WO2018153175A1 - 一种湿法高梯度强磁选机 - Google Patents

一种湿法高梯度强磁选机 Download PDF

Info

Publication number
WO2018153175A1
WO2018153175A1 PCT/CN2018/072200 CN2018072200W WO2018153175A1 WO 2018153175 A1 WO2018153175 A1 WO 2018153175A1 CN 2018072200 W CN2018072200 W CN 2018072200W WO 2018153175 A1 WO2018153175 A1 WO 2018153175A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
high gradient
coil
magnetic separator
pulsation
Prior art date
Application number
PCT/CN2018/072200
Other languages
English (en)
French (fr)
Inventor
张承臣
唐奇
冯吉
杨娇
吴琼
邓雪娇
李斌
Original Assignee
沈阳隆基电磁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳隆基电磁科技股份有限公司 filed Critical 沈阳隆基电磁科技股份有限公司
Priority to AU2018217255A priority Critical patent/AU2018217255B2/en
Priority to CA3015206A priority patent/CA3015206C/en
Publication of WO2018153175A1 publication Critical patent/WO2018153175A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/029High gradient magnetic separators with circulating matrix or matrix elements
    • B03C1/03High gradient magnetic separators with circulating matrix or matrix elements rotating, e.g. of the carousel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils

Definitions

  • the invention relates to the field of magnetic separation technology, in particular to a wet high gradient strong magnetic separator.
  • magnetic separation In the field of mineral processing, magnetic separation has always been one of the most important methods of mineral processing. Especially in the sorting of magnetic minerals, magnetic separation is the first choice in the industry due to its stability, environmental protection, low cost and easy operation. Among the magnetic mineral resources, most of the other weak magnetic minerals, especially low-grade weak magnetic minerals and strong and weak symbiotic magnetic properties, are compared with the natural high-purity direct-use magnetic minerals and the highly-selected high-grade magnetic minerals. The sorting of minerals and non-metallic minerals that treat magnetic minerals as impurities is more complicated.
  • the wet high gradient strong magnetic separator of the invention is a magnetic separation device capable of capturing the magnetic particles in the magnetic mineral pulp, and is a modular design electromagnetic selection device, which is a kind of The weak magnetic particle material in the pulp is sorted and enriched, and the slurry in the sorting zone is in a pulsating state.
  • a wet high gradient strong magnetic separator comprising an excitation system, a sorting collection system, a safety and isolation system, and an adjustment system.
  • the excitation system for providing a selected background magnetic field for a wet high gradient strong magnetic separator;
  • the sorting collection system which cooperates with a background magnetic field provided by the excitation system, to be used in a slurry containing magnetic minerals
  • the magnetic material and the non-magnetic material are separated by magnetic separation and collected separately to different collection areas;
  • the safety and isolation system is used for isolating the particle size of the wet high gradient magnetic separator into the material, and impurities in the water Isolation, contamination isolation of insulating coolant, magnetic isolation of components that are afraid of magnetic components (such as bearings, motors, reducers, etc.) and safety protection for important components (such as motors, coils, media box modules, etc.) Personal safety protection;
  • the adjustment system for adjusting the background magnetic field strength of the excitation system, adjusting the rotational
  • the excitation system, the sorting collection system, the safety and isolation system and the regulation system are modularly designed, or part of the excitation system, the sorting collection system, the safety and isolation system, and the adjustment system affecting the separation index
  • the system is modularized, and the corresponding modules are replaced according to the sorting materials and working conditions, so as to achieve the ideal beneficiation index.
  • the excitation system comprises a yoke 1, a coil 2 and a heat exchange device 3; wherein the yoke 1 comprises an upper magnetic pole left 110, an upper magnetic pole right 120, a magnetic conducting plate left 130, a magnetic conducting plate right 140 and a lower magnetic pole 150, wherein The upper magnetic pole left 110 and the upper magnetic pole right 120 are formed by welding or fastener fastening of the upper magnetic pole yoke plate 111 and the upper magnetic pole core module 112, and the lower magnetic pole 150 is composed of two symmetrical lower magnetic yoke plates 151 and a lower magnetic pole iron.
  • the core module 152 and the water baffle 153 on both sides thereof are welded or fastened by fasteners.
  • the wet high gradient magnetic separator selects different upper pole core modules 112 and lower pole core modules 152 according to different operating conditions.
  • the upper pole core module 112 and the lower pole core module 152 of the wet high gradient magnetic separator are divided into three grades: the first grade is no special treatment; the second grade is on the pole core The surface in contact with the slurry is sprayed with a water-resistant, wear-resistant anti-corrosion coating; the third level is the addition of a replaceable sacrificial anode to the second level.
  • the upper pole core module is sharply rounded around the flow gap 113 or/and the magnetic non-magnetic stainless steel is disposed, and the lower pole core module is disposed. There is no sharp rounding treatment around the flow gap 154 and no magnetic isolation treatment for the non-magnetic stainless steel.
  • the coil 2 is composed of a coil housing 210 and a coil winding 220 and an insulating coolant 230 that is immersed in the coil housing 210 and immersed in the coil winding 220.
  • the coil housing 210 is further composed of an inner peripheral plate 211 and an upper magnetic conductive plate 212.
  • the lower magnetic plate 213 and the peripheral plate 214 are formed; the inner peripheral plate 211 of the coil housing 210 is made of a non-magnetic magnetic steel plate, and the upper magnetic conductive plate 212, the lower magnetic conductive plate 213, and the peripheral plate 214 are made of high magnetic permeability. Made of steel plate.
  • the coil windings 220 are placed in the coil housing 210 and are spaced apart from the coil housing 210 by insulating strips 240, both ensuring complete insulation between the coil housing 210 and the insulating coolant. Flowing through the channel; when the coil winding 220 is wound, the insulating strip 240 is also used to pad the flow passage of the insulating coolant inside the winding; the lower portion of the coil housing 210 is provided with a coolant inlet 215, and the upper part of the coil housing 210 is away from the coolant inlet.
  • the 215 end is provided with a coolant outlet 216; the insulating coolant 230 flows from the coolant inlet 215 into the coil housing 210 and flows through the coil winding 220 and a predetermined insulating coolant passage between the coil winding 220 and the coil housing 210, and then The coolant outlet 216 flows out; the above-mentioned circulation in the coolant passage is uniform without a flow dead angle, and all the heat generated when the coil winding 220 is excited can be taken away.
  • a diversion chamber 217 is disposed between the coolant inlet 215 and the coil winding 220, and a confluence chamber 218 is disposed between the coolant outlet 216 and the coil winding 220.
  • the heat exchange device 3 is composed of a line 310, a pump 320, and a heat exchanger 330.
  • the inlet of pump 320 is connected to the coolant outlet 216 of the coil via line 310, the outlet of pump 320 is connected to heat exchanger 330, and the other end of heat exchanger 330 is connected to the coolant inlet 215 of the coil.
  • the heat exchanger 330 can be any conventional closed cycle heat exchanger depending on the conditions of the field conditions.
  • a drain valve 340 is disposed between the pump 320 and the coolant outlet 216 of the coil and at the lowest portion of the insulating coolant 230.
  • the valve can be used for draining the coil 2 and the insulating coolant 230 in the heat exchanger 3, or The insulating pump 230 is injected into the coil 2 and the heat exchange device 3 in cooperation with the pump 320.
  • the sorting and collecting system comprises a swivel 4, a swivel driving component 5, a feeding bucket 6, a flushing bucket 7, a unloading water tank 8, a magnetic material collecting bucket 9, a middle mining bucket 10, a non-magnetic material collecting bucket 11, and a pulsating mechanism 12.
  • Liquid level observation bucket 13 the swivel 4 is one of the key components of the present invention.
  • the rotary drive member 5 provides rotational power for the rotation of the rotary ring 4, and the feed slurry is fed from the feed hopper 6 into the wet high gradient strong magnetic separator, and the flush hopper 7 is responsible for rinsing and unloading the material during the sorting process.
  • the mineral water tank 8 is responsible for flushing out the magnetic material taken out by the swivel 4 out of the medium box module 420, and the magnetic material collecting bucket 9 is responsible for collecting and summing these magnetic materials together to discharge the wet high gradient strong magnetic separator, without being divided.
  • the selected non-magnetic material is collected by the non-magnetic material collecting bucket 11 and discharged from the wet high-gradient strong magnetic separator, and the material and the slurry water that has left the sorting area but failed to reach above the magnetic material collecting bucket 9 enter the middle mining bucket.
  • the pulsation mechanism 12 can make the slurry of the sorting area always in the oscillating state during the sorting process, which is favorable for the separation of minerals and the separation of impurities, and the liquid level observation bucket 13 can be observed and sorted outside the yoke 1 and the sorting area. Liquid level, and is the sorting solution Height adjustment provide a basis.
  • the swivel 4 is comprised of a swivel frame 410 and a media cartridge module 420.
  • the swivel frame 410 is composed of a hub 411, a web 412, a support ring 413, and a bobbin 414, wherein the support ring 413 and the bobbin 414 are made of non-magnetic stainless steel.
  • the media box module 420 is installed between the two adjacent frames 414 in the circumferential direction. Except that the small wet high gradient magnetic separator adopts the single row media box module 420, the media box modules 420 on both sides of the web 412 are equally staggered.
  • the cloth that is, the number of the media boxes on the left and right sides of the web is the same, and each of the media box modules 420 must enter a sorting space when there is a corresponding media box module 420 in a state of entering half of the sorting space).
  • the media cartridge module 420 is composed of two or more non-magnetic magnetic frame plates 421 and a high magnetic conductive medium 422 and an ear plate 423 between the non-magnetic magnetic plate plates 421.
  • the media cartridge module 420 can be secured between the circumferentially adjacent two frames 414 by the ear plates 423.
  • the high magnetic permeability medium 422 includes both a rod-shaped medium and a mesh medium, and includes steel wool or any other form that can be filled between the non-magnetic magnetic frame plates 421 and will eventually be placed.
  • a magnetically permeable material for generating an induced magnetic field in the wet high gradient magnetic separator is applied to the swivel frame 410.
  • the high magnetic conductive medium 422 includes both a tight arrangement and a loose arrangement, including both a uniform arrangement of media gaps and a layout of dielectric gaps, including a single form of magnetically conductive medium. It also includes a variety of forms of magnetically permeable media.
  • the media box module 420 is divided into three anti-corrosion grades: the first grade is a high permeability magnetic medium 422 using an anticorrosive material; and the second grade is based on the first grade on the media cartridge module 420 as a whole. Coating treatment; the third level adds sacrificial anode corrosion protection to the second level.
  • the wet high gradient strong magnetic separator is equipped with a different media cartridge module 420 depending on the actual operating conditions of the field.
  • the swivel driving member 5 includes a center shaft 510, a magnetic expansion sleeve 520, a center shaft bearing housing 530, a gear transmission 540, a swivel drive motor 550, and a speed reducer 560.
  • the wet high gradient magnetic separator further includes a feed hopper 6 and a flush hopper 7, wherein the upper pole core module 112 connected to the feed hopper 6 is provided with a flow gap 113 for guiding the slurry into the sorting area;
  • the material slurry enters the wet high gradient strong magnetic separator from the feed hopper 6, and then flows into the rotary ring 4 located in the sorting zone through the flow gap 113; the flushing water is provided in the flushing bucket 7 and is connected with the flushing bucket 7
  • the upper pole core module 112 is provided with a running water gap 114 for the rinsing water to enter the sorting area, and the rinsing water can selectively flush the entrained mineral and the magnetically pure mineral in the captured magnetic material away from the medium box module 420, so that It enters the non-magnetic material collection hopper 11.
  • the unloading water spray module 810 is provided in the unloading water tank 8, and different water spray modules 810 can be replaced to form different unloading water spray forms, and the water discharge position/spray angle and the same unloading water can be changed.
  • a rinsing water outlet 820 and a helper water outlet 830 are respectively disposed on both sides of the unloading water tank 8, and all the feed water using the industrial circulating water is unified into the water supply port of the unloading water tank 8.
  • the unloading water tank 8 can flush all the materials adsorbed in the medium cassette module 420 by spraying the unloading water to the swivel ring 4.
  • the magnetic material collection hopper 9 is composed of three parts, a collection portion 910, a flow guiding portion 920, and a summary portion 930.
  • the collection portion 910 and the flow guiding portion 920 are both two members that are symmetrical about the web 412 and are respectively located on both sides of the web 412, and the summary portion 930 is a member that is symmetric about the center of the web 412.
  • the collecting portion 910 is located above the upper pole core module 112, from the left side of the inner flushing bucket 7 of the rotating ring 4 to the lower right of the unloading water tank 8 inside the rotating ring 4.
  • the summary portion 930 is located at the lower portion of the coil 2 on the left side of the yoke 1.
  • the flow guiding portion 920 is connected to both ends of the collecting portion 910 outlet and the summary portion 930. All of the magnetic materials that leave the sorting area with the swivel ring 4 and are brought to the upper portion of the collecting portion 910 can be caught and summarized into the summing portion 930, and the wet high gradient strong magnetic separator can be uniformly discharged.
  • the middle hopper 10 is disposed on the left side of the lower pole core module 152 and is in close contact with the lower pole core module 152.
  • the receiving port is located on the lower left side of the swivel ring 4 and is connected to the yoke 1 to the leftmost outer portion of the swivel ring 4, and the width spans the swivel ring 4 in the axial direction of the swivel ring 4.
  • the non-magnetic material collecting hopper 11 is mounted on the lower portion of the yoke 1 and connected to the lower portion of the yoke 1 to completely catch the slurry flowing out of the lower pole core module 152.
  • the non-magnetic material collecting bucket 11 is divided into two non-communicating collecting sections, the right collecting section 1110 is located below the feeding bucket 6 and the middle shaft 510, and the left collecting section 1120 is located below the flushing bucket 7.
  • One or more non-magnetic material discharge valves 1130 are respectively disposed at the bottoms of the two collection spaces.
  • the non-magnetic material collection hopper 11 can be stably mounted on the equipment support after being disassembled from the lower magnetic pole core module 152, which can facilitate disassembly and disassembly of the wet high gradient magnetic separator and reassembly of the equipment. .
  • the pulsation mechanism 12 is comprised of a pulsation box 1210, a drive pulley set 1220, a pulsating motor 1230, a pulsation push plate 1240, and a rubber soft connection 1250.
  • the pulsation box 1210 is provided with an eccentric wheel module 1211. After the pulsating motor 1230 is decelerated by the driving pulley set 1220, the eccentric wheel module 1211 in the pulsation box 1210 is rotated, thereby converting the circular motion generated by the motor into left and right linear reciprocating motions.
  • the left end of the pulsation box 1210 is provided with a push rod 1212.
  • One end of the push rod 1212 is connected with the eccentric wheel module 1211 through the bearing and the other end is connected with the pulsation push plate 1240.
  • the push rod 1212 transmits the reciprocating force converted by the eccentric wheel module 1211 in the pulsation box to the pulsation.
  • Push the plate 1240 The outer side of the pulsation push plate 1240 and the right collection section 1110 of the non-magnetic material collection hopper are sealingly connected by a rubber soft connection 1250.
  • the left and right reciprocating force can be transmitted to the slurry in the right collecting section 1110 through the pulsation pushing plate 1240, so that the slurry is pulsating and oscillating, and then the pulsating vibration is extended along the slurry into the sorting zone.
  • the safety and insulation system includes the provision of a coarse particle separator screen 14 within the feed bucket 6 or the same functional unit prior to feeding, which prevents large particulate material from entering the upper pole core module 112 and the media cartridge module 420. Causing blockages affects the passability of materials and sorting indicators.
  • an unloading water slag tank 15 is added in front of the unloading water tank 8, and an oblique slag screen 1510 is disposed in the unloading water slag tank 15, and the fed industrial circulating water enters the unloading water slag tank 15 It is isolated by the slag screen 1510, in which large-grained impurities and light impurities are isolated. Since the slag screen 1510 is inclined downward in the direction of water flow, the separated impurities are affected by the downward force of the water flow.
  • a manual or automatic slag discharge valve 1520 is disposed at the bottom of the unloading water slag tank 15, and the impurity particles that have been isolated in the slag tank 15 can be cleaned manually or automatically.
  • the insulating coolant 230 in the coil 2 can bring the heat generated when the coil winding 220 is energized to the heat exchange device 3 after flowing through the coil winding 220, and is discharged through the heat exchanger 330.
  • the insulating coolant 230 is closed in the whole process. The cycle is free from external pollution, and all heat exchange with the outside is completed at the heat exchanger 330.
  • the central shaft 510 and the rotating ring 4 are connected by two narrow magnetic expansion sleeves 520, and the contact area of the central shaft 510 and the rotating ring 4 is reduced under the condition of ensuring torque transmission, and the magnetic permeability ratio of the magnetic expansion sleeve 520 is selected.
  • the alloy yoke or the non-magnetic steel with a large yoke difference reduces the magnetic field from the rotating ring web 412 and the central shaft 510 to the middle shaft bearing 531, the rotary ring driving motor 550, and the speed reducer 560; the central shaft bearing housing 530 and the rotating shaft
  • the ring drive motor 550 and the reducer 560 are under magnetic non-magnetic stainless steel pads, further reducing the magnetic field throughput in the central shaft bearing 531 and the rotary drive motor 550 and the reducer 560, thereby extending the central shaft bearing 531 and the rotary ring drive.
  • the motor drive protector 16 is provided at the front end of the swivel drive motor 550, the pulsating motor 1230, and the pump 320, and can be timely protected and alarmed when overcurrent or phase loss is detected.
  • a temperature measuring probe 17 is disposed at the top of the insulating coolant 230 near the coil coolant inlet line 310 and the coolant outlet 216, and the inlet and outlet insulation coolant temperature and temperature difference of the coil are monitored.
  • a fault alarm is issued when the temperature is too high or the temperature difference is too large;
  • a flow switch 18 is provided on the coil coolant line 310 to monitor the flow state of the insulating coolant 230, and a fault alarm is issued when the flow rate does not reach the set requirement.
  • all of the operating components of the device are covered with a protective cover 19, and an observation window 1910 is provided for a portion where the operation is required to be observed, and the observation window 1910 is protected by a steel mesh to ensure that the moving parts are not accessible to personnel.
  • the adjustment system comprises an adjustment of the field current of the wet high gradient strong magnetic separator coil 2.
  • the excitation of the wet high gradient magnetic separator adopts the constant DC input
  • the preset current is input through the current setting unit 2011, and the thyristor (or diode combined with IGBT) rectifier module 20 is controlled by the constant current controller 2010 to use the industrial power.
  • the constant current controller 2010 the detected value and the preset value are compared, and the output voltage is adjusted accordingly, thereby ensuring the current and current setting unit 2011 of the wet high gradient magnetic separator input coil 2 Set the current to be consistent.
  • the rotational speed of the wet high gradient magnetic separator swivel 4 and the pulsation frequency of the pulsation tank 1210 are respectively achieved by changing the output frequencies of the rotary frequency converter 22 and the pulsating frequency converter 23 in the adjustment system.
  • the pulsation amplitude of the wet high gradient magnetic separator is achieved by adjusting the amount of eccentricity of the eccentric wheel module 1211 in the pulsation box.
  • the liquid level is monitored by the manual or level gauge 24 to monitor the liquid level in the bucket 13 and then manually or automatically adjust the opening of one or more non-magnetic material discharge valves 1130 at the bottom of the non-magnetic material collection bucket 11 to achieve .
  • the amount of rinsing water is realized by adjusting the valve opening degree of the rinsing water outlet 820 disposed on both sides of the unloading water tank 8, and then uniformly supplied to the flushing water tank 7 through the rinsing water heater 840 provided in the flushing water tank 7, after the diversion
  • the rinsing water can more stably inhibit the non-magnetic fine particles in the slurry in the sorting zone and the non-magnetic material entrained in the medium box module 420.
  • a forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator includes seven parts: an excitation system, a sorting system, a pulsation system, a collection system, a support system, a drive system, Protection system; excitation system provides working magnetic field; separation system realizes continuous separation of fine tailings; pulsation system provides pulsation effect for slurry in forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator; collection system is used for feeding, Flushing, collecting fine tailings, liquid level observation and adjustment; support system is fixedly connected with the ground foundation and supporting the main body of the equipment; the drive system provides power for the rotating ring and pulsation of the forced oil-cooled vertical rotary ring induction wet pulsating strong magnetic separator The protection system is used to protect the safety of people and equipment.
  • the wet high gradient magnetic separator of the present invention comprises four major systems, namely an excitation system, a sorting and collecting system, a safety and isolation system and an adjusting system, which are respectively composed of a plurality of components or The modules are combined, and the division of labor between the systems realizes reliable and stable magnetic separation of weak magnetic minerals.
  • the invention has the following beneficial effects:
  • the invention is applicable to the enrichment of weak magnetic materials in weak magnetic minerals, especially low-grade weak magnetic minerals, and to the enrichment of weak magnetic minerals in magnetic minerals with strong and weak symbiosis, and the viewing of magnetic minerals Removal of magnetic impurities in non-metallic minerals that are impurities.
  • the invention not only has a plurality of adjustable parameters, but also adopts a modular design for some components that seriously affect the sorting index, and then adjusts a plurality of sorting parameters of the device according to different materials to be sorted and working conditions. Or replace the corresponding module to achieve the maximum adaptation to the materials to be selected and the conditions of the site, and obtain the ideal sorting index.
  • the present invention implements a number of measures to improve the operation of the equipment and the stability of the sorting, which can improve the working stability of the components of the wet high gradient magnetic separator and prolong the wet high gradient magnetic separation.
  • the service life of the machine ensures smooth flow of the entire sorting process and reliable and stable sorting indicators.
  • Figure 1 is a front elevational view of the wet high gradient magnetic separator of the present invention
  • FIG. 2 is a schematic perspective view showing the structure of a wet high gradient magnetic separator according to the present invention
  • FIG. 3 is a schematic perspective view showing the other side of the wet high gradient magnetic separator after removing the cover body according to the present invention
  • FIG. 4 is a schematic perspective view showing the structure of a yoke in a wet high gradient magnetic separator according to the present invention
  • Figure 5 is a perspective view showing the three-dimensional structure of the upper magnetic pole in the wet high gradient strong magnetic separator of the present invention
  • FIG. 6 is a schematic perspective view showing the structure of a lower magnetic pole in a wet high gradient magnetic separator according to the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a three-dimensional structure of a coil in a wet high gradient magnetic separator according to the present invention.
  • Figure 8 is a cross-sectional view showing the three-dimensional structure of a coil case in a wet high gradient magnetic separator according to the present invention.
  • FIG. 9 is a schematic perspective view showing a heat exchange device of a wet high gradient magnetic separator according to the present invention.
  • FIG. 10 is a schematic perspective view showing the structure of a rotating ring of a wet high gradient magnetic separator according to the present invention.
  • Figure 11 is a perspective view showing the structure of a rotating ring frame in a wet high gradient magnetic separator according to the present invention.
  • FIG. 12 is a schematic perspective structural view of a medium cassette module in a wet high gradient magnetic separator according to the present invention.
  • Figure 13 is a perspective view showing the left side bearing seat of the rotary ring driving member in the wet high gradient strong magnetic separator according to the present invention
  • Figure 14 is a schematic cross-sectional view showing the three-dimensional structure of the unloading water tank in the wet high gradient magnetic separator of the present invention.
  • Figure 15 is a schematic cross-sectional view showing the three-dimensional structure of the slag slag tank in the wet high gradient magnetic separator of the present invention.
  • 16 is a schematic view showing the relative positions of a magnetic material collecting bucket, a middle mining bucket, a yoke and a rotating ring frame of the wet high gradient strong magnetic separator according to the present invention
