WO2018152963A1 - 蒸发器流路结构、蒸发器、空调器室内机及空调器 - Google Patents

蒸发器流路结构、蒸发器、空调器室内机及空调器 Download PDF

Info

Publication number
WO2018152963A1
WO2018152963A1 PCT/CN2017/082567 CN2017082567W WO2018152963A1 WO 2018152963 A1 WO2018152963 A1 WO 2018152963A1 CN 2017082567 W CN2017082567 W CN 2017082567W WO 2018152963 A1 WO2018152963 A1 WO 2018152963A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
evaporator
tubes
air conditioner
port
Prior art date
Application number
PCT/CN2017/082567
Other languages
English (en)
French (fr)
Inventor
蔡国健
谭周衡
Original Assignee
美的集团武汉制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团武汉制冷设备有限公司, 美的集团股份有限公司 filed Critical 美的集团武汉制冷设备有限公司
Publication of WO2018152963A1 publication Critical patent/WO2018152963A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators

Definitions

  • the invention relates to the field of living appliances, and in particular to an evaporator flow path structure, an evaporator, an air conditioner indoor unit and an air conditioner.
  • the heat exchanger of the split-wall type room air conditioner usually adopts a design of two folds, three folds or multiple folds, and if the system configuration is optimal and the flow path design is optimal, the design cannot be achieved.
  • the performance target of the larger cooling capacity is generally achieved by expanding the structural size of the indoor unit and increasing the length of the heat exchanger, that is, increasing the area of the heat exchanger and the circulating air volume of the indoor unit. Therefore, if you want to develop a product with twice the cooling capacity or a higher cooling capacity, the size of the indoor unit needs to be adjusted, which will increase the mold cost and related costs, and the increase in size will also affect The beauty of the room and the more space in the room.
  • the existing scheme for increasing the air conditioning cooling capacity is to achieve the required cooling capacity by increasing the heat exchange efficiency of the heat exchanger, and the evaporator flow path adopts one-in, two-out or three-in-three-out schemes, one-in and two-out evaporators.
  • the pressure loss of the refrigerant is relatively large, resulting in low heat exchange efficiency, especially the low cooling capacity, the longer the flow path, the larger the flow resistance, the lower the heat transfer rate with the decrease of the flow velocity in the tube, and the refrigerant drift. It is difficult to effectively exchange heat, and the pressure loss of the evaporator of the three-in and three-out flow passages is relatively small, and the heat exchange efficiency is relatively high.
  • the uniformity of the flow path is unreasonably designed, the refrigerant between the heat exchangers may be distributed. In the case of uniformity, the uneven flow is divided to cause a large temperature difference, which affects the performance of the whole machine.
  • an object of the present invention is to provide an evaporator flow path structure.
  • Another object of the invention is to provide an evaporator.
  • Another object of the present invention is to provide an air conditioner indoor unit.
  • Another object of the present invention is to provide an air conditioner.
  • the present invention provides an evaporator flow path structure for an air conditioner, the air conditioner comprising a wind wheel and a front grille, comprising: a U-tube; a semi-circular connecting pipe,
  • the utility model is configured to connect the U tube to form a flow path; the fin is provided with two rows of staggered through holes, and the U tube is disposed in the through hole; the first flow path is provided with the first inlet port and the first outlet port; the second flow The road is provided with a second inflow port and a second outflow port; the third flow path is provided with a third inflow port and a third outflow port; the fourth flow path is provided with a fourth inflow port and a fourth An outflow port; wherein the first flow path, the second flow path, the third flow path, and the fourth flow path are each provided with at least one U tube and at least one semicircular connection tube.
  • the evaporator flow path structure provided by the invention is connected with the semi-circular connecting pipe through the U pipe, and is formed on the fin to form a four-way flow path, and the refrigerant exchanges heat from the four-in and four-out flow paths, thereby reducing the refrigerant.
  • the single cycle stroke further improves the heat exchange efficiency.
