100 on the image, the change event detection unit 45 identifies the home region 160 as a change region. The change event detecting unit 45 detects that the house has been constructed as a change event by analyzing the image of the specified change area.
- the map information update unit 48 updates the map information stored in advance in the storage device 50 based on the travel path and structure change event detected by the change event detection unit 45. Then, the updated map information is stored in the storage device 50 (S35).
- the map information update unit 48 performs a process of writing the building in the map information. Further, when the change event detection unit 45 detects that a new road has been constructed, the map information update unit 48 performs a process of writing the road in the map information.
- FIG. 14 is a diagram illustrating an example of the map information updated by the map information update unit 48.
- the map information update unit 48 specifies the position of the house that has been detected as being newly constructed by the change event detection unit 45 from the position information associated with the image, the image analysis result, and the like.
- the map information update unit 48 updates the map information by adding a house icon 170 to a location corresponding to the specified house position on the map.
- the map information providing unit 49 reads the map information updated by the map information updating unit 48 from the storage device 50, and is mounted on the external device 60 or the vehicle via the network 80. This is provided to the communication device (S36).
- the sensor information collection device 40A can periodically receive images of each point on the fixed course from the sensor information providing device 10. For this reason, the sensor information collecting apparatus 40A can detect a change event that has occurred in the travel route of the route bus 100 and the buildings around the travel route with high accuracy from the change in the image. Further, the sensor information collection device 40A can update the map information based on the detected event. For this reason, the sensor information collection device 40A ⁇ ⁇ can update the map information with high accuracy and speed.
- the sensor information providing apparatus 10 transmits the position information together with the sensor information, but the transmission of the position information is not necessarily essential.
- the sensor information providing device 10, the sensor 20, and the storage device 30 are installed in the route bus 100.
- the installation target of these devices is not limited to the route bus 100.
- these devices may be installed in a moving body that periodically travels on a fixed course such as a high-speed bus, a train, a bullet train, a liner, and a scheduled passenger aircraft.
- each of the above devices may be specifically configured as a computer system including a microprocessor, a ROM (Read Only Memory), a RAM, an HDD, and the like.
- a computer program is stored in the RAM or HDD.
- Each device achieves its functions by the microprocessor operating according to the computer program.
- the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
- the system LSI is an ultra-multifunctional LSI manufactured by integrating a plurality of components on a single chip, and specifically, a computer system including a microprocessor, ROM, RAM, and the like. .
- a computer program is stored in the RAM.
- the system LSI achieves its functions by the microprocessor operating according to the computer program.
- the present invention may be the method described above. Further, the present invention may be a computer program that realizes these methods by a computer.
- the computer program may be recorded on a computer-readable non-transitory recording medium, such as an HDD, a CD-ROM, or a semiconductor memory.
- a computer-readable non-transitory recording medium such as an HDD, a CD-ROM, or a semiconductor memory.
- the computer program may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
- the sensor information collection device 40 may be realized by a plurality of computers. Furthermore, the above embodiment and the above modification examples may be combined.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Signal Processing (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Selective Calling Equipment (AREA)
- Traffic Control Systems (AREA)
Abstract
本開示の一態様に係る装置は、予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置であって、移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するセンサ情報取得部と、無線通信を行うための無線通信部と、センサ情報取得部が取得したセンサ情報を、無線通信部を介して、センサ情報収集装置に送信するセンサ情報送信部とを備える。
Description
本発明は、センサ情報提供装置、センサ情報収集装置、センサ情報収集システム、センサ情報提供方法、センサ情報収集方法、およびコンピュータプログラムに関する。
本出願は、2017年2月22日出願の日本出願第2017-031248号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
本出願は、2017年2月22日出願の日本出願第2017-031248号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
従来、カメラを設置した専用車両を走行させながら、カメラで道路、トンネル、橋梁等の構造物を撮像し、カメラから出力される画像に基づいて、構造物の点検を行うシステムが提案されている(例えば、特許文献1参照)。
