WO2018154947A1 - 光中継システム - Google Patents

光中継システム Download PDF

Info

Publication number
WO2018154947A1
WO2018154947A1 PCT/JP2017/045762 JP2017045762W WO2018154947A1 WO 2018154947 A1 WO2018154947 A1 WO 2018154947A1 JP 2017045762 W JP2017045762 W JP 2017045762W WO 2018154947 A1 WO2018154947 A1 WO 2018154947A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
repeater
optical signal
wavelength band
band
Prior art date
Application number
PCT/JP2017/045762
Other languages
English (en)
French (fr)
Inventor
浩志 稲田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2019501085A priority Critical patent/JP6711448B2/ja
Priority to CN201780086580.2A priority patent/CN110301105A/zh
Priority to US16/481,543 priority patent/US20200195349A1/en
Priority to EP17897498.6A priority patent/EP3588809A4/en
Publication of WO2018154947A1 publication Critical patent/WO2018154947A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/2941Signal power control in a multiwavelength system, e.g. gain equalisation using an equalising unit, e.g. a filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical repeater system, and more particularly to an optical repeater system capable of increasing the number of optical fibers.
  • optical communication using such an optical cable an optical signal that attenuates along with optical transmission is amplified by an optical repeater to realize long-distance optical transmission.
  • the gain of the optical repeater is different for each wavelength, so that there is a difference in the intensity of the optical signal between different wavelengths. Therefore, an optical gain equalizing filter that reduces the gain deviation of the optical signal may be incorporated in a joint box that connects the optical repeater and the optical repeater.
  • the joint box includes an optical coupler that demultiplexes different wavelengths, an optical gain equalization filter that equalizes the intensity of the optical signal between wavelengths, and an optical coupler that combines the optical signals again.
  • the size of the joint box is limited to reduce the size of the joint box, the number of optical devices such as optical couplers and optical gain equalization filters mounted on the joint box is limited. As a result, there is a problem that the number of optical fibers connected to the optical device is limited, and high-speed and large-capacity communication becomes difficult.
  • Patent Document 1 discloses that in an optical submarine repeater, an electric circuit including a circuit for generating excitation light and a surge protection circuit is mounted on a housing configured as a joint box. In addition, it is disclosed that an optical circuit for passing an optical signal is mounted in another housing configured as a joint box. It is disclosed that a 3 dB coupler, a WDM coupler, and an erbium-doped fiber are provided as an optical circuit. However, Patent Document 1 does not disclose mounting of an optical gain equalization filter.
  • the optical gain equalization filter may be referred to as an equalization filter.
  • the optical component housing for an optical submarine cable has equalization characteristics optimum for each optical fiber with respect to the gain deviation of the optical amplifier, the transmission characteristics of the optical submarine cable, and the installation environment thereof. It is disclosed that an optical gain equalizer is installed. However, Patent Document 2 does not disclose mounting of an optical coupler necessary for the wavelength multiplexing method. Note that the optical gain equalizer may be referred to as an equalization filter.
  • the present invention has been made to solve such a problem, and an object thereof is to provide an optical repeater system capable of increasing the number of optical fibers.
  • An optical repeater system includes: A first repeater having a first optical coupler that demultiplexes an optical signal into a first wavelength band and a second wavelength band; A joint connected to the first repeater and having a first equalization filter for equalizing the optical signal in the first wavelength band and a second equalization filter for equalizing the optical signal in the second wavelength band Box and A second repeater having a second optical coupler connected to the joint box and configured to multiplex the equalized first wavelength band optical signal and the equalized second wavelength band optical signal; Is provided.
  • An optical repeater system includes: A first repeater having a first optical coupler that demultiplexes an optical signal into a first wavelength band and a second wavelength band; A joint box connected to the first repeater and having a first attenuator for attenuating the optical signal in the first wavelength band and a second attenuator for attenuating the optical signal in the second wavelength band; A second repeater connected to the joint box and having a second optical coupler for combining the attenuated first wavelength band optical signal and the attenuated second wavelength band optical signal; Is provided.
  • an optical relay system capable of increasing the number of optical fibers can be provided.
  • FIG. 1 is a block diagram illustrating an optical relay system according to a first embodiment. It is a schematic diagram which illustrates the optical signal in the point P1 shown in FIG. It is a schematic diagram which illustrates the optical signal in the point P2 shown in FIG. It is a schematic diagram which illustrates the optical signal in the point P3 shown in FIG. It is a schematic diagram which illustrates the optical signal in the point P4 shown in FIG. It is a schematic diagram which illustrates the optical signal in the point P5 shown in FIG. It is a schematic diagram which illustrates the optical signal in the point P6 shown in FIG. 1 is a block diagram illustrating an optical relay system according to a first embodiment. It is a block diagram which illustrates the optical repeater system concerning a comparative example. FIG. 3 is a block diagram illustrating an optical relay system according to a second embodiment. FIG. 6 is a block diagram illustrating an optical relay system according to a third embodiment.
  • Embodiment 1 A configuration of the optical relay system according to the first embodiment will be described.
  • Embodiment 1 is an optical submarine communication system laid on the seabed for the purpose of relaying an optical signal such as a telephone line, and demultiplexes and equalizes an optical signal in which the C band and the L band are wavelength-multiplexed.
  • an optical repeater system that combines.
  • an optical amplifier that amplifies the optical signal may be mounted on the repeater, but this is omitted in this example.
  • FIG. 1 is a block diagram illustrating an optical repeater system according to the first embodiment.
  • FIG. 1 is a block diagram for the downlink DL1 of one optical fiber.
  • FIG. 2A is a schematic view illustrating an optical signal at point P1 shown in FIG.
  • FIG. 2B is a schematic view illustrating an optical signal at point P2 shown in FIG.
  • FIG. 2C is a schematic view illustrating an optical signal at a point P3 shown in FIG.
  • FIG. 2D is a schematic view illustrating an optical signal at point P4 shown in FIG.
  • FIG. 2E is a schematic view illustrating an optical signal at point P5 shown in FIG.
  • FIG. 2F is a schematic view illustrating an optical signal at point P6 shown in FIG.
  • FIG. 3 is a block diagram illustrating an optical repeater system according to the first embodiment.
  • FIG. 3 is a block diagram of two optical fibers (downlink DL1 and downlink DL2) and two optical fibers (uplink UL1 and uplink UL2).