  • the four-way flow path can be set according to the difference of the air volume between the heat exchangers, which can further improve the heat exchange efficiency.
  • the U-tube can be prevented from being lengthened, so that the evaporator flow path structure is small overall, thereby avoiding an increase in the overall volume of the air conditioner, and at the same time, the air conditioner is improved.
  • the performance has improved the user experience.
  • evaporator flow path structure in the above embodiment provided by the present invention may further have the following additional technical features:
  • the center distance of the adjacent two through holes is A
  • the value of A ranges from 18 mm ⁇ A ⁇ 21 mm
  • the center distance of the adjacent two through holes of the different rows is B
  • the value of B The range is 16mm ⁇ B ⁇ 18mm.
  • the heat exchange area of the heat exchanger can be effectively increased, and at the same time, the pressure loss of the heat exchanger is reduced, and further, The air conditioner is improved in performance when the air conditioner is small in size.
  • the center distance of the adjacent two through holes is 18.2 mm, and the center distance of the adjacent two through holes is 16.17 mm.
  • the value of the center distance of the adjacent two through holes is 18.2 mm; the center distance of the adjacent two through holes is 16.17 mm, which increases the heat exchange.
  • the heat exchange area of the device and the pressure loss of the refrigerant in the heat exchanger can further improve the performance of the air conditioner by ensuring that the air conditioner is small in size.
  • the first flow path, the second flow path, the third flow path, and the fourth flow path form a frame structure; the side of the frame structure near the wind wheel is a leeward side, and the frame structure is close to The side of the entrance grille is on the windward side.
  • the frame structure can effectively reduce the space occupied by the heat exchanger, and at the same time, improve the performance of the air conditioner.
  • the first flow path is provided with four U pipes and three semicircular connecting pipes;
  • the second flow path is provided with four U pipes and three semicircular connecting pipes;
  • the flow path is provided with five U tubes and four semi-circular connecting tubes;
  • the fourth flow path is provided with four U tubes and three semi-circular connecting tubes.
  • the number of U pipes on the leeward side of the first flow path is equal to the number of U pipes on the windward side;
  • the number of U pipes on the leeward side of the second flow path is equal to the number of U tubes on the windward side;
  • the number of U pipes on the leeward side of the third flow path is smaller than the number of U pipes on the windward side;
  • the number of U pipes on the leeward side of the fourth flow path is larger than the number of U pipes on the windward side.
  • the windward side and the leeward side pipeline of each flow path are rationally arranged, and then the different air volumes in the heat exchanger are fully utilized, This improves the heat exchange efficiency of the heat exchanger and saves energy consumption of the heat exchanger.
  • the number of U pipes on the leeward side of the third flow path is one, and the number of U tubes on the windward side is four; and the number of U tubes on the leeward side of the fourth flow path is three.
  • the number of U pipes on the windward side is one.
  • the number of U pipes on the leeward side of the third flow path is set to one
  • the number of U pipes on the windward side is set to four
  • the number of U pipes on the leeward side of the fourth flow path is set to three.
  • the number of U pipes on the windward side is set to one, which can fully utilize different air volumes throughout the heat exchanger, thereby improving the heat exchange efficiency of the heat exchanger, and saving the heat exchanger by the air conditioner.
  • the effect of energy consumption is optimal.
  • the present invention provides an evaporator comprising: an evaporator power assembly provided with an inlet and an outlet; a four-way split connector communicating with the outlet; and a flute tube communicating with the inlet; And the evaporator flow path structure according to any one of the preceding aspects; wherein the first inlet port, the second inlet port, the third inlet port and the fourth inlet port are connected to the four-way split connector The first outflow port, the second outflow port, the third outflow port and the fourth outflow port are in communication with the flute tube.
  • the evaporator provided by the present invention comprises the evaporator flow path structure according to any one of the above technical solutions, and the end of the four-way split connector is connected to the outlet of the compressor, and the inlet of the other end and the four-way flow path is provided. Connected separately, one end of the flute tube is connected to the compressor inlet, and the other end is connected to the outflow port of the four-way flow path respectively, thereby realizing simultaneous heat transfer of the four-way flow path, and
  • the evaporator flow path structure described in the technical solution therefore, the evaporator provided by the present invention has all the beneficial effects of the evaporator flow path structure provided by any of the above technical solutions, which are not enumerated here.