  • Figure 17 is a schematic view showing the relative position of the coarse particle separator screen plate and the feed hopper of the wet high gradient strong magnetic separator of the present invention.
  • Figure 18 is a perspective view showing the structure of the protective cover of the wet high gradient magnetic separator of the present invention located outside the rotating ring;
  • Figure 19 is a front elevational view showing the relative position of the non-magnetic material collecting bucket and the pulsating mechanism and the bracket of the wet high gradient strong magnetic separator of the present invention
  • Figure 20 is a partial cross-sectional view showing the position of the non-magnetic material collecting bucket of the wet high gradient magnetic separator in accordance with the present invention, and the relative position of the pulsating mechanism and the bracket;
  • Figure 21 is a perspective view showing the three-dimensional structure of the pulsation box of the wet high gradient magnetic separator according to the present invention.
  • Figure 22 is a schematic diagram showing the circuit structure of a safety and isolation system and an adjustment system of a wet high gradient magnetic separator
  • Figure 23 is a schematic view showing the principle of a forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator
  • Figure 24 is an isometric view of the forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator shown in Figure 22;
  • Figure 25 is an isometric cross-sectional view of the yoke of Figure 24;
  • Figure 26 is an isometric cross-sectional view of the assembly of the coil of Figure 24;
  • Figure 27 is an isometric view of the winding of Figure 26:
  • Figure 28 is an isometric view of the swivel of Figure 24;
  • Figure 29 is an isometric view of the ring frame of Figure 24;
  • Figure 30 is an isometric view of the concentrate bucket and concentrate transition bucket of Figure 24;
  • Figure 31 is an isometric cross-sectional view of the concentrate collection tank of Figure 24;
  • Figure 32 is an electrical control schematic diagram of a forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator.
  • High magnetic permeability material a metal material having a maximum relative magnetic permeability ⁇ rm ⁇ 500;
  • Non-magnetic material - a metal material having a maximum relative magnetic permeability ⁇ rm ⁇ 1.6;
  • Magnetic guide plate the same as the guide magnetic plate left and the magnetic guide plate right;
  • XX module the name of the XX modular design, indicating that this part has a variety of interchangeable forms, the same as XX;
  • Closed-Circulation Heat Exchanger - refers to a heat exchange device in which the heat medium does not contact each other when the heat medium exchanges heat with the outside.
  • Figs. 1-22 are marked as follows:
  • Figure 1 is a front view of a wet high gradient magnetic separator of the present invention, labeled 1 - yoke 2-coil 4-rotary ring 5 - swivel drive member 6 - feed bucket 7 - flush bucket 8 -Unloading water tank 9-Magnetic material collection bucket 11-Non-magnetic material collection bucket 12-Pulsation mechanism 13-Level observation bucket 19-Shield 24-level gauge;
  • FIG. 2 is a schematic perspective view of the wet high gradient magnetic separator of the present invention, and the mark is shown in FIG. 2: 1-yoke yoke 2-coil 5-spin drive component 6-feeding bucket 7-flushing bucket 8-unloading Water tank 9-magnetic material collection bucket 11-non-magnetic material collection bucket 12-pulsation mechanism 13-level observation bucket 15-unloading water slag tank 19-shield 24-level gauge 25-bracket;
  • FIG. 3 is a schematic perspective view of the other side of the wet high gradient magnetic separator after removing the cover body of the present invention, and labeled in FIG. 3:
  • 1-yoke yoke 2-coil 3-heat exchange device 4-spin ring 5-spin ring Drive unit 6-feeding bucket 7-flushing bucket 8-unloading water tank 9-magnetic material collection bucket 11-non-magnetic material collection bucket 12-pulsation mechanism 15-unloading water slag tank 17-temperature probe 18-flow Switch 25-bracket;
  • FIG. 4 is a perspective view showing the three-dimensional structure of the yoke 1 in the wet high gradient magnetic separator of the present invention, and the mark in FIG.
  • FIG. 5 is a perspective view showing the left structure of the upper magnetic pole left 110 in the wet high gradient magnetic separator of the present invention, and the mark in FIG. 5 is: 111-upper pole yoke plate 112-upper pole core module 113-flow gap 114-flow gap ;
  • Figure 6 is a perspective view showing the structure of the lower magnetic pole 150 in the wet high gradient magnetic separator of the present invention.
  • the mark in Fig. 6 is: 151 - lower magnetic yoke plate 152 - lower magnetic core module 153 - water retaining plate 154 - flowing water gap;
  • Figure 7 is a schematic cross-sectional view showing the three-dimensional structure of the coil 2 in the wet high gradient magnetic separator of the present invention, and the mark in Fig. 7: 210 - coil housing 220 - coil winding 230 - insulating coolant 240 - insulating strip;
  • Figure 8 is a schematic cross-sectional view showing the three-dimensional structure of the coil housing 210 in the wet high gradient magnetic separator of the present invention.
  • the mark in Fig. 8 is: 17-temperature probe 211 - inner panel 212 - upper magnetic plate 213 - lower guide Magnetic plate 214 - peripheral plate 215 - coolant inlet 216 - coolant outlet 217 - split chamber 218 - manifold;
  • Figure 9 is a perspective view showing the three-dimensional structure of the heat exchange device 3 in the wet high gradient magnetic separator of the present invention.
  • the mark in Fig. 9 is: 17-temperature probe 18-flow switch 215-coolant inlet 216-coolant outlet 310-tube Road 320-pump 330-heat exchanger 340-drain valve;
  • Figure 10 is a perspective view showing the structure of the swivel ring 4 of the wet high gradient magnetic separator of the present invention, and the mark of Fig. 10 is: 410-ring frame 420-media box module;
  • Figure 11 is a perspective view showing the structure of the swivel ring frame 410 of the wet high gradient magnetic separator of the present invention, and the mark of Fig. 11 is: 411 - hub 412 - web 413 - support ring 414 - skeleton;
  • FIG. 12 is a perspective structural view of a media cartridge module 420 in a wet high gradient magnetic separator according to the present invention, and labeled in FIG. 12: 421 - a non-magnetic magnetic frame plate 422 - a high magnetic conductive medium 423 - an ear plate;
  • Figure 13 is a perspective view showing the three-dimensional structure of the left bearing housing of the rotary ring driving member 5 in the wet high gradient strong magnetic separator of the present invention.
  • the mark in Fig. 13 is: 510 - the central axis 520 - the magnetic expansion sleeve 530 - the central axis Bearing housing 540-gear transmission 550-slewing drive motor 560-reducer 531-shaft bearing;
  • Figure 14 is a schematic cross-sectional view showing the three-dimensional structure of the unloading water tank 8 in the wet high gradient magnetic separator of the present invention.
  • Figure 15 is a schematic cross-sectional view showing the three-dimensional structure of the unloading water slag tank 15 in the wet high gradient strong magnetic separator of the present invention, and the mark 1510 - slag screen 1520 - slag discharge valve in Fig. 15;
  • Figure 16 is a schematic view showing the relative positions of the magnetic material collecting hopper 9, the middle hopper 10, the yoke 1 and the swivel frame 410 of the wet high gradient magnetic separator of the present invention, and the mark of the yoke 6- Mine bucket 10-middle mine bucket 410-slewing ring frame 910-collection part 920-flow guiding part 930-summary part;
  • Figure 17 is a schematic view showing the relative position of the coarse particle separator screen 14 and the feed hopper 6 of the wet high gradient magnetic separator of the present invention, and the mark in Fig. 17: 14 - coarse particle spacer sieve plate 6 - feeding bucket;
  • Figure 18 is a perspective view showing the structure of the shield 19 located outside the rotating ring of the wet high gradient magnetic separator of the present invention, and the mark 1910: the observation window in Figure 18;
  • Figure 19 is a front elevational view showing the relative position of the non-magnetic material collecting hopper 11 of the wet high gradient magnetic separator of the present invention, and the pulsating mechanism 12 and the bracket 25, in Fig. 19, the mark: 1110 - the right collecting section 1120 - the left side collecting Section 1130-Non-magnetic material discharge valve 1210-Pulsation box 1220-Drive pulley set 1230-Pulsating motor 1250-Rubber soft connection;
  • FIG. 20 is a partial cross-sectional view showing the relative structure of the non-magnetic material collecting hopper 11 of the wet high gradient magnetic separator of the present invention, and the relative position of the pulsating mechanism 12 and the bracket 25, and in FIG. 20, the mark: 1110 - the right collecting section 1120-Left collection interval 1130-Non-magnetic material discharge valve 1210-Pulsation box 1220-Drive pulley set 1230-Pulsating motor 1240-Pulsation push plate 1250-Rubber soft connection 25-bracket;
  • Figure 21 is a perspective view showing the three-dimensional structure of the pulsation box 1210 of the wet high gradient magnetic separator according to the present invention, wherein the eccentric wheel module 1212-push rod 1220-drive pulley set is shown in Fig. 21;
  • Figure 22 is a schematic diagram showing the circuit structure of the safety and isolation system and the adjustment system of the wet high gradient magnetic separator according to the present invention.
  • the invention provides a wet high gradient strong magnetic separator, which mainly comprises four major systems: an excitation system, a sorting collection system, a safety and isolation system and an adjustment system.
  • the excitation system can provide the selected background magnetic field for the wet high gradient magnetic separator; the sorting collection system cooperates with the background magnetic field provided by the excitation system to realize the magnetic and nonmagnetic materials in the magnetic mineral slurry.
  • safety and isolation system is used to isolate the particle size of the wet high gradient magnetic separator into the material, isolate the impurities in the water, isolate the insulation coolant, and fear Magnetic field isolation of magnetic components (such as bearings, motors, reducers, etc.) and safety protection for important components (such as motors, coils, swivels, media box modules, etc.) and personal safety for operators; adjustment system for Adjustment of the background magnetic field strength of the excitation system, adjustment of the rotating ring speed (corresponding to the sorting time of the material) in the sorting collection system, adjustment of the pulsation amplitude and frequency (oscillation intensity and frequency of the slurry in the associated sorting zone) Adjustment of surface height (length of associated sorting area) and adjustment of rinsing water and unloading water volume/angle.
  • the invention modularizes some components that will affect the sorting index, and can replace the corresponding modules according to different sorting materials and working conditions, thereby achieving an ideal beneficiation index
  • the slower the rotating speed of the rotating ring the longer the sorting time of the material, the smaller the processing amount, and the sorting effect is not obvious when the rotating speed of the rotating ring is very slow; the pulsation amplitude and frequency are positively correlated with the oscillating intensity and frequency of the slurry in the sorting area;
  • the liquid level height is positively correlated with the length of the sorting area.
  • a calibration liquid level is set.
  • the automatic monitoring device designed in the present invention is mainly for monitoring the liquid surface, and can be manually or automatically adjusted. For liquid level monitoring.
  • the sorting purpose is to separate the magnetic particles therein from the non-magnetic particles or the particles of insufficient purity, and if In order to separate the magnetic particles from the original mixed minerals, it is necessary to provide a sufficiently strong magnetic trapping force.
  • the magnitude of the magnetic trapping force of the magnetic particles is mainly determined by the average specific magnetic coefficient of the magnetic particles themselves, the strength of the sorting magnetic field, and the gradient.
  • the average specific magnetic coefficient of magnetic impurity particles in weak magnetic or non-metallic ores is generally relatively low. If you want to produce a sufficiently strong magnetic catching force under such circumstances, you should start by increasing the strength and gradient of the sorting magnetic field.
  • the wet high gradient magnetic separator of the invention is based on the long-term research results of the magnetic separation technology of the applicant, and realizes the coordinated application of the high-scoring magnetic field strength and the gradient by the principle of induction magnetization, that is, the magnetic field is guided in the background magnetic field.
  • the soft magnetic material will be magnetized, and the soft magnetic material after magnetization will affect the direction of the magnetic field lines in the background magnetic field, forming a small range of induced magnetization field at the near surface, and different materials and different shapes of soft magnetic materials will form different Magnetization field.
  • a soft magnetic material having a high magnetic permeability and having a tip forms a magnetic field region of a high magnetic field strength, gradient higher than the background magnetic field at the tip in the background magnetic field, the present invention It is based on this magnetization field to strongly capture the weak magnetic particles in the material and the magnetic impurity particles in the non-metallic ore.
  • the excitation system involved in the wet high gradient magnetic separator of the present invention when in operation, produces a background magnetic field region that can magnetize the soft magnetic material, which is herein defined as the sorting region.
  • the excitation system is composed of a yoke, a coil and a heat exchange device, and the coil generates a magnetic field when energized and excited, and the magnetic field is concentrated and strengthened by the yoke to create a semi-closed arc magnetic field inside the coil and at the center of the yoke.
  • the magnetic field strength of the magnetic field changes with the intensity of the input current of the exciting coil.
  • the magnetic field in this region is the background magnetic field, and this region is the sorting region.
  • a certain number of flow gaps for guiding the slurry into and out of the slurry are arranged on the upper pole core and the lower pole core. Since some plants add some chemicals to the slurry during the sorting process, the sorted pulps have varying degrees of corrosiveness, and these corrosive slurries flow through the flow gap of the pole core. Corrosion of the pole core. If the pole core is subjected to long-term corrosion, its original thickness will be changed, thereby reducing the magnetic permeability, which will weaken and change the background field strength and magnetic field distribution of the wet high gradient magnetic separator, and ultimately affect the stability of the sorting index.
  • the welded part is severely corroded for a long time, it will affect its structural strength and service life. Even if the slurry does not contain corrosive chemicals, the moisture contained in the slurry will rust the pole core after long-term immersion. Although this part of rust hardly affects the magnetic field performance and structural strength of the equipment, it has very low iron content. It is especially important for non-metallic minerals that treat magnetic materials as impurities.
  • the upper pole core and the lower pole core of the yoke part are modularized, and are processed in three levels according to the required degree of protection: first level It is not specially treated and is suitable for general non-corrosive sorting process; the second grade is spraying water-resistant and wear-resistant anti-corrosion coating on the surface of the pole core and the slurry, suitable for slightly corrosive or non-metallic minerals.
  • the sorting process; the third level is to add a replaceable sacrificial anode on the basis of the second level, which is suitable for the sorting process of the pulp which is more corrosive, especially corrosive ions, since the sacrificial anode can be replaced at any time, so this One grade has a stronger anti-corrosion ability.
  • the upper pole core module has a more rounded corner of the flow gap and a new magnetic isolation treatment of the non-magnetic stainless steel than the lower pole core module. This configuration can greatly impair the adverse effects caused by the tip-induced magnetic field of the upper magnetic pole core flow ore gap, and prevent the clogging of the flow gap of the upper magnetic pole core.
  • the coil in the wet high gradient magnetic separator of the invention is the core component of the source of the background magnetic field, and only the coil is energized to generate the background magnetic field, so the working stability of the coil directly determines the stability of the background magnetic field, and then determines The stability of the sorting indicator.
  • the coil portion of the wet high gradient magnetic separator of the present invention adopts a forced insulation coolant circulation cooling method.
  • the coil winding is placed in the casing, and an insulating strip is used to pad a gap between the winding and the casing to allow the insulating coolant to flow, thereby ensuring insulation of the coil and allowing the insulating coolant to flow through These gaps carry the heat generated when the coil windings are excited away from the coil.
  • the main body of the present invention is a magnetic separation device, it is necessary to combine the structural features of the wet high gradient magnetic separator and the magnetic circuit in the manufacturing process of the coil; and since the coil is only a wet high gradient magnetic field A component of the machine, so the structure of the coil must be compact.
  • the inner wall of the coil housing is made of non-magnetic stainless steel to prevent the magnetic field from short-circuiting and reduce the magnetic field in the sorting area, while the upper magnetic plate, the lower magnetic plate and the peripheral plate are made of high-magnetic steel plate. It also has the function of reducing the magnetic flux leakage and converging magnetic field of the coil.
  • the inlet of the coolant is disposed at a lower portion of one end in the longitudinal direction of the coil, and the corresponding coolant outlet is disposed at an upper portion away from the other end of the inlet.
  • the inlet and outlet of the coolant in the coil housing are respectively provided with a diversion chamber and a confluence chamber, which can make the flow of the coolant inside the coil more uniform and stable, avoid the generation of the flow dead angle, and ensure the heat dissipation of the coil winding while being stable. It also acts to prevent the coolant from damaging the windings for a long time. Since the total amount of cooling liquid required inside the coil of the present invention plus the inside of the heat exchange system is relatively large, so many liquids are conventionally injected using an infusion pump.
  • the present invention places the drain valve of the coolant between the pump and the coolant outlet of the coil, and the outlet is disposed at the lowest point of the heat exchange device.
  • the valve can be used to discharge the insulating coolant in the coil and the heat exchange device, and also has the function of injecting the insulating coolant into the coil and the heat exchange device in cooperation with the pump.
  • the sorting and collecting system in the wet high gradient magnetic separator of the present invention can generate a high-intensity induced magnetic field in the sorting zone created by the excitation system, and use the induced magnetic field to capture the magnetic particles, and then capture the magnetic particles.
  • the magnetic particles are taken out of the sorting zone and flushed into the magnetic material collecting hopper by using the unloading water, and the non-magnetic part is not captured and freely passed through the induced magnetic field and then enters the non-magnetic material collecting hopper, that is, the magnetic material is completed. Separation process of non-magnetic materials.
  • the sorting system is composed of a rotating ring, a rotating ring driving component, a feeding bucket, a flushing bucket, a discharging water tank, a magnetic material collecting bucket, a non-magnetic material collecting bucket, a middle mining bucket, a pulsating mechanism, and a liquid level observation bucket.
  • the rotating ring carries a large number of media boxes made of high magnetic permeability soft magnetic material, and an annular structure capable of continuously feeding and carrying the media boxes into and out of the sorting area is designed.
  • the sorting system also designed the feeding and unloading mechanism and magnetic materials, non-magnetic materials, medium-concentration collection mechanism, and the pulsation and flushing mechanism that help to improve the sorting index and the necessary liquid level observation during the sorting. mechanism.
  • the high magnetic permeability medium made of high magnetic permeability soft magnetic material is magnetized, and a magnetized field region with high field strength and high gradient is formed at the tip end portion, and the material to be selected is selected at this time.
  • the feed pit enters the wet high gradient strong magnetic separator, and then flows into the swivel through the flow gap of the upper pole core.
  • the material must pass through the magnetic field selection area when flowing through the rotating ring. At this time, the magnetic material particles are adsorbed and captured by the magnetic force, and the non-magnetic material particles are free from the magnetic field and flow into the non-magnetic material collection.
  • the captured magnetic material rotates away from the sorting zone with the rotating ring. After leaving the sorting zone, the induced magnetic field of the magnetic medium disappears and the magnetic capturing force disappears. When transferred to the top of the magnetic material collection hopper, the captured material particles begin to fall and are collected by the magnetic material collection hopper. The material particles that have not been dropped in time will be washed by the unloading water when transferred to the bottom of the unloading water tank. The magnetic material is collected in the bucket, after which the media cartridge is re-cleaned and enters the sorting area again with the swivel, that is, a cycle of sorting process is completed.
  • the swivel in the wet high gradient magnetic separator of the present invention is the core component of the sorting system, and the media cartridge is the most important component of the swivel. Due to the wide variety of materials to be selected and the complex and diverse forms, even the same type of minerals generally have different degrees of dissociation and different magnetic particle size inlays.
  • the wet high gradient magnetic separator of the present invention modularizes the media box, and makes the wet high gradient by changing the form and arrangement of the soft magnetic material in the medium box.
  • the strong magnetic separator has stronger adaptability.
  • the media box module is divided into various forms according to the difference in the granularity of the materials in the slurry, the difference in the magnetic content of the material, and the particle size distribution of the magnetic material.
  • Classified from material or form, high-magnetic media includes both rod-shaped and mesh media, as well as steel wool or any other form that can be placed on a swivel and used in wet-high gradient magnetic separators.
  • a magnetically permeable material that generates an induced magnetic field; classified from a layout, the high-permeability magnetic medium includes both a tight arrangement and a loose arrangement, including both a uniform arrangement of the medium gap and a gradient of the medium gap gradient or the emission reduction cloth, including separate
  • One form of magnetically conductive medium arrangement in turn includes a variety of forms of magnetically conductive media.
  • the medium box module is further divided into three anticorrosion grades for the corrosive material of the pulp: the first grade is a high permeability magnetic medium using anticorrosive material, suitable for Generally non-corrosive sorting process; the second level is the overall coating process of the media box module on the basis of the first level, suitable for the sorting process with slightly corrosive working conditions; the third level is based on the second level Adding a sacrificial anode to the top is suitable for sorting processes with moderate to severe corrosiveness, especially in corrosive ion conditions.
  • the wet high gradient magnetic separator is equipped with different media box modules, which enhances the adaptability of the wet high gradient magnetic separator and obtains a better and more stable sorting index.
  • the magnetic particles captured by the magnetic medium rotate away from the sorting area with the rotating ring. After leaving the sorting area, the induced magnetic field of the magnetic medium disappears, and the magnetic capturing force disappears.
  • the rotating ring is turned under the unloading water tank, all the magnetic particles in the medium box module should be completely flushed into the magnetic material collecting hopper by the unloading water.
  • the unloading is often unclean. The phenomenon, while the unloading of the media box module will enter the sorting area will undoubtedly affect the subsequent sorting effect.
  • the wet high gradient magnetic separator of the invention designs a water discharge water spray module in the unloading water tank.
  • the pulsating push plate in the pulsating mechanism in the sorting system is sealedly connected to the right collecting section of the non-magnetic material collecting hopper by a rubber soft connection.
  • the function of the pulsating mechanism is to generate a reciprocating pulsating oscillating force and transmit this pulsating oscillating force to the slurry in the non-magnetic material collecting hopper.
  • This pulsating oscillating force will extend to the sorting zone along with the slurry, so that the slurry in the induced magnetization field in the sorting zone also pulsates, thereby helping to reduce the generation of magnetic material particles by adsorption under magnetic force.
  • the inclusion phenomenon improves the purity of the sorted magnetic particle material.
  • the safety and isolation system is a core component of the wet high gradient magnetic separator of the present invention, which can ensure the operational stability of the equipment. Since the feed of the wet high gradient magnetic separator is generally the mill discharge, some materials or debris are inevitably mixed in this part of the material, and if these large particle materials or impurities are blocked in the feeding section, The position will have a serious impact on the sorting index. Therefore, the present invention designs a large particle isolation mechanism in the feeding process, which can prevent the large particle material from blocking the upper magnetic pole core flow or the media box of the wet high gradient magnetic separator. The module reduces the interference of the sorting process and improves the sorting stability of the device.
  • shutting down the wet high gradient magnetic separator must shut down the entire production line. All associated devices. Shutting down these devices will have a huge impact on production, and it will affect the sorting indicators and reduce the recycling rate of resources, resulting in huge waste of resources.
  • the wet high gradient magnetic separator of the present invention designs a slag box for unloading water before the inlet of the unloading water, and at the bottom of the slag box is provided with impurities which can be easily separated.
  • the coil is an important core component of the wet high gradient magnetic separator.