  • the downlink DL will be described. As shown in FIG. 1, in the downlink DL1, the optical signal is input to the optical coupler 111 and reaches the optical coupler 121 via the equalization filter 131.
  • the optical repeater system 10 includes a repeater 11, a repeater 12, and a joint box 13.
  • the repeater 11 includes an optical coupler 111 that demultiplexes an optical signal.
  • the optical coupler 111 is an optical coupler that demultiplexes an optical signal into a first wavelength band and a second wavelength band.
  • the first wavelength band is, for example, the C band
  • the second wavelength band is, for example, the L band.
  • the optical signals of the C band and L band vary in the intensity of the optical signal. For this reason, the intensity of each optical signal in the C band and the L band is adjusted to a predetermined value using an equalization filter.
  • the optical coupler 111 converts the optical signal as shown in FIG. 2A in which the C band and the L band are wavelength-multiplexed into the optical signal in the C band as shown in FIG. 2B and the optical signal as shown in FIG. Demultiplexed into an L-band optical signal.
  • the joint box 13 is connected to the repeater 11 and has an equalization filter 131 and an equalization filter 132.
  • the equalization filter 131 equalizes the demultiplexed C band (first wavelength band) optical signal
  • the equalization filter 132 equalizes the demultiplexed L band (second wavelength band) optical signal.
  • the equalization filter 131 converts an optical signal (shown in FIG. 2B) having different optical signal strengths for each wavelength into an optical signal (shown in FIG. 2D) in which the optical signal strength is substantially uniform within the C band. ).
  • the equalization filter 132 corrects the optical signal as shown in FIG. 2C into an optical signal (shown in FIG. 2E) in which the intensity of the optical signal is substantially uniform within the L band.
  • the joint box 13 may be disposed adjacent to the repeater 11.
  • the repeater 12 is connected to the joint box 13 and has an optical coupler 121 that combines the equalized C-band optical signal and the equalized L-band optical signal. Specifically, the optical coupler 121 combines a C-band optical signal as shown in FIG. 2D and an L-band optical signal as shown in FIG. 2E, and wavelength-multiplexes them as shown in FIG. 2F. Outputs an optical signal.
  • the repeater 12 may be disposed adjacent to the joint box 13.
  • the repeater 11 has a joint ring 113 connected to the joint box 13, and the optical coupler 111 may be provided in the joint ring 113.
  • the repeater 12 includes a joint ring 123 connected to the joint box 13, and the optical coupler 121 may be provided in the joint ring 123.
  • the repeater 11 may be referred to as a first repeater, and the repeater 12 may be referred to as a second repeater.
  • the optical coupler 111 may be referred to as a first optical coupler, and the optical coupler 121 may be referred to as a second optical coupler.
  • the equalization filter 131 may be referred to as a first equalization filter, and the equalization filter 132 may be referred to as a second equalization filter.
  • the joint ring 113 may be referred to as a first joint ring, and the joint ring 123 may be referred to as a second joint ring.
  • the uplink UL1 will be described.
  • FIG. 3 as compared with FIG. 1, one downstream optical fiber (downstream DL2) and two upstream optical fibers (upstream UL1 and upstream UL2) are additionally shown.
  • an optical coupler and an equalizing filter are also provided in the uplink UL1 so as to be paired with the downlink DL1. Then, in the uplink UL 1, the optical signal is input to the optical coupler 122 and reaches the optical coupler 112 via the equalization filter 133 and the equalization filter 134.
  • the repeater 12 has an optical coupler 122 that demultiplexes the optical signal in the joint ring 123, and the optical coupler 122 demultiplexes the optical signal into the C band and the L band.
  • the joint box 13 includes an equalization filter 133 and an equalization filter 134.
  • the equalization filter 133 equalizes the demultiplexed L-band optical signal
  • the equalization filter 134 equalizes the demultiplexed C-band optical signal.
  • the repeater 11 includes an optical coupler 112 in the joint ring 113 that combines the equalized C-band optical signal and the equalized L-band optical signal.
  • the optical coupler 122 is provided in the joint ring 123 together with the optical coupler 121.
  • the equalization filter 133 and the equalization filter 134 are provided in the joint box 13 together with the equalization filter 131 and the equalization filter 132.
  • the optical coupler 112 is provided in the joint ring 113 together with the optical coupler 111.
  • the optical relay system 10 mounts only the equalization filter 131 and the equalization filter 132 in the joint box 13.
  • the optical coupler 111 is mounted on the joint ring 113 of the repeater 11, and the optical coupler 121 is mounted on the joint ring 123 of the repeater 12. In this way, optical devices such as optical couplers and equalizing filters are distributed and mounted in the joint box and the repeater.
  • the optical coupler 111 and the optical coupler 121 can be taken out of the joint box 13. Then, the number of optical devices to be mounted on the joint box 13 is two, and the mounting of optical devices and the routing of optical fibers can be simplified.
  • the uplink UL1 is the same as the downlink DL1. That is, in the uplink UL1, only the equalization filter 133 and the equalization filter 134 are mounted on the joint box 13, the optical coupler 122 is mounted on the joint ring 123, and the optical coupler 112 is mounted on the joint ring 113.
  • An optical fiber composed of one downlink DL1 optical fiber and one uplink UL1 optical fiber is referred to as an optical fiber pair.
  • the number of optical devices required for one pair of optical fibers is four joint boxes 13 and two joint rings 113.
  • Four optical devices in the joint box 13 are equalization filters 131-134
  • two optical devices in the joint ring 113 are optical couplers 111-112, and two optical devices in the joint ring 123. Is the optical coupler 121-122.
  • the downlink DL2 is the same as the downlink DL1
  • the uplink UL2 is the same as the uplink UL1, so detailed description thereof is omitted.
  • FIG. 4 is a block diagram illustrating an optical repeater system according to a comparative example.
  • the optical relay system 50 has an optical coupler 111, an optical coupler 112, an optical coupler 121, and a joint box 53 as compared with the optical relay system 10 in which one pair of optical fibers is mounted.
  • the difference is that the optical coupler 122 is mounted. That is, the optical coupler 111 and the optical coupler 112 are mounted on the joint box 53 without being mounted on the joint ring 113, and the optical coupler 121 and the optical coupler 122 are mounted on the joint box 53 without being mounted on the joint ring 123.
  • the number of optical devices mounted on the joint box 13 is eight.
  • the optical repeater system 10 is compared with the optical repeater system 50.
  • the number of optical devices mounted in the joint box 53 per pair of optical fibers (downlink DL1 and uplink UL1) is eight.
  • the number of optical devices mounted on the joint box 13 per pair of optical fibers is four. That is, in the optical relay system 10, the number of optical devices mounted in the joint box 13 can be reduced to half compared to the optical relay system 50.
  • the size of the joint box is limited in order to reduce the size of the joint box.
  • the number of optical devices that can be mounted in a joint box with a limited size is naturally limited.
  • the optical relay system 50 can connect only two optical fibers (one pair of optical fibers).