  • an air conditioner indoor unit includes: a casing; a wind wheel disposed in the casing and located on one side of the casing; and a style grille disposed in the casing and located in the casing And the evaporator flow path structure according to any one of the above aspects; or the evaporator according to any one of the above aspects; wherein the evaporator flow path structure or the evaporator is located at the wind wheel and the inlet air Between the grilles.
  • the air conditioner indoor unit provided by the present invention includes the evaporator flow path structure according to any one of the above aspects; or the evaporator according to any one of the above aspects, therefore, the air conditioner indoor unit provided by the present invention has The evaporator flow path structure provided by any of the above technical solutions, or the entire beneficial effects of the evaporator according to any of the above technical solutions, is not enumerated here.
  • the present invention provides an air conditioner comprising: the evaporator flow path structure according to any one of the above aspects; or the evaporator according to any one of the above aspects; or An air conditioner indoor unit according to any one of the aspects.
  • the air conditioner provided by the present invention includes the evaporator flow path structure according to any one of the above aspects; or the evaporator according to any one of the above aspects; or the air conditioner indoor according to any one of the above aspects Therefore, the air conditioner indoor unit provided by the present invention has the evaporator flow path structure provided by any one of the above aspects, or the evaporator according to any one of the above aspects, or the air conditioner according to any one of the above aspects.
  • the overall benefits of the indoor unit are not listed here.
  • FIG. 1 is a schematic structural view showing an evaporator flow path structure according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view showing a first flow path in the evaporator flow path structure shown in FIG. 1;
  • FIG. 3 is a schematic structural view showing a second flow path in the evaporator flow path structure shown in FIG. 1;
  • FIG. 4 is a schematic structural view showing a third flow path in the evaporator flow path structure shown in FIG. 1;
  • FIG. 5 is a schematic structural view showing a fourth flow path in the evaporator flow path structure shown in FIG. 1;
  • Fig. 6 is a view showing the structure of a fin in the evaporator flow path structure shown in Fig. 1.
  • 1 evaporator flow path structure 10U tube, 12 semi-circular connecting tube, 14 fins, 142 through holes, 20 first flow path, 202 first inflow port, 204 first outflow port, 30 second flow channel, 302 second inflow port, 304 second outflow port, 40 third flow path, 402 third inflow port, 404 third outflow port, 50 fourth flow path, 502 fourth inflow port, 504 fourth Outlet.
  • the present invention provides an evaporator flow path structure 1 for an air conditioner, the air conditioner comprising a wind wheel and a front grille, comprising: a U tube 10; a semicircular connecting tube 12, for connecting the U tube 10 to form a flow path; the fin 14 is provided with two rows of staggered through holes 142, the U tube 10 is disposed in the through hole 142; the first flow path 20 is provided with a first inlet port 202 and The first outflow port 204; the second flow path 30 is provided with a second inflow port 302 and a second outflow port 304; the third flow path 40 is provided with a third inflow port 402 and a third outflow port 404.
  • the fourth flow path 50 is provided with a fourth inflow port 502 and a fourth outflow port 504; wherein the first flow path 20, the second flow path 30, the third flow path 40, and the fourth flow path 50 are provided with At least one U-tube 10 and at least one semi-circular connecting tube 12.
  • the evaporator flow path structure 1 provided by the present invention is connected to the semicircular connecting pipe 12 through the U pipe 10, and is disposed on the fin 14 to form a four-way flow path, and the refrigerant is exchanged by the four-in and four-out flow paths.
  • the heat reduces the single cycle stroke of the refrigerant, thereby improving the heat exchange efficiency.