(1)本開示のある局面に係るセンサ情報提供装置は、予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置であって、前記移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するセンサ情報取得部と、無線通信を行うための無線通信部と、前記センサ情報取得部が取得した前記センサ情報を、前記無線通信部を介して、センサ情報収集装置に送信するセンサ情報送信部とを備える。
(11)本開示の他の局面に係るセンサ情報収集装置は、予め定められた固定コースを走行する移動体に設置されたセンサ情報提供装置から無線通信を介して、前記移動体に設置されたセンサによる対象の物理量の計測結果であるセンサ情報を受信するセンサ情報受信部と、前記センサ情報受信部が受信した前記センサ情報を、記憶装置に記憶させる記憶制御部とを備える。
(18)本開示の他の局面に係るセンサ情報収集システムは、予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置と、前記センサ情報提供装置と無線通信を介して接続されるセンサ情報収集装置とを備え、前記センサ情報提供装置は、前記移動体に設置されたセンサから、当該センサによる対象の物理量を計測結果であるセンサ情報を取得するセンサ情報取得部と、無線通信を行うための無線通信部と、前記センサ情報取得部が取得した前記センサ情報を、前記無線通信部を介して、前記センサ情報収集装置に送信するセンサ情報送信部とを有し、前記センサ情報収集装置は、前記センサ情報提供装置から無線通信を介して、前記センサ情報を受信するセンサ情報受信部と、前記センサ情報受信部が受信した前記センサ情報を、記憶装置に記憶させる記憶制御部とを有する。
(19)本開示の他の局面に係るセンサ情報提供方法は、予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置によるセンサ情報提供方法であって、前記移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するステップと、取得された前記センサ情報を、無線通信により、センサ情報収集装置に送信するステップとを含む。
(20)本開示の他の局面に係るセンサ情報収集方法は、予め定められた固定コースを走行する移動体に設置されたセンサ情報提供装置から無線通信を介して、前記移動体に設置されたセンサによる対象の物理量の計測結果であるセンサ情報を受信するステップと、受信された前記センサ情報を、記憶装置に記憶させるステップとを含む。
(21)本開示の他の局面に係るコンピュータプログラムは、予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置としてコンピュータを機能させるためのコンピュータプログラムであって、前記コンピュータを、前記移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するセンサ情報取得部と、前記センサ情報取得部が取得した前記センサ情報を、無線通信により、センサ情報収集装置に送信するセンサ情報送信部として機能させる。
(22)本開示の他の局面に係るコンピュータプログラムは、コンピュータを、予め定められた固定コースを走行する移動体に設置されたセンサ情報提供装置から無線通信を介して、前記移動体に設置されたセンサによる対象の物理量の計測結果であるセンサ情報を受信するセンサ情報受信部と、前記センサ情報受信部が受信した前記センサ情報を、記憶装置に記憶させる記憶制御部として機能させる。
<本開示が解決しようとする課題>
従来のシステムでは、構造物の点検のために、構造物に頻繁に足を運び、多くの画像を収集および蓄積する必要がある。また、画像を収集するための専用車両を用意する必要がある。
従来のシステムでは、構造物の点検のために、構造物に頻繁に足を運び、多くの画像を収集および蓄積する必要がある。また、画像を収集するための専用車両を用意する必要がある。
このため、従来のシステムでは構造物の点検のためのコストが掛かるという課題がある。
本開示は、このような課題を解決するためになされたものであり、低コストで構造物の点検等を行うためのセンサ情報提供装置、センサ情報収集装置、センサ情報収集システム、センサ情報提供方法、センサ情報収集方法、およびコンピュータプログラムを提供することを目的とする。
<本開示の効果>
本開示によると、低コストで構造物の点検等を行うことができる。
本開示によると、低コストで構造物の点検等を行うことができる。
<本発明の実施形態の概要>
最初に本発明の実施形態の概要を列記して説明する。
(1)本発明の一実施形態に係るセンサ情報提供装置は、予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置であって、前記移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するセンサ情報取得部と、無線通信を行うための無線通信部と、前記センサ情報取得部が取得した前記センサ情報を、前記無線通信部を介して、センサ情報収集装置に送信するセンサ情報送信部とを備える。
最初に本発明の実施形態の概要を列記して説明する。
(1)本発明の一実施形態に係るセンサ情報提供装置は、予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置であって、前記移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するセンサ情報取得部と、無線通信を行うための無線通信部と、前記センサ情報取得部が取得した前記センサ情報を、前記無線通信部を介して、センサ情報収集装置に送信するセンサ情報送信部とを備える。
この構成によると、予め定められた固定コースを走行する移動体に設置されたセンサから対象の物理量のセンサ情報を取得し、取得したセンサ情報を無線通信によりセンサ情報収集装置に送信することができる。例えば、路線バスや電車などに設置されたセンサで対象の物理量を計測することにより、センサ情報を、無線通信でサーバなどのセンサ情報収集装置に送信することができる。このように、センサを路線バスや電車などの固定コースを走行する移動体に取り付けることにより、構造物の点検のための専用車両を用いずにセンサ情報を取得することができる。また、センサ情報を無線通信によりセンサ情報収集装置に送信するため、センサ情報を蓄積するための大規模な記憶装置を用意する必要もない。センサ情報は、センサ情報収集装置や、センサ情報収集装置に接続された他の装置によって解析され、構造物の点検を行うことができる。よって、低コストで構造物の点検を行うことができる。
(2)好ましくは、前記センサ情報送信部は、周期的に、前記センサ情報を前記センサ情報収集装置に送信する。
この構成によると、移動体は周期的に固定コースを走行することができるため、周期的にセンサ情報をセンサ情報収集装置に送信することができる。センサ情報収集装置は、各地点のセンサ情報の変化から、構造物の異常を検出することができる。
(3)また、上述のセンサ情報提供装置は、さらに、前記無線通信部を介して、前記センサ情報収集装置から、前記対象の物理量の計測精度に関する指示情報を受信する指示情報受信部と、前記指示情報に基づいて、前記センサの計測精度を調整する計測精度調整部とを備えてもよい。
この構成によると、センサ情報収集装置から受信した指示情報に基づいて、センサの計測精度を調整することができる。これにより、指示情報に従った計測精度のセンサ情報をセンサ情報収集装置に提供することができる。例えば、トンネル内とトンネル外とで異なる計測精度の指示情報を受信した場合には、トンネル内とトンネル外とで異なる計測精度のセンサ情報を、センサ情報収集装置に提供することができる。
(4)また、好ましくは、前記センサは、前記移動体の周囲を撮像するカメラを含み、前記指示情報受信部は、前記指示情報として、前記カメラが出力する画像の解像度に関連する指示情報を受信し、前記計測精度調整部は、前記指示情報に基づいて、前記カメラが出力する画像の解像度を変更する。
この構成によると、センサ情報収集装置から受信した指示情報に基づいて、解像度が調整された画像を、センサ情報収集装置に提供することができる。このため、センサ情報収集装置側で詳細に点検が必要な箇所については、高解像度の画像を提供することができる。また、通常の点検で十分な箇所については、低解像度の画像を提供することにより、センサ情報収集装置との通信量を削減することができる。
(5)また、前記センサは、前記移動体の周囲を撮像するカメラを含み、前記指示情報受信部は、前記指示情報として、前記カメラが出力する画像のフレームレートに関連する指示情報を受信し、前記計測精度調整部は、前記指示情報に基づいて、前記カメラが出力する画像のフレームレートを変更してもよい。
この構成によると、センサ情報収集装置から受信した指示情報に基づいて、フレームレートが調整された画像を、センサ情報収集装置に提供することができる。このため、センサ情報収集装置側で詳細に点検が必要な箇所については、高フレームレートの画像を提供することができる。また、通常の点検で十分な箇所においては、低フレームレートの画像を提供することにより、センサ情報収集装置との通信量を削減することができる。
(6)また、上述のセンサ情報提供装置は、さらに、前記移動体の位置情報を取得する位置情報取得部を備え、前記センサ情報送信部は、さらに、前記位置情報取得部が取得した前記位置情報を前記センサ情報収集装置に送信してもよい。
この構成によると、移動体の位置情報をセンサ情報収集装置に提供することができる。このため、センサ情報収集装置側で構造物の異常等が検出された場合に、その位置を容易に特定することができる。
(7)また、前記センサは、前記移動体の周囲を撮像するカメラを含んでもよい。
この構成によると、センサ情報として、移動体の周囲を撮像した画像を、センサ情報収集装置に提供することができる。これにより、センサ情報収集装置側では、当該画像に基づいて、構造物の点検や、不審者の検出、地図情報の更新等を行うことができる。
(8)また、前記センサは、前記移動体が走行する路面の路面状態を計測する路面センサを含んでもよい。
この構成によると、センサ情報として、移動体が走行する路面の路面状態情報を、センサ情報収集装置に提供することができる。これにより、センサ情報収集装置側では、当該路面状態情報に基づいて、道路の点検や、路面状態が悪い箇所の情報提供等を行うことができる。
(9)また、前記センサは、前記移動体の振動を計測する振動センサを含んでもよい。
この構成によると、センサ情報として、移動体の振動情報を、センサ情報収集装置に提供することができる。これにより、センサ情報収集装置側では、当該路面状態情報に基づいて、道路の点検や、路面状態が悪い箇所の情報提供等を行うことができる。
(10)また、上述のセンサ情報提供装置は、さらに、前記センサ情報取得部が取得した前記センサ情報を一時的に記憶する記憶装置を備え、前記センサ情報送信部は、前記センサ情報収集装置との間の無線通信の通信状態に応じて前記記憶装置から前記センサ情報を読み出し、読み出した前記センサ情報を、前記センサ情報収集装置に送信してもよい。