  • the optical repeater system 10 as shown in FIG. 3, up to four optical fibers (two pairs of optical fibers) can be connected, which can be doubled compared to the optical repeater system 50.
  • the joint box of the optical repeater system needs to be downsized in order to lay on the seabed. Therefore, in the optical repeater system 10 according to the first embodiment, the number of optical fibers accommodated in the joint box 13 is increased by changing the arrangement (mounting) of optical devices such as optical couplers and equalization filters. The number of optical fibers that can be connected to a repeater or joint box can be increased. As a result, an optical relay system capable of increasing the number of optical fibers can be provided.
  • the optical submarine communication system can be expanded.
  • a passive device such as an equalization filter is mounted in a joint box for connecting submarine cables.
  • An optical coupler is mounted in the joint ring of the repeater.
  • an optical coupler 111 that demultiplexes an optical signal into a C band and an L band is mounted in a joint ring 113 connected to the joint box 13.
  • An optical coupler 121 that combines the C band and the L band is mounted in a joint ring 123 connected to the joint box 13.
  • an optical coupler 122 that demultiplexes the optical signal into the C band and the L band is mounted in the joint ring 123 connected to the joint box 13. Further, an optical coupler 112 that combines the C band and the L band is mounted in a joint ring 113 connected to the joint box 13.
  • Such mounting can reduce the number of optical devices mounted inside the joint box 13 such as a factory joint or a universal joint. Moreover, the number of optical fibers accommodated in the joint box 13 can be increased by such mounting.
  • the number of optical fibers that can be mounted can be increased without increasing the number of joint boxes and repeaters laid on the seabed.
  • FIG. 5 is a block diagram illustrating an optical relay system according to the second embodiment.
  • the optical repeater system 20 according to the second embodiment is different from the optical repeater system 10 shown in FIG. 3 in that an attenuator is mounted instead of the equalization filter.
  • the optical signals of the C band and the L band vary in the intensity of the optical signal.
  • an attenuator is used to attenuate the intensity of each of the optical signals in the C band and the L band and adjust them to a predetermined value.
  • the intensity of the optical signal is attenuated using the attenuator and adjusted to a predetermined value.
  • the optical repeater system 20 includes a repeater 11, a joint box 23, and a repeater 12.
  • the repeater 11 includes an optical coupler 111 that demultiplexes an optical signal into a C band and an L band, as in the optical relay system 10.
  • the joint box 23 is connected to the repeater 11 and includes an attenuator 231 that attenuates a C-band optical signal and an attenuator 232 that attenuates an L-band optical signal.
  • the repeater 12 is connected to the joint box 23 and includes an optical coupler 121 that combines the attenuated C-band optical signal and the attenuated L-band optical signal.
  • the optical coupler 111 is provided in the joint ring 113 connected to the joint box 13, and the optical coupler 121 is provided in the joint ring 123 connected to the joint box 13.
  • the joint box 23 includes an attenuator 233 and an attenuator 234.
  • the attenuator 233 attenuates the demultiplexed L-band optical signal
  • the attenuator 234 attenuates the demultiplexed C-band optical signal.
  • the attenuator 233 and the attenuator 234 are provided in the joint box 23 together with the attenuator 231 and the attenuator 232. Further, since downlink DL2 is the same as downlink DL1, and uplink UL2 is similar to uplink UL1, detailed description thereof is omitted.
  • the number of optical fibers accommodated in the joint box is increased by mounting the optical coupler in the joint ring and mounting the attenuator in the joint box.
  • the number of optical fibers that can be connected to the joint box can be increased.
  • the attenuator 231 may be referred to as a first attenuator and the attenuator 232 may be referred to as a second attenuator.
  • FIG. 6 is a block diagram illustrating an optical relay system according to the third embodiment.
  • the optical relay system 30 according to the third embodiment is different from the optical relay system 10 shown in FIG. 3 in that it further includes a joint box 35 and a repeater 34.
  • the joint box 35 is connected to the repeater 11, and the repeater 34 is connected to the joint box 35.
  • Optical devices related to downlink DL1 optical coupler 111, equalization filter 131, equalization filter 132, and optical coupler 121 and optical devices related to uplink UL1 (optical coupler 122, equalization filter 133, equalization filter 134, and optical coupler 112)
  • the mounting is the same as that of the optical relay system 10, and the description is omitted.
  • the repeater 34 includes a joint ring 343, and an optical coupler 341 that demultiplexes the downlink DL2 optical signal into the C band and the L band is mounted on the joint ring 343.
  • the joint box 35 is connected to the repeater 11 and the repeater 34.
  • the joint box 35 includes an equalization filter 351 that equalizes the demultiplexed C-band optical signal, and the demultiplexed L-band optical signal.
  • An equalization filter 352 for equalizing is implemented.
  • An optical coupler 314 that multiplexes the equalized C-band optical signal and the equalized L-band optical signal is mounted on the joint ring 316 of the repeater 11.
  • an optical coupler 315 that demultiplexes the uplink UL2 optical signal into the C band and the L band is mounted on the joint ring 316 of the repeater 11.
  • an equalization filter 353 for equalizing the demultiplexed L-band optical signal and an equalization filter 354 for equalizing the demultiplexed C-band optical signal are mounted in the joint box 35.
  • An optical coupler 342 that combines the equalized C-band optical signal and the equalized L-band optical signal is mounted on the joint ring 343 of the repeater 34.
  • an attenuator may be mounted instead of the equalization filter.
  • optical devices are mounted on the joint box 35, and four optical devices (equalization filters 131 to 134) are mounted on the joint box 13. ) Is implemented.
  • two optical devices are mounted on the joint ring 343, two optical devices (optical couplers 314 and 315) are mounted on the joint ring 316, and two optical devices are mounted on the joint ring 113.
  • the devices (optical couplers 111 and 112) are mounted, and two optical devices (optical couplers 121 and 122) are mounted on the joint ring 123.
  • the optical repeater system 30 can accommodate two pairs of optical fibers.
  • the repeater 34 may be referred to as a third repeater, and the joint box 35 may be referred to as another joint box.
  • the downlink DL2 optical signal may be referred to as another optical signal.
  • the optical coupler 341 may be referred to as a third optical coupler, and the optical coupler 314 may be referred to as a fourth optical coupler.
  • the equalization filter 351 may be referred to as a third equalization filter, and the equalization filter 352 may be referred to as a fourth equalization filter.
  • the optical submarine communication system has been described as an example.
  • the present invention is not limited to this, and the present invention may be applied to other apparatuses having a size limitation and a limitation on the number of devices to be mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