  • the four-way flow path can be set according to the difference of the air volume between the heat exchangers, and Further improving the heat exchange efficiency, thereby improving the heat exchange efficiency of the air conditioner, and increasing the overall heat exchange area by means of a four-way flow path circulating refrigerant, thereby avoiding lengthening the U tube and making the evaporator flow path structure overall small.
  • the overall volume of the air conditioner is increased, and at the same time, the performance of the air conditioner is improved, and the user experience is improved.
  • the center distance between two adjacent through holes 142 is A, and the value of A ranges from 18 mm ⁇ A ⁇ 21 mm; 142
  • the center distance is B, and the value of B ranges from 16 mm ⁇ B ⁇ 18 mm.
  • the center distance of the adjacent two through holes 142 is 18.2 mm, and the center distance of the adjacent two through holes 142 is B. 16.17 mm.
  • the heat exchange area of the heat exchanger can be effectively increased, and at the same time, the pressure loss of the heat exchanger can be reduced, thereby further enabling
  • the performance of the air conditioner is improved, wherein the center distance of the adjacent two through holes 142 is 18.2 mm; the center distance of the adjacent two through holes 142
  • the value of B is 16.17mm, which increases the heat exchange area of the heat exchanger and reduces the pressure loss of the heat exchanger, thereby further improving the performance of the air conditioner while ensuring the compact size of the air conditioner. The effect is best.
  • the first flow path 20, the second flow path 30, the third flow path 40, and the fourth flow path 50 form a frame structure; the frame structure is close to the wind.
  • One side of the wheel is the leeward side, and the frame structure is close to the side of the entrance grille as the windward side.
  • the wind blown by the wind wheel can be completely exchanged through the four-way flow path of the frame structure, thereby improving the heat exchange efficiency of the heat exchanger.
  • the frame structure can effectively reduce the volume of the heat exchanger, and at the same time, improve the performance of the air conditioner.
  • the first flow path 20 is provided with four U tubes 10 and three semicircular connecting tubes 12;
  • the second flow path 30 is provided with four U tube 10 and three semicircular connecting tubes 12;
  • third flow path 40 is provided with five U tubes 10 and four semicircular connecting tubes 12;
  • fourth flow path 50 is provided with four U tubes 10 and three A semi-circular connecting tube 12.
  • the first flow path 20 is formed by alternately connecting four U-tubes 10 and three semi-circular connecting tubes 12 according to different wind speeds throughout the interior of the evaporator; four U-tubes 10 and three semi-circles
  • the connecting pipes 12 are alternately connected to form a second flow path 30; the five U pipes 10 and the four semi-circular connecting pipes 12 are alternately connected to form a third flow path 40; four U pipes 10 and three semicircular connecting pipes 12
  • the fourth flow path 50 is alternately connected so that the refrigerant in the four-way flow path is sufficiently evaporated, and at the same time, excessive evaporation does not occur.
  • the number of U-tubes 10 on the leeward side of the first flow path 20 is equal to the number of U-tubes 10 on the windward side;
  • the number of U-tubes 10 on the leeward side is equal to the number of U-tubes 10 on the windward side;
  • the number of U-tubes 10 on the leeward side of the third flow path 40 is smaller than the number of U-tubes 10 on the windward side;
  • the fourth flow path 50 is located on the leeward side.
  • the number of U tubes 10 is greater than the number of U tubes 10 located on the windward side.
  • the windward side and the leeward side pipeline of each flow path are rationally arranged, and then the different air volumes in the heat exchanger are fully utilized. This improves the heat exchange efficiency of the heat exchanger and saves energy consumption of the heat exchanger.
  • the number of U-tubes 10 on the leeward side of the third flow path 40 is one, and the number of U-tubes 10 on the windward side is four;
  • the number of U-tubes 10 on the leeward side of the four-flow path 50 is three, and the number of U-tubes 10 on the windward side is one.
  • the number of U-tubes 10 on the leeward side of the third flow path 40 is set to one
  • the number of U-tubes 10 on the windward side is set to four
  • the U-tube 10 on the leeward side of the fourth flow path 50 is set to four.