  • the coil must be energized to generate a magnetic field, so that the wet high gradient magnetic separator has magnetic separation capability, and the coil energization will inevitably cause heat in the windings in the coil. If this heat is not transferred in time, the coil will be burnt. .
  • the wet high gradient strong magnetic separator of the present invention controls the temperature rise of the coil winding by means of a closed circuit of the insulating coolant to cool the inner winding of the coil.
  • the insulating coolant flows through the inside of the coil, and performs sufficient heat exchange with the coil windings, and then carries the heat to the outside of the coil and exchanges heat with the outside at the heat exchange device outside the coil, transferring the heat generated by the coil winding to the cooling water. Or in the air, the insulating coolant enters the inside of the coil again after being cooled by the heat exchange device to form a closed circuit cycle.
  • the insulating coolant in the whole process is not in direct contact with the outside world, and will not bring external impurities into the inside of the coil, and will not cause the phenomenon that the water cooling coil often causes the heat dissipation of the coil due to scale formation, ensuring clean and non-interference inside the coil cooling system. To make the coil work stably.
  • the wet high gradient magnetic separator of the invention is provided with a temperature measuring probe on the coil coolant inlet line and the top layer of the insulating coolant near the coolant outlet, and the coil is forwardly monitored in real time.
  • the temperature of the outlet insulation coolant is different from the temperature difference.
  • a flow switch is set on the coil coolant line to monitor the flow state of the insulation coolant. When the flow rate fails to meet the set requirements, it is issued. Fault alarm.
  • the wet high gradient strong magnetic selection machine automatically stops the excitation, enters the self-protection mode and issues an alarm signal, thereby ensuring that the coil portion of the wet high gradient strong magnetic separator is not damaged.
  • the alarm is issued, the point of failure and the cause of the failure are clarified. Finding the cause of the failure and solving it in time will not have a major impact on the production, thus ensuring the stability of the operation of the equipment.
  • the inside of the device and the vicinity of the yoke are filled with a magnetic field.
  • Bearings that support the rotating ring are prone to electrical corrosion in the magnetic field, and are also prone to the phenomenon of tiny magnetic particles entering the bearing. These conditions will shorten the service life of the bearing; the magnetic field is the main gear of the internal gear and is the reducer of the magnetic steel.
  • the influence of the motor with the rotor is more serious, and the load of the reducer is invisibly increased, and the working stability of the reducer and the motor is reduced.
  • the magnetic lines of force are diverged outwardly by the coil as the energizing solenoid and form a closed line of magnetic lines of force.
  • the yoke is designed according to the direction of divergence of the magnetic lines of force, and the magnetically permeable material is disposed in this direction to shield most of the magnetic field inside the magnetically permeable material. .
  • the structure formed by the combination of the rotating web, the central shaft, the bearing seat, the gear set, the reducer and the motor is also basically the same as the closed direction of the magnetic line, so the web, the central shaft, the bearing housing, the gear set, and the deceleration Regardless of how the machine and motor combination are handled, it will inevitably become part of the magnetic line closed path. If you do not do any processing, there will inevitably be a large number of magnetic lines of force passing through bearings, reducers, and motors to reduce their operational stability.
  • the present invention adopts a cut-off isolation method, that is, by adding an air gap to the closed loop and reducing the contact area (both for increasing the magnetic resistance of the magnetic circuit) to reduce the closure.
  • the magnetic flux flowing through the circuit further reduces the influence of the magnetic force received by the bearing, the reducer and the motor, and prolongs the overall service life of the wet high gradient magnetic separator.
  • the wet high gradient magnetic separator of the invention also provides a motor protector for all motors, which can protect and issue an alarm in time to avoid motor damage in the absence of phase or overload; and at the same time, a protective cover body is provided for the running parts, Ensure the safety of the operator.
  • a protective cover body is provided for the running parts, Ensure the safety of the operator.
  • an observation window is also provided, and a protective net is arranged on the observation window to prevent the operator from accidentally coming into contact with the moving parts.
  • the adjustment system in the wet high gradient magnetic separator of the present invention is used to adjust various working parameters, thereby improving the adaptability of the wet high gradient magnetic separator and obtaining a better sorting index.
  • Sorting field strength is the power source of magnetic medium to generate induced magnetic field.
  • the size of sorting field strength is directly reflected in the sorting index. Therefore, the stability of sorting field strength is the most stable working stability of wet high gradient magnetic separator. Important indicators.
  • the size of the sorting field strength is achieved by changing the excitation current of the wet high gradient magnetic separator coil.
  • the excitation coil of the wet high gradient magnetic separator is DC powered, so this excitation current must be constant DC.
  • the coil winding generates heat during the energization process, which causes the coil temperature to rise.
  • the resistance value of the winding also changes with the temperature rise.
  • the input voltage at the plant selection site may not be very stable, and small changes may occur at any time.
  • the excitation input of the wet high gradient magnetic separator coil of the present invention adopts a current setting unit to input a preset current, and then is controlled by a constant current controller.
  • a thyristor (or diode-incorporated IGBT) rectifier module converts industrial power into a preset DC input into a wet high-gradient magnetic separator coil, and sets a Hall element or other in the process of inputting current to the coil.
  • Similar functional components monitor the current and feed back to the constant current controller, and then compare the detected value with the preset value through the constant current controller to adjust the output voltage accordingly, thereby ensuring the wet high gradient magnetic separator
  • the current of the input coil coincides with the preset current of the current setting unit.
  • the wet high gradient magnetic separator of the present invention respectively sets a rotating frequency converter and a pulsating frequency converter at the front end thereof, and adjusts the rotating frequency converter through adjusting And the output frequency of the pulsating frequency converter can achieve the corresponding adjustment of the rotating ring speed and the pulsating frequency.
  • the eccentric wheel in the pulsation box adopts a modular design, and the pulsation amplitude can be adjusted correspondingly by replacing the eccentric wheel module.
  • the sorting zone of the wet high gradient magnetic separator of the present invention needs to be submerged under the sorting liquid surface during the sorting operation of the wet high gradient magnetic separator. This is because the material immersed under the sorting liquid surface is more loose, and it is easier to separate the magnetic particle material from the non-magnetic particle material; at the same time, only the sorting area is immersed under the sorting liquid surface, and the pulse box pulsation The power will extend with the slurry, so that the slurry in the induced magnetization field in the sorting zone also generates pulsation and vibration, which reduces the inclusion phenomenon caused by the magnetic particle material being adsorbed and captured by the magnetic force, and improves the sorting. The purity of the magnetic particulate material.
  • the wet high gradient magnetic separator of the present invention designs a liquid level observation bucket which communicates with the non-magnetic material collecting bucket, which can pass The level of the liquid level in the liquid level bucket is monitored by a manual or level gauge.
  • the opening degree of one or more non-magnetic material discharge valves at the bottom of the non-magnetic material collection bucket can be manually or automatically adjusted to ensure that the liquid level is stably located at the design height. nearby.
  • a rinsing process is set up before the magnetic material captured by the magnetic medium leaves the sorting zone.
  • the rinsing water has the same source as the unloading water, and is industrial circulating water.
  • the unloading water spray module is designed in the unloading water tank of the wet high gradient magnetic separator of the present invention. By replacing this module, it is convenient and quick to change the size of the water spray hole (change the water spray amount without changing the pressure of the unloading water), the shape and form of the spray water, and the spray position and spray within a certain range. Water angle. Combined with the on-site working conditions and the equipment parameters of the wet high gradient magnetic separator and the type of the media box module, and with the change of the water spray module, a better unloading effect can be achieved.
  • the yoke 1 is composed of an upper magnetic pole left 110, an upper magnetic pole right 120, a magnetic conducting plate left 130, a magnetic conducting plate right 140, and a lower magnetic pole 150.
  • the upper magnetic poles 110 and 120 are formed by welding or fastening the upper magnetic pole yoke plate 111 and the upper magnetic pole core module 112.
  • the lower magnetic pole 150 is formed by welding or fastening the two symmetrical lower magnetic yoke plates 151 and the lower magnetic pole core module 152 and the water retaining plates 153 on both sides thereof.
  • the upper pole core module 112 and the lower pole core module 152 are correspondingly upper and lower, and the upper pole core module 112 and the lower pole core module 152 are provided with a water stop plate 153, an upper pole core module 112 and a lower pole core module. 152 and the water deflector 153 form a semi-closed curved space opening at both ends in the arc direction, and this space generates a very strong background magnetic field when working in the wet high gradient magnetic separator, this space It is the sorting space.
  • the core modules 112, 152 are divided into three anti-corrosion grades, and different anti-corrosion treatments are performed on all the surfaces of the core modules 112, 152 which are in contact with the slurry.
  • the first grade is the metal surface without any special treatment
  • the second grade is the surface spray anti-rust paint or other kinds of anti-corrosion coating
  • the third grade is to add a replaceable sacrificial anode on the basis of the second grade.
  • the upper pole core module 112 is further arranged with an acute angle rounding around the flow gap and a magnetic isolation treatment of the non-magnetic stainless steel than the lower pole core mold 152.
  • the coil 2 surrounds the lower pole core module 152 and is placed over the lower pole yoke plate 151.
  • the coil 2 is composed of a coil case 210 and a coil winding 220 and an insulating coolant 230 that is immersed in the coil case 210 and immersed in the coil winding 220.
  • the coil housing 210 is further composed of an inner peripheral plate 211, an upper magnetic conductive plate 212, a lower magnetic conductive plate 213, and a peripheral plate 214.
  • An auxiliary structure such as an oil pillow and a junction box is also disposed outside the coil housing.
  • the inner peripheral plate 211 of the coil housing 210 is made of a non-magnetic magnetic steel plate, and the upper magnetic conductive plate 212, the lower magnetic conductive plate 213, and the peripheral plate 214 are made of a high magnetic conductive steel plate.
  • the coil winding 220 is placed in the coil housing 210.
  • the coil winding 220 and the coil housing 210 are spaced apart by an insulating strip 240 to ensure complete insulation between the coil winding 220 and the coil housing 210.
  • the flow of coolant through the passage When the coil winding 220 is wound, the insulating strip 240 is also interposed inside, and the flow passage of the insulating coolant is also spaced inside the winding.
  • a cooling liquid inlet 215 is disposed at one end of the lower portion of the coil housing 210, and a coolant outlet 216 is disposed at an upper end of the coil housing 210 away from the coolant inlet 215.
  • the insulating coolant 230 flows from the coolant inlet 215 into the coil housing 210, flows through the coil winding 220, and a predetermined insulating coolant passage between the coil winding 220 and the coil housing 210, and performs sufficient heat exchange with the coil winding 220. It flows out through the coolant outlet 216.
  • a shunting chamber 217 is disposed between the coolant inlet 215 and the coil winding 220, and a confluence chamber 218 is disposed between the coolant outlet 216 and the coil winding 220.
  • the heat exchange device 3 is installed at any position outside the coil 2, and the heat exchange device 3 is composed of a pipe 310, a pump 320, and a heat exchanger 330.
  • the inlet of pump 320 is connected to the coolant outlet 216 of the coil via line 310, the outlet of pump 320 is connected to heat exchanger 330, and the other end of heat exchanger 330 is connected to the coolant inlet 215 of the coil.
  • the heat exchanger 330 can be any conventional closed cycle heat exchanger depending on the conditions of the field conditions.
  • a drain valve 340 is provided between the pump 320 and the coolant outlet 216 of the coil, and the outlet of the drain valve 340 is disposed at the lowest point of the insulating coolant 230. The valve can be used to drain the insulating coolant 230 in the coil 2 and in the heat exchange device 3, and can also be used in conjunction with the pump 320 to inject the insulating coolant 230 into the coil 2 and the heat exchange device 3.
  • the swivel 4 is located directly above the lower pole core module 152.
  • the swivel 4 is composed of a swivel frame 410 and a media box module 420.
  • the swivel frame 410 is composed of a hub 411, a web 412, a support ring 413, and a skeleton 414. Due to the need of the magnetic field design (in order not to cause a magnetic short circuit phenomenon), the support ring 413 and the skeleton 414 are made of non-magnetic stainless steel, and the skeleton 414 and the support ring 413 are separated on the rotating ring frame 410 for fixing the medium box module. 420 small space.
  • the swivel frame 410 is coupled to the swivel drive member 5 via the web 412 and the hub 411. These small spaces for securing the media cartridge module 420 enter and exit the sorting space sequentially by the swivel drive member 5.
  • the media box module 420 is installed between the two adjacent frames 414 in the circumferential direction. Except that the small wet high gradient magnetic separator adopts the single row media box module 420, the media box modules 420 on both sides of the web 412 are equally staggered.
  • the cloth that is, the number of the media boxes on the left and right sides of the web are the same, and each of the media box modules 420 must enter a sorting space to have a corresponding media box module 420 in a state of entering half of the sorting space.
  • the media cartridge module 420 is composed of two or more non-magnetic magnetic frame plates 421 and a high magnetic conductive medium 422 between the non-magnetic magnetic plate plates 421.
  • the media cartridge module 420 is further divided into various forms according to the difference in the granularity of the materials in the slurry used in the field, the difference in the magnetic content in the material, and the particle size distribution of the magnetic material.
  • the high permeability medium 422 includes both a rod-shaped medium and a mesh medium, and includes steel wool or any other form that can be filled between the non-magnetic frame plates 421 and will eventually be placed in the rotation.
  • the media box module 420 is further divided into three anticorrosion grades: the first grade is a high permeability magnetic medium 422 using an anticorrosive material; and the second grade is a total coating on the dielectric cartridge module 420 on a first grade basis.
  • the third level adds sacrificial anode corrosion to the second level. Since the sacrificial anode can be replaced at any time, this grade has stronger corrosion resistance. Finally, the wet medium high gradient magnetic separator is equipped with different media box modules 420 according to different working conditions.
  • the middle shaft 510 of the swivel driving component 5 passes through the swivel 4 at the hub 411, and the central shaft 510 and the hub 411 are connected by a magnetic expansion sleeve 520, which can be transmitted by the central shaft 510 through the magnetic expansion sleeve 520.
  • the torque coming from is transmitted to the swivel 4 .
  • the center shaft bearing housing 530 is located above the upper magnetic poles 110, 120, and supports the center shaft 510 and keeps the distance between the swivel 4 and the upper pole core module 112 and the lower pole core module 152 within 10 mm, which is ensured When the rotary ring 4 is operated, friction and scratching do not occur between the upper magnetic pole core module 112 and the lower magnetic pole core module 152, and the sorting space is fully utilized.
  • One end of the center shaft 510 is coupled to a gear transmission 540, and the other end of the gear transmission 540 is coupled to the speed reducer 560 such that torque is transmitted to the swivel 4 when the motor 550 drives the speed reducer 560 to operate.
  • the central shaft 510 and the hub 411 are connected by a magnetic expansion sleeve 520, which can reduce the magnetic field on the web 412 to be transmitted along the axial center shaft bearing 531 and the motor 550 and the speed reducer 560.
  • the middle shaft bearing housing 530 and the upper magnetic pole 110 The distance between the 120 and the non-magnetic stainless steel pad is further reduced, thereby further reducing the magnetic field throughput in the central shaft bearing 531, the rotary drive motor 550, and the reducer 560, thereby extending the central shaft bearing 531 and the rotary drive motor 550, The service life of the reducer 560.
  • a feed hopper 6 is disposed on the right side of the upper middle shaft 510 of the upper magnetic poles 110 and 120, and a flush hopper 7 is disposed on the left side of the central shaft 510.
  • the feeding hopper 6 and the flushing bucket 7 are provided on both sides of the web 412, and the feeding bucket 6 and the flushing bucket 7 on both sides are symmetric about the web 412.
  • a flow gap 113 for guiding the slurry into the sorting zone is provided at the upper pole core module 112 connected to the mine hopper 6. The feed slurry is fed from the feed hopper 6 into the wet high gradient strong magnetic separator, and then flows into the swivel 4 located in the sorting zone through the flow gap 113.
  • the flushing water tank 7 is provided with rinsing water, and the upper magnetic pole core module 112 connected to the flushing bucket 7 is provided with a running water gap 114 in which the rinsing water enters the sorting area, and the rinsing water can entrain the minerals in the captured magnetic material. Minerals of insufficient purity are selectively flushed away from the media cartridge module 420 into the non-magnetic material collection hopper 11 to obtain a more pure magnetic material.
  • the unloading water tank 8 is located slightly above the swivel ring 4 and spans the swivel 4 in the axial direction of the swivel.
  • the unloading water spray module 810 is disposed in the unloading water tank 8, and different water spray modules 810 can be replaced to form different unloading water spray forms, that is, changing the water discharge position/spraying angle and the same unloading water.
  • the amount of water sprayed under pressure A rinsing water outlet 820 and a helper water outlet 830 are respectively disposed on both sides of the unloading water tank 8, and all the water supply ports using the industrial circulating water are unified to the water supply port of the unloading water tank 8.
  • the unloading water tank 8 flushes all the materials adsorbed in the medium box module 420 by spraying the unloading water to the swivel ring 4.
  • the lower part of the rinsing water outlet 820 is connected to the rinsing water 840 in the flushing tank 7 through a water pipe, and the rinsing water is uniformly distributed to the flushing hopper 7 through the distribution of the rinsing water hopper 840, and then through the flow gap Flowing into the swivel zone of the sorting zone, the entrained minerals and the minerals of insufficient purity in the captured magnetic material are selectively rushed away from the media box module to enter the non-magnetic material collecting hopper, thereby obtaining a more pure Magnetic material.
  • the flow of the auxiliary flow outlet 830 extends to a position where the slope of the magnetic material collecting bucket 9 is gentle, and the direction of the outlet of the auxiliary flow water is controlled along the flow direction of the discharge. For materials with fast sedimentation and easy accumulation, a small amount of auxiliary water can be added to prevent material accumulation.
  • the magnetic material collection hopper 9 is composed of three parts, a collection portion 910, a flow guiding portion 920, and a summary portion 930.
  • the collecting portion 910 and the guiding portion 920 are both two components that are symmetrical about the web 412 and are respectively located on both sides of the web 412
  • the collecting portion 930 is a member that is symmetric about the center of the web 412.
  • the collecting portion 910 is located above the upper pole core module 112, from the left side of the inner flushing bucket 7 of the rotating ring 4 to the lower right of the unloading water tank 8 inside the rotating ring 4.
  • the summary portion 930 is located at the lower portion of the coil 2 on the left side of the yoke 1.
  • the flow guiding portion 920 connects the outlet portion of the collecting portion 910 and the both ends of the summary portion 930. All of the magnetic materials that leave the sorting area with the swivel ring 4 and are brought to the upper portion of the collecting portion 910 can be caught and summarized into the summing portion 930, and the wet high gradient strong magnetic separator can be uniformly discharged.
  • the middle hopper 10 is disposed on the left side of the lower pole core module 152 and is in close contact with the lower pole core module 152.
  • the receiving port is located on the lower left side of the swivel ring 4 and is connected to the yoke 1 to the leftmost outer portion of the swivel ring 4, and the width spans the swivel ring 4 in the axial direction of the swivel ring 4. Material that leaves the sorting area with the swivel 4 but fails to transfer over the magnetic material collection hopper 9 can be collected.
  • the non-magnetic material collecting hopper 11 is attached to the lower portion of the yoke 1 and connected to the lower portion of the yoke 1 to completely catch the slurry flowing out of the lower pole core module 152.
  • the non-magnetic material collecting bucket 11 is divided into two non-communicating collecting sections, the right collecting section 1110 is located below the feeding bucket 6 and the middle shaft 510, and the left collecting section 1120 is located below the flushing bucket 7.
  • the materials collected in the two parts of the space are non-magnetic materials, and most of the non-magnetic materials after the feed material flows through the swivel 4 enter the right collection interval 1110, and the small portion rotates with the rotating ring to the left collection interval 1120.
  • non-magnetic material discharge valves 1130 are respectively disposed at the bottoms of the two collection spaces, and the height of the slurry surface of the sorting area can be controlled by adjusting the valve opening degree.
  • the non-magnetic material collection hopper 11 can be stably mounted on the equipment support after being disassembled from the lower magnetic pole core module 152, so as to facilitate disassembly and disassembly transport and reassembly of the wet high gradient magnetic separator.
  • the pulsation mechanism 12 is connected to the right collection section of the non-magnetic material collection hopper.
  • the pulsation mechanism 12 is composed of a pulsation box 1210, a drive pulley group 1220, a pulsating motor 1230, a pulsation push plate 1240, and a rubber soft connection 1250.
  • the pulsation box 1210 is provided with an eccentric wheel module 1211. After the pulsating motor 1230 is decelerated by the driving pulley set 1220, the eccentric wheel module 1211 in the pulsation box 1210 is rotated to convert the circular motion generated by the motor into left and right linear reciprocating motions. The left end of the pulsation box 1210 is provided with a push rod 1212.
  • One end of the push rod 1212 is connected to the eccentric wheel module 1211 through a bearing, and the other end is connected to the pulsation push plate 1240.
  • the push rod 1212 transmits the reciprocating force converted from the eccentric wheel 1211 in the pulsation box to the pulsation push.
  • On board 1240 The outer side of the pulsation push plate 1240 and the right collection section 1110 of the non-magnetic material collection hopper are sealingly connected by a rubber soft connection 1250.
  • the left and right reciprocating force can be transmitted to the slurry located in the right collection section 1110 through the pulsation pushing plate 1240, so that the slurry is pulsating and oscillating, and then the pulsating vibration is extended along the slurry into the sorting area. .
  • a coarse particle separator screen 14 is disposed in the mine hopper 6 or the same functional unit is provided before the feeding to prevent the material from being affected by the blockage of the large particle material entering the upper pole core module 112 and the medium box module 420. Through the sex and sorting indicators.
  • An unloading water slag tank 15 is added in front of the unloading water tank 8, and an oblique slag screen 1510 is arranged in the unloading water slag tank 15, which can prevent large particles of impurities in the unloading water from entering the unloading water tank 8 to block the unloading water.
  • the water spray hole affects the unloading effect and the sorting index.
  • a manual or automatic slag discharge valve 1520 is arranged at the bottom of the unloading water slag tank 15, and the impurity particles that have been isolated in the slag tank 15 can be cleaned manually or automatically.
  • the insulating coolant 230 in the coil 2 can sufficiently bring the heat generated when the coil winding 220 is energized to the heat exchange device 3 after flowing through the coil winding 220, and discharge it through the heat exchanger 330. During the whole process, the insulating coolant 230 is in a closed circuit, free from external pollution, and all heat exchange with the outside is completed at the heat exchanger 330.
  • the central shaft 510 and the swivel 4 are connected by two narrow magnetic expansion sleeves 520, which reduce the contact area of the central shaft 510 and the rotating ring 4 while ensuring torque transmission, thereby reducing the magnetic field through the rotating ring web 412 and
  • the shaft 510 is transmitted to the center shaft bearing 531, the swivel drive motor 550, and the speed reducer 560;
  • the middle shaft bearing block 530 and the swivel drive motor 550 and the speed reducer 560 are under magnetic non-magnetic stainless steel pads, further reducing the center shaft bearing 531.
  • the magnetic field throughput in the rotary drive motor 550 and the reducer 560 thereby extending the service life of the central shaft bearing 531, the rotary drive motor 550, and the reducer 560.
  • the front end of the swivel drive motor 550 and the pulsating motor 1230 are provided with a motor protector 16, which can be timely protected and alarmed when overcurrent or phase loss is detected.