光ファイバ数を増加させることが可能な光中継システムを提供することを目的とする。本発明に係る光中継システム(10)は、光信号を第1波長帯と第2波長帯に分波する第1光カプラ(111)を有する第1中継器(11)と、第1中継器(11)に接続し、第1波長帯の光信号を等化する第1等化フィルタ(131)と、第2波長帯の光信号を等化する第2等化フィルタ(132)と、を有するジョイントボックス(13)と、ジョイントボックス(13)に接続し、等化された第1波長帯の光信号と等化された第2波長帯の光信号とを合波する第2光カプラ(121)を有する第2中継器(12)と、を備える。

Description

光中継システム
 本発明は、光中継システムに関するものであり、特に、光ファイバ数を増加させることが可能な光中継システムに関する。
 近年、高速大容量通信が可能な光ケーブルを用いた長距離伝送が盛んに行われるようになっている。このような光ケーブルを用いた光通信においては、光伝送に伴って減衰する光信号を光中継器により増幅して長距離光伝送を実現している。しかしながら、大容量通信を実現する技術である光波長多重方式では、光中継器の利得が波長毎に異なるため、異なる波長間で光信号の強度に差が生じてしまう。そこで、光中継器と光中継器とを接続するジョイントボックス内に、光信号の利得偏差を減少させる光利得等化用フィルタを組み込むことがある。
 光ケーブルを海底に敷設する場合、光中継器やジョイントボックスも共に海底に敷設する。このとき、光中継器やジョイントボックスの径が大きいと、十分な深度に埋設できないことがある。このため、ジョイントボックスの小型化が要求される。また、光ケーブルの波浪抵抗や水圧負荷を軽減するためにも、ジョイントボックスの小型化が要求される。ジョイントボックスは、異なる波長を分波する光カプラと、波長間の光信号の強度を等化する光利得等化用フィルタと、光信号を再び合波する光カプラとを有している。ジョイントボックスの小型化のためにジョイントボックスの大きさが制限されると、ジョイントボックスに実装する光カプラや光利得等化用フィルタなどの光デバイスの数が制限される。その結果、該光デバイスと接続する光ファイバの数が制限され、高速大容量通信が難しくなるという問題があった。
 特許文献1には、光海底中継装置において、ジョイントボックスとして構成された筐体に、励起光を発生させる回路及びサージ保護回路を含む電気回路が実装されることが開示されている。また、ジョイントボックスとして構成された別の筐体に、光信号を通す光回路が実装されることが開示されている。そして、光回路として、3dBカプラ、WDMカプラ、及びエルビウムドープトファイバを配設することが開示されている。しかしながら、特許文献1には、光利得等化用フィルタの実装については開示されていない。尚、光利得等化用フィルタを、等化フィルタと称することもある。
 特許文献2には、光海底ケーブル用光部品収容体の内部に、光増幅器の利得偏差や光海底ケーブルの伝送特性及びその敷設環境に対して、それぞれの光ファイバに最適な等化特性を有する光利得等化器が設置されていることが開示されている。しかしながら、特許文献2には、波長多重方式で必要な光カプラの実装については開示されていない。尚、光利得等化器を、等化フィルタと称することもある。
特開2014-146881号公報 特開2005-215413号公報
 上述のように、ジョイントボックスの小型化のためにジョイントボックスに実装する光デバイスの数が制限されると、該光デバイスに接続する光ファイバの数を増加させることが難しいという問題があった。
 本発明は、このような問題を解決するためになされたものであり、光ファイバ数を増加させることが可能な光中継システムを提供することを目的とする。
 本発明に係る光中継システムは、
 光信号を第1波長帯と第2波長帯に分波する第1光カプラを有する第1中継器と、
 前記第1中継器に接続し、前記第1波長帯の光信号を等化する第1等化フィルタと、前記第2波長帯の光信号を等化する第2等化フィルタと、を有するジョイントボックスと、
 前記ジョイントボックスに接続し、前記等化された第1波長帯の光信号と前記等化された第2波長帯の光信号とを合波する第2光カプラを有する第2中継器と、
 を備える。
 本発明に係る光中継システムは、
 光信号を第1波長帯と第2波長帯に分波する第1光カプラを有する第1中継器と、
 前記第1中継器に接続し、前記第1波長帯の光信号を減衰する第1アッテネータと、前記第2波長帯の光信号を減衰する第2アッテネータと、を有するジョイントボックスと、
 前記ジョイントボックスに接続し、前記減衰された第1波長帯の光信号と前記減衰された第2波長帯の光信号とを合波する第2光カプラを有する第2中継器と、
 を備える。
 本発明によれば、光ファイバ数を増加させることが可能な光中継システムを提供することができる。
実施の形態1に係る光中継システムを例示するブロック図である。 図1に示す点P1での光信号を例示する模式図である。 図1に示す点P2での光信号を例示する模式図である。 図1に示す点P3での光信号を例示する模式図である。 図1に示す点P4での光信号を例示する模式図である。 図1に示す点P5での光信号を例示する模式図である。 図1に示す点P6での光信号を例示する模式図である。 実施の形態1に係る光中継システムを例示するブロック図である。 比較例に係る光中継システムを例示するブロック図である。 実施の形態2に係る光中継システムを例示するブロック図である。 実施の形態3に係る光中継システムを例示するブロック図である。
 以下、図面を参照して本発明の実施の形態について説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明を省略する。
 [実施の形態1]
 実施の形態1に係る光中継システムの構成について説明する。
 実施の形態1においては、電話回線等の光信号を中継する目的で海底に敷設される光海底通信システムであって、CバンドとLバンドが波長多重された光信号を分波し、等化し、合波する光中継システムを例に挙げる。また、中継器には、光信号を増幅する光増幅器が実装されることもあるが、この例では省略する。
 図1は、実施の形態1に係る光中継システムを例示するブロック図である。
 図1は、光ファイバ1本の下りDL1についてのブロック図である。
 図2Aは、図1に示す点P1での光信号を例示する模式図である。
 図2Bは、図1に示す点P2での光信号を例示する模式図である。
 図2Cは、図1に示す点P3での光信号を例示する模式図である。
 図2Dは、図1に示す点P4での光信号を例示する模式図である。
 図2Eは、図1に示す点P5での光信号を例示する模式図である。
 図2Fは、図1に示す点P6での光信号を例示する模式図である。
 図2A~図2Fにおいては、横軸は波長λを示し、縦軸は光信号の強度Psを示す。
 図3は、実施の形態1に係る光中継システムを例示するブロック図である。
 図3は、光ファイバ2本(下りDL1及び下りDL2)と、光ファイバ2本(上りUL1及び上りUL2)についてのブロック図である。
 下りDLについて説明する。
 図1に示すように、下りDL1において、光信号は、光カプラ111に入力し、等化フィルタ131を介して光カプラ121へ至る。
 実施の形態1に係る光中継システム10は、中継器11と中継器12とジョイントボックス13とを有する。中継器11は、光信号を分波する光カプラ111を有し、光カプラ111は、光信号を第1波長帯と第2波長帯に分波する光カプラである。第1波長帯は、例えば、Cバンドであり、第2波長帯は、例えばLバンドである。
 CバンドとLバンドのそれぞれの光信号は、光信号の強度にバラツキがある。このため、CバンドとLバンドのそれぞれの光信号の強度を、等化フィルタを使用して所定値に調整する。