  • the number is set to three
  • the number of U-tubes 10 on the windward side is set to one, which can fully utilize different air volumes throughout the heat exchanger, thereby improving the heat exchange efficiency of the heat exchanger, and making the air conditioner
  • the device saves the energy consumption of the heat exchanger to the best effect.
  • the four-fold structure consisting of the long U-tube 10 and the fins 14 forms a frame structure, wherein the inner side of the indoor wind turbine is leeward side, close to the indoor
  • the machine entrance style grille is on the inner side, that is, on the windward side.
  • the fin 14 of the evaporator has a hole spacing of 18.2 mm, and the pitch of the different through hole 142 is 16.17 mm, and, as shown in FIG.
  • the evaporator flow path structure 1 adopts a four-in and four-out flow, and the four-in and four-out flow paths are designed in a downstream heat exchange manner, and the flow is combined with the wind speed of the indoor air duct to be divided into four paths, each of which has a flow path.
  • the number of tubes is in the form of four U tubes 10 for the first flow path 20, four U tubes 10 for the second flow path 30, five U tubes 10 for the third flow path 40, and four U tubes for the fourth flow path 50.
  • the layout of the first flow path 20 and the second flow path 30 is an equal-path flow path layout.
  • the flow of the refrigerant is in the first flow path 20, as shown in FIG. 2, one port of the U-tube 10 at one end is the first inlet port 202, and alternately passes through four U-tubes 10 and three.
  • one port of the U-tube 10 at one end is the second inlet port 302, and alternately passes through the four U-tubes 10 and the three semi-circular connecting tubes 12, wherein Passing the semicircular connecting pipe 12 from the top to the bottom on the windward side, passing through the semicircular connecting pipe 12 from the bottom to the top on the leeward side, and flowing out of the second outflow port 304 at the other end of the U pipe 10 at the other end;
  • the third flow path 40 since the wind speed in the evaporator is not uniform, as shown in FIG. 4, one port of the U-tube 10 at one end is entered as the third inlet port 402, alternately passing through the five U-tubes 10 and Four semi-circular connecting tubes 12, wherein the windward side passes through the semicircular connecting pipe 12 from top to bottom, the bottom side passes through the semicircular connecting pipe 12 on the leeward side, and the other end U pipe 10 has a port Flowing out for the third outflow port 404;
  • the fourth flow path 50 since the wind speed in the evaporator is not uniform, as shown in FIG. 5, one port of the U-tube 10 at one end is entered as the third inlet port 402, alternately passing through the four U-tubes 10 and Three semicircular connecting tubes 12, wherein the windward side passes through the semicircular connecting pipe 12 from top to bottom, the bottom side passes through the semicircular connecting pipe 12 on the leeward side, and the other end U pipe 10 has a port
  • the fourth outflow port 504 flows out.
  • the present invention provides an evaporator comprising: a compressor provided with an inlet and an outlet; a four-way split connector communicating with the outlet; and a flute tube connected to the inlet And the evaporator flow path structure 1 according to any one of the above embodiments; wherein the first inlet port 202, the second inlet port 302, the third inlet port 402, and the fourth inlet port 502 and the four channels
  • the shunt connectors are in communication, and the first outflow port 204, the second outflow port 304, the third outflow port 404, and the fourth outflow port 504 are in communication with the flute.
  • the evaporator provided by the present invention comprises the evaporator flow path structure 1 provided by any of the above embodiments, and the end of the four-way split connector is connected to the outlet of the compressor, and the inlet of the other end and the four-way flow path is provided. Connected separately, one end of the flute tube is connected to the compressor inlet, and the other end is connected to the outflow port of the four-way flow path respectively, thereby realizing simultaneous heat transfer of the four-way flow path, and
  • the evaporator flow path structure 1 provided by the embodiment therefore, the evaporator provided by the present invention has all the beneficial effects of the evaporator flow path structure 1 provided by any of the above embodiments, which are not enumerated here.