この構成によると、通信状態が悪い場合にはセンサ情報を一時的に記憶装置に記憶させ、通信状態が良くなってから、記憶装置に記憶されたセンサ情報をセンサ情報収集装置に送信することができる。このため、トンネル走行中などのように通信状態が一時的に悪化する状況が生じたとしても、センサ情報を、センサ情報収集装置に確実に送信することができる。また、記憶装置は、一時的にセンサ情報を記憶するためのものである。このため、従来のように収集したすべてのセンサ情報を記憶する必要が無く、小さな記憶容量の記憶装置を利用することができる。
(11)本発明の他の実施形態に係るセンサ情報収集装置は、予め定められた固定コースを走行する移動体に設置されたセンサ情報提供装置から無線通信を介して、前記移動体に設置されたセンサによる対象の物理量の計測結果であるセンサ情報を受信するセンサ情報受信部と、前記センサ情報受信部が受信した前記センサ情報を、記憶装置に記憶させる記憶制御部とを備える。
この構成によると、予め定められた固定コースを走行する移動体に設置されたセンサが出力するセンサ情報を、無線通信を介して受信し、記憶装置に蓄積することができる。例えば、路線バスや電車などに設置されたセンサが出力するセンサ情報を受信し、記憶装置に蓄積することができる。これにより、構造物の亀裂等の不具合や交通事故等が発生した場合に、記憶装置に蓄積されたセンサ情報を事後的に検索することにより、原因の究明を行うことができる。
(12)好ましくは、上述のセンサ情報収集装置は、さらに、前記センサ情報受信部が周期的に受信した前記センサ情報に基づいて、前記移動体の周辺環境に生じた変化の事象を検出する変化事象検出部と、前記変化事象検出部が検出した前記変化の事象を、外部装置に提供する変化事象提供部とを備える。
この構成によると、移動体は固定コースを走行するため、周期的にセンサ情報を受信することができる。これにより、高精度で移動体の周辺に生じた変化の事象を検出し、検出した事象を外部装置に提供することができる。
(13)さらに好ましくは、前記変化事象検出部は、前記センサ情報に基づいて、前記変化の事象として、前記移動体の走行路に生じた異常事象を検出する。
この構成によると、固定コース上の各地点のセンサ情報を周期的に受信することができるため、センサ情報の変化から、高精度で移動体の走行路に生じた異常事象(例えば、道路の亀裂など)を検出することができる。
(14)また、前記センサは、前記移動体の周囲を撮像するカメラを含み、前記センサ情報受信部は、前記センサ情報として、前記カメラで撮像された前記移動体の周囲の画像を受信し、前記変化事象検出部は、前記画像に基づいて、前記変化の事象として、前記移動体の周辺に存在する不審者を検出してもよい。
この構成によると、固定コース上の各地点の画像を周期的に受信することができるため、画像の変化から、高精度で移動体の周辺に存在する不審者を検出することができる。
(15)また、前記センサは、前記移動体の周囲を撮像するカメラを含み、前記センサ情報受信部は、前記センサ情報として、前記カメラで撮像された前記移動体の周囲の画像を受信し、前記変化事象検出部は、前記画像に基づいて、前記移動体の走行路または走行路の周囲の建造物に生じた変化の事象を検出し、前記センサ情報収集装置は、さらに、前記変化事象検出部が検出した前記走行路または前記建造物の変化の事象に基づいて、地図情報を更新する地図情報更新部を備えてもよい。
この構成によると、固定コース上の各地点の画像を周期的に受信することができるため、画像の変化から、高精度で移動体の走行路および走行路の周囲の建造物に生じた変化の事象を検出することができる。また、検出した事象に基づいて、地図情報を更新することができる。このため、高精度かつ迅速に地図情報を更新することができる。
(16)また、前記センサ情報受信部は、さらに、前記センサ情報提供装置から前記移動体の位置情報を受信し、前記センサ情報収集装置は、さらに、前記センサによる前記対象の物理量の計測精度に関する指示情報であって、前記移動体の位置情報に応じた前記計測精度に関する前記指示情報を、前記センサ情報提供装置に送信する指示情報送信部とを備えてもよい。
この構成によると、移動体の位置情報に応じてセンサの計測精度を変更させ、位置情報に応じたセンサ情報をセンサ情報提供装置から受信することができる。例えば、移動体がトンネル内を走行している場合には、高精度のセンサ情報をセンサ情報提供装置に提供させ、移動体がトンネル外を走行している場合には、低精度のセンサ情報をセンサ情報提供装置に提供させることができる。これにより、センサ情報送信のための通信量を削減しつつ、詳細に点検が必要な箇所については高精度のセンサ情報を取得することができる。
(17)また、上述のセンサ情報収集装置は、さらに、前記センサ情報受信部が受信した前記センサ情報を、外部装置に提供するセンサ情報提供部を備えてもよい。
この構成によると、センサ情報提供装置から受信したセンサ情報を、他の外部装置に提供することができる。これにより、他の外部装置において、移動体の周辺に生じた変化の事象を検出することができる。
(18)本発明の他の実施形態に係るセンサ情報収集システムは、予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置と、前記センサ情報提供装置と無線通信を介して接続されるセンサ情報収集装置とを備え、前記センサ情報提供装置は、前記移動体に設置されたセンサから、当該センサによる対象の物理量を計測結果であるセンサ情報を取得するセンサ情報取得部と、無線通信を行うための無線通信部と、前記センサ情報取得部が取得した前記センサ情報を、前記無線通信部を介して、前記センサ情報収集装置に送信するセンサ情報送信部とを有し、前記センサ情報収集装置は、前記センサ情報提供装置から無線通信を介して、前記センサ情報を受信するセンサ情報受信部と、前記センサ情報受信部が受信した前記センサ情報を、記憶装置に記憶させる記憶制御部とを有する。
この構成によると、予め定められた固定コースを走行する移動体に設置されたセンサから対象の物理量のセンサ情報を取得し、取得したセンサ情報を無線通信によりセンサ情報収集装置に送信することができる。例えば、路線バスや電車などに設置されたセンサで対象の物理量を計測することにより、センサ情報を、無線通信でサーバなどのセンサ情報収集装置に送信することができる。このように、センサを路線バスや電車などの固定コースを走行する移動体に取り付けることにより、構造物の点検のための専用車両を用いずにセンサ情報を取得することができる。また、センサ情報を無線通信によりセンサ情報収集装置に送信するため、センサ情報を蓄積するための大規模な記憶装置を用意する必要もない。また、センサ情報収集装置は、受信したセンサ情報を記憶装置に蓄積することができる。これにより、構造物の亀裂等の不具合や交通事故等が発生した場合に、記憶装置に蓄積されたセンサ情報を事後的に検索することにより、原因の究明を行うことができる。
(19)本発明の他の実施形態に係るセンサ情報提供方法は、予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置によるセンサ情報提供方法であって、前記移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するステップと、取得された前記センサ情報を、無線通信により、センサ情報収集装置に送信するステップとを含む。
この構成は、上述したセンサ情報提供装置が備える各処理部に対応するステップを含む。このため、この構成によると、上述したセンサ情報提供装置と同様の作用および効果を奏することができる。
(20)本発明の他の実施形態に係るセンサ情報収集方法は、予め定められた固定コースを走行する移動体に設置されたセンサ情報提供装置から無線通信を介して、前記移動体に設置されたセンサによる対象の物理量の計測結果であるセンサ情報を受信するステップと、受信された前記センサ情報を、記憶装置に記憶させるステップとを含む。
この構成は、上述したセンサ情報収集装置が備える各処理部に対応するステップを含む。このため、この構成によると、上述したセンサ情報収集装置と同様の作用および効果を奏することができる。
(21)本発明の他の実施形態に係るコンピュータプログラムは、予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置としてコンピュータを機能させるためのコンピュータプログラムであって、前記コンピュータを、前記移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するセンサ情報取得部と、前記センサ情報取得部が取得した前記センサ情報を、無線通信により、センサ情報収集装置に送信するセンサ情報送信部として機能させる。
この構成によると、コンピュータを、上述したセンサ情報提供装置として機能させることができる。このため、上述したセンサ情報提供装置と同様の作用および効果を奏することができる。
(22)本発明の他の実施形態に係るコンピュータプログラムは、コンピュータを、予め定められた固定コースを走行する移動体に設置されたセンサ情報提供装置から無線通信を介して、前記移動体に設置されたセンサによる対象の物理量の計測結果であるセンサ情報を受信するセンサ情報受信部と、前記センサ情報受信部が受信した前記センサ情報を、記憶装置に記憶させる記憶制御部として機能させる。
この構成によると、コンピュータを、上述したセンサ情報収集装置として機能させることができる。このため、上述したセンサ情報収集装置と同様の作用および効果を奏することができる。
<本発明の実施形態の詳細>
以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、特許請求の範囲によって特定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、特許請求の範囲によって特定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
また、同一の構成要素には同一の符号を付す。それらの機能および名称も同様であるため、それらの説明は適宜省略する。
(実施の形態1)
[システムの全体構成]
図1は、本発明の実施の形態1に係るセンサ情報収集システムの構成を示す図である。
[システムの全体構成]
図1は、本発明の実施の形態1に係るセンサ情報収集システムの構成を示す図である。
図1を参照して、センサ情報収集システム1は、路線バス100と、センサ情報収集装置40と、外部装置60とを備える。
なお、センサ情報収集システム1は、複数の路線バス100を含んでいてもよい。
なお、センサ情報収集システム1は、複数の路線バス100を含んでいてもよい。
路線バス100は、予め定められた固定のコースを周期的に走行する移動体の一例である。路線バス100は、バス時刻表に従い、一日数回、固定コースを走行する。
路線バス100には、センサ20、センサ情報提供装置10および記憶装置30が搭載されている。
センサ20は、路線バス100に設置され、路線バス100の周辺の対象の物理量を計測する。
センサ20は、例えば、カメラ21~24と、振動センサ25と、路面センサ26とを含む。
図2は、路線バス100を左側方から見た図であり、図3は、路線バス100を上方から見た図である。
カメラ21は、路線バス100の前方の天井付近に取り付けられ、路線バス100の前方に位置する道路、トンネル、橋梁等の構造物を撮像し、構造物の画像を出力する。
カメラ22は、路線バス100の左側方の天井付近に取り付けられ、路線バス100の左側方に位置する該構造物を撮像し、構造物の画像を出力する。
カメラ23は、路線バス100の後方の天井付近に取り付けられ、路線バス100の後方に位置する該構造物を撮像し、構造物の画像を出力する。