 具体的には、光カプラ111は、CバンドとLバンドとが波長多重された図2Aに示すような光信号を、図2Bに示すようなCバンドの光信号と、図2Cに示すようなLバンドの光信号とに分波する。
 ジョイントボックス13は、中継器11に接続し、等化フィルタ131と等化フィルタ132とを有する。等化フィルタ131は分波されたCバンド(第1波長帯)の光信号を等化し、等化フィルタ132は、分波されたLバンド(第2波長帯)の光信号を等化する。
 具体的には、等化フィルタ131は、波長毎に光信号の強度が異なる光信号(図2Bに示す)を、Cバンド内において光信号の強度がほぼ均一となる光信号(図2Dに示す)に補正する。また、等化フィルタ132は、等化フィルタ131と同様に、図2Cに示すような光信号を、Lバンド内において光信号の強度がほぼ均一となる光信号(図2Eに示す)に補正する。尚、ジョイントボックス13は、中継器11に隣接して配置されていてもよい。
 中継器12は、ジョイントボックス13に接続し、等化されたCバンドの光信号と等化されたLバンドの光信号とを合波する光カプラ121を有する。具体的には、光カプラ121は、図2Dに示すようなCバンドの光信号と図2Eに示すようなLバンドの光信号とを合波して、図2Fに示すような波長多重された光信号を出力する。尚、中継器12は、ジョイントボックス13に隣接して配置されていてもよい。
 また、中継器11は、ジョイントボックス13に接続するジョイントリング113を有し、光カプラ111は、このジョイントリング113内に設けられてもよい。また、中継器12は、ジョイントボックス13に接続するジョイントリング123を有し、光カプラ121は、このジョイントリング123内に設けられてもよい。
 尚、中継器11を第1中継器と称し、中継器12を第2中継器と称することもある。また、光カプラ111を第1光カプラと称し、光カプラ121を第2光カプラと称することもある。また、等化フィルタ131を第1等化フィルタと称し、等化フィルタ132を第2等化フィルタと称することもある。また、ジョイントリング113を第1ジョイントリングと称し、ジョイントリング123を第2ジョイントリングと称することもある。
 上りUL1について説明する。
 図3においては、図1と比べて、下りの光ファイバ1本(下りDL2)と、上りの光ファイバ2本(上りUL1及び上りUL2)と追加して示す。
 図3に示すように、下りDL1と対になるようにして上りUL1においても、光カプラや等化フィルタが設けられる。そして、上りUL1において、光信号は、光カプラ122に入力し、等化フィルタ133及び等化フィルタ134を介して光カプラ112へ至る。
 中継器12は、ジョイントリング123内に、光信号を分波する光カプラ122を有し、光カプラ122は、光信号をCバンドとLバンドに分波する。
 ジョイントボックス13は、等化フィルタ133と等化フィルタ134とを有する。等化フィルタ133は分波されたLバンドの光信号を等化し、等化フィルタ134は、分波されたCバンドの光信号を等化する。
 中継器11は、ジョイントリング113内に、等化されたCバンドの光信号と等化されたLバンドの光信号とを合波する光カプラ112を有する。
 光カプラ122は、光カプラ121と共に、ジョイントリング123内に設けられる。等化フィルタ133及び等化フィルタ134は、等化フィルタ131及び等化フィルタ132と共に、ジョイントボックス13内に設けられる。光カプラ112は、光カプラ111と共に、ジョイントリング113内に設けられる。
 下りDL1において、光中継システム10は、ジョイントボックス13に等化フィルタ131と等化フィルタ132のみを実装する。そして、光カプラ111は中継器11のジョイントリング113に実装し、光カプラ121は中継器12のジョイントリング123に実装する。このようにして、光カプラや等化フィルタ等の光デバイスを、ジョイントボックス及び中継器に分散させて実装する。
 これにより、波長多重された光信号の利得等化に必要な光デバイスのうち、光カプラ111と光カプラ121を、ジョイントボックス13の外部に出すことができる。そして、ジョイントボックス13に実装する光デバイスの数を2個とし、光デバイスの実装や光ファイバの引き回しを単純化することができる。
 上りUL1も下りDL1と同様である。すなわち、上りUL1において、ジョイントボックス13に等化フィルタ133と等化フィルタ134のみを実装し、ジョイントリング123に光カプラ122を実装し、ジョイントリング113に光カプラ112を実装する。
 下りDL1の光ファイバ1本と上りUL1の光ファイバ1本とで構成される光ファイバを、光ファイバ1ペアと称する。光ファイバ1ペアで必要とされる光デバイスの数、すなわち、下りDL1と上りUL1で必要とされる光デバイスの数は、ジョイントボックス13が4個であり、ジョイントリング113が2個であり、ジョイントリング123が2個である。ジョイントボックス13の光デバイスの4個とは、等化フィルタ131-134であり、ジョイントリング113の光デバイスの2個とは、光カプラ111-112であり、ジョイントリング123の光デバイスの2個とは、光カプラ121-122である。
 尚、下りDL2は下りDL1と同様であり、上りUL2は上りUL1と同様であるので、詳細な説明は省略する。
 [比較例]
 実施の形態1の比較例について説明する。
 図4は、比較例に係る光中継システムを例示するブロック図である。
 図4に示すように、比較例に係る光中継システム50は、光ファイバ1ペアが実装された光中継システム10と比べて、ジョイントボックス53に、光カプラ111、光カプラ112、光カプラ121及び光カプラ122が実装されている点が異なる。すなわち、光カプラ111及び光カプラ112がジョイントリング113に実装されずにジョイントボックス53に実装され、光カプラ121及び光カプラ122がジョイントリング123に実装されずにジョイントボックス53に実装されている。これにより、ジョイントボックス13に実装される光デバイスの数は、8個となる。
 ここで、光中継システム10を光中継システム50と比較する。
 光中継システム50においては、光ファイバ1ペア(下りDL1と上りUL1)当たりのジョイントボックス53に実装される光デバイスの数は8個である。一方、光中継システム10においては、光ファイバ1ペア当たりのジョイントボックス13に実装される光デバイスの数は4個である。すなわち、光中継システム10においては、ジョイントボックス13に実装される光デバイスの数を、光中継システム50と比べて半分に削減することができる。
 また、光中継システムを海底等に敷設する場合、ジョイントボックスを小型化するため、ジョイントボックスの大きさに制限が掛かる。大きさが制限されたジョイントボックスに実装することができる光デバイスの数は、自ずと制限される。ジョイントボックスに実装される光デバイスの数が、例えば、8個までに制限された場合、光中継システム50では、光ファイバを2本(光ファイバ1ペア)しか接続できない。一方、光中継システム10では、図3に示すように、光ファイバを4本(光ファイバ2ペア)まで接続することができ、光中継システム50と比べて2倍に増加させることができる。
 光中継システムのジョイントボックスは、海底に敷設するために小型化が必要である。そこで、実施の形態1に係る光中継システム10においては、光カプラや等化フィルタ等の光デバイスの配置(実装)を変更することにより、ジョイントボックス13内に収容する光ファイバの数を増加させ、中継器やジョイントボックスに接続することが可能な光ファイバの数を増加させることができる。その結果、光ファイバ数を増加させることが可能な光中継システムを提供することができる。
 また、光中継システム10を使用することにより、光ファイバ数を増加させることができるので、光海底通信システムを拡張することができる。