  • a temperature measuring probe 17 is disposed on the coil coolant inlet pipe 310 and near the coolant outlet 216 and at the top of the insulating coolant 230, and the temperature and temperature difference between the inlet and outlet insulation coolants of the coil are monitored in real time, when the temperature is too high or the temperature difference is too large A fault alarm is issued every time; a flow switch 18 is disposed on the coil coolant line 310 to monitor the flow state of the insulating coolant 230, and a fault alarm is issued when the flow rate does not reach the set requirement.
  • the viewing window 1910 is protected by a steel mesh to ensure that personnel are not exposed to moving parts.
  • the adjustment of the excitation current of the wet high gradient magnetic separator coil 2 is input to a preset current through the current setting unit 2011, and then the thyristor (or diode-incorporated IGBT) rectifier module 20 is controlled by the constant current controller 2010 to use the industrial power. Converted to a preset DC input into the coil 2, a Hall element or other similar functional element 21 is set in the process of inputting current to the coil 2 to monitor the current and feed back to the constant current controller, and then through the constant current controller In 2010, the detected value is compared with the preset value, and the output voltage is adjusted accordingly, thereby ensuring that the current of the input coil 2 of the wet high gradient magnetic separator is consistent with the preset current of the current setting unit 2011.
  • the rotational speed of the swivel 4 of the wet high gradient magnetic separator and the pulsation frequency of the pulsation tank 1210 are respectively realized by changing the output frequencies of the rotary ring inverter 22 and the pulsation inverter 23 in the adjustment system.
  • the pulsation amplitude of the wet high gradient magnetic separator is achieved by adjusting the eccentricity of the eccentric wheel module 1211 in the pulsation box.
  • the liquid level is monitored by the manual or level gauge 24 to monitor the liquid level in the bucket 13 and then manually or automatically adjust the opening of one or more non-magnetic material discharge valves 1130 at the bottom of the non-magnetic material collection bucket 11 to achieve .
  • the rinsing water amount is realized by adjusting the valve opening degree of the rinsing water outlet 820 provided on both sides of the unloading water tank 8, and then uniformly supplied to the flushing hopper 7 via the rinsing water damper 840 provided in the flushing water tank 7.
  • the specific working process of the wet high gradient magnetic separator of the present invention is as follows:
  • the material flows from the feed hopper 6, and the coarse particles fed into the material are first separated by the coarse particle separator screen 14 to ensure that the incoming material does not block the core and the media box module 420. After the material passes through the coarse particle separator screen 14 and then flows through the flow gap 113 of the upper pole core module 112, it enters the swivel 4 located in the sorting area.
  • a plurality of highly magnetically permeable media 422 within the media cartridge module 420 are magnetized by the background magnetic field of the sorting region and form a small range of magnetized field regions at the near surface of each magnetic media.
  • the magnetic particles in the material are adsorbed on the surface of the high magnetic permeability medium 422, and the non-magnetic particles and the particles having insufficient magnetic purity are freely passed through the medium box module 420 and then flow through the lower magnetic pole core module.
  • the non-magnetic material collection hopper 11 is entered, and finally the non-magnetic material discharge valve 1130 is discharged from the wet high gradient magnetic separator.
  • the magnetic particles adsorbed on the surface of the high magnetic conductive medium 422 rotate clockwise with the rotating ring 4, and when the raw liquid is first transferred out and the sorting area is turned out, the partially adsorbed particles and the residual pulp in the medium box module 420 are partially adsorbed.
  • the other magnetic granule materials continue to run with the swivel 4 to the collecting portion 910 of the magnetic material collecting hopper 9, and are completely rushed into the collecting portion under the action of the gravity and the unloading water tank 8.
  • the wet high gradient strong magnetic separator is discharged into the summary portion 930 and finally discharged by the summary portion 930.
  • the feed material is subjected to the pulsating vibration force generated by the pulsation box 1210 in the sorting zone, and the entire sorting process is always in a loose state, which is favorable for the separation of magnetic and non-magnetic particulate materials.
  • the forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator can be obtained by replacing some components or removing some components or improving the functions of the components.
  • the rotary ring induction wet pulsation magnetic separator can be used for greater application or application.
  • Forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator mainly includes seven parts: excitation system, sorting system, pulsation system, collection system, support system, drive system and protection system.
  • the excitation system provides a working magnetic field for the forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator; the separation system realizes the continuous separation of the fine tailings; the pulsation system is forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic
  • the slurry in the machine provides the pulsation effect;
  • the collection system functions as feeding, flushing, collecting fine tailings, and adjusting the liquid level;
  • the supporting system functions as a supporting device and is fixedly connected with the ground foundation;
  • the driving system is the turning of the equipment.
  • Rings and pulsations provide power; protection systems protect the body and equipment.
  • Forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator is an electromagnetic beneficiation equipment for wet enrichment of magnetic minerals and impurity removal and purification of non-magnetic minerals.
  • the material is fed from the inner side of the rotating ring, flows through the rotating ring through the upper magnetic pole, and the magnetic material in the material is adsorbed onto the rotating ring. And with the rotation of the rotating ring is brought to the top to leave the magnetic field; the unloading water rinses the rotating ring from the outer side of the rotating ring, and the magnetic material is collected into the magnetic material collecting bucket; the non-magnetic material is discharged from the bottom of the device through the non-magnetic material collecting bucket; The reciprocating motion of the piston of the mechanism causes the material in the sorting area to be loose.
  • the center of the yoke is opened with a flow gap along the direction of the magnetic field.
  • the flow gap is arranged along the magnetic field, and there is no excess air gap on the magnetic circuit, which greatly improves the field strength of the sorting area; the yoke is spliced by multiple soft magnetic materials.
  • connection between the splicing parts eliminates the structure of the perforated long bolts on the traditional soft magnetic material, and the upper and lower magnetic poles are used to connect the ear joints, and the joint has a positioning structure, which greatly reduces the difficulty of assembling the yoke;
  • the lower magnetic pole is provided with a water retaining plate, and the material of the water retaining plate in the working air gap is non-magnetic material, and the water retaining plate and the lower magnetic pole cooperate to raise the height of the slurry surface, so that the lower part of the rotating ring is immersed in the slurry surface. under.
  • the forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator is further described below with reference to FIG. 23 to FIG. 32.
  • the excitation system of the forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator is composed of a yoke and a coil assembly.
  • the coil assembly is composed of a coil and a heat exchange device, and the coil surrounds the upper half of the lower magnetic pole 150 in the yoke.
  • the yoke is made up of two mountain-shaped yokes, and the two sides of the mountain are in contact with an air gap in the middle, and the air gap is a circular arc.
  • the yoke concentrates the magnetic field generated by the coil to the intermediate air gap to form a working background magnetic field.
  • the yoke mainly includes an upper magnetic pole (110, 120), a lower magnetic pole 150, a magnetic conductive plate (130, 140), a water blocking plate 153, and upper and lower magnetic pole connecting ears 160. As shown in Fig.
  • the upper magnetic poles (110, 120) and the lower magnetic pole 150 are fixed together by a magnetic conductive plate (130, 140), and the water retaining plate 153 is fixed to the lower magnetic pole 150, and the magnetic conductive circuit is indicated by an arrow in the figure.
  • the upper magnetic poles (110, 120) and the lower magnetic poles 150 are all provided with through holes, the through holes are arranged along the direction of the magnetic lines of force, and there is no excess air gap on the magnetic conductive circuit; the lower surface of the upper magnetic poles (110, 120) and the lower magnetic pole 150
  • the upper surface is a circular arc surface, which constitutes a working air gap;
  • the upper magnetic poles (110, 120) are composed of two parts of left and right symmetry, the middle gap is the movable passage of the web 412, and the flow of the upper magnetic poles (110, 120)
  • the gap is open to the portion adjacent the web 412 to effectively prevent material accumulation along the web 412.
  • the magnetic conductive plates (130, 140) are connected to the upper magnetic poles (110, 120) and the lower magnetic poles 150 and are magnetically guided.
  • the upper and lower magnetic pole connecting ears 160 are bolted, and the upper and lower magnetic pole connecting ears 160 have a tapered positioning column, which is convenient. Position the installation.
  • the water retaining plate 153 is fixed on the upper magnetic poles (110, 120), which can effectively improve the slurry level of the equipment during operation.
  • the coil is wound by a magnet wire, and a magnetic field is generated after being energized, and under the action of the yoke, the magnetic field finally gathers to the intermediate air gap of the yoke.
  • the coil mainly includes a coil winding 220, a coil housing 210, an insulating strip 240, an insulating strip holder 241, and an expansion box 250.
  • the coil winding 220 is placed in the coil housing 210.
  • the insulating strip holder 241 functions to support the coil winding 220 and the fixing insulating strip 240.
  • the expansion box 250 is mounted above the coil housing 210.
  • the coil winding 220 has a multi-layer structure, and the layers are separated by an insulating strip 240; the insulating strip bracket 241 has a long strip shape, and is hollowed out at the center and has a mountain-shaped concave-convex structure around, and is evenly arranged along the circumference of the coil winding 220.
  • the insulating strip 240 is stuck in the middle of the insulating strip bracket 241 and is at the convex portion of the mountain-shaped structure;
  • the coil housing 210 is a cavity structure, and the housing is filled with the insulating coolant, the insulating strip bracket 241 and the inner side of the coil housing 210
  • the following is fixed together to form a structure for supporting the coil winding 220;
  • the expansion box 250 integrates the functions of expansion buffering, coil outlet, and dryer filtering.
  • the heat exchanger 330 is in communication with the coil through a line, and the insulating coolant circulates between the coil and the heat exchanger 330, bringing the heat generated by the coil to the outside, and operating the coil at a reasonable temperature.
  • the heat exchange device is located below the side of the coil and mainly includes a pump 320 and a heat exchanger 330.
  • the pump 320 and the heat exchanger 330 are connected together through a pipeline and communicate with the coil housing 210.
  • the pump 320 draws hot insulating coolant from above the coil, cools it by the heat exchanger 330, and cools the cooled insulation.
  • the liquid is returned to the coil from below to form a forced circulation cooling.
  • the sorting system consists of a swivel and unloading device.
  • the main body of the rotating ring is in the shape of a ring wheel, and the lower part passes through the intermediate air gap of the yoke. Under the action of the driving force, the main body of the rotating ring rotates continuously around the axis, and the magnetic mineral is taken out of the magnetic field to realize magnetic minerals and non-mineral minerals. Separation.
  • the swivel mainly includes a swivel frame 410, a middle shaft 510, and a media box module 420.
  • the swivel frame 410 is a runner structure, which is hollowed out to form a space for mounting the media box module 420;
  • the web 412 is a central perforated metal plate welded to the middle of the swivel frame 410; the central axis 510 passes through the abdomen
  • the central hole of the plate 412 is fixed by the expansion sleeve, the bearing shaft is mounted on both sides of the central shaft 510, the bearing is located on the upper magnetic pole (110, 120), and one end of the central shaft 510 is equipped with a transmission large gear;
  • the box structure including the high magnetic permeability material is fixed on the swivel frame 410, and the unit material constituting the box body may be in the form of a rod shape, a threaded rod shape, a polygonal shape, a mesh shape or the like.
  • the unloading device is installed on the outer side of the main body of the rotating ring, and is connected to the water supply pipe, and sprays water onto the main body of the rotating ring, and collects the magnetic mineral adsorbed on the main body of the rotating ring into the magnetic material collecting bucket.
  • the unloading device mainly comprises an unloading water slag tank 15 and a unloading water tank 8.
  • the unloading water slag tank 15 is a box structure, and the two ends of the box body have connecting flanges, which are respectively connected with the unloading water tank 8 and the external water supply pipe, and the unloading water slag tank 15 is provided with a tilting filter net inside the water. Impurities are filtered and discharged below the box.
  • the pulsation system periodically changes the volume of the collection section on the right side of the non-magnetic material collection bucket, so that the slurry in the equipment reciprocates to achieve the purpose of dispersing the minerals in the slurry.
  • the pulsation system is comprised of a pulsation box 1210, a pulsating push plate 1240, and a rubber soft connection 1250.
  • the pulsation box 1210 is a box structure, and has a push rod at the front end thereof, an eccentric wheel inside, and a driving pulley group on the side of the box body.
  • the driving belt wheel group can drive the eccentric wheel to operate, and output the reciprocating motion on the push rod.
  • the pulsation push plate 1240 is a circular metal plate, and the center of the metal plate is connected to the push rod of the pulsation box 1210.
  • the rubber soft connection 1250 is made of soft rubber material, which is circular, and the annular ring body is U-shaped.
  • the U-shaped sides are respectively the outer ring surface and the inner ring surface of the ring, wherein the U-shaped outer ring surface is combined with the non-magnetic material collection.
  • the right collecting section of the bucket is fixed together, and the U-shaped inner annular surface is fixed with the pulsating pushing plate 1240.
  • the collection system provides the machine with minerals, water supply, magnetic and non-magnetic minerals, and liquid level observation.
  • the collection system is composed of a feed hopper 6, a flush hopper 7, a collecting portion 910, a flow guiding portion 920, a summary portion 930, a non-magnetic material collecting hopper 11, a valve adjusting rod 1131, and a liquid level observation hopper 13.
  • the casing structure in which the mining hopper 6 and the flushing bucket 7 are welded is mounted on the upper magnetic poles (110, 120) and communicates with the passage passages of the upper magnetic poles (110, 120).
  • the magnetic material collecting bucket is a tank structure, and is symmetrically installed on the inner side of the rotating ring, the lower surface thereof is at an angle with the horizontal plane, and the lower surface is opened at a lower position.
  • the flow guiding portion 920 is a tank structure installed below the discharge port of the magnetic material collecting bucket, and the concentrate is conveyed into the collecting portion 930 through the pipe at the tail of the flow guiding portion 920.
  • the summary portion 930 is a trough structure, the bottom surface of which is composed of slopes on both sides and an intermediate discharge port.
  • the inclined surface is fixed with a plurality of vertical plates from top to bottom. The height of the first vertical plate is higher than that of the other vertical plates.
  • the non-magnetic material collecting bucket 11 is installed below the through hole of the lower magnetic pole 150, and the bucket body forms a closing structure from the top to the bottom, and an adjustable valve is arranged below.
  • the valve adjusting rod 1131 is an adjusting mechanism composed of a hand wheel, an extension rod and a flexible shaft, and is installed on the side of the device to extend the valve adjusting point of the non-magnetic material collecting bucket 11 to the upper side of the device.
  • the liquid level observation bucket 13 is a box structure, the upper part of the box body is open, and a vertical board is arranged in the middle of the bottom surface of the box body, and an outlet is opened on the bottom surfaces of the two sides of the vertical board, and one of the outlets is connected with the collection section on the right side of the non-magnetic material collecting bucket.
  • the box body is located on the side of the device, adjacent to the adjusting hand wheel of the valve adjusting rod 1131.
  • the support system functions to support the equipment and to secure the unit as a whole to the site foundation.
  • the utility model mainly comprises a bracket 25. After the optimized design of the bracket 25, the bracket is welded by a profile steel, and the bottom of the bracket is formed in a square shape.
  • a trapezoidal support is protruded on one side of the frame for mounting the pulsation box 1210; There are four upright columns, each of which has reinforced steel on both sides to increase the support strength. The upper surfaces of the four columns are in the same plane, and the lower magnetic poles 150 are placed on the four columns.
  • the drive system converts external electrical energy into kinetic energy of motion, which is the power source for the rotating components of the present invention.
  • the drive system is composed of a swivel drive unit 5, a pulsating motor 1230 plus a drive pulley set and an electronic control unit.
  • the rotary drive member 5 is composed of a reducer, a rotary drive motor and a gear transmission.
  • the pinion gear in the gear transmission is sleeved on the output shaft of the reducer, and the pinion gear in the gear transmission meshes with the large gear on the end of the central shaft 510. Together, when the rotary drive motor rotates, the large gear can be rotated by the reducer to drive the rotary ring to rotate.
  • the center of one end of the driving pulley set drive pulley is arranged on the output shaft of the pulsating motor 1230.
  • the driving pulley set passes the built-in transmission belt, and the power outputted by the pulsating motor 1230 is output to the pulsation box 1210 to drive the eccentric wheel to rotate.
  • the electric control part circuit breaker QF1 of the invention is closed, the main circuit is electrified, the current regulator PCB is powered; the circuit breaker QF2 is closed, the frequency converter BP1 is energized, and when the intermediate relay KA1 is closed, the rotary ring motor M1 is electrically operated, and can be adjusted
  • the inverter BP1 adjusts the output speed of the rotary motor M1; the circuit breaker QF3 is closed, the inverter BP2 is energized, and the intermediate motor KA2 is closed, the pulsating motor M2 is energized, and the inverter motor M2 can be adjusted by adjusting the frequency converter BP2.
  • the protection system is made of thin steel plate by welding and bending, which isolates the running parts of the equipment from the outside world to protect the equipment and personal safety.
  • the protective system shield 19 includes a swivel cover, a gear cover, and a pulley cover.
  • the rotary ring cover is divided into two parts, the left and right parts, each part is welded by a curved plate and two sector plates, forming an arc-shaped groove structure, and the left and right parts are located on both sides of the flushing bucket 7, and are buckled on the main body of the rotating ring;
  • the gear cover is an unequal notch structure, the two centers of the notch are provided with holes, and the two holes are not in the same plane, the power supply shaft and the gear shaft pass, and the gear cover completely covers the gear;
  • the wheel cover is Without the equal slot structure, there are holes in the two centers of the slot, and the two holes are located on the same plane, the power supply shaft and the pulley shaft pass, and the pulley cover completely covers the pulley.
  • the traditional strong magnetic separator has the following problems: when the equipment is working, the upper magnetic pole is closed to the side of the rotating ring, causing the material leaking above to accumulate on the upper magnetic pole; when installing the yoke, the long bolt is used to install through the yoke The positioning and installation are inconvenient; the water deflector is made of magnetic conductive material, which causes part of the magnetic flux to be shielded; the coil adopts the horizontal flow of the cooling liquid, resulting in uneven heat dissipation, and the coil has a short service life; the bottom surface of the concentrate collection tank is flat, and the pulp is fast.
  • the forced oil-cooled vertical rotary ring induction wet pulsating strong magnetic separator has the following improvements for the above disadvantages: the upper magnetic pole (110, 120) is changed to the open side on the side close to the rotating ring, and the material leaked directly above is directly Flowing back from the open device to prevent the material from accumulating on the upper magnetic poles (110, 120); connecting the upper magnetic poles (110, 120), the lower magnetic poles 150 and the magnetic conductive plates (130, 140) with the upper and lower magnetic poles
  • the bolt connection and the addition of the tapered positioning structure greatly facilitate the installation of the yoke; the water retaining plate 153 is made of stainless steel, so that the magnetic flux is most effectively utilized; the coil is heat-dissipated by forced heat exchange, and the coil winding 220
  • the structure is immersed in the insulating coolant and placed on the insulating strip bracket 241.
  • the insulating coolant in the coil flows from bottom to top, and the insulating coolant flowing out from above enters the heat exchanger for cooling, and the cooled insulating coolant is further from below.
  • the flow mode conforms to the self-convection physical property of the liquid in the liquid to the downward cold liquid, which greatly improves the uniformity of heat dissipation and prolongs the service life of the coil; the summary part 930 adds a small vertical plate to the bottom surface of the tank body.
  • the adjusting handwheel of the valve adjusting rod 1131 is located beside the liquid level observation bucket 13, and the slurry level in the bucket 13 can be observed while observing the liquid level
  • the valve opening degree of the non-magnetic material collecting bucket 11 is adjusted, which greatly facilitates the adjustment of the equipment.
  • the forced oil-cooled vertical rotary ring induction wet pulsating strong magnetic separator revolving ring preferably adopts a skeleton structure, and the medium box module 420 is fixed on the rotating ring skeleton by bolts, and the rotating ring skeleton is made of stainless steel; the medium form may be a rod shape , polygonal, mesh, toothed, threaded, steel wool and other structures; the central shaft of the swivel and the swivel are connected by the expansion sleeve structure; the mining bucket is symmetrically located on both sides of the rotating ring, and the mining bucket is installed in the yoke excess passage Above; the magnetic hopper is symmetrically installed on the inner side of the rotating ring, and the magnetic hopper on one side of the rotating ring can be a bucket body or a plurality of bucket bodies; the bottom surface of the magnetic hopper is at an angle to the horizontal plane, thereby realizing the self-flowing of the inner pulp.
  • the magnetic hopper abandons the traditional pipeline mining method, adopts the tank body mining mode, reduces the clogging of the magnetic hopper, and is easy to clean; the unloading point is located above the magnetic hopper, and the unloading uses the fluid flushing ring on the medium box module 420
  • the fluid may be air, water or a mixture of water and air.
  • the front end of the unloading device in the forced oil-cooled vertical rotary ring induction wet pulsation strong magnetic separator is preferably equipped with a slag filter device for filtering large particle impurities in the unloading water; the coil is forced to heat exchange, and the coil is cooled.
  • the winding has a multi-layer structure, which increases the contact area between the winding and the heat exchange medium, and improves the heat exchange efficiency; the heat exchange medium flows from one side of the coil and flows out from the other side of the symmetry; the heat exchange medium can be an insulating coolant Air or water; when the coil is cooled by insulating coolant, the coil winding is directly immersed in the insulating coolant.
  • the coil is equipped with an insulating coolant expansion tank.
  • the number of expansion tanks may be one or more, and the expansion tank is equipped with a respirator.
  • the pulsation box stroke and the pulsation frequency in the forced oil-cooled vertical rotary ring induction wet pulsation magnetic separator are preferably adjustable to accommodate different ore properties
  • the pulsation stroke refers to the amplitude of the reciprocating motion.
  • the pulsation frequency refers to the speed of reciprocating motion.
  • the non-magnetic hopper is located under the yoke, and a valve is arranged under the bucket body, and the valve opening degree is adjustable, and the liquid level can be adjusted by adjusting the valve opening degree and the ore supply amount.
  • the side of the equipment is equipped with a liquid surface observation bucket, and the liquid surface observation bucket is connected with the non-magnetic material bucket, and the opening degree of the non-magnetic material discharge valve under the non-magnetic material discharge hopper can be adjusted manually or automatically, thereby controlling the liquid surface observation bucket The height of the pulp surface.
  • the non-magnetic hopper valve is equipped with an extension rod, the valve opening can be adjusted outside the equipment; the adjustment point can also be transferred to the top of the device through the soft shaft or other steering device, and the liquid level is observed while adjusting the valve.
  • the swivel cover body completely covers the swivel ring, which can protect the personal safety; the connection between the various parts of the cover body adopts a plug-in lap joint to prevent the slurry from splashing.
  • An observation window is opened on the cover.
  • the bracket is welded by a section steel.
  • the bracket is composed of a yoke bracket and a pulsation box bracket.
  • the yoke bracket and the pulsation box bracket are connected by welding or bolt fastening, and the bracket has a positioning structure.
  • the magnetic separator of the invention has a reasonable and novel structure, and ensures the good sorting index while taking into consideration the characteristics of safety, energy saving and beauty.