カメラ24は、路線バス100の右側方の天井付近に取り付けられ、路線バス100の右側方に位置する該構造物を撮像し、構造物の画像を出力する。
振動センサ25は、路線バス100の後方のバンパー付近に取り付けられ、路線バス100の振動を計測し、電気信号の振動波形を出力する。
路面センサ26は、路線バス100の前方のバンパー付近に取り付けられ、路面の乾燥状態、湿潤状態、凍結状態、積雪状態等を判別し、判別結果である路面状態を出力する。
なお、センサの種類、各センサの取り付け位置、各センサの個数などは一例であり、図2および図3に示したものに限定されるものではない。例えば、ミリ波レーダやLIDAR(Laser Imaging Detection and Rang)センサが路線バス100に取り付けられていてもよい。また、大気汚染の要因となる排気ガス等のガスを検出するガスセンサが路線バス100に取り付けられていてもよい。また、カメラは、路線バス100がトンネルを通過する際にトンネルの上部壁面を撮像するために、上向きに設置されていてもよい。
再度図1を参照して、センサ情報提供装置10は、センサ20で計測された対象の物理量の計測結果であるセンサ情報と、路線バス100の位置情報とを、無線基地局70およびネットワーク80を介して、無線通信により、センサ情報収集装置40に提供する。
なお、センサ情報提供装置10は、GPS(Global Positioning System)衛星90から受信した衛星信号に基づいて、路線バス100の位置情報を取得する。
また、センサ情報提供装置10と無線基地局70との間の無線通信システムは、例えば、現時点で規格化が進行中の「第5世代移動通信システム」( 以下、「5G」(5th Generation)と略記する。)よりなる。
5Gによると、大容量、高データレート、低遅延の無線通信を実現することができ、実効速度で1Gbps以上の無線通信が期待されている。これにより、例えば、5Gでは、4Kサイズの画像を数十枚程度リアルタイムで送信することが可能である。
記憶装置30は、センサ20が出力するセンサ情報を一時的に記憶するための記憶装置であり、例えば、HDD( Hard Disk Drive)などの磁気記憶装置、フラッシュメモリ若しくはEEPROM(Electrically Erasable Programmable Read Only Memory)などの不揮発性メモリ、SRAM(Static Random Access Memory)又はDRAM(Dynamic Random Access Memory)などの揮発性メモリなどにより構成される。
無線基地局70は、5Gの基地局であり、例えば、路線バス100が走行する道路脇に複数設置されているものとする。
ネットワーク80は、例えば、インターネットである。
ネットワーク80は、例えば、インターネットである。
センサ情報収集装置40は、センサ情報提供装置10から送信されるセンサ20のセンサ情報を、無線基地局70およびネットワーク80を介して受信し、受信したセンサ情報に基づいて、道路、トンネル、橋梁等の構造物の異常を検出する。
センサ情報収集装置40は、例えば、道路を管理する道路管理者の施設に設置されたサーバであってもよいし、バスを運行するバス事業者の施設に設置されたサーバであってもよい。
外部装置60は、ネットワーク80を介して、センサ情報収集装置40から、センサ20のセンサ情報を受信し、該構造物の異常を検出する。なお、構造物の異常検出処理は、センサ情報収集装置40が行ってもよいし、外部装置60が行ってもよい。
[センサ情報提供装置10の構成]
図4は、本発明の実施の形態1に係るセンサ情報提供装置10の構成を示すブロック図である。
図4は、本発明の実施の形態1に係るセンサ情報提供装置10の構成を示すブロック図である。
図4を参照して、センサ情報提供装置10は、無線通信部11と、センサ情報取得部12と、位置情報取得部13と、センサ情報送信部14と、指示情報受信部15と、計測精度調整部16とを備える。
無線通信部11は、無線基地局70との間で5Gに従った無線通信を行うことにより、無線基地局70およびネットワーク80を介して、センサ情報収集装置40との間でデータの送受信を行うための通信インタフェースである。
センサ情報取得部12は、センサ20を構成する各カメラ21~24から、センサ情報を取得する。
つまり、センサ情報取得部12は、カメラ21~24から、路線バス100の前方、左側方、後方および右側方に位置する構造物の画像をそれぞれ取得する。
また、センサ情報取得部12は、振動センサ25から、路線バス100の振動に応じた振動波形を取得する。
さらに、センサ情報取得部12は、路面センサ26から、路線バス100が走行する路面の路面状態を取得する。
センサ情報取得部12は、取得したセンサ情報を、記憶装置30に一時的に記憶させる。例えば、センサ情報取得部12は、記憶装置30にFIFO(First-In First-Out)方式に従い、センサ情報を記憶させる。その際、センサ情報取得部12は、センサ情報と合わせて、後述する位置情報取得部13が取得する路線バス100の位置情報を、記憶装置30に記憶させる。
なお、図4に示す構成では、記憶装置30は、センサ情報提供装置10の外部に設けられることとしているが、センサ情報提供装置10の内部に記憶装置30が設けられていてもよい。
位置情報取得部13は、複数のGPS衛星90から受信した衛星信号に基づいて、路線バス100の位置(例えば、路線バス100の緯度および経度)を特定する。なお、衛星測位に利用する衛星はGPS衛星90に限定されるものではなく、準天頂衛星などの他の衛星を利用するものであってもよい。
センサ情報送信部14は、センサ情報取得部12が取得したセンサ情報を、位置情報取得部13が取得した路線バス100の位置情報と合わせて、無線通信部11を介してセンサ情報収集装置40に送信する。路線バス100は、固定コースを周期的に走行するため、センサ情報送信部14は、周期的にセンサ情報および位置情報をセンサ情報収集装置40に送信することができる。
なお、センサ情報送信部14は、センサ情報取得部12との無線通信の通信状態に応じて、記憶装置30からセンサ情報を読み出し、読み出したセンサ情報を、センサ情報収集装置40に送信する。
つまり、センサ情報送信部14は、通信状態が良好な場合には、センサ情報取得部12が取得したセンサ情報を、リアルタイムでセンサ情報収集装置40に送信する。
一方、通信状態が悪化した場合には、センサ情報送信部14は、センサ情報をリアルタイムでセンサ情報収集装置40に送信することができない。このため、センサ情報送信部14は、通信状態が良好になってから、記憶装置30に一時的に記憶されたセンサ情報をセンサ情報収集装置40に送信する。
指示情報受信部15は、センサ情報収集装置40から対象の物理量の計測精度に関する指示情報を受信する。
例えば、指示情報受信部15は、カメラ21~24の計測精度に関する指示情報として、出力解像度に関連する指示情報を受信する。指示情報受信部15は、カメラ21~24が4KサイズまたはHD(High Definition video)サイズの画像を出力することができる場合には、指示情報として、4KまたはHDを示した情報を受信する。
また、指示情報受信部15は、カメラ21~24の計測精度に関する指示情報として、画像のフレームレートに関連する指示情報を受信してもよい。指示情報受信部15は、カメラ21~24が30fps(フレーム/秒)または1fpsのフレームレートで画像を出力することができる場合には、指示情報として、30fpsまたは1fpsを示した情報を受信する。
また、指示情報受信部15は、振動センサ25および路面センサ26についても、センサ情報を取得する時間間隔についての情報を、指示情報として受信してもよい。例えば、指示情報受信部15は、振動センサ25または路面センサ26が、10msec間隔または1sec間隔でセンサ情報を出力することができる場合には、指示情報として、10msec間隔または1sec間隔を示した情報を受信する。
計測精度調整部16は、指示情報受信部15が受信した指示情報に基づいて、センサ20の計測精度を調整する。
例えば、計測精度調整部16は、指示情報受信部15がカメラ21~24の解像度に関する指示情報を受信した場合には、カメラ21~24に対して、指示情報が示す解像度の画像を出力せよとの指令を送信する。カメラ21~24は、該指令に従い、指示情報が示す解像度の画像を、それ以降出力する。
例えば、指示情報が4Kを示していれば、カメラ21~24は、4Kサイズの画像を出力する。
また、計測精度調整部16は、指示情報受信部15がカメラ21~24のフレームレートに関する指示情報を受信した場合には、カメラ21~24に対して、指示情報が示すフレームレートで画像を出力せよとの指令を送信する。カメラ21~24は、該指令に従い、それ以降、指示情報が示すフレームレートで画像を出力する。
例えば、指示情報が30fpsを示していれば、カメラ21~24は、30fpsで画像を出力する。
また、計測精度調整部16は、指示情報受信部15が振動センサ25または路面センサ26によるセンサ情報の取得時間間隔についての指示情報を受信した場合には、振動センサ25または路面センサ26に対して、指示情報が示す取得時間間隔でセンサ情報を取得せよとの指令を送信する。振動センサ25または路面センサ26は、該指令に従い、それ以降、指示情報が示す取得時間間隔でセンサ情報を出力する。
例えば、振動センサ25に対する指示情報が10msec間隔を示している場合には、振動センサ25は、10msec間隔でセンサ情報を出力する。また、路面センサ26に対する指示情報が1sec間隔を示している場合には、路面センサ26は、1sec間隔でセンサ情報を出力する。
[センサ情報収集装置40の構成]
図5は、本発明の実施の形態1に係るセンサ情報収集装置40の構成を示すブロック図である。
図5は、本発明の実施の形態1に係るセンサ情報収集装置40の構成を示すブロック図である。
図5を参照して、センサ情報収集装置40は、無線通信部41と、センサ情報受信部42と、記憶制御部43と、指示情報送信部44と、変化事象検出部45と、変化事象提供部46と、センサ情報提供部47とを備える。
無線通信部41は、ネットワーク80に接続するための通信インタフェースである。無線通信部41は、ネットワーク80を介して、センサ情報提供装置10および外部装置60とデータの送受信を行う。なお、センサ情報収集装置40とネットワーク80との接続形態は無線通信に限定されるものではなく、有線通信であってもよい。
センサ情報受信部42は、無線通信部41を介して、センサ情報提供装置10から、センサ20が出力するセンサ情報を、センサ情報が出力されたタイミングにおける路線バス100の位置情報とともに受信する。
例えば、センサ情報受信部42は、カメラ21~24が出力する画像を、画像が撮像された位置の位置情報とともに受信する。また、センサ情報受信部42は、振動センサ25が出力する振動波形を、振動波形が取得された位置の位置情報とともに受信する。さらに、センサ情報受信部42は、路面センサ26が出力する路面状態情報を、路面状態が取得された位置の位置情報とともに受信する。
記憶制御部43は、センサ情報受信部42が受信したセンサ情報および位置情報を、記憶装置50に記憶させる。
記憶装置50は、センサ情報受信部42が受信したセンサ情報および位置情報を記憶するための記憶装置であり、例えば、HDDなどの磁気記憶装置、フラッシュメモリ若しくはEEPROM などの不揮発性メモリ、SRAM 又はDRAMなどの揮発性メモリなどにより構成される。