 ここで、実施の形態1に係る光中継システム10の特徴を示す。
 実施の形態1においては、海底ケーブル同士を接続するためのジョイントボックス内に、等化フィルタのようなパッシブデバイスを実装する。また、中継器のジョイントリング内に、光カップラを実装する。
 例えば、下りDL1において、光信号をCバンドとLバンドを分波する光カプラ111を、ジョイントボックス13に接続するジョイントリング113内に実装する。また、CバンドとLバンドを合波する光カプラ121を、ジョイントボックス13に接続するジョイントリング123内に実装する。
 上りUL1において、光信号をCバンドとLバンドに分波する光カプラ122を、ジョイントボックス13に接続するジョイントリング123内に実装する。また、CバンドとLバンドを合波する光カプラ112を、ジョイントボックス13に接続するジョイントリング113内に実装する。
 このような実装により、ファクトリージョイントやユニバーサルジョイント等のジョイントボックス13の内部に実装する光デバイスの数を少なくすることができる。また、このような実装により、ジョイントボックス13内に収容する光ファイバ数を増加させることができる。
 そして、海底に敷設されるジョイントボックスや中継器の数を増加させることなく、実装可能な光ファイバの数を増加させることができる。
 [実施の形態2]
 図5は、実施の形態2に係る光中継システムを例示するブロック図である。
 図5に示すように、実施の形態2に係る光中継システム20は、図3に示す光中継システム10と比べて、等化フィルタの代わりにアッテネータが実装されている点が異なる。
 実施の形態1で説明したように、CバンドとLバンドのそれぞれの光信号は、光信号の強度にバラつきがある。このため、アッテネータを使用し、CバンドとLバンドのそれぞれの光信号の強度を減衰させて所定値に調整する。具体的には、等化フィルタを使用した場合と同様に、CバンドとLバンドとに分波した後、アッテネータを使用して光信号の強度を減衰させて所定値に調整する。
 光中継システム20は、中継器11とジョイントボックス23と中継器12とを有する。
 下りDL1において、中継器11は、光中継システム10と同様に、光信号をCバンドとLバンドに分波する光カプラ111を有する。ジョイントボックス23は、中継器11に接続し、Cバンドの光信号を減衰するアッテネータ231とLバンドの光信号を減衰するアッテネータ232とを有する。中継器12は、ジョイントボックス23に接続し、減衰されたCバンドの光信号と減衰されたLバンドの光信号とを合波する光カプラ121を有する。
 光カプラ111は、ジョイントボックス13と接続するジョイントリング113内に設けられ、光カプラ121は、ジョイントボックス13と接続するジョイントリング123内に設けられる。
 上りUL1において、ジョイントボックス23は、アッテネータ233とアッテネータ234とを有する。アッテネータ233は分波されたLバンドの光信号を減衰し、アッテネータ234は、分波されたCバンドの光信号を減衰する。これにより、CバンドとLバンドの両方のバンドのそれぞれの光信号の強度を、バランスよく調整することができる。
 尚、アッテネータ233及びアッテネータ234は、アッテネータ231及びアッテネータ232と共に、ジョイントボックス23に設けられる。また、下りDL2は下りDL1と同様であり、上りUL2は上りUL1と同様であるので、詳細な説明は省略する。
 実施の形態2に係る光中継システム20においては、光カプラをジョイントリング内に実装し、アッテネータをジョイントボックスに実装することにより、ジョイントボックス内に収容する光ファイバの数を増加させ、中継器やジョイントボックスに接続することが可能な光ファイバの数を増加させることができる。
 尚、アッテネータ231を第1アッテネータと称し、アッテネータ232を第2アッテネータと称することもある。
 [実施の形態3]
 図6は、実施の形態3に係る光中継システムを例示するブロック図である。
 図6に示すように、実施の形態3に係る光中継システム30は、図3に示す光中継システム10と比べて、ジョイントボックス35と中継器34とをさらに備えている点が異なる。ジョイントボックス35は中継器11に接続され、中継器34はジョイントボックス35に接続される。
 下りDL1に関する光デバイス(光カプラ111、等化フィルタ131、等化フィルタ132及び光カプラ121)及び上りUL1に関する光デバイス(光カプラ122、等化フィルタ133、等化フィルタ134及び光カプラ112)の実装は、光中継システム10と同様であり、説明を省略する。
 中継器34は、ジョイントリング343を有し、ジョイントリング343には、下りDL2の光信号をCバンドとLバンドに分波する光カプラ341が実装される。ジョイントボックス35は、中継器11及び中継器34に接続し、ジョイントボックス35には、分波されたCバンドの光信号を等化する等化フィルタ351と、分波されたLバンドの光信号を等化する等化フィルタ352とが実装される。中継器11のジョイントリング316には、等化されたCバンドの光信号と等化されたLバンドの光信号とを合波する光カプラ314が実装される。
 また、中継器11のジョイントリング316には、上りUL2の光信号をCバンドとLバンドに分波する光カプラ315が実装される。ジョイントボックス35には、分波されたLバンドの光信号を等化する等化フィルタ353と、分波されたCバンドの光信号を等化する等化フィルタ354とが実装される。中継器34のジョイントリング343には、等化されたCバンドの光信号と等化されたLバンドの光信号とを合波する光カプラ342が実装される。
 また、光中継システム30では、等化フィルタの代わりにアッテネータを実装してもよい。
 実施の形態3に係る光中継システム30においては、ジョイントボックス35に4個の光デバイス(等化フィルタ351-354)を実装し、ジョイントボックス13に4個の光デバイス(等化フィルタ131-134)を実装する。また、ジョイントリング343に2個の光デバイス(光カプラ341、342)を実装し、ジョイントリング316に2個の光デバイス(光カプラ314、315)を実装し、ジョイントリング113に2個の光デバイス(光カプラ111、112)を実装し、ジョイントリング123に2個の光デバイス(光カプラ121、122)を実装する。
 これにより、光中継システム30は、光ファイバ2ペアを収容することができる。
 尚、中継器34を第3中継器と称し、ジョイントボックス35を別のジョイントボックスと称することもある。下りDL2の光信号を別の光信号と称することもある。光カプラ341を第3光カプラと称し、光カプラ314を第4光カプラと称することもある。等化フィルタ351を第3等化フィルタと称し、等化フィルタ352を第4等化フィルタと称することもある。
 また、実施の形態においては、光海底通信システムを例に挙げて説明した。これには限定されず、大きさに制限があり実装するデバイスの数に制限のがある他の装置に適用されてもよい。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2017年2月22日に出願された日本出願特願2017-030786を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10、20、30、50…光中継システム 11、12、34…中継器 13、35、…ジョイントボックス 111、112、121、122、314、315、341、342…光カプラ 131-134、351-354…等化フィルタ 113、123、316、343…ジョイントリング 231-234…アッテネータ DL、DL1、DL2…下り UL、UL1、UL2…上り P1、P2、P3、P4、P5、P6…点 Ps…強度 λ…波長