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Centrifugal Separators (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种湿法高梯度强磁选机,其包括励磁系统、分选收集系统、安全及隔离系统和调节系统,其中励磁系统提供分选用的背景磁场;分选收集系统将含磁性矿物的矿浆中的磁性物料与非磁性物料通过磁选进行分离;安全及隔离系统用于将给入物料的粒度隔离、对水中杂质的隔离、对绝缘冷却液(230)的污染隔离、对惧磁部件的磁场隔离和对电机(1230)、线圈(2)、介质盒模块(420)的安全防护及对操作人员的人身安全防护;调节系统用于背景磁场强度、转环(4)转速、脉动振幅和频率、液面高度及对漂洗水、卸矿水量/角度等的调节。该磁选机多个部件或模块实现各系统间分工、协作从而实现对于弱磁性矿物的可靠、稳定的强磁分选。

Description

一种湿法高梯度强磁选机 技术领域
本发明涉及磁选技术领域,特别涉及一种湿法高梯度强磁选机。
背景技术
随着社会现代化的不断进步,对各种金属材料的需求量也不断提高,因此各矿产资源不断被开采,优质矿产资源日益减少。为了更高效地利用矿产资源,选矿尤其是精细选矿已成为必然趋势。
在选矿领域中,磁选一直是非常重要的选矿方法之一。尤其是在含磁性矿物的分选中,磁选更是以其稳定、环保、成本低、易操作等优点成为业内首选。在含磁性矿物资源中,相对于不用选别的天然高纯直用磁性矿物和易选别的高品位磁性矿物,其它大部分弱磁性矿物尤其是低品位弱磁性矿物和强、弱共生的磁性矿物以及将磁性矿物视为杂质的非金属矿物的分选都较为复杂。随着现代矿山开采量的逐年增加,天然高纯直用磁性矿物和易选别的高品位磁性矿物的资源总量逐年减少,而选别后还含有可利用资源(这里特指含磁性可利用资源)的尾矿却日渐增多。因此,对这些其它含磁性矿物和尾矿中可利用资源的分选在选矿界受到了高度重视。
在这些矿物的分选过程中,最核心的设备必须是一种具有很强的磁捕获能力的磁选机。由于这些矿物种类繁多、形式复杂多样,所以急需一种具有强大的适应和调节能力的强磁选设备。又由于对这些矿物的分选无论是在工艺上还是在分选设备上都更为繁琐、复杂,且整个工艺流程中的各工序关联性极强,因此所需设备的分选指标及运行安全稳定性也至关重要。
发明内容
为了克服现有技术的调节能力差及安全稳定性不良等问题,本发明提出一种湿法高梯度强磁选机。本发明的湿法高梯度强磁选机是一种可以对含磁性矿物矿 浆中磁性颗粒具有极强的捕捉能力的磁选设备,是一种模块化设计的电磁选设备,是一种可以对矿浆中的弱磁性颗粒物料进行分选富集且分选时分选区内的矿浆呈脉动震荡状态的强磁选机。
依据本发明的第一技术方案,本发明提供了一种湿法高梯度强磁选机,其包括励磁系统、分选收集系统、安全及隔离系统和调节系统。所述励磁系统,其用于为湿法高梯度强磁选机提供分选用的背景磁场;所述分选收集系统,其与励磁系统提供的背景磁场相配合,将含磁性矿物的矿浆中的磁性物料与非磁性物料通过磁选进行分离,并分别收集至不同的收集区域;所述安全及隔离系统,其用于将湿法高梯度强磁选机给入物料的粒度隔离、对水中杂质的隔离、对绝缘冷却液的污染隔离、对惧磁部件(如轴承、电机、减速机等)的磁场隔离和对重要部件(如电机、线圈、介质盒模块等)的安全防护及对操作人员的人身安全防护;所述调节系统,其用于对励磁系统的背景磁场强度的调节、对分选收集系统中的转环转速(等效于物料的分选时间)的调节、对脉动振幅和频率(相当于分选区矿浆的震荡强度和频率)的调节、对液面高度(关联分选区长度)的调节及对漂洗水、卸矿水量/角度的调节。
优选地,所述励磁系统、分选收集系统、安全及隔离系统和调节系统按照模块化设计,或者将励磁系统、分选收集系统、安全及隔离系统和调节系统中的影响分选指标的部分系统进行模块化设计,进而根据分选物料和工况条件的不同对相应模块进行更换,从而达到理想的选矿指标。
优选地,励磁系统包括磁轭1、线圈2和换热装置3;其中磁轭1包括上磁极左110、上磁极右120、导磁板左130、导磁板右140和下磁极150,其中上磁极左110和上磁极右120由上磁极轭板111及上磁极铁芯模块112焊接或紧固件紧固连接而成,下磁极150由两块对称的下磁极轭板151和下磁极铁芯模块152及位于其两侧的挡水板153焊接或紧固件紧固连接而成。
优选地,根据不同的工况条件,湿法高梯度强磁选机选配不同的上磁极铁芯模块112和下磁极铁芯模块152。根据不同的防腐要求,湿法高梯度强磁选机的上磁极铁芯模块112和下磁极铁芯模块152分为三个等级:第一等级为不作特殊 处理;第二等级为在磁极铁芯与矿浆接触的表面喷涂耐水、耐磨的防腐涂层;第三等级为在第二等级的基础上增加可更换的牺牲阳极。针对分选矿浆中强磁性矿物含量高的使用现场,上磁极铁芯模块在流矿间隙113周边做锐角圆化处理或/和增设不导磁不锈钢隔磁处理的配置,而下磁极铁芯模块没有在流矿流水间隙154周边做锐角圆化处理以及没有增设不导磁不锈钢隔磁处理的配置。
优选地,线圈2由线圈壳体210和线圈绕组220及盛于线圈壳体210内浸没线圈绕组220的绝缘冷却液230构成,其中线圈壳体210又由内围板211、上导磁板212、下导磁板213、外围板214构成;线圈壳体210的内围板211采用不导磁钢板制成,而上导磁板212、下导磁板213、外围板214则采用高导磁钢板制成。线圈绕组220置于线圈壳体210之中并采用绝缘条240间隔地将其与线圈壳体210垫起隔离,既确保其与线圈壳体210之间的完全绝缘又预设了绝缘冷却液的流经通道;线圈绕组220绕制时也采用绝缘条240在绕组内部间隔垫出绝缘冷却液的流经通道;线圈壳体210下部设有冷却液进口215,线圈壳体210上部远离冷却液进口215端设有冷却液出口216;绝缘冷却液230由冷却液进口215流入线圈壳体210并流经线圈绕组220内和线圈绕组220与线圈壳体210间预设的绝缘冷却液通道,再由冷却液出口216流出;上述在冷却液通道中的流通均匀不出现流动死角,可以将线圈绕组220励磁时产生的热量全部带走。
优选地,冷却液进口215与线圈绕组220之间设置有分流腔217,冷却液出口216与线圈绕组220之间设置有汇流腔218。换热装置3由管路310、泵320、换热器330组成。其中泵320的入口通过管路310与线圈的冷却液出口216相连,泵320的出口与换热器330相连,而换热器330的另一端则与线圈的冷却液进口215相连。根据现场工况条件的不同,换热器330可为任何常规的闭式循环换热器。
优选地,泵320与线圈的冷却液出口216之间、绝缘冷却液230最低处设有排液阀门340,此阀门可用于排净线圈2和换热装置3中的绝缘冷却液230,也可以配合泵320向线圈2和换热装置3中注入绝缘冷却液230。
分选收集系统包括转环4、转环驱动部件5、给矿斗6、冲水斗7、卸矿水箱8、磁性物料收集斗9、中矿斗10、非磁性物料收集斗11、脉动机构12、液位观察斗13。其中:转环4是本发明的关键部件之一,在线圈2通电励磁时磁轭1 内会产生一个分选区域,此时转环4可携带介质盒模块420进入/出离分选区域,转环驱动部件5为转环4转动提供转动动力,给入矿浆由给矿斗6开始进入湿法高梯度强磁选机,冲水斗7负责在分选的过程中对物料进行漂洗,卸矿水箱8负责将转环4带出的磁性物料冲洗出介质盒模块420,磁性物料收集斗9则负责将这些磁性物料收集并汇总到一起排出湿法高梯度强磁选机,而未被分选出来的非磁性物料则由非磁性物料收集斗11收集并排出湿法高梯度强磁选机,出离分选区却未能来到磁性物料收集斗9上方的物料及矿浆水进入中矿斗10内,脉动机构12在分选过程中可以使分选区的矿浆一直处于震荡状态,有利于矿物的分选和杂质的分离,液位观察斗13可在磁轭1和分选区外观察分选液面高度,并为分选液面高度的调整提供依据。
优选地,转环4由转环框410和介质盒模块420构成。转环框410由轮毂411、腹板412、支撑环413、骨架414构成,其中支撑环413与骨架414采用不导磁不锈钢制成。介质盒模块420安装在周向相邻的两骨架414之间,除小型湿法高梯度强磁选机采用单排介质盒模块420外,在腹板412两侧的介质盒模块420呈等量交错排布(即腹板左右两侧的介质盒数量相同,且每有一个介质盒模块420刚开始进入分选空间时必有一个对应的介质盒模块420处于进入分选空间一半的状态)。
介质盒模块420由两块或多块不导磁框架板421和位于不导磁框架板421之间的高导磁介质422及耳板423组成。通过耳板423可将介质盒模块420固定在周向相邻的两骨架414之间。优选地,在介质盒模块420中,高导磁介质422既包括棒状介质和网状介质,又包括钢毛类或其它任何形式的可填充在不导磁框架板421之间并最终将被安放到转环框410上用于在湿法高梯度强磁选机中产生感应磁场的导磁材料。在介质盒模块420中,高导磁介质422既包括紧密排布又包括松散排布,既包括介质间隙统一排布又包括介质间隙梯度排布,既包括单独一种形式的导磁介质排布又包括多种形式的导磁介质混搭排布。针对矿浆带有腐蚀性的情况,介质盒模块420分为三个防腐等级:第一等级为高导磁介质422采用防腐材料;第二等级在第一等级的基础上对介质盒模块420进行整体镀膜处理;第三等级在第二等级的基础上再增加牺牲阳极防腐。
优选地,根据现场实际工况条件的不同为湿法高梯度强磁选机配备不同的介 质盒模块420。转环驱动部件5包括中轴510、隔磁胀紧套520、中轴轴承座530、齿轮传动540、转环驱动电机550和减速机560。湿法高梯度强磁选机进一步包括给矿斗6和冲水斗7,其中与给矿斗6相连的上磁极铁芯模块112处设有引导矿浆进入分选区域的流矿间隙113;给入物料矿浆由给矿斗6进入湿法高梯度强磁选机,再经流矿间隙113流入位于分选区的转环4;冲水斗7内设有漂洗水,与冲水斗7相连的上磁极铁芯模块112处设有漂洗水进入分选区域的流水间隙114,漂洗水可以将被捕捉的磁性物料中的夹带矿物和磁性纯度不够的矿物选择性地冲离介质盒模块420,使之进入非磁性物料收集斗11内。卸矿水箱8内设有卸矿水喷水模块810,可以通过更换不同的喷水模块810来形成不同的卸矿喷水形式,可以改变喷水的出水位置/喷水角度和相同卸矿水压力时喷水量的大小。卸矿水箱8两侧分别设有漂洗水出口820和助流水出口830,将所有使用工业循环水的给水统一为卸矿水箱8的给水口。卸矿水箱8可以通过向转环4喷射卸矿水将介质盒模块420中吸附的所有物料全部冲洗出去。
优选地,磁性物料收集斗9由三部分组成,分别是收集部分910、导流部分920、汇总部分930。其中收集部分910和导流部分920均为关于腹板412对称的两个部件且分别位于腹板412的两侧,而汇总部分930为关于腹板412中心对称的一个部件。收集部分910位于上磁极铁芯模块112之上,从转环4内部冲水斗7左侧起至转环4内部卸矿水箱8的右下方止。汇总部分930位于磁轭1左侧线圈2下部。导流部分920连接于收集部分910出口与汇总部分930两端。可将所有随转环4离开分选区域并被带至收集部分910上方的磁性物料全部接住并汇总到汇总部分930后统一排出湿法高梯度强磁选机。中矿斗10设在下磁极铁芯模块152左侧并紧贴下磁极铁芯模块152。接料口位于转环4之外左下侧与磁轭1相连处至转环4最左侧外部,宽度沿转环4轴向横跨转环4。可收集随转环4转出磁分选区后但并未能转至磁性物料收集斗9上方的物料。
优选地,非磁性物料收集斗11安装于磁轭1下部且与磁轭1下部相连,可以将由下磁极铁芯模块152中流出的矿浆完全接住。非磁性物料收集斗11分为两个不连通的收集区间,右侧收集区间1110位于给矿斗6和中轴510下方,左侧收集区间1120位于冲水斗7下方。两收集空间底部分别设有一个或多个非磁性物料排料阀门1130。
优选地,非磁性物料收集斗11从下磁极铁芯模块152拆解开后可稳固架于设备支架之上,可以方便湿法高梯度强磁选机的拆解分体运输和设备的再次组装。
优选地,脉动机构12由脉动箱1210、驱动皮带轮组1220、脉动电机1230、脉动推板1240、橡胶软连接1250构成。其中脉动箱1210内设有偏心轮模块1211,脉动电机1230经过驱动皮带轮组1220减速后驱动脉动箱1210内的偏心轮模块1211转动,进而将电机产生的圆周运动转化为左右的直线往复运动。脉动箱1210左端设有推杆1212,推杆1212一端与偏心轮模块1211通过轴承相连另一端与脉动推板1240相连,推杆1212将脉动箱内偏心轮模块1211转化出的往复力传递至脉动推板1240上。脉动推板1240外侧与非磁性物料收集斗的右侧收集区间1110通过橡胶软连接1250密封连接。当脉动箱运转时通过脉动推板1240可将这一左右的往复力传递至右侧收集区间1110内的矿浆上去,使矿浆发生脉动震荡,再将这一脉动震荡沿矿浆延伸到分选区内。
优选地,安全及隔离系统包括在给矿斗6内设置粗颗粒隔料筛板14或在给料之前设置相同功能单元,可以防止大颗粒物料进入上磁极铁芯模块112和介质盒模块420内造成堵塞而影响物料的通过性和分选指标。
此外,在卸矿水箱8前增设卸矿水隔渣箱15,卸矿水隔渣箱15内设有一斜向隔渣筛板1510,给入的工业循环水进入卸矿水隔渣箱15后受到隔渣筛板1510的隔离,其中大粒度杂质和轻质杂质被隔离,由于隔渣筛板1510是沿水流方向向下倾斜,因此被隔离出来的杂质受到水流冲力向下的分力的作用而向卸矿水隔渣箱15下方汇聚并存于卸矿水隔渣箱15底部,从而实现防止卸矿水中大颗粒杂质进入卸矿水箱8堵塞卸矿水喷水孔而影响卸矿效果和分选指标。
优选地,在卸矿水隔渣箱15底部设置手动或自动排渣阀门1520,可以定期手动或自动对卸矿水隔渣箱15内已隔离出的杂质颗粒进行清理。线圈2内绝缘冷却液230在流经线圈绕组220后可将线圈绕组220通电时产生的热量充分带至换热装置3,并通过换热器330将其排出,整个过程绝缘冷却液230处于闭路循环,不受外界污染,与外界的所有热交换均在换热器330处完成。中轴510与转环4采用两个窄隔磁胀紧套520连接,在保证扭矩传递的情况下减少中轴510与转环4的接触面积,同时隔磁胀紧套520材质选用导磁率比磁轭差很多的合金 钢或不导磁钢,从而减少磁场通过转环腹板412和中轴510向中轴轴承531、转环驱动电机550、减速机560传递;中轴轴承座530和转环驱动电机550、减速机560下垫不导磁不锈钢垫板,进一步减小中轴轴承531和转环驱动电机550、减速机560中的磁场通过量,从而延长中轴轴承531和转环驱动电机550、减速机560的使用寿命。转环驱动电机550、脉动电机1230、泵320前端均设有电机保护器16,当检测到超流或缺相时能对其及时保护并发出警报。
优选地,线圈冷却液进口管路310和冷却液出口216附近绝缘冷却液230顶层处均设置测温探头17,时实监控线圈的进、出口绝缘冷却液温度和温差。当温度过高或温差过大时均发出故障警报;线圈冷却液管路310上设置流量开关18监测绝缘冷却液230的流动状态,当流量达不到设定要求时发出故障警报。
优选地,设备所有运转部件均外罩防护罩19,对于需要观察运转情况的部位设置观察窗1910,观察窗1910采用钢网防护,确保人员无法接触到运转部件。
优选地,调节系统包括湿法高梯度强磁选机线圈2的励磁电流的调节。湿法高梯度强磁选机的励磁采用恒直流电输入,通过电流设定单元2011输入预设电流,再通过恒流控制器2010控制可控硅(或二极管结合IGBT)整流模块20将工业用电转换为预设的直流电输入到湿法高梯度强磁选机线圈2中,在向线圈2输入电流的过程中设置霍尔元件或其它类似功能元件21对电流进行监测并反馈给恒流控制器,再通过恒流控制器2010将检测值和预设值进行比对后对输出电压进行相应的调节,从而确保湿法高梯度强磁选机输入线圈2的电流与电流设定单元2011的预设电流相一致。
优选地,湿法高梯度强磁选机转环4的转速和脉动箱1210的脉动频率分别通过改变调节系统中的转环变频器22和脉动变频器23的输出频率来实现。
更优选地,湿法高梯度强磁选机的脉动振幅通过调节脉动箱内偏心轮模块1211的偏心量来实现。液面高度通过人工或液位计24监控液位观察斗13内液位高度,再手动或自动调节非磁性物料收集斗11底部的一个或多个非磁性物料排料阀门1130的开度来实现。漂洗水量通过调节设置在卸矿水箱8两侧的漂洗水出口820阀门开度来实现,再经设置在冲水斗7内的漂洗水分水器840均匀地给到冲水斗7内,分流后的漂洗水可以更稳定地对分选区内的矿浆中的无磁细小颗粒和介质盒模块420内夹带的非磁性物料起到抑制作用。
依据本发明的第二技术方案,一种强迫油冷立式转环感应湿法脉动强磁选机包括七大部分:励磁系统、分选系统、脉动系统、收集系统、支撑系统、驱动系统、防护系统;励磁系统提供工作磁场;分选系统实现精尾矿连续分离;脉动系统为强迫油冷立式转环感应湿法脉动强磁选机内矿浆提供脉动效果;收集系统用于给料、冲水、收集精尾矿、液位观察调整;支撑系统与现场地基固定连接并支撑设备主体;驱动系统为强迫油冷立式转环感应湿法脉动强磁选机的转环和脉动提供动力;防护系统用于保护人身和设备安全的防护。
相对于现有技术,本发明的湿法高梯度强磁选机包括四大系统,即励磁系统、分选收集系统、安全及隔离系统和调节系统,该四大系统又分别由多个部件或模块组合而成,各系统间分工协作实现对弱磁性矿物的可靠、稳定的强磁分选。本发明具有以下有益效果:
(一)本发明既适用于弱磁性矿物尤其是低品位弱磁性矿物中的弱磁性物料的富集,又适用于强弱共生的磁性矿物中的弱磁性矿物的富集,以及将磁性矿物视为杂质的非金属矿物中的磁性杂质的去除。
(二)本发明不但具有多个可调节参数,更将会严重影响分选指标的部分部件采用模块化设计,再根据待分选物料和工况条件的不同来调节设备的多个分选参数或对相应模块进行更换,从而实现与待选物料及现场工况条件的最大程度适配,得到理想的分选指标。
(三)本发明更是实施了多项提高设备运转和分选稳定性的举措,既可以提高湿法高梯度强磁选机各部件的工作稳定性,又可以延长湿法高梯度强磁选机的使用寿命,从而保障整个分选流程的顺畅和获得可靠稳定的分选指标。
附图说明
图1为本发明湿法高梯度强磁选机的主视图;
图2为本发明湿法高梯度强磁选机的立体结构示意图;
图3为本发明湿法高梯度强磁选机去掉罩体后的另一侧立体结构示意图;
图4为本发明湿法高梯度强磁选机中磁轭的立体结构示意图;
图5为本发明湿法高梯度强磁选机中上磁极左的立体结构示意图;
图6为本发明湿法高梯度强磁选机中下磁极的立体结构示意图;
图7为本发明湿法高梯度强磁选机中线圈的立体结构剖视示意图;
图8为本发明湿法高梯度强磁选机中线圈壳体的立体结构剖视示意图;
图9为本发明湿法高梯度强磁选机中换热装置的立体结构示意图;
图10为本发明湿法高梯度强磁选机中转环的立体结构示意图;
图11为本发明湿法高梯度强磁选机中转环框的立体结构示意图;
图12为本发明湿法高梯度强磁选机中介质盒模块的立体结构示意图;
图13为本发明湿法高梯度强磁选机中转环驱动部件左侧轴承座剖视后的立体结构示意图;
图14为本发明湿法高梯度强磁选机中卸矿水箱的立体结构剖视示意图;
图15为本发明湿法高梯度强磁选机中卸矿水隔渣箱的立体结构剖视示意图;
图16为本发明湿法高梯度强磁选机的磁性物料收集斗、中矿斗与磁轭和转环框的相对位置示意图;
图17为本发明湿法高梯度强磁选机的粗颗粒隔料筛板与给矿斗的相对位置示意图;
图18为本发明湿法高梯度强磁选机的位于转环外的防护罩的立体结构示意图;
图19为本发明湿法高梯度强磁选机的非磁性物料收集斗与脉动机构和支架的相对位置的主视图;
图20为本发明湿法高梯度强磁选机的非磁性物料收集斗与脉动机构和支架的相对位置的立体结构支架部分剖视示意图;
图21为本发明湿法高梯度强磁选机的脉动箱的去顶盖后立体结构示意图;
图22为湿法高梯度强磁选机的安全及隔离系统和调节系统的电路结构示意图;
图23为强迫油冷立式转环感应湿法脉动强磁选机的原理示意图;
图24为图22所示强迫油冷立式转环感应湿法脉动强磁选机的等轴视图;
图25为图24中磁轭的等轴剖视图;
图26为图24中线圈总装等轴剖视图;
图27为图26中绕组的等轴视图:
图28为图24中转环的等轴视图;
图29为图24中环体框架等轴视图;
图30为图24中精矿斗和精矿过渡斗的等轴视图;
图31为图24中精矿汇总槽的等轴剖视图;
图32为强迫油冷立式转环感应湿法脉动强磁选机的电控原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。另外,不应当将本发明的保护范围仅仅限制于下述具体结构或部件或具体参数。
为能更好地理解本发明的具体实施方式,首先对本文中提到的一些模糊概念作以具体的定义:
高导磁材料——最大相对磁导率μrm≥500的金属材料;
软磁材料——矫顽力HC≤300A/m的金属材料;
不导磁材料——最大相对磁导率μrm≤1.6的金属材料;
磁性颗粒(物料)——比磁化系数较低,但能被强磁场磁选出来的物料;
无(非)磁性颗粒(物料)——本身无磁或物料颗粒的磁性纯度不够(在弱磁性物料富集时)的物料;
上、下、左、右,顺、逆时针——在未明确说明时均参照图1的相应方向;
上磁极——同指上磁极左和上磁极右;
导磁板——同指导磁板左和导磁板右;
上磁极铁芯——同指上磁极左和上磁极右的铁芯部分;
上磁极轭板——同指上磁极左和上磁极右的轭板;
铁芯或磁极铁芯——同指上、下磁极铁芯;
XX模块——为XX模块化设计后的名称,指明此部件有多种可互换的形式,与XX指代相同;
闭式循环换热器——指热介质与外界进行热交换时冷热介质之间互不接触的换热装置。
在本发明湿法高梯度强磁选机的附图中,图1—图22标记如下:
图1为本发明湿法高梯度强磁选机的主视图,图1中标记:1-磁轭 2-线圈 4-转环 5-转环驱动部件 6-给矿斗 7-冲水斗 8-卸矿水箱 9-磁性物料收集斗 11-非磁性物料收集斗 12-脉动机构 13-液位观察斗 19-防护罩 24-液位计;
图2为本发明湿法高梯度强磁选机的立体结构示意图,图2中标记:1-磁轭 2-线圈 5-转环驱动部件 6-给矿斗 7-冲水斗 8-卸矿水箱 9-磁性物料收集斗 11-非磁性物料收集斗 12-脉动机构 13-液位观察斗 15-卸矿水隔渣箱 19-防护罩 24-液位计 25-支架;
图3为本发明湿法高梯度强磁选机去掉罩体后的另一侧立体结构示意图,图3中标记:1-磁轭 2-线圈 3-换热装置 4-转环 5-转环驱动部件 6-给矿斗 7-冲水斗 8-卸矿水箱 9-磁性物料收集斗 11-非磁性物料收集斗 12-脉动机构 15-卸矿水隔渣箱 17-测温探头 18-流量开关 25-支架;
图4为本发明湿法高梯度强磁选机中磁轭1的立体结构示意图,图4中标记:
110-上磁极左 120-上磁极右 130-导磁板左 140-导磁板右 150-下磁极;
图5为本发明湿法高梯度强磁选机中上磁极左110的立体结构示意图,图5中标记:111-上磁极轭板 112-上磁极铁芯模块 113-流矿间隙 114-流水间隙;
图6为本发明湿法高梯度强磁选机中下磁极150的立体结构示意图,图6中标记:151-下磁极轭板 152-下磁极铁芯模块 153-挡水板 154-流矿流水间隙;
图7为本发明湿法高梯度强磁选机中线圈2的立体结构剖视示意图,图7中标记:210-线圈壳体 220-线圈绕阻 230-绝缘冷却液 240-绝缘条;
图8为本发明湿法高梯度强磁选机中线圈壳体210的立体结构剖视示意图,图8中标记:17-测温探头 211-内围板 212-上导磁板 213-下导磁板 214-外围板 215-冷却液进口 216-冷却液出口 217-分流腔 218-汇流腔;
图9为本发明湿法高梯度强磁选机中换热装置3的立体结构示意图,图9 中标记:17-测温探头 18-流量开关 215-冷却液进口 216-冷却液出口 310-管路 320-泵 330-换热器 340-排液阀门;
图10为本发明湿法高梯度强磁选机中转环4的立体结构示意图,图10中标记:410-转环框 420-介质盒模块;
图11为本发明湿法高梯度强磁选机中转环框410的立体结构示意图,图11中标记:411-轮毂 412-腹板 413-支撑环 414-骨架;
图12为本发明湿法高梯度强磁选机中介质盒模块420的立体结构示意图,图12中标记:421-不导磁框架板 422-高导磁介质 423-耳板;
图13为本发明湿法高梯度强磁选机中转环驱动部件5左侧轴承座剖视后的立体结构示意图,图13中标记:510-中轴 520-隔磁胀紧套 530-中轴轴承座 540-齿轮传动 550-转环驱动电机 560-减速机 531-中轴轴承;
图14为本发明湿法高梯度强磁选机中卸矿水箱8的立体结构剖视示意图,图14中标记:810-喷水模块 820-漂洗水出口 830-助流水出口 840-分水器;
图15为本发明湿法高梯度强磁选机中卸矿水隔渣箱15的立体结构剖视示意图,图15中标记:1510-隔渣筛板 1520-排渣阀门;
图16为本发明湿法高梯度强磁选机的磁性物料收集斗9、中矿斗10与磁轭1和转环框410的相对位置示意图,图16中标记:1-磁轭 6-给矿斗 10-中矿斗 410-转环框 910-收集部分 920-导流部分 930-汇总部分;
图17为本发明湿法高梯度强磁选机的粗颗粒隔料筛板14与给矿斗6的相对位置示意图,图17中标记:14-粗颗粒隔料筛板 6-给矿斗;
图18为本发明湿法高梯度强磁选机的位于转环外的防护罩19的立体结构示意图,图18中标记:1910-观察窗;