なお、図5に示す構成では、記憶装置50は、センサ情報収集装置40の外部に設けられることとしているが、センサ情報収集装置40の内部に記憶装置50が設けられていてもよい。
指示情報送信部44は、センサ20による対象の物理量の計測精度に関する指示情報であって、路線バス100の位置情報に応じた計測精度に関する指示情報を、無線通信部41を介してセンサ情報提供装置10に送信する。
具体的には、指示情報送信部44は、記憶装置50に記憶されている最新の路線バス100の位置情報を参照し、路線バス100が、予め定められた範囲外から範囲内に移動した場合、または範囲内から範囲外に移動した場合に、計測精度に関する指示情報を送信する。
例えば、予め定めた範囲をトンネル内とし、センサ情報収集装置40は、トンネルの壁面等の構造部の検査を重点的に行いたいものとする。指示情報送信部44は、路線バス100がトンネル外からトンネル内に移動した場合には、カメラ21~24の解像度およびフレームレートを、それぞれ4Kおよび30fpsとする指示情報を送信する。また、指示情報送信部44は、センサ情報提供装置10がトンネル内からトンネル外に移動した場合には、カメラ21~24の解像度およびフレームレートを、それぞれ、HDおよび1fpsとする指示情報を送信する。
変化事象検出部45は、記憶装置50に蓄積された、センサ情報に基づいて、路線バス100の周辺環境に生じた変化の事象を検出する。
記憶装置50には、周期的に取得された固定コース上の各地点におけるセンサ情報が記憶されている。このため、変化事象検出部45は、固定コース上の同一箇所における現在および過去のセンサ情報を比較することにより、センサ情報の変化を検出する。また、変化事象検出部45は、センサ情報の変化から、走行路の構造物の異常事象(例えば、道路の亀裂)を検出する。
例えば、変化事象検出部45は、最新の画像と、1日前に撮像された同一箇所の画像との差分画像を閾値処理することにより、画像上で変化が生じている箇所を特定し、当該箇所の画像を解析することにより、法面の土砂崩落を検出することができる。
また、変化事象検出部45は、最新の振動波形と、1日前の同一箇所の振動波形とを比較することで、振動の変化が生じている箇所を検出し、当該箇所の振動波形を詳細に解析することにより、道路の亀裂を検出することもできる。
変化事象提供部46は、変化事象検出部45が検出した変化の事象を、無線通信部41を介して、外部装置60に提供する。例えば、センサ情報収集装置40がバス事業者に設置され、外部装置60が道路管理者に設置されている場合には、道路管理者に対して、構造物の異常等を迅速に通知することができる。
センサ情報提供部47は、記憶装置50に記憶されているセンサ情報および位置情報を、無線通信部41を介して外部装置60に送信する。外部装置60がセンサ情報に基づく異常検出処理を実行する場合があるからである。
[センサ情報提供装置10の処理手順]
図6は、本発明の実施の形態1に係るセンサ情報提供装置10の処理手順を示すフローチャートである。
図6は、本発明の実施の形態1に係るセンサ情報提供装置10の処理手順を示すフローチャートである。
図6を参照して、センサ情報取得部12は、カメラ21~24、振動センサ25および路面センサ26からセンサ情報を取得する(S1)。センサ情報の取得は、路線バス100が固定コースを走行している間、一定の周期間隔で実行されてもよいし、固定コースのうち予め定められた範囲を走行する場合だけ実行されてもよい。
位置情報取得部13は、センサ情報取得部12がセンサ情報を取得したタイミングにおいて、GPS衛星90から受信した衛星信号に基づいて、路線バス100の位置情報を取得する(S 2)。
センサ情報取得部12は、取得したセンサ情報を、位置情報取得部13が取得した路線バス100の位置情報とともに、記憶装置30に一時記憶させる(S3)。センサ情報取得部12は、FIFO方式に従い、記憶装置30から古いセンサ情報を消去し、記憶装置30に新しいセンサ情報を記憶させる。
センサ情報送信部14は、センサ情報取得部12との無線通信の通信状態が良好な場合には、センサ情報取得部12が取得したセンサ情報および位置情報取得部13が取得した位置情報を、リアルタイムでセンサ情報収集装置40に送信する。一方、センサ情報送信部14は、通信状態が悪化した場合には、通信状態が良好になってから、記憶装置30に一時的に記憶されたセンサ情報および位置情報をセンサ情報収集装置40に送信する(S4)。
指示情報受信部15がセンサ情報収集装置40から対象の物理量の計測精度に関する指示情報を受信した場合には(S5でYES)、計測精度調整部16は、指示情報受信部15が受信した指示情報に基づいて、センサ20の計測精度を調整する(S6)。
センサ情報提供装置10は、終了条件を満たしたか否かを判断する(S7)。終了条件を満たす場合とは、例えば、路線バス100が固定コースの走行を終えた場合や、路線バス100のエンジンスイッチがオフにされた場合などである。
終了条件を満たしていなければ(S7でNO)、終了条件を満たすまでステップS1以降の処理が繰り返し実行される。
[センサ情報収集装置40の処理手順]
図7は、本発明の実施の形態1に係るセンサ情報収集装置40の処理手順を示すフローチャートである。
図7は、本発明の実施の形態1に係るセンサ情報収集装置40の処理手順を示すフローチャートである。
センサ情報受信部42がセンサ情報提供装置10からセンサ情報および位置情報を受信していれば(S11でYES)、記憶制御部43は、センサ情報受信部42が受信したセンサ情報および位置情報を、記憶装置50に記憶させる(S12)。
指示情報送信部44は、センサ20の計測精度の更新が必要か否かを判断する(S13)。つまり、指示情報送信部44は、記憶装置50に記憶されている最新および時間的に1つ前の位置情報を参照し、路線バス100が、予め定められた範囲外から範囲内に移動した場合、または範囲内から範囲外に移動した場合に、計測精度の更新が必要であると判断する。
指示情報送信部44は、センサ20の計測精度の更新が必要と判断した場合には(S14でYES)、計測精度に関する指示情報を送信する(S15)。例えば、指示情報送信部44は、路線バス100がトンネル外からトンネル内に移動した場合には、カメラ21~24の解像度およびフレームレートを、それぞれ4Kおよび30fpsとする指示情報を送信する。
センサ情報収集装置40は、終了条件を満たしているか否かを判断する(S16)。終了条件を満たす場合とは、例えば、同一のセンサ情報提供装置10からセンサ情報を一定時間以上受信していない場合などである。
終了条件を満たしていなければ(S16でNO)、終了条件を満たすまでステップS11以降の処理が繰り返し実行される。
終了条件を満たしていれば(S16でYES)、センサ情報提供部47は、記憶装置50に記憶されているセンサ情報および位置情報を、無線通信部41を介して外部装置60に送信する(S17)。
図7に示す処理により、固定コースを走行する路線バス100から取得したセンサ情報および位置情報が記憶装置50に記憶されるとともに、外部装置60に送信される。
図8は、本発明の実施の形態1に係るセンサ情報収集装置40の他の処理手順を示すフローチャートである。図8に示す処理は、図7に示す処理手順によりセンサ情報および位置情報が記憶装置50に記憶されている状態において実行される。例えば、路線バス100の固定コースの走行が終了した後に、図8に示す処理が実行される。
ただし、図8に示す処理の実行タイミングは上記したものに限定されるものではなく、図7の処理と並行して実行されてもよい。
図8を参照して、センサ情報収集装置40は、路線バス100の固定コース上の各着目地点について、以下をステップS21~S25の処理を繰り返し実行する(ループA)。
つまり、変化事象検出部45は、記憶装置50から、着目地点に対応するセンサ情報を読み出す(S21)。例えば、変化事象検出部45は、着目地点の位置情報に対応する最新のセンサ情報と1日前のセンサ情報とを、記憶装置50から読み出す。後者のセンサ情報を以下では「参照用センサ情報」とする。なお、センサ情報の日時は、センサ情報に付されたタイムスタンプ情報から判断することができる。
変化事象検出部45は、記憶装置50から読み出した最新のセンサ情報と参照用センサ情報とを比較する(S22)。例えば、上述したように、センサ情報が画像の場合には、変化事象検出部45は、最新の画像と1日前に撮像された同一箇所の画像との差分画像から、変化領域を特定する。
変化事象検出部45がセンサ情報に変化が生じていると判断した場合には(S23でYES)、変化事象検出部45は、比較結果と、記憶装置50から読み出したセンサ情報とに基づいて、路線バス100の周辺環境に生じた変化の事象を検出する(S24)。例えば、上述したように、変化事象検出部45は、画像上で変化が生じている箇所の画像を解析することにより、道路脇で土色の領域が増加している場合には、法面の土砂崩落を変化の事象として検出する。
図9は、変化事象検出部45による解析結果の一例を示す図である。
図9に示すように、画像上で道路の亀裂領域120が、土砂崩落領域130が新たに出現した場合には、変化事象検出部45は、亀裂領域120または土砂崩落領域130を変化領域として特定する。変化事象検出部45は、特定した変化領域の画像を解析することにより、道路の亀裂、または土砂崩落を、変化の事象として検出する。
図9に示すように、画像上で道路の亀裂領域120が、土砂崩落領域130が新たに出現した場合には、変化事象検出部45は、亀裂領域120または土砂崩落領域130を変化領域として特定する。変化事象検出部45は、特定した変化領域の画像を解析することにより、道路の亀裂、または土砂崩落を、変化の事象として検出する。
再度図8を参照して、変化事象提供部46は、変化事象検出部45が検出した変化の事象を、無線通信部41を介して、外部装置60に提供する(S25)。
[実施の形態1の効果等]
本発明の実施の形態1によると、センサ情報提供装置10は、予め定められた固定コースを走行する路線バス100に設置されたセンサ20から対象の物理量のセンサ情報を取得し、取得したセンサ情報を無線通信によりセンサ情報収集装置40に送信することができる。このように、センサ20を路線バス100や電車などの固定コースを走行する移動体に取り付けることにより、道路管理者等は、構造物の点検のための専用車両を用いずにセンサ情報を取得することができる。また、センサ情報提供装置10は、センサ情報を、無線通信によりセンサ情報収集装置40に送信する。このため、センサ情報を蓄積するための大規模な記憶装置をセンサ情報提供装置10に用意する必要もない。センサ情報は、センサ情報収集装置40や、センサ情報収集装置40に接続された外部装置60等の他の装置によって解析され、構造物の点検を行うことができる。よって、低コストで構造物の点検を行うことができる。
本発明の実施の形態1によると、センサ情報提供装置10は、予め定められた固定コースを走行する路線バス100に設置されたセンサ20から対象の物理量のセンサ情報を取得し、取得したセンサ情報を無線通信によりセンサ情報収集装置40に送信することができる。このように、センサ20を路線バス100や電車などの固定コースを走行する移動体に取り付けることにより、道路管理者等は、構造物の点検のための専用車両を用いずにセンサ情報を取得することができる。また、センサ情報提供装置10は、センサ情報を、無線通信によりセンサ情報収集装置40に送信する。このため、センサ情報を蓄積するための大規模な記憶装置をセンサ情報提供装置10に用意する必要もない。センサ情報は、センサ情報収集装置40や、センサ情報収集装置40に接続された外部装置60等の他の装置によって解析され、構造物の点検を行うことができる。よって、低コストで構造物の点検を行うことができる。