Claims (10)

  1.  光信号を第1波長帯と第2波長帯に分波する第1光カプラを有する第1中継器と、
     前記第1中継器に接続し、前記第1波長帯の光信号を等化する第1等化フィルタと、前記第2波長帯の光信号を等化する第2等化フィルタと、を有するジョイントボックスと、
     前記ジョイントボックスに接続し、前記等化された第1波長帯の光信号と前記等化された第2波長帯の光信号とを合波する第2光カプラを有する第2中継器と、
     を備える光中継システム。
  2.  前記第1波長帯はCバンドであり、前記第2波長帯はLバンドである、
     請求項1に記載の光中継システム。
  3.  前記第1中継器は、前記ジョイントボックスに接続する第1ジョイントリングを有し、前記第1光カプラは、前記第1ジョイントリング内に設けられる、
     請求項1又は2に記載の光中継システム。
  4.  前記第2中継器は、前記ジョイントボックスに接続する第2ジョイントリングを有し、前記第2光カプラは、前記第2ジョイントリング内に設けられる、
     請求項1乃至3のいずれか1項に記載の光中継システム。
  5.  別の光信号を前記第1波長帯と前記第2波長帯に分波する第3光カプラを有する第3中継器と、
     前記第1中継器及び第3中継器に接続し、前記第1波長帯の前記別の光信号を等化する第3等化フィルタと、前記第2波長帯の前記別の光信号を等化する第4等化フィルタと、を有する別のジョイントボックスと、
     をさらに備え、
     前記第1中継器は、前記等化された前記第1波長帯の前記別の光信号と前記等化された前記第2波長帯の前記別の光信号とを合波する第4光カプラを有する、
     請求項1乃至4のいずれか1項に記載の光中継システム。
  6.  光信号を第1波長帯と第2波長帯に分波する第1光カプラを有する第1中継器と、
     前記第1中継器に接続し、前記第1波長帯の光信号を減衰する第1アッテネータと、前記第2波長帯の光信号を減衰する第2アッテネータと、を有するジョイントボックスと、
     前記ジョイントボックスに接続し、前記減衰された第1波長帯の光信号と前記減衰された第2波長帯の光信号とを合波する第2光カプラを有する第2中継器と、
     を備える光中継システム。
  7.  前記第1波長帯はCバンドであり、前記第2波長帯はLバンドである、
     請求項6に記載の光中継システム。
  8.  前記第1中継器は、前記ジョイントボックスに接続する第1ジョイントリングを有し、前記第1光カプラは、前記第1ジョイントリング内に設けられる、
     請求項6又は7に記載の光中継システム。
  9.  前記第2中継器は、前記ジョイントボックスに接続する第2ジョイントリングを有し、前記第2光カプラは、前記第2ジョイントリング内に設けられる、
     請求項6乃至8のいずれか1項に記載の光中継システム。
  10.  別の光信号を前記第1波長帯と前記第2波長帯に分波する第3光カプラを有する第3中継器と、
     前記第1中継器及び第3中継器に接続し、前記第1波長帯の前記別の光信号を減衰する第3アッテネータと、前記第2波長帯の前記別の光信号を減衰する第4アッテネータと、を有する別のジョイントボックスと、
     をさらに備え、
     前記第1中継器は、前記減衰された前記第1波長帯の前記別の光信号と前記減衰された前記第2波長帯の前記別の光信号とを合波する第4光カプラを有する、
     請求項6乃至9のいずれか1項に記載の光中継システム。
PCT/JP2017/045762 2017-02-22 2017-12-20 光中継システム WO2018154947A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019501085A JP6711448B2 (ja) 2017-02-22 2017-12-20 光中継システム
CN201780086580.2A CN110301105A (zh) 2017-02-22 2017-12-20 光中继系统
US16/481,543 US20200195349A1 (en) 2017-02-22 2017-12-20 Optical relay system
EP17897498.6A EP3588809A4 (en) 2017-02-22 2017-12-20 OPTICAL RELAY SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017030786 2017-02-22
JP2017-030786 2017-02-22

Publications (1)

Publication Number Publication Date
WO2018154947A1 true WO2018154947A1 (ja) 2018-08-30