图19为本发明湿法高梯度强磁选机的非磁性物料收集斗11与脉动机构12和支架25的相对位置的主视图,图19中标记:1110-右侧收集区间 1120-左侧收集区间 1130-非磁性物料排料阀门 1210-脉动箱 1220-驱动皮带轮组 1230-脉动电机 1250-橡胶软连接;
图20为本发明湿法高梯度强磁选机的非磁性物料收集斗11与脉动机构12和支架25的相对位置的立体结构支架部分剖视示意图,图20中标记:1110-右侧收集区间 1120-左侧收集区间 1130-非磁性物料排料阀门 1210-脉动箱  1220-驱动皮带轮组 1230-脉动电机 1240-脉动推板 1250-橡胶软连接 25-支架;
图21为本发明湿法高梯度强磁选机的脉动箱1210的去顶盖后立体结构示意图,图21中标记:1211-偏心轮模块 1212-推杆 1220-驱动皮带轮组;
图22为本发明湿法高梯度强磁选机的安全及隔离系统和调节系统的电路结构示意图,图22中标记:16-电机保护器 20-可控硅(或二极管结合IGBT)整流模块 2010-恒流控制器 2011-电流设定单元 21-霍尔元件或其它类似功能元件 22-转环变频器 23-脉动变频器 24-液位计 220-线圈绕阻 550-转环驱动电机 1230-脉动电机 320-泵 1520-排渣阀门(带定时自动开关功能) 1130-非磁性物料排料阀门(自动控制)。
图23—图32中标记如下:
110/120-上磁极 130/140-导磁板 150-下磁极 153-挡水板 160-上下磁极连接耳 210-线圈壳体 220-线圈绕阻 240-绝缘条 241-绝缘条支架 250-膨胀箱 320-泵 330-换热器 410-转环框 412-腹板 420-介质盒模块 5-转环驱动部件 510-中轴 6-给矿斗 7-冲水斗 8-卸矿水箱 910-收集部分 920-导流部分 930-汇总部分 11-非磁性物料收集斗 1131-阀门调节杆 1210-脉动箱 1230-脉动电机 1240-脉动推板 1250-橡胶软连接 13-液位观察斗 15-卸矿水隔渣箱 19-防护罩 25-支架。
本发明提出了一种湿法高梯度强磁选机,主要包括四大系统:励磁系统、分选收集系统、安全及隔离系统和调节系统。励磁系统可以为湿法高梯度强磁选机提供分选用的背景磁场;分选收集系统与励磁系统提供的背景磁场相配合,可以实现将含磁性矿物矿浆中的磁性物料与非磁性物料通过磁选进行分离并分别收集至不同的收集区域;安全及隔离系统用于将湿法高梯度强磁选机给入物料的粒度隔离、对水中杂质的隔离、对绝缘冷却液的污染隔离、对惧磁部件(如轴承、电机、减速机等)的磁场隔离和对重要部件(如电机、线圈、转环、介质盒模块等)的安全防护及对操作人员的人身安全防护;调节系统用于对励磁系统的背景磁场强度的调节、对分选收集系统中转环转速(关联于物料的分选时间)的调节、对脉动振幅和频率(关联分选区矿浆的震荡强度和频率)的调节和对液面高度(关 联分选区长度)的调节及对漂洗水、卸矿水量/角度的调节。本发明对会影响分选指标的部分部件进行模块化设计,可根据分选物料和工况条件的不同而对相应模块进行更换,从而达到理想的选矿指标。
其中,转环转速越慢,物料的分选时间越长,处理量越小,转环转速非常慢时分选效果不明显;脉动振幅和频率与分选区矿浆的震荡强度和频率分别成正相关关系;液面高度与分选区长度成正相关关系,液面太小时分选效果明显下降,一般设定一个标定液面;本发明中设计的自动监测装置主要为了监测液面,其中可以采用手动或自动调节来进行液面监控。
在本发明中,无论是对于弱磁性矿物还是将磁性物视为杂质的非金属矿物而言,其分选目的都是将其中的磁性颗粒与无磁颗粒或纯度不够的颗粒分离开,而如果想将磁性颗粒从原有的混合矿物中分离出来,则必须提供一个足够强的磁捕捉力。
磁性颗粒受到的磁捕捉力的大小主要由磁性颗粒本身的平均比磁系数、分选磁场强度、梯度来共同决定。而弱磁性矿和非金属矿中的磁性杂质颗粒的平均比磁系数一般都相对较低。如果想在这样的情况下仍能产生足够强的磁捕捉力,则要从提高分选磁场的强度、梯度来着手解决。
本发明的湿法高梯度强磁选机,基于本申请人长期在磁选技术上的研究成果,利用感应磁化原理实现了高分选磁场强度、梯度的协调应用,即在背景磁场中导磁的软磁材料会被磁化,磁化后的软磁材料会影响背景磁场中磁力线的走向,在近表面处形成一个小范围的感应磁化场区,不同材质和不同形状的软磁材料会形成不同的磁化场区。高导磁且带有尖端(尖端的形式多样,也包括圆棒形式)的软磁材料在背景磁场中会在尖端处形成一个高于背景磁场的高磁场强度、梯度的磁化场区,本发明就是基于这一磁化场区来对物料中的弱磁性颗粒和非金属矿中的磁性杂质颗粒进行强力捕捉。
本发明的湿法高梯度强磁选机中所涉及的励磁系统在工作时会制造出一个可将软磁材料磁化的背景磁场区域,这里将这一区域定义为分选区域。进一步地,励磁系统由磁轭、线圈和换热装置构成,线圈在通电励磁时产生磁场,磁场经磁轭汇聚、强化后在线圈内部、磁轭的中心位置处制造出一处半封闭弧状磁场区域,此磁场区域的磁场强度随励磁线圈的输入电流强弱变化而改变,此区域磁场即为 背景磁场,此区域即为分选区域。
为了将矿浆引入和排出分选区域,在上磁极铁芯和下磁极铁芯上设置一定数量的可引导矿浆进、出的流矿间隙。由于某些选厂在分选流程中会向矿浆中添加一些化学药剂,因此其分选矿浆具有不同程度的腐蚀性,而这些有腐蚀性的矿浆流经磁极铁芯的流矿间隙时则会对磁极铁芯造成腐蚀。如果磁极铁芯受到长期腐蚀则会改变其原有厚度,从而降低导磁能力,导致湿法高梯度强磁选机的背景场强和磁场分布发生弱化和改变,最终影响分选指标的稳定性;同时,如果其焊接部位长期受到严重腐蚀更会影响其结构强度和使用寿命。即使是不含有腐蚀性药剂的矿浆,其中所含的水分长期浸泡后也会使磁极铁芯生锈,虽然这部分铁锈几乎不影响设备的磁场性能和结构强度,但对于本身含铁量极低的将磁性物视为杂质的非金属矿物而言就显得尤为重要了。
为了解决腐蚀性影响性能指标和使用寿命的问题,磁轭部分的上磁极铁芯和下磁极铁芯均采用模块化设计,并根据所需防护等级的不同作三种级别的处理:第一等级是不作特殊处理,适用于一般无腐蚀性的分选过程;第二等级是在磁极铁芯与矿浆接触的表面喷涂耐水、耐磨的防腐涂层,适用于具有轻微腐蚀性或非金属矿物的分选过程;第三等级是在第二等级的基础上增加可更换的牺牲阳极,适用于腐蚀性较强尤其是存在腐蚀性离子的矿浆的分选过程,由于牺牲阳极可随时更换,因此这一等级具有更强的防腐能力。
除此之外,如果分选矿浆中强磁性矿物含量过高,在强磁性矿物进入上磁极时很容易吸附在上磁极铁芯模块的尖角处,长此以往则会发生上磁极铁芯的流矿间隙堵塞现象。针对这一特殊工况,上磁极铁芯模块比下磁极铁芯模块多出一种流矿间隙周边锐角圆化和增设不导磁不锈钢隔磁处理的配置。此配置可以大幅削弱上磁极铁芯流矿间隙的尖端感应磁场带来的不良影响,防止上磁极铁芯的流矿间隙出现堵塞。
本发明的湿法高梯度强磁选机中的线圈是背景磁场来源的核心部件,只有线圈通电励磁才能有背景磁场的产生,因此线圈的工作稳定性直接决定了背景磁场的稳定性,进而决定了分选指标的稳定性。为了获得稳定的励磁环境,本发明的湿法高梯度强磁选机线圈部分采用强制绝缘冷却液循环冷却方式。线圈绕组置于壳体中,并采用绝缘条在线圈绕组内部和绕组与壳体之间垫出可供绝缘冷却液流 通的缝隙,既能保证线圈的绝缘,又能使绝缘冷却液在流经这些缝隙时将线圈绕组励磁时产生的热量带离线圈。但由于本发明的主体是一种磁选设备,因此在线圈的制作过程中又必须结合湿法高梯度强磁选机的结构特征和磁路的需要;而由于线圈只是湿法高梯度强磁选机的一个部件,因此线圈的结构必须紧凑。根据磁场的需要,线圈壳体的内围板采用不导磁不锈钢材质以防止磁场短路后降低分选区磁场,而上导磁板、下导磁板、外围板则采用高导磁钢板制成,兼有降低线圈漏磁和汇聚磁场的作用。
冷却液的进口设置在线圈长度方向的一端的下部,而对应的冷却液出口则设置在远离进口的另一端的上部。线圈壳体内冷却液的进、出口处还分别设有分流腔和汇流腔,可以使冷却液在线圈内部的流动更加均匀和稳定,避免了流动死角的产生,并在保证线圈绕组散热稳定的同时也起到防止冷却液长久正冲线圈绕组造成绕组损坏的作用。由于本发明线圈内部加上换热系统内部所需的冷却液的总量比较大,如此多的液体常规采用注液泵注入。本发明将冷却液的排液阀门设置在泵与线圈的冷却液出口之间,出口设置在热交换装置的最低处。此阀门可用于排净线圈和换热装置内的绝缘冷却液,在与泵配合的情况下还具有向线圈和换热装置内注入绝缘冷却液的功能。
其次,本发明的湿法高梯度强磁选机中的分选收集系统可在励磁系统制造出的分选区内产生高强的感应磁场,并利用这一感应磁场对磁性颗粒进行捕捉,之后将捕获的磁性颗粒带出分选区并利用卸矿水将其冲入磁性物料收集斗内,而无磁部分未受到捕捉自由通过这一感应磁场后进入到非磁性物料收集斗内,即完成磁性物料与非磁性物料的分离过程。
分选系统由转环、转环驱动部件、给矿斗、冲水斗、卸矿水箱、磁性物料收集斗、非磁性物料收集斗、中矿斗、脉动机构、液位观察斗构成。其中转环内携带有大量由高导磁软磁材料制成的介质盒,并设计了可将这些介质盒连续送入和带出分选区域的环形结构。分选系统还设计了给矿、卸矿机构和磁性物料、非磁性物料、中矿收集机构及有助于提高分选指标的脉动、冲水机构和分选时必要的分选液面高度观察机构。
当介质盒随转环进入分选区域后,由高导磁软磁材料制成的高导磁介质被磁化,并在尖端部位形成高场强、高梯度的磁化场区,此时待选物料由给矿斗进入 湿法高梯度强磁选机,再通过上磁极铁芯的流矿间隙流入转环。物料在流经转环时必须经过这一磁场选区域,此时磁性物料颗粒在磁力的作用下被吸附捕获,无磁性物料颗粒不受磁力的作用自由通过这一磁场区域并流入非磁性物料收集斗内。被捕获的磁性物料随转环转动出离分选区,离开分选区后磁介质的感应磁场消失,磁捕捉力也随之消失。当转至磁性物料收集斗上方时,被捕获的物料颗粒开始掉落并被磁性物料收集斗收集,未能及时掉落的物料颗粒当转至卸矿水箱下方时也会被卸矿水冲入磁性物料收集斗内,此后介质盒重新变得洁净并再次随转环进入分选区域,即完成一个分选流程的循环。
本发明的湿法高梯度强磁选机中的转环是分选系统的最核心部件,而介质盒又是转环的最重要组成部分。由于待选的物料种类繁多、形式复杂多样,即使同一类矿物一般也都存在着解离度不同和磁性物粒度嵌布不同等各种差异。为了更好地适应这些物料的分选,本发明的湿法高梯度强磁选机将介质盒进行模块化设计,通过改变介质盒中的软磁材料的形式和排布来使湿法高梯度强磁选机具备更强的适应能力。
根据使用现场分选矿浆中物料颗粒度的不同、物料中磁性物含量的不同及磁性物粒度分布的不同,介质盒模块分为多种形式。从材料或形式选用上分类,高导磁介质既包括棒状介质和网状介质,又包括钢毛类或其它任何形式的可被安放到转环上并用于在湿法高梯度强磁选机中产生感应磁场的导磁材料;从排布上分类,高导磁介质既包括紧密排布又包括松散排布,既包括介质间隙统一排布又包括介质间隙梯度递增或递减排布,既包括单独一种形式的导磁介质排布又包括多种形式的导磁介质混搭排布。
在本发明的湿法高梯度强磁选机具体应用中,针对矿浆带有腐蚀性的物料,介质盒模块又分为3个防腐等级:第一等级是高导磁介质采用防腐材料,适用于一般无腐蚀性的分选过程;第二等级是在第一等级基础上对介质盒模块进行整体镀膜处理,适用于具有轻微腐蚀性工况的分选过程;第三等级是在第二等级基础上再增加牺牲阳极,适用于具有中、重度腐蚀性尤其是存在腐蚀性离子工况的分选过程。根据不同的工况条件为湿法高梯度强磁选机配备不同的介质盒模块,从而增强湿法高梯度强磁选机的适应能力,获得更好、更稳定的分选指标。
在现场生产中,被磁介质捕获的磁性颗粒随转环转动出离分选区,离开分选 区后磁介质的感应磁场消失,磁捕捉力也随之消失。当转环转至卸矿水箱下方时介质盒模块内的所有磁性颗粒理应全部被卸矿水冲入磁性物料收集斗内,但由于现场工况的多样性和复杂性也经常发生卸矿不净的现象,而卸矿不净的介质盒模块如果再次进入分选区无疑会影响后序的分选效果。为了更好地卸矿,本发明的湿法高梯度强磁选机在卸矿水箱内设计了卸矿水喷水模块。通过更换此模块可以方便、快捷地改变喷水孔的大小(在不改变卸矿水压力的条件下改变喷水量的大小)、喷水的形状(如柱状、幕状、扇状)、形式(连续、脉冲、平行、交叉)及一定范围内的喷水位置和喷水角度(与介质盒模块内磁介质的排布配合)。结合现场工况条件和湿法高梯度强磁选机的设备参数及所配备的介质盒模块的种类,再配合改变喷水模块,能够实现更好的卸矿效果。
分选系统内的脉动机构中的脉动推板通过橡胶软连接与非磁性物料收集斗右侧收集区间密封连接。脉动机构的作用是产生往复的脉动震荡力,并将这一脉动震荡力传递给非磁性物料收集斗内的矿浆。这一脉动震荡力会随矿浆延伸至分选区内,使位于分选区中的感应磁化场区域内的矿浆也发生脉动震荡,从而有助于降低磁性物料颗粒在磁力的作用下被吸附捕获时产生的夹杂现象,提高分选出的磁性颗粒物料的纯度。
安全及隔离系统是本发明的湿法高梯度强磁选机的核心组成部分,其可以保障设备的运转稳定性。由于湿法高梯度强磁选机的给料一般为磨机出料,这部分物料中难免会混杂一些大粒度物料或杂物,而如果这些大粒度物料或杂物在给料环节堵塞在任何位置都会对分选指标造成严重影响,因此本发明在给料过程中设计了大颗粒隔离机构,可以防止大颗粒物料堵塞湿法高梯度强磁选机的上磁极铁芯流矿间隙或介质盒模块,从而减少了分选过程的干扰,提高了设备的分选稳定性。
由于卸矿时所需卸矿水量较大,因此在选厂生产时一般会采用工业循环水作为卸矿水。工业循环水中难免会有未能及时沉降的大粒度颗粒尤其是轻质漂浮物,这些杂物的存在可能会堵塞卸矿水箱内的喷水孔。如果某一喷水孔发生堵塞,则会直接导致本应经过该喷水孔下被清洗干净的介质盒不能良好地卸矿,当这些介质盒再次进入分选区时便不能正常完成分选工作。以往遇到此类情况,只能听之任之,或停机对卸矿水箱内的喷水孔进行清理。由于整个分选过程的各工序关 联性极强,而且湿法高梯度强磁选机又是整个工序的核心设备,所以关停湿法高梯度强磁选机就必须关停整条生产线与之相关联的所有设备。关停这些设备会给生产造成极大的影响,而听之任之也会影响分选指标,降低资源的回收利用率,造成极大的资源浪费。
为解决这一问题,本发明的湿法高梯度强磁选机在卸矿水入口前设计了卸矿水的隔渣箱,并在隔渣箱的底部设有可以方便地将隔离出来的杂质及时排出的手动或自动排渣阀门,从而确保卸矿水喷水孔不发生堵塞现象,降低因卸矿不净而对分选指标造成的影响,提高了湿法高梯度强磁选机分选效果的稳定性。
线圈是湿法高梯度强磁选机的重要核心部件。线圈必须在通电状态下才能产生磁场,从而使湿法高梯度强磁选机具备磁选能力,而线圈通电必然会导致线圈内的绕组产生热量,这部分热量如果不能及时转移出去则会烧毁线圈。
本发明的湿法高梯度强磁选机采用绝缘冷却液闭路循环对线圈内绕组进行冷却的方式控制线圈绕组的温升。绝缘冷却液流经线圈内部,与线圈绕组进行充分的热交换,再将热量带到线圈外部并在线圈外部的换热装置处进行与外界的热交换,将线圈绕组产生的热量转移至冷却水或空气中,绝缘冷却液在经换热装置冷却后再次进入线圈内部,形成闭路循环。整个过程绝缘冷却液不与外界直接接触,不会将外界杂质带入线圈内部,更不会产生水冷却线圈经常发生的由于结水垢而影响线圈散热的现象,确保线圈冷却系统内部的洁净无干扰,使线圈能稳定工作。
为确保线圈运行稳定、安全、可靠,本发明的湿法高梯度强磁选机在线圈冷却液进口管路上和冷却液出口附近绝缘冷却液顶层处均设置测温探头,实时监控线圈的进、出口绝缘冷却液温度与温差,当温度过高或温差过大时均发出故障警报;在线圈冷却液管路上设置流量开关,监测绝缘冷却液的流动状态,当流量达不到设定要求时发出故障警报。当以上故障参数达到预设高值时,湿法高梯度强磁选机会自动停止励磁,并进入自我保护模式和发出报警信号,从而确保湿法高梯度强磁选机的线圈部分不会损坏。警报发出时已明确了故障点和可能导致此故障的原因,找到故障原因并及时将其解决便不会对生产造成大的影响,从而保障了设备运转的稳定性。
更进一步地,作为强磁分选设备,设备内部和磁轭附近充满了磁场。支撑转 环运转的轴承在磁场内工作容易发生电蚀现象,也容易发生微小磁性颗粒进入轴承的现象,这些情况都会缩短轴承的使用寿命;磁场对内部齿轮主材是导磁钢的减速机和内有转子的电机的影响更加严重,会无形地增加减速机的负载,降低减速机、电机的工作稳定性。
本发明中磁力线以线圈为通电螺线管向外发散并形成磁力线闭路,磁轭正是按照磁力线发散方向进行设计的,在此方向上设置导磁材料可以将大部分磁场屏蔽在导磁材料内部。
通常情况下,由于转环腹板、中轴、轴承座、齿轮组、减速机、电机组合所形成的结构也与磁力线闭路方向基本一致,所以腹板、中轴、轴承座、齿轮组、减速机、电机组合无论如何处理其必然会成为磁力线闭合通路的一部分。如果不作任何处理,必然会有大量磁力线穿过轴承、减速机、电机,降低其工作稳定性。为解决这一问题,本发明采用切断隔离法,即通过在这条闭合回路上增加气隙、降低接触面积(都是为了增大这一磁回路的磁阻)的方法来减小这条闭合回路中流经的磁通量,进而降低轴承、减速机、电机受到的磁场力的影响,延长湿法高梯度强磁选机的整体使用寿命。
本发明的湿法高梯度强磁选机还为所有电机设置了电机保护器,在缺相或过载时能够及时保护和发出警报,以防止电机损坏;同时为运转部件设置了防护罩体,以确保操作人员的安全。为了观察设备运转情况,还设置了观察窗,并在观察窗上设置了防护网,以防止操作人员意外接触到运转部件受到伤害。
本发明的湿法高梯度强磁选机中的调节系统用来对各工作参数进行调节,从而提高湿法高梯度强磁选机的适应能力,获得更好的分选指标。
分选场强是磁介质产生感应磁场的动力来源,分选场强的大小直接体现在分选指标上,因此分选场强的稳定性是湿法高梯度强磁选机工作稳定性的最重要指标。分选场强的大小是通过改变湿法高梯度强磁选机线圈的励磁电流来实现的,湿法高梯度强磁选机的励磁线圈采用直流供电,因此这一励磁电流必须为恒定直流。线圈绕组在通电过程中会产生热量,从而产生线圈温升,随温升的变化绕组的电阻值也会发生变化。选厂现场的输入电压也可能不十分稳定,会随时发生小幅度的变化。为实现励磁电流不随外界的波动而波动,保证分选磁场的稳定,本发明的湿法高梯度强磁选机线圈的励磁输入采用电流设定单元输入预设电流,再 通过恒流控制器控制可控硅(或二极管结合IGBT)整流模块,将工业用电转换为预设的直流电输入到湿法高梯度强磁选机线圈之中,在向线圈输入电流的过程中设置霍尔元件或其它类似功能元件对电流进行监测并反馈给恒流控制器,再通过恒流控制器将检测值和预设值进行比对后对输出电压进行相应的调节,从而确保湿法高梯度强磁选机输入线圈的电流与电流设定单元的预设电流相一致。
针对不同的给入物料性质和给入量大小,以及希望实现的分选指标要求,需要调节分选场强的大小,还要对转环转速和脉动频率及脉动振幅作相应的调整。为调节湿法高梯度强磁选机的转环转速和脉动频率,本发明的湿法高梯度强磁选机分别在其前端设置了转环变频器和脉动变频器,通过调节转环变频器和脉动变频器的输出频率就可以实现对转环转速和脉动频率的相应调整。为调节湿法高梯度强磁选机的脉动振幅,脉动箱内的偏心轮采用模块化设计,可以通过更换此偏心轮模块来实现脉动振幅的相应调整。
此外,本发明的湿法高梯度强磁选机的分选区在湿法高梯度强磁选机进行分选工作时是需要浸没在分选液面之下的。这是因为浸于分选液面之下的物料会更加松散,更容易实现磁性颗粒物料和非磁性颗粒物料的分离;同时,只有将分选区浸没在分选液面之下,脉动箱的脉动力才会随矿浆延伸过来,从而使位于分选区中的感应磁化场区域内的矿浆也产生脉动震荡,降低磁性颗粒物料在磁力的作用下被吸附捕获时产生的夹杂现象,提高分选出的磁性颗粒物料的纯度。
为能及时地观察液面高度,并为分选液面的调节给出依据,本发明的湿法高梯度强磁选机设计了一个与非磁性物料收集斗连通的液位观察斗,可以通过人工或液位计监控液位斗内液面高度。当发现液位观察斗内液面高度发生变化时,可手动或自动调节非磁性物料收集斗底部的一个或多个非磁性物料排料阀门的开度,来保证液面高度稳定地位于设计高度附近。
为能获得更加纯净的磁性物料,在被磁介质捕捉的磁性物料离开分选区之前设置了一次漂洗过程。漂洗水与卸矿水来源相同,均是工业循环水。通过调节漂洗水的冲水量可以将被捕捉的磁性物料中的夹带矿物和纯度不够的矿物有选择性地冲离介质盒模块,使之进入非磁性物料收集斗内,从而获得更加纯净的磁性物料。
为能使进入分选区的介质盒模块洁净而不影响下一周期的分选,卸矿水箱的 冲水卸矿尤为重要。更进一步地,为了能够更好地卸矿,本发明的湿法高梯度强磁选机卸矿水箱内设计了卸矿水喷水模块。通过更换此模块可以方便、快捷地改变喷水孔的大小(在不改变卸矿水压力的条件下改变喷水量的大小)、喷水的形状、形式及一定范围内的喷水位置和喷水角度。结合现场工况条件和湿法高梯度强磁选机的设备参数及所配备的介质盒模块的种类,再配合改变喷水模块,能够实现更好的卸矿效果。
下面参考本发明附图,对本发明做具体解释。
在本发明所提出的湿法高梯度强磁选机中,磁轭1由上磁极左110、上磁极右120、导磁板左130、导磁板右140、下磁极150组成。其中上磁极110、120由上磁极轭板111及上磁极铁芯模块112焊接或紧固件紧固连接而成。下磁极150由两块对称的下磁极轭板151和下磁极铁芯模块152及位于其两侧的挡水板153焊接或紧固件紧固连接而成。上磁极铁芯模块112和下磁极铁芯模块152上下对应,上磁极铁芯模块112和下磁极铁芯模块152两侧设有挡水板153,上磁极铁芯模块112和下磁极铁芯模块152及挡水板153之间形成一个沿弧的方向两端开口的半封闭的弧形空间,这一空间在湿法高梯度强磁选机工作时会产生非常强的背景磁场,这一空间即为分选空间。
铁芯模块112、152分为三个防腐等级,分别在铁芯模块112、152表面所有与矿浆接触的位置作不同的防腐处理。其中,第一等级为金属表面不作任何特殊处理;第二等级为表面喷涂防锈漆或其它种类的防腐涂层;第三等级为在第二等级基础上增加可更换的牺牲阳极。此外,上磁极铁芯模块112还比下磁极铁芯模152块多出了流矿间隙周边锐角圆化和增设不导磁不锈钢隔磁处理的配置。
线圈2环绕着下磁极铁芯模块152并置于下磁极轭板151之上。线圈2由线圈壳体210和线圈绕组220及盛于线圈壳体210内浸没线圈绕组220的绝缘冷却液230构成。其中线圈壳体210又由内围板211、上导磁板212、下导磁板213、外围板214构成。线圈壳体外侧还设置有油枕、接线盒等辅助结构。线圈壳体210内围板211采用不导磁钢板制成,而上导磁板212、下导磁板213、外围板214则采用高导磁钢板制成。线圈绕组220置于线圈壳体210之中,线圈绕组220与线圈壳体210之间采用绝缘条240间隔垫开,既确保线圈绕组220与线圈壳体210之间的完全绝缘又预设了绝缘冷却液的流经通道。线圈绕组220绕制时也在 其内部垫绝缘条240,同样在绕组内部间隔垫出绝缘冷却液的流通通道。线圈壳体210下部一端设有冷却液进口215,线圈壳体210上部远离冷却液进口215端设有冷却液出口216。绝缘冷却液230由冷却液进口215流入线圈壳体210,流经线圈绕组220内和线圈绕组220与线圈壳体210间预设的绝缘冷却液通道,与线圈绕组220进行充分的热交换后再由冷却液出口216流出。其中冷却液进口215与线圈绕组220之间设置有分流腔217,冷却液出口216与线圈绕组220之间设置有汇流腔218。
换热装置3安装在线圈2外的任意位置,换热装置3由管路310、泵320、换热器330组成。其中泵320的入口通过管路310与线圈的冷却液出口216相连,泵320的出口与换热器330相连,而换热器330的另一端则与线圈的冷却液进口215相连。根据现场工况条件的不同,换热器330可为任何常规的闭式循环换热器。泵320与线圈的冷却液出口216之间设有排液阀门340,排液阀门340的出口设置在绝缘冷却液230的最低处。此阀门既可用于排净线圈2内和换热装置3中的绝缘冷却液230,又可以配合泵320使用来向线圈2和换热装置3内注入绝缘冷却液230。
转环4位于下磁极铁芯模块152的正上方。其中转环4由转环框410和介质盒模块420构成。转环框410由轮毂411、腹板412、支撑环413、骨架414构成。由于磁场设计的需要(为不产生磁短路现象),支撑环413与骨架414采用不导磁不锈钢制成,骨架414与支撑环413在转环框410上隔离出了若干用于固定介质盒模块420的小空间。转环框410通过腹板412和轮毂411与转环驱动部件5相连接,通过转环驱动部件5的带动,这些用于固定介质盒模块420的小空间会依次进入和离开分选空间。
介质盒模块420安装在周向相邻的两骨架414之间,除小型湿法高梯度强磁选机采用单排介质盒模块420外,在腹板412两侧的介质盒模块420呈等量交错排布,即腹板左右两侧的介质盒数量相同,且每有一个介质盒模块420刚开始进入分选空间时必有一个对应的介质盒模块420处于进入分选空间一半的状态。