また、路線バス100は周期的に固定コースを走行することができるため、センサ情報提供装置10は、周期的にセンサ情報をセンサ情報収集装置40に送信することができる。このため、センサ情報収集装置40は、周期的に取得した固定コース上のセンサ情報に基づいて、固定コース上の各地点のセンサ情報の変化から、構造物の異常を検出することができる。
また、センサ情報収集装置40は、路線バス100の位置情報に応じてセンサ20の計測精度を変更するための指示情報をセンサ情報提供装置10に送信し、センサ情報提供装置10は、センサ情報収集装置40から受信した指示情報に基づいて、センサ20の計測精度(例えば、カメラ21~24の解像度又はフレームレート)を調整することができる。これにより、センサ情報提供装置10は、指示情報に従った計測精度のセンサ情報をセンサ情報収集装置40に提供することができる。よって、センサ情報収集装置40で詳細に点検が必要な箇所については、高解像度の画像を提供することができる。また、通常の点検で十分な箇所については、低解像度の画像を提供することにより、画像送信のための通信量を削減することができる。
また、センサ情報提供装置10は、センサ情報とともに路線バス100の位置情報をセンサ情報収集装置40に提供している。このため、センサ情報収集装置40は、構造物の異常等の変化の事象を検出した場合に、その事象の発生位置を容易に特定することができる。
また、路線バス100には、センサ情報を一時的に記憶するための記憶装置30を備えている。よって、センサ情報提供装置10は、通信状態が悪い場合にはセンサ情報を一時的に記憶装置30に記憶させ、通信状態が良くなってから、記憶装置30に記憶されたセンサ情報をセンサ情報収集装置40に送信することができる。このため、トンネル走行中などのように通信状態が一時的に悪化する状況が生じた場合にも、センサ情報を、センサ情報収集装置40に確実に送信することができる。また、記憶装置30は、従来のように収集したすべてのセンサ情報を記憶する必要が無く、小さな記憶容量の記憶領域を備えていればよい。
また、センサ情報収集装置40は、センサ情報提供装置10から受信したセンサ情報を記憶装置50に蓄積することができる。このため、センサ情報収集装置40は、構造物の亀裂等の不具合や交通事故等が発生した場合に、記憶装置50に蓄積されたセンサ情報を事後的に検索することにより、原因の究明を行うことができる。また、センサ情報収集装置40は、高精度で移動体の周辺に生じた変化の事象(例えば、道路の亀裂等)を検出し、検出した事象を外部装置60等に提供することができる。
また、センサ情報収集装置40は、センサ情報提供装置10から受信したセンサ情報を、他の外部装置60に提供することができる。これにより、外部装置60において、移動体の周辺に生じた変化の事象を検出することもできる。
(実施の形態1の変形例)
上述の実施の形態1では、センサ情報収集装置40が、路線バス100の周辺環境に生じた変化の事象として、道路、トンネル、橋梁等の構造物の異常を検出した。センサ情報収集装置40が検出する変化の事象は、これらに限定されるものではない。例えば、路線バス100の周囲に存在する不審者を検出してもよい。
上述の実施の形態1では、センサ情報収集装置40が、路線バス100の周辺環境に生じた変化の事象として、道路、トンネル、橋梁等の構造物の異常を検出した。センサ情報収集装置40が検出する変化の事象は、これらに限定されるものではない。例えば、路線バス100の周囲に存在する不審者を検出してもよい。
例えば、センサ情報収集装置40の変化事象検出部45は、最新の画像と、1日前に撮像された同一箇所の画像との差分画像を閾値処理することにより、画像上で変化が生じている領域を特定する。変化事象検出部45は、当該変化領域の画像を解析することにより、不審者を検出してもよい。
図10は、変化事象検出部45による解析結果の一例を示す図である。
図10に示すように、例えば、人の立ち入りが禁止されているエリア140をセンサ情報収集装置40に事前に登録しておく。センサ情報収集装置40は、エリア140を撮像した画像から変化領域150を特定する。センサ情報収集装置40は、変化領域150の画像を顔認識することにより、変化領域150の画像から顔を検出した場合には、変化領域150を不審者の領域として、不審者を検出する。
図10に示すように、例えば、人の立ち入りが禁止されているエリア140をセンサ情報収集装置40に事前に登録しておく。センサ情報収集装置40は、エリア140を撮像した画像から変化領域150を特定する。センサ情報収集装置40は、変化領域150の画像を顔認識することにより、変化領域150の画像から顔を検出した場合には、変化領域150を不審者の領域として、不審者を検出する。
本変形例によると、センサ情報収集装置40は、固定コース上の各地点の画像を周期的に受信することができるため、画像の変化から、高精度で路線バス100の周辺に存在する不審者を検出することができる。
(実施の形態2)
実施の形態1およびその変形例では、センサ情報収集装置40は、センサ情報から変化の事象を検出した。実施の形態2では、検出した変化の事象に基づいて、地図情報を更新する例について説明する。
実施の形態1およびその変形例では、センサ情報収集装置40は、センサ情報から変化の事象を検出した。実施の形態2では、検出した変化の事象に基づいて、地図情報を更新する例について説明する。
本発明の実施の形態2に係るセンサ情報収集システムの構成は、図1に示したものと同様である。このため、その詳細な説明はここでは繰り返さない。ただし、センサ情報収集装置40の代わりに、以下に説明するセンサ情報収集装置40A(図11)を用いる点が実施の形態1と異なる。センサ情報提供装置10の構成は、図4に示したものと同様である。
図11は、本発明の実施の形態2に係るセンサ情報収集装置40Aの構成を示すブロック図である。
図11を参照して、センサ情報収集装置40Aは、無線通信部41と、センサ情報受信部42と、記憶制御部43と、指示情報送信部44と、変化事象検出部45と、変化事象提供部46と、センサ情報提供部47と、地図情報更新部48と、地図情報提供部49とを備える。
つまり、センサ情報収集装置40Aは、図5に示したセンサ情報収集装置40の構成において、さらに、地図情報更新部48および地図情報提供部49を備える構成を有する。
変化事象検出部45は、変化の事象として、走行路および建造物の変化の事象を検出する。例えば、変化事象検出部45は、最新の画像と、1月前に撮像された同一箇所の画像とを比較し、路線バス100が走行する走行路の路側の建物の変化や、走行路自体の変化などを検出する。
地図情報更新部48は、変化事象検出部45が検出した走行路および構造物の変化の事象に基づいて、記憶装置50に事前に記憶されている地図情報を更新し、更新後の地図情報を記憶装置50に記憶させる。
地図情報提供部49は、地図情報更新部48による更新後の地図情報を、記憶装置50から読出し、ネットワーク80を介して、外部装置60や車両に搭載された車載通信機に提供する。例えば、外部装置60は、カーナビゲーションサービスを提供する事業者に設置されたサーバであってもよい。また、車載通信機に更新後の地図情報を提供することにより、カーナビゲーションシステムの地図情報の更新を行ってもよい。
センサ情報提供装置10が実行する処理の処理手順は、図6に示したものと同様である。
センサ情報収集装置40Aは、図7のフローチャートで示される処理手順の処理を実行する。その後、センサ情報収集装置40Aは、以下に説明する処理を実行する。
図12は、本発明の実施の形態2に係るセンサ情報収集装置40Aの処理手順を示すフローチャートである。図12に示す処理は、図7に示す処理手順によりセンサ情報および位置情報が記憶装置50に記憶されている状態において実行される。例えば、路線バス100の固定コースの走行が終了した後に、図12に示す処理が実行される。
ただし、図12に示す処理の実行タイミングは上記したものに限定されるものではなく、図7の処理と並行して実行されてもよい。
図12を参照して、センサ情報収集装置40Aは、路線バス100の固定コース上の各着目地点について、以下をステップS31~S36の処理を繰り返し実行する(ループB)。
つまり、変化事象検出部45は、記憶装置50から、着目地点に対応する画像を読み出す(S31)。例えば、変化事象検出部45は、着目地点の位置情報に対応する最新の画像と1月前の画像とを、記憶装置50から読み出す。後者の画像を、以下では「参照用画像」とする。
変化事象検出部45は、記憶装置50から読み出した最新の画像と参照用画像とを比較する(S32)。例えば、変化事象検出部45は、最新の画像と1月前に撮像された同一箇所の画像との差分画像を閾値処理することにより、変化領域を特定する。変化事象検出部45は、変化領域のサイズが所定の領域閾値以上であれば、画像に変化が生じていると判断し、該サイズが領域閾値以下であれば、画像に変化が生じていないと判断する。
変化事象検出部45は、画像に変化が生じていると判断した場合には(S33でYES)、比較結果と、記憶装置50から読み出した画像とに基づいて、画像上で変化が生じている箇所の画像を解析することにより、路線バス100の走行路の路側の建物の変化や、走行路自体の変化などを検出する(S34)。
図13は、変化事象検出部45による解析結果の一例を示す図である。
図13に示すように、画像上で路線バス100の走行路の路側に新たに家領域160が出現した場合には、変化事象検出部45は、家領域160を変化領域として特定する。変化事象検出部45は、特定した変化領域の画像を解析することにより、家が建設されたことを変化の事象として検出する。
図13に示すように、画像上で路線バス100の走行路の路側に新たに家領域160が出現した場合には、変化事象検出部45は、家領域160を変化領域として特定する。変化事象検出部45は、特定した変化領域の画像を解析することにより、家が建設されたことを変化の事象として検出する。
再度図12を参照して、地図情報更新部48は、変化事象検出部45が検出した走行路および構造物の変化の事象に基づいて、記憶装置50に事前に記憶されている地図情報を更新し、更新後の地図情報を記憶装置50に記憶させる(S35)。
例えば、図13に示すように、地図情報更新部48は、変化事象検出部45が新しい家が建設されたことを検出した場合には、当該建造物を地図情報に書き込む処理を行う。また、地図情報更新部48は、変化事象検出部45が新たな道路が建設されたことを検出した場合には、当該道路を地図情報に書き込む処理を行う。
図14は、地図情報更新部48による更新後の地図情報の一例を示す図である。
地図情報更新部48は、変化事象検出部45により新しく建設されたことが検出された家の位置を、画像に対応付けられた位置情報や画像解析結果などから特定する。地図情報更新部48は、地図上で、特定した家の位置に対応する箇所に、家のアイコン170を追加することにより、地図情報を更新する。
地図情報更新部48は、変化事象検出部45により新しく建設されたことが検出された家の位置を、画像に対応付けられた位置情報や画像解析結果などから特定する。地図情報更新部48は、地図上で、特定した家の位置に対応する箇所に、家のアイコン170を追加することにより、地図情報を更新する。