Family

ID=63253758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045762 WO2018154947A1 (ja) 2017-02-22 2017-12-20 光中継システム

Country Status (5)

Country Link
US (1) US20200195349A1 (ja)
EP (1) EP3588809A4 (ja)
JP (1) JP6711448B2 (ja)
CN (1) CN110301105A (ja)
WO (1) WO2018154947A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261998A (ja) * 1997-03-19 1998-09-29 Fujitsu Ltd 光伝送システム及びそれに用いる光増幅中継器
JP2001024594A (ja) * 1999-07-07 2001-01-26 Fujitsu Ltd 光増幅器及び該光増幅器を有するシステム
JP2001318354A (ja) * 2000-05-10 2001-11-16 Fujitsu Ltd 利得等化器、並びに、それを用いた光増幅器およびwdm光伝送システム
US20030086677A1 (en) * 2001-11-05 2003-05-08 Wenhua Lin Compact optical equalizer
JP2004023300A (ja) * 2002-06-13 2004-01-22 Kddi Submarine Cable Systems Inc 利得形状測定方法及びシステム並びに利得形状調節方法及びシステム
JP2005215413A (ja) 2004-01-30 2005-08-11 Nec Corp 光海底ケーブル用光部品収容体
JP2006126561A (ja) * 2004-10-29 2006-05-18 Fujitsu Ltd 光スイッチ
JP2014146881A (ja) 2013-01-28 2014-08-14 Nec Corp 光海底中継器及び光海底中継回路の実装方法
JP2017030786A (ja) 2015-07-31 2017-02-09 東北紙工株式会社 機能性包装袋及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743972B2 (ja) * 1992-06-09 1998-04-28 国際電信電話株式会社 光増幅中継伝送方法およびシステム装置
US6144474A (en) * 1996-10-21 2000-11-07 Fujitsu Limited Optical transmission system including optical repeaters with selectively enabled gain equalizers contained therein and including an add/drop apparatus with a plurality of individually selectable filters
JPH10173597A (ja) * 1996-12-06 1998-06-26 Nec Corp 光イコライザ
US6292290B1 (en) * 1999-12-20 2001-09-18 Nortel Networks Limited Methods and apparatus for adjusting power in an optical signal, for providing a seamless optical ring and for providing a bidirectional equalized amplifier
US6810214B2 (en) * 2001-03-16 2004-10-26 Xtera Communications, Inc. Method and system for reducing degradation of optical signal to noise ratio
JP2003069116A (ja) * 2001-08-22 2003-03-07 Fujitsu Ltd 光増幅器及び利得偏差補償方法
JP2003134089A (ja) * 2001-10-26 2003-05-09 Fujitsu Ltd 伝送装置
JP4176527B2 (ja) * 2003-03-31 2008-11-05 富士通株式会社 ラマン増幅器およびそれを用いた光伝送システム
CN101931471B (zh) * 2009-06-23 2013-08-07 华为海洋网络有限公司 一种监控光纤线路状态的方法、中继器和海缆系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261998A (ja) * 1997-03-19 1998-09-29 Fujitsu Ltd 光伝送システム及びそれに用いる光増幅中継器
JP2001024594A (ja) * 1999-07-07 2001-01-26 Fujitsu Ltd 光増幅器及び該光増幅器を有するシステム
JP2001318354A (ja) * 2000-05-10 2001-11-16 Fujitsu Ltd 利得等化器、並びに、それを用いた光増幅器およびwdm光伝送システム
US20030086677A1 (en) * 2001-11-05 2003-05-08 Wenhua Lin Compact optical equalizer
JP2004023300A (ja) * 2002-06-13 2004-01-22 Kddi Submarine Cable Systems Inc 利得形状測定方法及びシステム並びに利得形状調節方法及びシステム
JP2005215413A (ja) 2004-01-30 2005-08-11 Nec Corp 光海底ケーブル用光部品収容体
JP2006126561A (ja) * 2004-10-29 2006-05-18 Fujitsu Ltd 光スイッチ
JP2014146881A (ja) 2013-01-28 2014-08-14 Nec Corp 光海底中継器及び光海底中継回路の実装方法
JP2017030786A (ja) 2015-07-31 2017-02-09 東北紙工株式会社 機能性包装袋及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3588809A4

Also Published As

Publication number Publication date
CN110301105A (zh) 2019-10-01
JPWO2018154947A1 (ja) 2019-12-12
EP3588809A1 (en) 2020-01-01
JP6711448B2 (ja) 2020-06-17
EP3588809A4 (en) 2020-02-26
US20200195349A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
AU710472B2 (en) Optical transmission systems using optical amplifiers and wavelength division multiplexing
US7668465B2 (en) Dispersion-managed optical transmission system
CA2783249C (en) Channel power management in a branched optical communication system
US6433923B2 (en) Optical transmission path having sections which overcompensate for dispersion occurring in the sections
WO2017170008A1 (ja) 励起光源装置および利得等化方法
JP2010004251A (ja) 光伝送装置および光伝送方法
JP5644446B2 (ja) 光伝送装置
WO2018193835A1 (ja) 双方向光伝送システム及び双方向光伝送方法
US20040028319A1 (en) Optical communication system and method
US20050095006A1 (en) Cable station for an undersea optical transmission system
JP6711448B2 (ja) 光中継システム
JPWO2018207835A1 (ja) 光中継器、光中継器の制御方法、及び光伝送システム
WO2023026463A1 (ja) 光合分波装置及び光合分波方法
JP6635185B2 (ja) マルチバンド信号処理システム、マルチバンド信号処理システム用ジョイントボックス、及びマルチバンド信号処理システム収容方法
JP3339277B2 (ja) 光伝送システム
JP2009267950A (ja) 光通信システム及び光通信装置
CN110784264A (zh) 一种用于海底观测网长距离网络传输系统及其传输方法
WO2019065354A1 (ja) 光増幅装置および光増幅方法
WO2023084636A1 (ja) マルチコア伝送装置、複合ジョイントボックス及びマルチコアファイバ収容方法
US11438071B2 (en) Optical repeater
US20230074152A1 (en) Optical communication system and dispersion compensation method
JP5077319B2 (ja) 光増幅伝送システム
JP2016208407A (ja) 波長多重光ネットワークシステム、分岐装置およびその制御方法
JP2015070421A (ja) 光伝送装置、光伝送システムおよび光伝送方法
JP2007060680A (ja) 伝送区間の修理方法及び光通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501085

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017897498

Country of ref document: EP

Effective date: 20190923