介质盒模块420由两块或多块不导磁框架板421和位于不导磁框架板421之间的高导磁介质422组成。根据使用现场分选矿浆中物料颗粒度的不同、物料中磁性物含量的不同及磁性物粒度分布的不同,介质盒模块420又分为多种形 式。从材料或形式选用上分类,高导磁介质422既包括棒状介质和网状介质,又包括钢毛类或其它任何形式的可填充在不导磁框架板421之间并最终将被安放到转环框410上用于在湿法高梯度强磁选机中产生感应磁场的高导磁软磁材料;从排布上分类,高导磁介质422既包括紧密排布又包括松散排布,既包括介质间隙统一排布又包括介质间隙梯度递增或递减排布,既包括单独一种形式的导磁介质排布又包括多种形式的导磁介质混搭排布。针对矿浆带有腐蚀性时,介质盒模块420又分为三个防腐等级:第一等级为高导磁介质422采用防腐材料;第二等级在第一等级基础上对介质盒模块420进行整体镀膜处理;第三等级在第二等级基础上再增加牺牲阳极防腐,由于牺牲阳极可随时更换,因此这一等级具有更强的防腐能力。最后根据不同的工况条件来为湿法高梯度强磁选机配备不同的介质盒模块420。
转环驱动部件5中的中轴510由轮毂411处穿过转环4,中轴510与轮毂411之间采用隔磁胀紧套520连接,通过隔磁胀紧套520可以将由中轴510传递过来的扭矩传至转环4上。中轴轴承座530位于上磁极110、120上方外侧,支撑着中轴510并使转环4与上磁极铁芯模块112和下磁极铁芯模块152之间留有10mm以内的距离,既要确保在转环4运转时不会与上磁极铁芯模块112和下磁极铁芯模块152之间发生摩擦和刮碰,又要充分利用分选空间。中轴510的一端连接着齿轮传动540,齿轮传动540的另一端连接在减速机560上,这样当电机550驱动减速机560运转时便会将扭矩传递到转环4上。
中轴510与轮毂411之间采用隔磁胀紧套520连接,可以减少腹板412上的磁场沿轴向中轴轴承531和电机550、减速机560传递,中轴轴承座530与上磁极110、120之间通过不导磁不锈钢垫板进行隔离,进一步减小中轴轴承531和转环驱动电机550、减速机560中的磁场通过量,从而延长中轴轴承531和转环驱动电机550、减速机560的使用寿命。
上磁极110、120上部中轴510右侧设有给矿斗6,中轴510左侧设有冲水斗7。腹板412两侧均设有给矿斗6和冲水斗7,两侧的给矿斗6和冲水斗7均关于腹板412对称。与给矿斗6相连的上磁极铁芯模块112处设有引导矿浆进入分选区域的流矿间隙113。给入物料矿浆由给矿斗6进入湿法高梯度强磁选机,再经流矿间隙113流入位于分选区的转环4。冲水斗7内设有漂洗水,与冲水斗 7相连的上磁极铁芯模块112处设有漂洗水进入分选区域的流水间隙114,漂洗水可以将被捕捉的磁性物料中的夹带矿物和纯度不够的矿物有选择性地冲离介质盒模块420,使之进入非磁性物料收集斗11内,从而获得更加纯净的磁性物料。
卸矿水箱8位于转环4上方略偏左位置并沿转环轴向横跨转环4。卸矿水箱8内设有卸矿水喷水模块810,可以通过更换不同的喷水模块810来形成不同的卸矿喷水形式,即改变喷水的出水位置/喷水角度和相同卸矿水压力时的喷水量的大小。卸矿水箱8两侧分别设有漂洗水出口820和助流水出口830,将所有使用工业循环水的给水口统一到卸矿水箱8给水口。卸矿水箱8通过向转环4喷射卸矿水将介质盒模块420中吸附的物料全部冲洗出去。漂洗水出口820下部通过水管连接到冲水斗7内的漂洗水分水器840上,经过漂洗水分水器840的分配,可使漂洗水均匀地给到冲水斗7内,再经流矿间隙流至分选区内的转环处,将被捕捉的磁性物料中的夹带矿物和纯度不够的矿物有选择性地冲离介质盒模块,使之进入非磁性物料收集斗内,从而获得更加纯净的磁性物料。助流水出口830引出管路延伸至磁性物料收集斗9内坡度平缓的位置,控制助流水出口方向为沿出料流动方向。对于沉降快、易堆积的物料,可增加小量助流水以防止物料堆积。
磁性物料收集斗9由三部分组成,分别是收集部分910、导流部分920和汇总部分930。其中,收集部分910和导流部分920均为关于腹板412对称的两个部件且分别位于腹板412的两侧,汇总部分930为关于腹板412中心对称的一个部件。收集部分910位于上磁极铁芯模块112之上,从转环4内部冲水斗7左侧起至转环4内部卸矿水箱8右下处。汇总部分930位于磁轭1左侧线圈2下部。导流部分920连接收集部分910出口与汇总部分930两端。可将所有随转环4离开分选区域并被带至收集部分910上方的磁性物料全部接住并汇总到汇总部分930后统一排出湿法高梯度强磁选机。
中矿斗10设在下磁极铁芯模块152左侧并紧贴下磁极铁芯模块152。接料口位于转环4之外左下侧与磁轭1相连处至转环4最左侧外部,宽度沿转环4轴向横跨转环4。可收集随转环4离开分选区域但并未能转至磁性物料收集斗9上方的物料。
非磁性物料收集斗11安装于磁轭1下部且与磁轭1下部相连,可以将由下 磁极铁芯模块152中流出的矿浆完全接住。非磁性物料收集斗11分为两个不连通的收集区间,右侧收集区间1110位于给矿斗6和中轴510下方,左侧收集区间1120位于冲水斗7下方。两部分空间收集到的物料均为非磁性物料,给入物料流经转环4分选后的大部分非磁性物料进入右侧收集区间1110,小部分随转环转动至左侧收集区间1120之上,受到漂洗水的作用和出离分选区液面时重力的作用流入左侧收集区间1120。两收集空间底部分别设有一个或多个非磁性物料排料阀门1130,通过调节阀门开度可控制分选区域的矿浆液面的高度。非磁性物料收集斗11从下磁极铁芯模块152拆解开后可稳固架于设备支架之上,以方便湿法高梯度强磁选机的拆解分体运输和再次组装。
非磁性物料收集斗的右侧收集区间连接着脉动机构12。脉动机构12由脉动箱1210、驱动皮带轮组1220、脉动电机1230、脉动推板1240、橡胶软连接1250构成。其中脉动箱1210内设有偏心轮模块1211,脉动电机1230经过驱动皮带轮组1220减速后驱动脉动箱1210内的偏心轮模块1211转动,将电机产生的圆周运动转化为左右的直线往复运动。脉动箱1210左端设有推杆1212,推杆1212一端通过轴承与偏心轮模块1211相连另一端与脉动推板1240相连,推杆1212将脉动箱内偏心轮1211转化出的往复力传递至脉动推板1240上。脉动推板1240外侧与非磁性物料收集斗的右侧收集区间1110通过橡胶软连接1250密封连接。当脉动箱运转时通过脉动推板1240可将这一左右的往复力传递至位于右侧收集区间1110内的矿浆上,使矿浆发生脉动震荡,再将这一脉动震荡沿矿浆延伸到分选区内。
为保证设备运行稳定、操作安全,在设备内部设置了多重安全保护。
在给矿斗6内设置粗颗粒隔料筛板14或在给料之前设置相同功能单元,用于防止因大颗粒物料进入上磁极铁芯模块112和介质盒模块420内造成堵塞而影响物料的通过性和分选指标。
在卸矿水箱8前增设卸矿水隔渣箱15,卸矿水隔渣箱15内设有一斜向隔渣筛板1510,可以防止卸矿水中大颗粒杂质进入卸矿水箱8堵塞卸矿水喷水孔而影响卸矿效果和分选指标。并且在卸矿水隔渣箱15底部设置手动或自动排渣阀门1520,可以定期手动或自动对卸矿水隔渣箱15内已隔离出的杂质颗粒进行清理。
线圈2内绝缘冷却液230在流经线圈绕组220后可将线圈绕组220通电时产生的热量充分带至换热装置3,并通过换热器330将其排出。整个过程中绝缘冷却液230处于闭路循环,不受外界污染,与外界的所有热交换均在换热器330处完成。
中轴510与转环4采用两个窄隔磁胀紧套520连接,在保证扭矩传递的情况下减小中轴510与转环4的接触面积,进而减少磁场通过转环腹板412和中轴510向中轴轴承531、转环驱动电机550、减速机560传递;中轴轴承座530和转环驱动电机550、减速机560下垫不导磁不锈钢垫板,进一步减小中轴轴承531和转环驱动电机550、减速机560中的磁场通过量,从而延长中轴轴承531和转环驱动电机550、减速机560的使用寿命。
转环驱动电机550、脉动电机1230前端均设有电机保护器16,当检测到超流或缺相时能对其及时保护并发出警报。
线圈冷却液进口管路310上和冷却液出口216附近、绝缘冷却液230顶层处均设置测温探头17,实时监控线圈的进、出口绝缘冷却液温度与温差,当温度过高或温差过大时均发出故障警报;线圈冷却液管路310上设置流量开关18,监测绝缘冷却液230的流动状态,当流量达不到设定要求时发出故障警报。
设备所有运转部件均外罩防护罩19,对需要观察运转情况的部位设置观察窗1910。观察窗1910采用钢网防护,确保人员无法接触到运转部件。
为实现湿法高梯度强磁选机更高的适应能力,其多处参数可作相应调节。
湿法高梯度强磁选机线圈2的励磁电流的调节通过电流设定单元2011输入预设电流,再通过恒流控制器2010控制可控硅(或二极管结合IGBT)整流模块20将工业用电转换为预设的直流电输入到线圈2之中,在向线圈2输入电流的过程中设置霍尔元件或其它类似功能元件21对电流进行监测并反馈给恒流控制器,再通过恒流控制器2010将检测值和预设值进行比对后对输出电压进行相应调节,从而确保湿法高梯度强磁选机输入线圈2的电流与电流设定单元2011的预设电流相一致。
湿法高梯度强磁选机转环4的转速和脉动箱1210的脉动频率分别通过改变调节系统中转环变频器22和脉动变频器23的输出频率来实现。
湿法高梯度强磁选机的脉动振幅通过调节脉动箱内偏心轮模块1211的偏心 量来实现。
液面高度通过人工或液位计24监控液位观察斗13内液位高度,再手动或自动调节非磁性物料收集斗11底部的一个或多个非磁性物料排料阀门1130的开度来实现。
漂洗水量通过调节设在卸矿水箱8两侧的漂洗水出口820阀门开度来实现,再经设置在冲水斗7内的漂洗水分水器840均匀地给到冲水斗7内。
本发明的湿法高梯度强磁选机具体工作过程如下:
线圈2通电励磁时,在磁轭1的共同作用下,上磁极铁芯模块112和下磁极铁芯模块152两弧面及两挡水板之间形成了可将软磁材料磁化的背景磁场和分选区域。
物料由给矿斗6流入,先经过粗颗粒隔料筛板14将给入物料中的粗颗粒隔离,以确保给入的物料不会堵塞铁芯和介质盒模块420。物料通过粗颗粒隔料筛板14后再流经上磁极铁芯模块112的流矿间隙113后进入位于分选区域的转环4。介质盒模块420内的众多高导磁介质422在分选区域背景磁场的作用下被磁化,并在每一磁介质的近表面处形成一个小范围的磁化场区。当物料流经这一磁化场区时,物料中的磁性颗粒吸附在高导磁介质422表面,而无磁性颗粒和磁性纯度不够的颗粒则自由通过介质盒模块420再流经下磁极铁芯模块152的流矿间隙后进入非磁性物料收集斗11内,最终由非磁性物料排料阀门1130排出湿法高梯度强磁选机。被吸附在高导磁介质422表面的磁性颗粒则随转环4顺时针转动,先转出分选液面和转出分选区时,部分吸附不牢固的颗粒和介质盒模块420内残留的矿浆向转环外流出,流入中矿斗10,其它磁性颗粒物料随转环4继续运转至磁性物料收集斗9的收集部分910上方,在重力和卸矿水箱8的作用下被全部冲入收集部分910内并最终汇总于汇总部分930内并由汇总部分930排出湿法高梯度强磁选机。给入物料在分选区内受到了由脉动箱1210产生的脉动震荡力的作用,整个分选过程一直处于松散状态,有利于磁性、非磁性颗粒物料的分离。
在上述湿法高梯度强磁选机基础上,更换部分部件或去除部分部件或改进部件的功能,可以得到强迫油冷立式转环感应湿法脉动强磁选机,该强迫油冷立式 转环感应湿法脉动强磁选机可以得到更大适用或应用。
强迫油冷立式转环感应湿法脉动强磁选机主要包括七大部分:励磁系统、分选系统、脉动系统、收集系统、支撑系统、驱动系统、防护系统。励磁系统为强迫油冷立式转环感应湿法脉动强磁选机提供工作磁场;分选系统实现精尾矿连续分离的作用;脉动系统为强迫油冷立式转环感应湿法脉动强磁选机内矿浆提供脉动效果;收集系统起给料、冲水、收集精尾矿、液位观察调整的作用;支撑系统起支撑设备,并与现场地基固定连接的作用;驱动系统为设备的转环和脉动提供动力;防护系统起保护人身和设备安全的作用。强迫油冷立式转环感应湿法脉动强磁选机是一种对磁性矿物进行湿法富集及对非磁性矿物进行除杂提纯的电磁选矿设备。
强迫油冷立式转环感应湿法脉动强磁选机经过多年的选矿实践,不断改进完善,不但具有较高的分选背景场强,又解决了线圈温升高、散热不均匀、上磁极易堆料、精矿汇总槽易磨损、液面调节不方便等问题。
在本发明所提出的强迫油冷立式转环感应湿法脉动强磁选机中,物料从转环内侧给入,经上磁极向下流过转环,物料中磁性物料被吸附到转环上,并随转环转动被带到上方离开磁场;卸矿水从转环上方外侧冲洗转环,将磁性物料收集到磁性物料收集斗;非磁性物料从设备下方经非磁性物料收集斗排出;脉动机构的活塞往复式运动使分选区域内物料处于松散状态。其中磁轭中心开有沿磁场方向的流矿间隙,流矿间隙沿磁场排布,导磁回路上无多余气隙,大大提高了分选区域的场强;磁轭由多块软磁材料拼接而成,各拼接部分之间连接摒弃了传统的软磁材料上打孔穿长螺栓的结构,采用上下磁极连接耳连接,同时连接处有定位结构,大大降低了磁轭组装的难度;磁轭下磁极上装有挡水板,挡水板在工作气隙部分的材质为不导磁材质,挡水板与下磁极配合后,可提升矿浆液面高度,使转环下部分浸于矿浆液面之下。
下面依据图23—图32进一步说明强迫油冷立式转环感应湿法脉动强磁选机,强迫油冷立式转环感应湿法脉动强磁选机的励磁系统由磁轭和线圈总装构成,线圈总装由线圈和换热装置构成,线圈环绕下磁极150的上半部分置于磁轭内。
磁轭为两个山字形轭铁对扣而成,山字两边接触,中间留有气隙,气隙为圆 弧形,磁轭将线圈产生的磁场聚集到中间气隙处,构成工作背景磁场。磁轭主要包括上磁极(110、120)、下磁极150、导磁板(130、140)、挡水板153、上下磁极连接耳160。如图25所示,上磁极(110、120)和下磁极150通过导磁板(130、140)固定在一起,挡水板153固定在下磁极150上,导磁回路如图中箭头所示。上磁极(110、120)和下磁极150均开有过料孔,过料孔沿磁力线方向排布,导磁回路上无多余气隙;上磁极(110、120)的下表面和下磁极150的上表面均为圆弧面,之间构成工作气隙;上磁极(110、120)由左右对称两部分构成,中间缝隙为腹板412的活动通道,上磁极(110、120)的流矿间隙在靠近腹板412部分为敞口结构,有效防止沿腹板412漏下的物料堆料。导磁板(130、140)起连接上磁极(110、120)和下磁极150并导磁的作用,通过上下磁极连接耳160用螺栓连接,上下磁极连接耳160上有锥形定位柱,方便定位安装。挡水板153固定在上磁极(110、120)上,可有效提高设备工作时的矿浆液面。
线圈由电磁线绕制而成,通电后产生磁场,并在磁轭的作用下,磁场最终聚集到磁轭中间气隙处。线圈主要包括线圈绕阻220、线圈壳体210、绝缘条240、绝缘条支架241、膨胀箱250。线圈绕阻220置于线圈壳体210内,绝缘条支架241起支撑线圈绕阻220和固定绝缘条240的作用,膨胀箱250安装在线圈壳体210上方。线圈绕阻220为多层结构,各层之间用绝缘条240隔开;绝缘条支架241为长条形,中间掏空、四周呈山字形凹凸结构,并沿线圈绕阻220四周均匀排布,绝缘条240卡在绝缘条支架241中间且处于山字形结构的凸出处;线圈壳体210为腔体结构,壳体内装满了绝缘冷却液,绝缘条支架241与线圈壳体210的内侧上下面固定在一起,构成支撑线圈绕阻220的结构;膨胀箱250集成膨胀缓冲、线圈出线、干燥器过滤的功能。
换热器330与线圈通过管路连通,绝缘冷却液在线圈和换热器330之间循环,将线圈产生的热量带到外界,使线圈工作在一个合理温度。换热装置位于线圈侧面下方,主要包括泵320和换热器330。泵320和换热器330通过管路连通在一起,并与线圈壳体210连通,泵320从线圈上方将热的绝缘冷却液抽出,通过换热器330冷却后,又将冷却后的绝缘冷却液从下方送回线圈,构成强制循环冷却。
分选系统由转环和卸矿装置构成。转环主体为环轮形状,其下部分通过磁轭的中间气隙,在驱动力的作用下,转环主体绕轴连续转动,将磁性矿物带出磁场, 实现磁性矿物和非矿性矿物的分离。转环主要包括转环框410、中轴510、介质盒模块420。转环框410为转轮结构,其上镂空,形成安装介质盒模块420的空间;腹板412为中心带孔的金属板,其焊接在转环框410的中间位置;中轴510穿过腹板412的中心孔,通过胀紧套与其固定,中轴510两侧装有轴承座,轴承坐落于上磁极(110、120)上,中轴510的一端装有传动大齿轮;介质盒模块420为包含高导磁材料的盒体结构,其固定在转环框410上,构成盒体的单元材料可以为棒状、螺纹棒状、多边形、网状等多种形式。
卸矿装置安装在转环主体上方外侧,其外接给水管,并将水喷洒到转环主体上方,将转环主体上吸附的磁性矿物收集到磁性物料收集斗内。卸矿装置主要包括卸矿水隔渣箱15、卸矿水箱8。卸矿水隔渣箱15为盒体结构,盒体两端有连接法兰,分别与卸矿水箱8和外界给水管连接,卸矿水隔渣箱15内部装有倾斜的过滤网,将水中杂质过滤到盒体下方排出。脉动系统周期性改变非磁性物料收集斗右侧收集区间的体积,使设备内矿浆作往复式运动,达到分散矿浆内矿物的目的。脉动系统由脉动箱1210、脉动推板1240和橡胶软连接1250构成。脉动箱1210为箱体结构,其前端有推杆,内部装有偏心轮,箱体侧面有驱动皮带轮组,驱动皮带轮组可带动偏心轮运转,在推杆上输出往复运动。脉动推板1240为一块圆形金属板,金属板中心与脉动箱1210的推杆连接。橡胶软连接1250为橡胶软材质,其为圆环形,圆环环体呈U形,U形两边分别为圆环的外环面和内环面,其中U形外环面同非磁性物料收集斗右侧收集区间固定在一起,U形内环面同脉动推板1240固定在一起。
收集系统为本机提供给矿、给水、收集磁性及非磁矿物、液位观察等作用。收集系统由给矿斗6、冲水斗7、收集部分910、导流部分920、汇总部分930、非磁性物料收集斗11、阀门调节杆1131和液位观察斗13构成。给矿斗6和冲水斗7为焊接而成的盒体结构,安装在上磁极(110、120)上,与上磁极(110、120)的过料通道连通。磁性物料收集斗为槽体结构,对称安装在转环的内侧上方,其下表面与水平面呈一定夹角,下表面较低的位置开有出料口。导流部分920为槽体结构,安装在磁性物料收集斗出料口下方,精矿通过导流部分920尾部的管道输送到汇总部分930中。如图31所示,汇总部分930为槽体结构,其底面由两侧的斜面和中间出料口构成。斜面从上往下固定有若干立板,第一块立 板的高度高于其他立板,此种结构可使矿浆在底面流动时形成沉淀,形成天然耐磨层,延长精矿汇总槽的使用寿命。非磁性物料收集斗11安装在下磁极150过料孔的下方,斗体从上往下构成收口结构,下方装有可调阀门。阀门调节杆1131为由手轮、延长杆、软轴构成的调节机构,安装在设备侧面,将非磁性物料收集斗11的阀门调节点延伸到设备上方。液位观察斗13为盒体结构,盒体上方敞口,盒体底面中间有一块立板,立板两侧的底面各开一个出口,其中一个出口与非磁性物料收集斗右侧收集区间连通,盒体整体位于设备侧面,与阀门调节杆1131的调节手轮相邻。
支撑系统起支撑设备和将设备整体固定到现场地基上的作用。主要包括支架25,支架25经优化设计后,由型钢焊接而成,其底部为方框形,在方框的其中一边上突起一个梯形支座,用于安装脉动箱1210;支架25底面方框上立有四根立柱,每根立柱两侧有加强型型钢,用来增加支撑强度,四根立柱的上表面处于同一平面,下磁极150放在四根立柱上。
驱动系统将外界电能转化为运动的动能,为本发明转动部件的动力源。驱动系统由转环驱动部件5、脉动电机1230加驱动皮带轮组和电控部分构成。转环驱动部件5由减速机、转环驱动电机和齿轮传动构成,齿轮传动中的小齿轮套在减速机的输出轴上,齿轮传动中的小齿轮与中轴510末端上的大齿轮咬合在一起,转环驱动电机转动时,可通过减速机带动大齿轮转动,进而驱动转环转动。驱动皮带轮组传动带轮一端的中心套在脉动电机1230输出轴上,驱动皮带轮组通过内置的传动带,将脉动电机1230输出的动力输出到脉动箱1210上,带动偏心轮转动。
本发明电控部分断路器QF1闭合,主回路得电,电流调节器PCB得电;断路器QF2闭合,变频器BP1得电,中间继电器KA1闭合时,转环电机M1得电运转,可通过调节变频器BP1来调节转环电机M1的输出转速;断路器QF3闭合,变频器BP2得电,中间继电器KA2闭合时,脉动电机M2得电运转,可通过调节变频器BP2来调节转环电机M2的输出转速;断路器QF4闭合,交流接触器KM2闭合时,油泵电机M3得电运转,当油泵电机M3发生超载过流时,热过载继电器FR1断开,切断油泵电机M3的电源,起保护作用;断路器QF5闭合,交流接触器KM1闭合时,可控硅整流模块VC1将三相交流电整流成直流 电流过励磁线圈YA,电流调节器PCB可调节可控硅整流模块VC1导通状态,进而调节流过励磁线圈YA的电流大小。
防护系统由薄钢板通过焊接、弯折制成,其将设备运转部件与外界隔离开来,达到保护设备和人身安全的作用。防护系统防护罩19包括转环罩、齿轮罩、带轮罩构成。转环罩分为左右两部分,每部分由一块弧形板和两块扇形板焊接而成,构成弧形槽结构,左右两部分位于冲水斗7两侧,倒扣在转环主体上;齿轮罩为不对等槽口结构,槽口两个圆心处开有孔,且两个孔不在同一个平面上,供电机轴和齿轮轴通过,齿轮罩将齿轮完全罩在里面;带轮罩为不对等槽口结构,槽口两个圆心处开有孔,且两个孔位于同一个平面上,供电机轴和带轮轴通过,带轮罩将带轮完全罩在里面。
传统强磁选机存在以下问题:设备工作时,上磁极靠近转环一侧为封闭结构,造成上方漏下的物料在上磁极上堆积;安装磁轭时,用长螺栓穿过轭铁进行安装,定位、安装不方便;挡水板采用导磁材质,造成部分磁通被屏蔽;线圈采用冷却液水平流动方式,造成散热不均匀,线圈使用寿命短;精矿汇总槽底面为平面,矿浆快速冲击、流动时容易磨损;尾矿斗阀门调节点在设备下方,无法边调节尾矿斗阀门、边观察溢流斗内液面情况,调节极不方便。本强迫油冷立式转环感应湿法脉动强磁选机针对以上弊端,做出以下改进:上磁极(110、120)在靠近转环的一侧改为敞口,上方漏下的物料直接从敞口处流回设备,有效防止物料在上磁极(110、120)上堆积;上磁极(110、120)、下磁极150同导磁板(130、140)之间用上下磁极连接耳160通过螺栓连接,并增加锥形定位结构,大大方便了磁轭的安装;挡水板153采用不锈钢材质,使得磁通得到最大有效利用;线圈采用强制热交换方式散热,线圈绕阻220为多层结构,其浸泡在绝缘冷却液中并放置在绝缘条支架241上,线圈内绝缘冷却液从下往上流动,上方流出的绝缘冷却液进入换热器冷却,冷却后的绝缘冷却液再从下方进入线圈,该流动方式符合液体内热液向上冷液向下的自对流物理特性,大大提高了散热的均匀性,延长线圈使用寿命;汇总部分930在槽体底面增加小立板的结构,矿浆长期流动后,将会沉淀形成天然耐磨层,延长槽体使用寿命;阀门调节杆1131的调节手轮位于液位观察斗13旁边,可边观察液位观察斗13内矿浆液位情况、边调节非磁性物料收集斗11的阀门开度,极大方便了设备的调节。
进一步地,强迫油冷立式转环感应湿法脉动强磁选机中转环优选采用骨架结构,介质盒模块420通过螺栓固定在转环骨架上,转环骨架采用不锈钢材质;介质形式可为棒状、多边形、网状、齿状、螺纹、钢毛等结构;转环中轴与转环采用胀紧套结构连接;给矿斗对称位于转环两侧,给矿斗安装在磁轭过料通道上方;磁性料斗在转环内侧两边对称安装,转环一侧的磁性料斗可以为一个斗体,也可为多个斗体;磁性料斗的底面与水平面成一定角度,从而实现其内矿浆的自流;磁性料斗摒弃传统的管道走矿方式,采用槽体走矿方式,减少了磁性料斗的堵塞情况,且容易清理;卸矿点位于磁性料斗上方,卸矿采用流体冲刷转环上介质盒模块420导磁介质的方式,流体可以是空气、水或水和空气混合。
进一步地,强迫油冷立式转环感应湿法脉动强磁选机中卸矿装置前端优选装有隔渣过滤装置,用于过滤卸矿水中的大颗粒杂质;线圈采用强制热交换散热,线圈绕组为多层结构,增加了绕组与热交换介质之间的接触面积,提高了换热效率;热交换介质从线圈一侧流入,从对称的另一侧流出;热交换介质可以是绝缘冷却液、空气或者水;线圈采用绝缘冷却液冷却时,线圈绕组直接浸泡在绝缘冷却液中,线圈上装有绝缘冷却液膨胀箱,膨胀箱的数量可以是一个或者多个,膨胀箱上装有呼吸器、接线盒、液位观察等结构;脉动箱推动脉动推板作往复运动,脉动推板通过橡胶软连接与非磁性料斗右侧收集区间连接,将矿浆封于非磁性料斗内。
更进一步地,强迫油冷立式转环感应湿法脉动强磁选机中的脉动箱冲程和脉动频率优选为可调项,以适应不同的矿石性质,脉动冲程指的是往复运动的幅度,脉动频率指的是往复运动的速度。非磁性料斗位于磁轭下方,斗体下方装有阀门,阀门开度可调,可以通过调节阀门开度和给矿量,调节液面高度。设备侧面装有液面观察斗,液面观察斗与非磁性料斗连通,可通过手动或自动的方式调节非磁性物料出料斗下方非磁性物料排料阀门的开度,进而控制液面观察斗内的矿浆面高度。非磁性料斗的阀门装有延长杆,阀门开度可在设备外侧调节;也可通过软轴或其他转向装置将调节点转移到设备上方,在调节阀门的同时观察液位高度。转环罩体将转环全部罩起来,可以起到保护人身安全的作用;罩体内各个部分之间衔接采用插入式搭接方式,以防止矿浆溅出。罩体上开有观察窗。支架采用型钢焊接而成,支架由磁轭支架和脉动箱支架两部分组成,磁轭支架与脉动箱支架 采用焊接或螺栓紧固方式连接,支架上有定位结构。
根据不同的待选物料和工况环境对湿法高梯度强磁选机或强迫油冷立式转环感应湿法脉动强磁选机进行不同的参数调整和更换不同的部件模块,实现与使用现场的最大程度的适配,从而获得更好、更稳定的分选指标。
本发明的磁选机结构合理、新颖,在保证良好分选指标的同时,兼顾安全、节能、美观的特点。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。本领域普通的技术人员可以理解,在不背离所附权利要求定义的本发明的精神和范围的情况下,可以在形式和细节中做出各种各样的修改。