再度図12を参照して、地図情報提供部49は、地図情報更新部48による更新後の地図情報を、記憶装置50から読出し、ネットワーク80を介して、外部装置60や車両に搭載された車載通信機に提供する(S36)。
本発明の実施の形態2によると、センサ情報収集装置40Aは、センサ情報提供装置10から固定コース上の各地点の画像を周期的に受信することができる。このため、センサ情報収集装置40Aは、画像の変化から、高精度で路線バス100の走行路および走行路の周囲の建造物に生じた変化の事象を検出することができる。また、センサ情報収集装置40Aは、検出した事象に基づいて、地図情報を更新することができる。このため、センサ情報収集装置40A は、高精度かつ迅速に地図情報を更新することができる。
[付記]
以上、本発明の実施の形態に係るセンサ情報収集システム1について説明したが、本発明は、この実施の形態に限定されるものではない。
以上、本発明の実施の形態に係るセンサ情報収集システム1について説明したが、本発明は、この実施の形態に限定されるものではない。
例えば、上述の実施の形態では、センサ情報提供装置10は、センサ情報とともに位置情報を送信することとしたが、位置情報の送信は必ずしも必須ではない。
また、上述の実施の形態では、センサ情報提供装置10、センサ20および記憶装置30を路線バス100に設置することとしたが、これらの装置の設置対象は路線バス100に限定されるものではない。例えば、これらの装置は、高速バス、電車、新幹線、定期船、定期便旅客機などの固定コースを周期的に走行する移動体に設置してもよい。
また、上記の各装置は、具体的には、マイクロプロセッサ、ROM(Read Only Memory)、RAM、HDDなどから構成されるコンピュータシステムとして構成されてもよい。RAMまたはHDDには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
さらに、上記の各装置を構成する構成要素の一部または全部は、1個のシステムLSIから構成されているとしてもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。RAMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、システムLSI は、その機能を達成する。
また、本発明は、上記に示す方法であるとしてもよい。また、本発明は、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよい。
さらに、本発明は、上記コンピュータプログラムをコンピュータ読取可能な非一時的な記録媒体、例えば、HDD、CD-ROM、半導体メモリなどに記録したものとしてもよい。
また、上記コンピュータプログラムを、電気通信回線、無線または有線通信回線、インターネットを代表とするネットワーク、データ放送等を経由して伝送するものとしてもよい。
また、センサ情報収集装置40(40A)は、複数のコンピュータにより実現されてもよい。
さらに、上記実施の形態および上記変形例をそれぞれ組み合わせるとしてもよい。
さらに、上記実施の形態および上記変形例をそれぞれ組み合わせるとしてもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 センサ情報収集システム
10 センサ情報提供装置
11 無線通信部
12 センサ情報取得部
13 位置情報取得部
14 センサ情報送信部
15 指示情報受信部
16 計測精度調整部
20 センサ
21 カメラ
22 カメラ
23 カメラ
24 カメラ
25 振動センサ
26 路面センサ
30 記憶装置
40 センサ情報収集装置
40A センサ情報収集装置
41 無線通信部
42 センサ情報受信部
43 記憶制御部
44 指示情報送信部
45 変化事象検出部
46 変化事象提供部
47 センサ情報提供部
48 地図情報更新部
49 地図情報提供部
50 記憶装置
60 外部装置
70 無線基地局
80 ネットワーク
90 GPS衛星
100 路線バス
120 亀裂領域
130 土砂崩壊領域
140 エリア
150 変化領域
160 家領域
170 家のアイコン
10 センサ情報提供装置
11 無線通信部
12 センサ情報取得部
13 位置情報取得部
14 センサ情報送信部
15 指示情報受信部
16 計測精度調整部
20 センサ
21 カメラ
22 カメラ
23 カメラ
24 カメラ
25 振動センサ
26 路面センサ
30 記憶装置
40 センサ情報収集装置
40A センサ情報収集装置
41 無線通信部
42 センサ情報受信部
43 記憶制御部
44 指示情報送信部
45 変化事象検出部
46 変化事象提供部
47 センサ情報提供部
48 地図情報更新部
49 地図情報提供部
50 記憶装置
60 外部装置
70 無線基地局
80 ネットワーク
90 GPS衛星
100 路線バス
120 亀裂領域
130 土砂崩壊領域
140 エリア
150 変化領域
160 家領域
170 家のアイコン
Claims (22)
- 予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置であって、
前記移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するセンサ情報取得部と、
無線通信を行うための無線通信部と、
前記センサ情報取得部が取得した前記センサ情報を、前記無線通信部を介して、センサ情報収集装置に送信するセンサ情報送信部と
を備えるセンサ情報提供装置。 - 前記センサ情報送信部は、周期的に、前記センサ情報を前記センサ情報収集装置に送信する
請求項1に記載のセンサ情報提供装置。 - さらに、
前記無線通信部を介して、前記センサ情報収集装置から、前記対象の物理量の計測精度に関する指示情報を受信する指示情報受信部と、
前記指示情報に基づいて、前記センサの計測精度を調整する計測精度調整部とを備える
請求項1または請求項2に記載のセンサ情報提供装置。 - 前記センサは、前記移動体の周囲を撮像するカメラを含み、
前記指示情報受信部は、前記指示情報として、前記カメラが出力する画像の解像度に関連する指示情報を受信し、
前記計測精度調整部は、前記指示情報に基づいて、前記カメラが出力する画像の解像度を変更する
請求項3に記載のセンサ情報提供装置。 - 前記センサは、前記移動体の周囲を撮像するカメラを含み、
前記指示情報受信部は、前記指示情報として、前記カメラが出力する画像のフレームレートに関連する指示情報を受信し、
前記計測精度調整部は、前記指示情報に基づいて、前記カメラが出力する画像のフレームレートを変更する
請求項3に記載のセンサ情報提供装置。 - さらに、
前記移動体の位置情報を取得する位置情報取得部を備え、
前記センサ情報送信部は、さらに、前記位置情報取得部が取得した前記位置情報を前記センサ情報収集装置に送信する
請求項1~請求項5のいずれか1項に記載のセンサ情報提供装置。 - 前記センサは、前記移動体の周囲を撮像するカメラを含む
請求項1~請求項3のいずれか1項に記載のセンサ情報提供装置。 - 前記センサは、前記移動体が走行する路面の路面状態を計測する路面センサを含む
請求項1~請求項7のいずれか1項に記載のセンサ情報提供装置。 - 前記センサは、前記移動体の振動を計測する振動センサを含む
請求項1~請求項8のいずれか1項に記載のセンサ情報提供装置。 - さらに、
前記センサ情報取得部が取得した前記センサ情報を一時的に記憶する記憶装置を備え、
前記センサ情報送信部は、前記センサ情報収集装置との間の無線通信の通信状態に応じて前記記憶装置から前記センサ情報を読み出し、読み出した前記センサ情報を、前記センサ情報収集装置に送信する
請求項1~請求項9のいずれか1項に記載のセンサ情報提供装置。 - 予め定められた固定コースを走行する移動体に設置されたセンサ情報提供装置から無線通信を介して、前記移動体に設置されたセンサによる対象の物理量の計測結果であるセンサ情報を受信するセンサ情報受信部と、
前記センサ情報受信部が受信した前記センサ情報を、記憶装置に記憶させる記憶制御部とを備える
センサ情報収集装置。 - さらに、
前記センサ情報受信部が周期的に受信した前記センサ情報に基づいて、前記移動体の周辺環境に生じた変化の事象を検出する変化事象検出部と、
前記変化事象検出部が検出した前記変化の事象を、外部装置に提供する変化事象提供部とを備える
請求項11に記載のセンサ情報収集装置。 - 前記変化事象検出部は、前記センサ情報に基づいて、前記変化の事象として、前記移動体の走行路に生じた異常事象を検出する
請求項12に記載のセンサ情報収集装置。 - 前記センサは、前記移動体の周囲を撮像するカメラを含み、
前記センサ情報受信部は、前記センサ情報として、前記カメラで撮像された前記移動体の周囲の画像を受信し、
前記変化事象検出部は、前記画像に基づいて、前記変化の事象として、前記移動体の周辺に存在する不審者を検出する
請求項12に記載のセンサ情報収集装置。 - 前記センサは、前記移動体の周囲を撮像するカメラを含み、
前記センサ情報受信部は、前記センサ情報として、前記カメラで撮像された前記移動体の周囲の画像を受信し、
前記変化事象検出部は、前記画像に基づいて、前記移動体の走行路または走行路の周囲の建造物に生じた変化の事象を検出し、
前記センサ情報収集装置は、さらに、
前記変化事象検出部が検出した前記走行路または前記建造物の変化の事象に基づいて、地図情報を更新する地図情報更新部を備える
請求項12に記載のセンサ情報収集装置。 - 前記センサ情報受信部は、さらに、前記センサ情報提供装置から前記移動体の位置情報を受信し、
前記センサ情報収集装置は、さらに、
前記センサによる前記対象の物理量の計測精度に関する指示情報であって、前記移動体の位置情報に応じた前記計測精度に関する前記指示情報を、前記センサ情報提供装置に送信する指示情報送信部とを備える
請求項11~請求項15のいずれか1 項に記載のセンサ情報収集装置。 - さらに、
前記センサ情報受信部が受信した前記センサ情報を、外部装置に提供するセンサ情報提供部を備える
請求項11~請求項16のいずれか1 項に記載のセンサ情報収集装置。 - 予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置と、
前記センサ情報提供装置と無線通信を介して接続されるセンサ情報収集装置とを備え、
前記センサ情報提供装置は、
前記移動体に設置されたセンサから、当該センサによる対象の物理量を計測結果であるセンサ情報を取得するセンサ情報取得部と、
無線通信を行うための無線通信部と、
前記センサ情報取得部が取得した前記センサ情報を、前記無線通信部を介して、前記センサ情報収集装置に送信するセンサ情報送信部とを有し、
前記センサ情報収集装置は、
前記センサ情報提供装置から無線通信を介して、前記センサ情報を受信するセンサ情報受信部と、
前記センサ情報受信部が受信した前記センサ情報を、記憶装置に記憶させる記憶制御部とを有する、センサ情報収集システム。 - 予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置によるセンサ情報提供方法であって、
前記移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するステップと、
取得された前記センサ情報を、無線通信により、センサ情報収集装置に送信するステップと