Claims (51)

  1. 一种湿法高梯度强磁选机,其包括励磁系统、分选收集系统、安全及隔离系统和调节系统,其特征在于:
    所述励磁系统,其用于为湿法高梯度强磁选机提供分选用的背景磁场;
    所述分选收集系统,其与励磁系统提供的背景磁场相配合,将含磁性矿物的矿浆中的磁性物料与非磁性物料通过磁选进行分离,并分别收集至不同的收集区域;
    所述安全及隔离系统,其用于将湿法高梯度强磁选机给入物料的粒度隔离、对水中杂质的隔离、对绝缘冷却液的污染隔离、对惧磁部件的磁场隔离和对电机、线圈、介质盒模块的安全防护及对操作人员的人身安全防护;
    所述调节系统,其用于对励磁系统的背景磁场强度的调节、对分选收集系统中的转环转速的调节、对脉动振幅和频率的调节、对液面高度的调节及对漂洗水、卸矿水量/角度的调节。
  2. 根据权利要求1所述的湿法高梯度强磁选机,其特征在于,所述励磁系统、分选收集系统、安全及隔离系统和调节系统按照模块化设计,或者将励磁系统、分选收集系统、安全及隔离系统和调节系统中的影响分选指标的部分系统进行模块化设计,进而根据分选物料和工况条件的不同对相应模块进行更换,从而达到理想的选矿指标。
  3. 根据权利要求1所述的湿法高梯度强磁选机,其特征在于,励磁系统包括磁轭(1)、线圈(2)和换热装置(3);其中磁轭(1)包括上磁极左(110)、上磁极右(120)、导磁板左(130)、导磁板右(140)和下磁极(150),其中上磁极左(110)和上磁极右(120)由上磁极轭板(111)及上磁极铁芯模块(112)焊接或紧固件紧固连接而成,下磁极(150)由两块对称的下磁极轭板(151)和下磁极铁芯模块(152)及位于其两侧的挡水板(153)焊接或紧固件紧固连接而成。
  4. 根据权利要求3所述的湿法高梯度强磁选机,其特征在于,根据不同的工况条件,湿法高梯度强磁选机选配不同的上磁极铁芯模块(112)和下磁极铁芯模块(152)。
  5. 根据权利要求3或4所述的湿法高梯度强磁选机,其特征在于,根据不同的防腐要求,湿法高梯度强磁选机的上磁极铁芯模块(112)和下磁极铁芯模块(152)分为三个等级:第一等级为不作特殊处理;第二等级为在磁极铁芯与矿浆接触的表面喷涂耐水、耐磨的防锈涂层;第三等级为在在第二等级的基础上增加可更换的牺牲阳极。
  6. 根据权利要求3或4所述的湿法高梯度强磁选机,其特征在于,针对分选矿浆中强磁性矿物含量高的使用现场,上磁极铁芯模块在流矿间隙(113)周边做锐角圆化处理或/和增设不导磁不锈钢隔磁处理的配置,而下磁极铁芯模块没有在流矿流水间隙(154)周边做锐角圆化处理以及没有增设不导磁不锈钢隔磁处理的配置。
  7. 根据权利要求3或4所述的湿法高梯度强磁选机,其特征在于,线圈(2)包括线圈壳体(210)和线圈绕组(220)及盛于线圈壳体(210)内浸没线圈绕组(220)的绝缘冷却液(230),线圈壳体(210)由内围板(211)、上导磁板(212)、下导磁板(213)和外围板(214)构成;线圈壳体(210)的内围板(211)采用不导磁钢板制成,而上导磁板(212)、下导磁板(213)、外围板(214)则采用高导磁钢板制成;线圈绕组(220)置于线圈壳体(210)之中并采用绝缘条(240)间隔地将其与线圈壳体(210)垫起隔离,既确保其与线圈壳体(210)之间的完全绝缘又预设了绝缘冷却液的流经通道;线圈绕组(220)绕制时也采用绝缘条(240)在绕组内部间隔垫出绝缘冷却液的流经通道;线圈壳体(210)下部设有冷却液进口(215),线圈壳体(210)上部远离冷却液进口(215)端设有冷却液出口(216);绝缘冷却液(230)由冷却液进口(215)流入线圈壳体(210)并流经线圈绕组(220)内和线圈绕组(220)与线圈壳体(210)间预设的绝缘冷却液通道,再由冷却液出口(216)流出;上述在冷却液通道中的流通均匀不出现流动死角,能够将线圈绕组(220)励磁时产生的热量全部带走。
  8. 根据权利要求7所述的湿法高梯度强磁选机,其特征在于,冷却液进口(215)与线圈绕组(220)之间设置有分流腔(217),冷却液出口(216)与线圈绕组(220)之间设置有汇流腔(218)。
  9. 根据权利要求3所述的湿法高梯度强磁选机,其特征在于,换热装置(3)由管路(310)、泵(320)、换热器(330)组成;其中泵(320)的入口通过管路 (310)与线圈的冷却液出口(216)相连,泵(320)的出口与换热器(330)相连,而换热器(330)的另一端则与线圈的冷却液进口(215)相连;根据现场工况条件的不同,换热器(330)可为任何常规的闭式循环换热器。
  10. 根据权利要求9所述的湿法高梯度强磁选机,其特征在于,泵(320)与线圈的冷却液出口(216)之间、绝缘冷却液(230)最低处设有排液阀门(340),此阀门可用于排净线圈(2)和换热装置(3)中的绝缘冷却液(230)也可以配合泵(320)向线圈(2)和换热装置(3)中注入绝缘冷却液(230)。
  11. 根据权利要求1所述的湿法高梯度强磁选机,其特征在于,分选收集系统包括转环(4)、转环驱动部件(5)、给矿斗(6)、冲水斗(7)、卸矿水箱(8)、磁性物料收集斗(9)、中矿斗(10)、非磁性物料收集斗(11)、脉动机构(12)、液位观察斗(13);在线圈(2)通电励磁时磁轭(1)内会产生一个背景磁场和/或分选区域,此时转环(4)可携带介质盒模块(420)进入和/或出离分选区域,转环驱动部件(5)为转环(4)转动提供转动动力,给入矿浆由给矿斗(6)开始进入分选区域,冲水斗(7)负责在分选的过程中对物料进行漂洗,卸矿水箱(8)负责将转环(4)带出的磁性物料冲洗出介质盒模块(420),磁性物料收集斗(9)则负责将这些磁性物料收集并汇总到一起,而没有被分选出来的非磁性物料则由非磁性物料收集斗(11)收集,出离分选区域却未能来到磁性物料收集斗(9)上方的物料进入中矿斗(10)内,脉动机构(12)在分选过程中可以使分选区域的矿浆一直处于震荡状态,这种震荡状态促进矿物的分选和杂质的分离,通过液位观察斗(13)可在磁轭(1)的分选区域外观察分选液面高度,并为分选液面高度的调整提供依据。
  12. 根据权利要求11所述的湿法高梯度强磁选机,其特征在于,转环(4)由转环框(410)和介质盒模块(420)构成;转环框(410)由轮毂(411)、腹板(412)、支撑环(413)、骨架(414)构成;其中支撑环(413)与骨架(414)采用不导磁不锈钢制成;介质盒模块(420)安装在周向相邻的两骨架(414)之间,除小型湿法高梯度强磁选机采用单排介质盒模块(420)外,在腹板(412)两侧的介质盒模块(420)呈等量交错排布。
  13. 根据权利要求12所述的湿法高梯度强磁选机,其特征在于,介质盒模块(420)由两块或多块不导磁框架板(421)和位于不导磁框架板(421)之间 的高导磁介质(422)及耳板(423)组成;通过耳板(423)可将介质盒模块(420)固定在周向相邻的两骨架(414)之间。
  14. 根据权利要求13所述的湿法高梯度强磁选机,其特征在于,在介质盒模块(420)中,高导磁介质(422)既包括棒状介质和网状介质,又包括钢毛类或其它任何形式的可填充在不导磁框架板(421)之间并最终将被安放到转环框(410)上用于在湿法高梯度强磁选机中产生感应磁场的导磁材料。
  15. 根据权利要求13所述的湿法高梯度强磁选机,其特征在于,在介质盒模块(420)中,高导磁介质(422)既包括紧密排布又包括松散排布,既包括介质间隙统一排布又包括介质间隙梯度排布,既包括单独一种形式的导磁介质排布又包括多种形式的导磁介质混搭排布。
  16. 根据权利要求12所述的湿法高梯度强磁选机,其特征在于,针对矿浆带有腐蚀性的情况,介质盒模块(420)分为三个防腐等级:第一等级为高导磁介质(422)采用防腐材料,第二等级在第一等级的基础上对介质盒模块(420)进行整体镀膜处理,第三等级在第二等级的基础上再增加牺牲阳极防腐。
  17. 根据权利要求12所述的湿法高梯度强磁选机,其特征在于,根据现场实际工况条件的不同为湿法高梯度强磁选机配备不同的介质盒模块(420)。
  18. 根据权利要求11所述的湿法高梯度强磁选机,其特征在于,转环驱动部件(5)包括中轴(510)、隔磁胀紧套(520)、中轴轴承座(530)、齿轮传动(540)、转环驱动电机(550)和减速机(560)。
  19. 根据权利要求2所述的湿法高梯度强磁选机,其特征在于,湿法高梯度强磁选机进一步包括给矿斗(6)和冲水斗(7),其中与给矿斗(6)相连的上磁极铁芯模块(112)处设有引导矿浆进入分选区域的流矿间隙(113);给入物料矿浆由给矿斗(6)进入湿法高梯度强磁选机,再经流矿间隙(113)流入位于分选区域的转环(4);冲水斗(7)内设有漂洗水,与冲水斗(7)相连的上磁极铁芯模块(112)处设有漂洗水进入分选区域的流水间隙(114),漂洗水可以将被捕捉的磁性物料中的夹带矿物和纯度磁性不够的矿物选择性地冲离介质盒模块(420),使之进入非磁性物料收集斗(11)内。
  20. 根据权利要求1、2、11或19之一所述的湿法高梯度强磁选机,其特征在于,卸矿水箱(8)内设有卸矿水喷水模块(810),通过更换不同的喷水模块 (810)来形成不同的卸矿喷水形式,改变喷水的出水位置/喷水角度和相同卸矿水压力时喷水量的大小。
  21. 根据权利要求20所述的湿法高梯度强磁选机,其特征在于,卸矿水箱(8)两侧分别设有漂洗水出口(820)和助流水出口(830),将所有使用工业循环水的给水统一为卸矿水箱(8)的给水口;卸矿水箱(8)可以通过向转环(4)喷射卸矿水将介质盒模块(420)中吸附的所有物料全部冲洗出去。
  22. 根据权利要求1或2所述的湿法高梯度强磁选机,其特征在于,磁性物料收集斗(9)由三部分组成,分别是收集部分(910)、导流部分(920)、汇总部分(930);其中收集部分(910)和导流部分(920)均为关于腹板(412)对称的两个部件且分别位于腹板(412)的两侧,而汇总部分(930)为关于腹板(412)中心对称的一个部件;收集部分(910)位于上磁极铁芯模块(112)之上,从转环(4)内部冲水斗(7)左侧起至转环(4)内部卸矿水箱(8)的右下方止;汇总部分(930)位于磁轭(1)左侧线圈(2)下部;导流部分(920)连接于收集部分(910)出口与汇总部分(930)两端;可将所有随转环(4)离开分选区域并被带至收集部分(910)上方的磁性物料全部接住并汇总到汇总部分(930)后统一排出湿法高梯度强磁选机。
  23. 根据权利要求1或2或11所述的湿法高梯度强磁选机,其特征在于,中矿斗(10)设在下磁极铁芯模块(152)左侧并紧贴下磁极铁芯模块(152);接料口位于转环(4)之外左下侧与磁轭(1)相连处至转环(4)最左侧外部,宽度沿转环(4)轴向横跨转环(4);可收集转环(4)转出磁分选区域后但并未能转至磁性物料收集斗(9)上方的物料。
  24. 根据权利要求权1或2或权11或19之一所述的湿法高梯度强磁选机,其特征在于,其中非磁性物料收集斗(11)安装于磁轭(1)下部且与磁轭(1)下部相连,可以将由下磁极铁芯模块(152)中流出的矿浆完全接住;非磁性物料收集斗(11)分为两个不连通的收集区间,右侧收集区间(1110)位于给矿斗(6)和中轴(510)下方,左侧收集区间(1120)位于冲水斗(7)下方;两收集空间底部分别设有一个或多个非磁性物料排料阀门(1130)。
  25. 根据权利要求权1或2或权11或19之一所述的湿法高梯度强磁选机,其特征在于,非磁性物料收集斗(11)从下磁极铁芯模块(152)拆解开后可稳 固架于设备支架之上,可以方便湿法高梯度强磁选机的拆解分体运输和设备的再次组装。
  26. 根据权利要求1或2或11之一所述的湿法高梯度强磁选机,其特征在于,脉动机构(12)由脉动箱(1210)、驱动皮带轮组(1220)、脉动电机(1230)、脉动推板(1240)、橡胶软连接(1250)构成;其中脉动箱(1210)内设有偏心轮模块(1211),脉动电机(1230)经过驱动皮带轮组(1220)减速后驱动脉动箱(1210)内的偏心轮模块(1211)转动,进而将电机产生的圆周运动转化为左右的直线往复运动;脉动箱(1210)左端设有推杆(1212),推杆(1212)一端与偏心轮模块(1211)通过轴承相连另一端与脉动推板(1240)相连,推杆(1212)将脉动箱内偏心轮模块(1211)转化出的往复力传递至脉动推板(1240)上;脉动推板(1240)外侧与非磁性物料收集斗的右侧收集区间(1110)通过橡胶软连接(1250)密封连接;当脉动箱运转时通过脉动推板(1240)可将这一左右的往复力传递至右侧收集区间(1110)内的矿浆上去,使矿浆发生脉动震荡,再将这一脉动震荡沿矿浆延伸到分选区域内。
  27. 根据权利要求1所述的湿法高梯度强磁选机,其特征在于,安全及隔离系统包括在给矿斗(6)内设置粗颗粒隔料筛板(14)或在给料之前设置相同功能单元,在卸矿水箱(8)前增设卸矿水隔渣箱(15),对线圈(2)内绝缘冷却液(230)进行防污染隔离,对惧磁部件进行磁隔离,对所有电机进行监控保护,对线圈(2)换热情况行监控保护,对运转部件进行防护;
    其中,在给矿斗(6)内设置粗颗粒隔料筛板(14)或在给料之前设置相同功能单元,可以防止大颗粒物料进入上磁极铁芯模块(112)和介质盒模块(420)内造成堵塞而影响物料的通过性和分选指标。
  28. 根据权利要求1或27所述的湿法高梯度强磁选机,其特征在于,在卸矿水箱(8)前增设卸矿水隔渣箱(15),卸矿水隔渣箱(15)内设有一斜向隔渣筛板(1510),给入的工业循环水进入卸矿水隔渣箱(15)后受到隔渣筛板(1510)的隔离,其中大粒度杂质和轻质杂质被隔离,由于隔渣筛板(1510)是沿水流方向向下倾斜,因此被隔离出来的杂质受到水流冲力向下的分力的作用而向卸矿水隔渣箱(15)下方汇聚并存于卸矿水隔渣箱(15)底部,从而实现防止卸矿水中大颗粒杂质进入卸矿水箱(8)堵塞卸矿水喷水孔而影响卸矿效果和分选指标。
  29. 根据权利要求27或28之任一所述的湿法高梯度强磁选机,其特征在于,在卸矿水隔渣箱(15)底部设置手动或自动排渣阀门(1520),可以定期手动或自动对卸矿水隔渣箱(15)内已隔离出的杂质颗粒进行清理。
  30. 根据权利要求1或27所述的湿法高梯度强磁选机,其特征在于,线圈(2)内绝缘冷却液(230)在流经线圈绕组(220)后可将线圈绕组(220)通电时产生的热量充分带至换热装置(3),并通过换热器(330)将其排出,整个过程绝缘冷却液(230)处于闭路循环,不受外界污染,与外界的所有热交换均在换热器(330)处完成。
  31. 根据权利要求1或27所述的湿法高梯度强磁选机,其特征在于,中轴(510)与转环(4)采用两个窄隔磁胀紧套(520)连接,在保证扭矩传递的情况下减少中轴(510)与转环(4)的接触面积,同时隔磁胀紧套(520)材质选用导磁率比磁轭差很多的合金钢或不导磁钢,从而减少磁场通过转环腹板(412)和中轴(510)向中轴轴承(531)、转环驱动电机(550)、减速机(560)传递;中轴轴承座(530)和转环驱动电机(550)、减速机(560)下垫不导磁不锈钢垫板,进一步减小中轴轴承(531)和转环驱动电机(550)、减速机(560)中的磁场通过量,从而延长中轴轴承(531)和转环驱动电机(550)、减速机(560)的使用寿命。
  32. 根据权利要求1或27所述的湿法高梯度强磁选机,其特征在于,转环驱动电机(550)、脉动电机(1230)、泵(320)前端均设有电机保护器(16),当检测到超流或缺相时能对其及时保护并发出警报。
  33. 根据权利要求1或27所述的湿法高梯度强磁选机,其特征在于,线圈冷却液进口管路(310)和冷却液出口(216)附近绝缘冷却液(230)顶层处均设置测温探头(17),时实监控线圈的进、出口绝缘冷却液温度和温差;当温度过高或温差过大时均发出故障警报;线圈冷却液管路(310)上设置流量开关(18)监测绝缘冷却液(230)的流动状态,当流量达不到设定要求时发出故障警报。
  34. 根据权利要求1或27所述的湿法高梯度强磁选机,其特征在于,设备所有运转部件均外罩防护罩(19),对于需要观察运转情况的部位设置观察窗(1910),观察窗(1910)采用钢网防护,确保人员无法接触到运转部件。
  35. 根据权利要求1所述的湿法高梯度强磁选机,其特征在于,调节系统用 于湿法高梯度强磁选机线圈(2)的励磁电流、转环(4)的转速和脉动箱(1210)的脉动频率、脉动振幅、液面高度、漂洗水量的调节。
  36. 根据权利要求35所述的湿法高梯度强磁选机,其特征在于,湿法高梯度强磁选机的励磁采用恒直流电输入,通过电流设定单元(2011)输入预设电流,再通过恒流控制器(2010)控制可控硅(或二极管结合IGBT)整流模块(20)将工业用电转换为预设的直流电输入到湿法高梯度强磁选机线圈(2)中,在向线圈(2)输入电流的过程中设置霍尔元件或其它类似功能元件(21)对电流进行监测并反馈给恒流控制器,再通过恒流控制器(2010)将检测值和预设值进行比对后对输出电压进行相应的调节,从而确保湿法高梯度强磁选机输入线圈(2)的电流与电流设定单元(2011)的预设电流相一致。
  37. 根据权利要求35所述的湿法高梯度强磁选机,其特征在于,湿法高梯度强磁选机转环(4)的转速和脉动箱(1210)的脉动频率分别通过改变调节系统中的转环变频器(22)和脉动变频器(23)的输出频率来实现。
  38. 根据权利要求35所述的湿法高梯度强磁选机,其特征在于,湿法高梯度强磁选机的脉动振幅通过调节脉动箱内偏心轮模块(1211)的偏心量来实现。
  39. 根据权利要求35所述的湿法高梯度强磁选机,其特征在于,液面高度通过人工或液位计(24)监控液位观察斗(13)内液位高度,再手动或自动调节非磁性物料收集斗(11)底部的一个或多个非磁性物料排料阀门(1130)的开度来实现。
  40. 根据权利要求35所述的湿法高梯度强磁选机,其特征在于,漂洗水量通过调节设置在卸矿水箱(8)两侧的漂洗水出口(820)阀门开度来实现,再经设置在冲水斗(7)内的漂洗水分水器(840)均匀地给到冲水斗(7)内,分流后的漂洗水可以更稳定地对分选区域内的矿浆中的无磁的细小颗粒和介质盒模块(420)内夹带的非磁性物料起到抑制作用。
  41. 一种强迫油冷立式转环感应湿法脉动强磁选机,其包括七大部分:励磁系统、分选系统、脉动系统、收集系统、支撑系统、驱动系统、防护系统;励磁系统提供工作磁场;分选系统实现精尾矿连续分离;脉动系统为强迫油冷立式转环感应湿法脉动强磁选机内矿浆提供脉动效果;收集系统用于给料、冲水、收集精尾矿、液位观察调整;支撑系统与现场地基固定连接并支撑设备主体;驱动 系统为强迫油冷立式转环感应湿法脉动强磁选机的转环和脉动提供动力;防护系统用于保护人身和设备安全的防护。
  42. 依据权利要求41所述的强迫油冷立式转环感应湿法脉动强磁选机,其特征在于,励磁系统的磁轭中心开有沿磁场方向的流矿间隙,流矿间隙沿磁场排布,导磁回路上无多余气隙;磁轭由多块软磁材料拼接而成,各拼接部分之间连接采用上下磁极连接耳(160)连接,同时连接处有定位结构。
  43. 依据权利要求41所述的强迫油冷立式转环感应湿法脉动强磁选机,其特征在于,磁轭下磁极(150)上装有挡水板(153),挡水板(153)在工作气隙部分的材质为不导磁材质,挡水板与下磁极(150)配合后,使转环下部分浸于矿浆液面之下。
  44. 依据权利要求41所述的强迫油冷立式转环感应湿法脉动强磁选机,其特征在于,励磁系统由磁轭和线圈和换热装置构成,线圈环绕下磁极(150)的上半部分置于磁轭内。
  45. 依据权利要求41所述的强迫油冷立式转环感应湿法脉动强磁选机,其特征在于,换热器(330)与线圈通过管路连通,换热装置位于线圈侧面下方;变压器油/绝缘冷却液在线圈和换热器(330)之间循环。
  46. 依据权利要求41所述的强迫油冷立式转环感应湿法脉动强磁选机,其特征在于,分选系统由转环和卸矿装置构成;转环主体为环轮形状,转环主体下部分通过磁轭的中间气隙。
  47. 依据权利要求43所述的强迫油冷立式转环感应湿法脉动强磁选机,其特征在于,脉动系统由脉动箱(1210)、脉动推板(1240)和橡胶软连接(1250)构成;脉动箱(1210)为箱体结构,脉动箱前端有推杆,内部装有偏心轮,箱体侧面有驱动皮带轮组,驱动皮带轮组可带动偏心轮运转。
  48. 依据权利要求43所述的强迫油冷立式转环感应湿法脉动强磁选机,其特征在于,脉动推板(1240)为一块圆形金属板,金属板中心与脉动箱(1210)的推杆连接;橡胶软连接(1250)为橡胶软材质,橡胶软连接(1250)为圆环形,圆环环体呈U形,U形两边分别为圆环的外环面和内环面,U形外环面同非磁性物料收集斗(11)的右侧收集区间固定在一起,U形内环面同脉动推板(1240)固定在一起。
  49. 依据权利要求41所述的强迫油冷立式转环感应湿法脉动强磁选机,其特征在于,收集系统由给矿斗(6)、冲水斗(7)、收集部分(910)、导流部分(920)、汇总部分(930)、非磁性物料收集斗(11)、阀门调节杆(1131)和液位观察斗(13)构成。
  50. 依据权利要求42所述的强迫油冷立式转环感应湿法脉动强磁选机,其特征在于,驱动系统将外界电能转化为运动的动能;驱动系统由转环驱动部件(5)、脉动驱动和电控部分构成;转环驱动部件(5)由减速机、转环驱动电机和齿轮传动构成,齿轮传动中的小齿轮套在减速机的输出轴上;脉动驱动由脉动电机(1230)和驱动皮带轮组构成,其中驱动皮带轮组传动带轮一端的中心套在脉动电机(1230)输出轴上。
  51. 依据权利要求49所述的强迫油冷立式转环感应湿法脉动强磁选机,其特征在于,磁性物料收集斗的汇总部分(930)底面的两侧斜面部分立有若干小立板。
PCT/CN2018/072200 2017-02-24 2018-01-11 一种湿法高梯度强磁选机 WO2018153175A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2018217255A AU2018217255B2 (en) 2017-02-24 2018-01-11 Wet high intensity magnetic separator
CA3015206A CA3015206C (en) 2017-02-24 2018-01-11 Wet high intensity magnetic separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710104569.6A CN106622646A (zh) 2017-02-24 2017-02-24 一种强迫油冷立式转环感应式湿法脉动强磁选机
CN201710104569.6 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018153175A1 true WO2018153175A1 (zh) 2018-08-30

Family

ID=58847744

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/076461 WO2018152878A1 (zh) 2017-02-24 2017-03-13 一种强迫油冷立式转环感应式湿法脉动强磁选机
PCT/CN2018/072200 WO2018153175A1 (zh) 2017-02-24 2018-01-11 一种湿法高梯度强磁选机

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076461 WO2018152878A1 (zh) 2017-02-24 2017-03-13 一种强迫油冷立式转环感应式湿法脉动强磁选机

Country Status (4)

Country Link
CN (5) CN106622646A (zh)
AU (2) AU2017279840A1 (zh)
CA (1) CA3015206C (zh)
WO (2) WO2018152878A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860370A (zh) * 2019-10-18 2020-03-06 甘肃酒钢集团宏兴钢铁股份有限公司 一种难选矿块矿磁化焙烧-磁种磁化联合选别工艺
CN114370443A (zh) * 2021-12-31 2022-04-19 徐州达一锻压设备有限公司 一种基于分割原理的锻压机械高效维修设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106622646A (zh) * 2017-02-24 2017-05-10 沈阳隆基电磁科技股份有限公司 一种强迫油冷立式转环感应式湿法脉动强磁选机
CN107470019B (zh) * 2017-08-03 2023-10-10 沈阳隆基电磁科技股份有限公司 一种立环强磁选机及其提高卸矿效率的方法
CN108499726A (zh) * 2018-06-06 2018-09-07 广州粤有研矿物资源科技有限公司 磁选设备
CN109127125A (zh) * 2018-10-23 2019-01-04 山东华特磁电科技股份有限公司 电磁浆料磁选机
CN109824233B (zh) * 2019-03-11 2021-11-16 中铁十六局集团北京轨道交通工程建设有限公司 一种适用于废弃泥浆回收利用的筛分设备及施工方法
CN110156241B (zh) * 2019-06-21 2021-11-09 上海腾驰环保科技有限公司 一种具有金属回收功能的废水处理装置
CN112452534A (zh) * 2020-10-26 2021-03-09 赣州金环磁选设备有限公司 一种连续式振动脉动高梯度磁选机
CN112191363A (zh) * 2020-12-03 2021-01-08 潍坊国特矿山设备有限公司 一种立环高梯度磁选机
CN112939142A (zh) * 2021-02-03 2021-06-11 陈伟 一种清洗提升机用提升过滤设备
CN112936653B (zh) * 2021-02-07 2023-07-21 肇庆汇通塑料科技有限公司 一种浸水式环保型塑料颗粒冷却装置
CN114653475B (zh) * 2022-03-25 2023-06-27 包头市颐能电气修建有限责任公司 一种直流励磁可调磁调速磁选机
CN116871048B (zh) * 2023-09-07 2023-11-03 潍坊国特矿山设备有限公司 一种循环冷却高梯度磁选筛分机
CN117299359B (zh) * 2023-10-07 2024-03-22 江苏中基鸿业矿业科技有限公司 一种石英砂的除杂装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2536305Y (zh) * 2002-03-22 2003-02-19 广州有色金属研究院 一种双频立环脉冲高梯度磁选机
JP2003103195A (ja) * 2001-09-28 2003-04-08 Kenzo Takahashi 移動磁界式ドラム磁選機
CN102205272A (zh) * 2011-05-09 2011-10-05 抚顺隆基电磁科技有限公司 一种模块化磁选设备机组
CN102614983A (zh) * 2012-05-03 2012-08-01 赣州金环磁选设备有限公司 大颗粒立环脉动高梯度磁选机
CN103056023A (zh) * 2012-10-26 2013-04-24 沈阳隆基电磁科技股份有限公司 高梯度内循环油冷除铁器
CN105223902A (zh) * 2015-11-05 2016-01-06 张荣斌 一种矿山用盘式磁选机的自动控制系统及方法
CN106622646A (zh) * 2017-02-24 2017-05-10 沈阳隆基电磁科技股份有限公司 一种强迫油冷立式转环感应式湿法脉动强磁选机

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046680A (en) * 1975-03-14 1977-09-06 Itasca Magnetics, Inc. Permanent magnet high intensity separator
CN1010832B (zh) * 1986-09-06 1990-12-19 赣州有色冶金研究所 立环脉动高梯度磁选机
JPH09117618A (ja) * 1995-10-24 1997-05-06 Hitachi Ltd 浄化装置
CN2306837Y (zh) * 1997-08-09 1999-02-10 冶金工业部马鞍山矿山研究院 高场强电磁脉动高梯度磁选机
CN2501580Y (zh) * 2001-08-01 2002-07-24 赣州有色冶金研究所 立环脉动高梯度磁选机
CN100566842C (zh) * 2006-12-30 2009-12-09 广州有色金属研究院 一种高梯度磁选机
CN201179479Y (zh) * 2008-04-03 2009-01-14 抚顺隆基磁电设备有限公司 立式转环感应式湿法强磁选机
CN100577300C (zh) * 2008-05-15 2010-01-06 长沙矿冶研究院 连续式离散型稀土永磁高梯度磁选机
CN201220185Y (zh) * 2008-06-25 2009-04-15 山东华特磁电科技股份有限公司 强制油冷却立环高梯度磁选机
CN201275499Y (zh) * 2008-10-17 2009-07-22 岳阳大力神电磁机械有限公司 立环高梯度磁选机
KR101317071B1 (ko) * 2010-02-23 2013-10-11 차이나 센후아 에너지 컴퍼니 리미티드 분쇄된 석탄회 탈철 용 수직 링 자기(磁氣) 분리기 및 이를 이용한 분리 방법
RU2014107935A (ru) * 2011-08-01 2015-09-10 Сьюпириор Минерал Ресорсиз Ллк Обогащение руды
CN102327811B (zh) * 2011-09-29 2014-07-09 北京矿冶研究总院 永磁立环高梯度强磁选机
CN102335638A (zh) * 2011-10-12 2012-02-01 昆明理工大学 一种用于强磁选机的高梯度聚磁介质
CN202460825U (zh) * 2012-02-29 2012-10-03 沈阳隆基电磁科技股份有限公司 一种具有隔磁功能的磁选机
CN202933776U (zh) * 2012-11-12 2013-05-15 湖北鑫鹰环保科技有限公司 一种多级选矿脉动立环高梯度磁选机
CN202962651U (zh) * 2012-12-05 2013-06-05 湖南科美达电气股份有限公司 立环脉动高梯度磁选机
CN203091073U (zh) * 2013-03-12 2013-07-31 沈阳隆基电磁科技股份有限公司 一种立环强磁选机用防溢下磁极
CN203140142U (zh) * 2013-04-07 2013-08-21 沈阳隆基电磁科技股份有限公司 立式转环感应式湿法强磁选机励磁线圈
CN203209167U (zh) * 2013-05-06 2013-09-25 河北联合大学 一种用于强磁选机的高梯度聚磁介质
CN203577991U (zh) * 2013-07-29 2014-05-07 淄博唯能机电科技有限公司 免焊接介质盒转环式高梯度磁选机
CN103495573B (zh) * 2013-09-15 2016-01-20 沈阳隆基电磁科技股份有限公司 一种脉动高梯度强磁机磁介质的清洗方法
CN203521521U (zh) * 2013-09-17 2014-04-02 宁德新能源科技有限公司 卷绕式电芯及电化学装置
CN203512521U (zh) * 2013-11-07 2014-04-02 铜陵有色金属集团股份有限公司 用于运输固体物料的耐磨式溜槽
CN203764399U (zh) * 2014-03-03 2014-08-13 沈阳隆基电磁科技股份有限公司 一种新型高梯度立环强磁选机溢流液面尾矿阀调节装置
DE102014013459A1 (de) * 2014-09-17 2016-03-17 Mbe Coal & Minerals Technology Gmbh Starkfeldmagnetscheider
CN104399579A (zh) * 2014-11-10 2015-03-11 岳阳鸿升电磁科技有限公司 连续磁介质无间隙磁选的立环高梯度磁选机
CN104624366B (zh) * 2015-02-03 2017-06-30 广州粤有研矿物资源科技有限公司 一种反式立环高梯度磁选机
CN205236166U (zh) * 2015-12-04 2016-05-18 赣州金环磁选设备有限公司 免拆洗浆料高梯度磁选机
CN205462702U (zh) * 2016-03-22 2016-08-17 河北钢铁集团矿业有限公司 一种除渣效果良好的矿浆隔渣筛

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103195A (ja) * 2001-09-28 2003-04-08 Kenzo Takahashi 移動磁界式ドラム磁選機
CN2536305Y (zh) * 2002-03-22 2003-02-19 广州有色金属研究院 一种双频立环脉冲高梯度磁选机
CN102205272A (zh) * 2011-05-09 2011-10-05 抚顺隆基电磁科技有限公司 一种模块化磁选设备机组
CN102614983A (zh) * 2012-05-03 2012-08-01 赣州金环磁选设备有限公司 大颗粒立环脉动高梯度磁选机
CN103056023A (zh) * 2012-10-26 2013-04-24 沈阳隆基电磁科技股份有限公司 高梯度内循环油冷除铁器
CN105223902A (zh) * 2015-11-05 2016-01-06 张荣斌 一种矿山用盘式磁选机的自动控制系统及方法
CN106622646A (zh) * 2017-02-24 2017-05-10 沈阳隆基电磁科技股份有限公司 一种强迫油冷立式转环感应式湿法脉动强磁选机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860370A (zh) * 2019-10-18 2020-03-06 甘肃酒钢集团宏兴钢铁股份有限公司 一种难选矿块矿磁化焙烧-磁种磁化联合选别工艺
CN114370443A (zh) * 2021-12-31 2022-04-19 徐州达一锻压设备有限公司 一种基于分割原理的锻压机械高效维修设备

Also Published As

Publication number Publication date
CN106622646A (zh) 2017-05-10
AU2018217255A1 (en) 2018-09-13
WO2018152878A1 (zh) 2018-08-30
CN108262160A (zh) 2018-07-10
CN207722951U (zh) 2018-08-14
CN108262159B (zh) 2024-02-20
AU2018217255B2 (en) 2020-11-19
CA3015206A1 (en) 2018-08-24
CA3015206C (en) 2022-05-03
CN108262160B (zh) 2024-02-20
CN108262159A (zh) 2018-07-10
CN108262161B (zh) 2024-04-02
AU2017279840A1 (en) 2018-09-13
CN108262161A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2018153175A1 (zh) 一种湿法高梯度强磁选机
CN201275499Y (zh) 立环高梯度磁选机
UA111271C2 (uk) Двоциліндровий надпровідний пристрій для магнітної сепарації каоліну
CN201235309Y (zh) 永磁高梯度磁选机
CN103071586A (zh) 高梯度电永磁磁选机
CN101934247B (zh) 超精细高梯度磁选机
CN201807451U (zh) 超精细高梯度磁选机
CN102728462A (zh) 水冷脉振立环高梯度磁选机
CN102310018B (zh) 内部水冷电磁筒式磁选机
CN201815376U (zh) 立环式脉动高梯度超导磁选机
CN101934248B (zh) 油冷式转盘高梯度磁选机
CN202762541U (zh) 水冷脉振立环高梯度磁选机
CN202044952U (zh) 化工电磁感应设备
CN206642877U (zh) 一种强迫油冷立式转环感应式湿法脉动强磁选机
CN207402074U (zh) 一种短铁芯跨足辊的电磁搅拌器
WO2021159908A1 (zh) 一种用于磨损颗粒有序沉积的电磁装置及方法
CN203525858U (zh) 立环强磁选机用防腐磁介质盒
CN215586774U (zh) 一种立环高梯度强磁选机卸矿装置
CN210486468U (zh) 一种pc钢棒中频加热炉冷却散热装置
CN215313093U (zh) 脉动周期式磁选机
CN103464279A (zh) 一种立环强磁选机用防腐磁介质盒
CN215541731U (zh) 智能湿式磁分离工作站
CN102772947B (zh) 一种可关断式无源磁性过滤器
CN210815702U (zh) 一种高效轴流式磁选机
CN218069517U (zh) 一种利用磁种的高效磁化分离装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3015206

Country of ref document: CA

Ref document number: 2018217255

Country of ref document: AU

Date of ref document: 20180111

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757144

Country of ref document: EP

Kind code of ref document: A1