を含むセンサ情報提供方法。 - 予め定められた固定コースを走行する移動体に設置されたセンサ情報提供装置から無線通信を介して、前記移動体に設置されたセンサによる対象の物理量の計測結果であるセンサ情報を受信するステップと、
受信された前記センサ情報を、記憶装置に記憶させるステップと
を含むセンサ情報収集方法。 - 予め定められた固定コースを走行する移動体に搭載されるセンサ情報提供装置としてコンピュータを機能させるためのコンピュータプログラムであって、
前記コンピュータを、
前記移動体に設置されたセンサから、当該センサによる対象の物理量の計測結果であるセンサ情報を取得するセンサ情報取得部と、
前記センサ情報取得部が取得した前記センサ情報を、無線通信により、センサ情報収集装置に送信するセンサ情報送信部と
して機能させるためのコンピュータプログラム。 - コンピュータを、
予め定められた固定コースを走行する移動体に設置されたセンサ情報提供装置から無線通信を介して、前記移動体に設置されたセンサによる対象の物理量の計測結果であるセンサ情報を受信するセンサ情報受信部と、
前記センサ情報受信部が受信した前記センサ情報を、記憶装置に記憶させる記憶制御部と
して機能させるためのコンピュータプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019501185A JPWO2018155149A1 (ja) | 2017-02-22 | 2018-02-05 | センサ情報提供装置、センサ情報収集装置、センサ情報収集システム、センサ情報提供方法、センサ情報収集方法、およびコンピュータプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017031248 | 2017-02-22 | ||
JP2017-031248 | 2017-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018155149A1 true WO2018155149A1 (ja) | 2018-08-30 |
Family
ID=63253199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003837 WO2018155149A1 (ja) | 2017-02-22 | 2018-02-05 | センサ情報提供装置、センサ情報収集装置、センサ情報収集システム、センサ情報提供方法、センサ情報収集方法、およびコンピュータプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018155149A1 (ja) |
WO (1) | WO2018155149A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021106297A1 (ja) * | 2019-11-29 | 2021-06-03 | 住友電気工業株式会社 | 提供装置、車両管理装置、車両管理システム、車両管理方法および車両管理プログラム |
CN114586081A (zh) * | 2019-10-31 | 2022-06-03 | 索尼集团公司 | 信息处理设备、信息处理系统和信息处理方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7328905B2 (ja) * | 2020-01-17 | 2023-08-17 | 株式会社日立製作所 | センシングシステム及びセンシング制御方法 |
CN112556760A (zh) * | 2020-12-15 | 2021-03-26 | 中铁北京工程局集团有限公司 | 一种桥梁裂缝监测系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03138509A (ja) * | 1989-10-17 | 1991-06-12 | Tokai Riyokaku Tetsudo Kk | 車両の着雪厚さ検出方法及び装置 |
JP2000207689A (ja) * | 1999-01-14 | 2000-07-28 | Nissan Motor Co Ltd | 車両経路誘導システム |
JP2015190270A (ja) * | 2014-03-28 | 2015-11-02 | 株式会社Nttファシリティーズ | 橋梁のモニタリングシステム、モニタリング方法、及びプログラム |
JP2016058921A (ja) * | 2014-09-10 | 2016-04-21 | 株式会社東芝 | 鉄道車両用カメラ装置、制御方法及びプログラム |
JP2016100801A (ja) * | 2014-11-25 | 2016-05-30 | 日本電気株式会社 | 無線通信装置、無線通信端末装置、無線通信システムおよび制御方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0397080A (ja) * | 1989-09-11 | 1991-04-23 | Secom Co Ltd | 画像監視装置 |
-
2018
- 2018-02-05 JP JP2019501185A patent/JPWO2018155149A1/ja active Pending
- 2018-02-05 WO PCT/JP2018/003837 patent/WO2018155149A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03138509A (ja) * | 1989-10-17 | 1991-06-12 | Tokai Riyokaku Tetsudo Kk | 車両の着雪厚さ検出方法及び装置 |
JP2000207689A (ja) * | 1999-01-14 | 2000-07-28 | Nissan Motor Co Ltd | 車両経路誘導システム |
JP2015190270A (ja) * | 2014-03-28 | 2015-11-02 | 株式会社Nttファシリティーズ | 橋梁のモニタリングシステム、モニタリング方法、及びプログラム |
JP2016058921A (ja) * | 2014-09-10 | 2016-04-21 | 株式会社東芝 | 鉄道車両用カメラ装置、制御方法及びプログラム |
JP2016100801A (ja) * | 2014-11-25 | 2016-05-30 | 日本電気株式会社 | 無線通信装置、無線通信端末装置、無線通信システムおよび制御方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114586081A (zh) * | 2019-10-31 | 2022-06-03 | 索尼集团公司 | 信息处理设备、信息处理系统和信息处理方法 |
WO2021106297A1 (ja) * | 2019-11-29 | 2021-06-03 | 住友電気工業株式会社 | 提供装置、車両管理装置、車両管理システム、車両管理方法および車両管理プログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018155149A1 (ja) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106462729B (zh) | 车辆图像数据管理系统和方法 | |
WO2018155149A1 (ja) | センサ情報提供装置、センサ情報収集装置、センサ情報収集システム、センサ情報提供方法、センサ情報収集方法、およびコンピュータプログラム | |
US10582162B2 (en) | Image information collecting system and method for collecting image information on moving object | |
US9171363B2 (en) | Computer-readable recording medium and road surface survey device | |
JP6428493B2 (ja) | 自動走行制御装置、自動走行用車載装置、自動走行制御方法 | |
Handte et al. | Crowd Density Estimation for Public Transport Vehicles. | |
US20180362048A1 (en) | Detection device, road surface information system, and vehicle | |
US20130173208A1 (en) | Road surface inspection device and recording medium | |
JP2016058912A (ja) | 車載カメラ診断装置 | |
JP2022538097A (ja) | ナビゲート可能なネットワークに関するユーザ提供データの収集 | |
US20200043339A1 (en) | Processing device | |
WO2020194539A1 (ja) | 構造物の変位計測装置 | |
JP2014198974A (ja) | 路面変化算出プログラム、路面変化算出方法および路面変化算出装置 | |
JP5674915B2 (ja) | 探索装置、探索システム、探索方法および端末 | |
Kurz et al. | Real time camera system for disaster and traffic monitoring | |
WO2018179892A1 (ja) | 車載装置、局側装置及びキャリブレーション方法 | |
CN110851545A (zh) | 地图绘制方法、装置及设备 | |
WO2020017320A1 (ja) | センサ共有システム、センサ共有装置、センサ共有方法、及びコンピュータプログラム | |
CN111624550B (zh) | 一种车辆定位方法、装置、设备及存储介质 | |
Tadic et al. | GHOST: A novel approach to smart city infrastructures monitoring through GNSS precise positioning | |
Zhang et al. | SIROM3--A scalable intelligent roaming multi-modal multi-sensor framework | |
JP2019109157A (ja) | 推定装置、推定方法および推定プログラム | |
JP2007093436A (ja) | Gps測位精度早期安定化方法 | |
JP2022118321A (ja) | 車両映像収集システム | |
CN114072864A (zh) | 地图数据生成装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18758427 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019501185 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18758427 Country of ref document: EP Kind code of ref document: A1 |