  • the first inlet port 202, the second inlet port 302, the third inlet port 402, and the fourth inlet port 502 are connected to the compressor through a four-way splitter connector, and are diverted.
  • An outflow port 204, a second outflow port 304, a third outflow port 404, and a fourth outflow port 504 are integrated into the compressor inlet through the flute tube, and the flow layout of the four inlets and four outlets reduces the heat exchanger. The pressure loss of the refrigerant improves the heat exchange efficiency of the heat exchanger.
  • the present invention provides an indoor unit of an air conditioner, comprising: a housing; a wind wheel disposed in the housing and located on one side of the housing; and a style grille disposed in the housing
  • the evaporator flow path structure 1 according to any one of the above embodiments; or the evaporator provided by any of the above embodiments; wherein the evaporator flow path structure 1 or the evaporator is located at the wind wheel Between the style grids.
  • the air conditioner indoor unit provided by the present invention includes the evaporator flow path structure 1 provided in any one of the above embodiments; or the evaporator provided in any of the above embodiments, therefore, the air conditioner indoor unit provided by the present invention has the above
  • the overall beneficial effects of the evaporator flow path structure 1 provided by any of the embodiments, or the evaporator provided by any of the above embodiments, are not enumerated here.
  • the present invention provides an air conditioner comprising: the evaporator flow path structure 1 provided by any of the above embodiments; or the evaporator provided by any of the above embodiments; or The air conditioner indoor unit provided by any of the above embodiments.
  • the air conditioner provided by the present invention includes the evaporator flow path structure 1 provided by any of the above embodiments; or the evaporator provided by any of the above embodiments; or the air conditioner indoor unit provided by any of the above embodiments, Therefore, the air conditioner indoor unit provided by the present invention has the evaporator flow path structure 1 provided by any of the above embodiments, or the evaporator provided by any of the above embodiments, or the air conditioner indoor unit provided by any of the above embodiments. All the beneficial effects are not listed here.
  • the evaporator flow path structure 1 improves the related technology. Since the cooling capacity of the air conditioner is different from the length of the heat exchanger, that is, the heat exchange area and the air volume, the size and space of the indoor unit of the air conditioner are limited. If the internal structure of the heat exchanger is not changed to increase the heat exchange area, it can only be solved by the size of the back pipe or the lengthened air conditioner indoor unit, and the present invention improves the evaporation by changing the internal structure of the heat exchanger.
  • the fin 14 hole spacing of the flow path structure 1 and the tube spacing before and after steaming increase the heat exchange area, and the design of the heat exchanger process of the air conditioner indoor unit is related to the air inlet area and the air duct of the air conditioner indoor unit.
  • the design of the heat exchanger process will affect the shunt condition of the heat exchanger, which in turn will affect the heat exchange capacity of the heat exchanger, the energy efficiency of the whole machine and the condensation; as shown in Figure 1 to Figure 5, due to the indoor unit of the air conditioner
  • the heat exchanger is not a smooth arc evaporator, and each fold is evaporated
  • the wind speed distribution is not uniform, and the refrigerant may have vapor-liquid stratification or vapor-liquid two-phase mixing unevenness before entering the respective flow paths of the evaporator flow path structure 1, so that the evaporator flow path structure 1 cannot be uniformly entered.
  • the liquid refrigerant in part of the flow path is excessive, the evaporation is incomplete, and the vapor refrigerant in the other part of the flow path is excessive, and the evaporation overheating problem is serious. If the flow path structure is unreasonable, it is easy to cause the evaporator outlet bias to be too large, which will affect the reliability of the whole system.
  • the conventional fins 14 are spaced by a pitch of 21 mm by changing the hole pitch of the fins 14 of the heat exchanger and the tubes which are steamed before and after, and the present invention adopts a pitch range of between 18 mm and 21 mm.
  • the spacing increases the area of the heat exchanger, and at the same time reduces the pressure loss of the heat exchanger, and according to the uneven air volume of the heat exchanger of the indoor unit of the air conditioner, the four-in and four-out scheme is adopted to raise the heat exchanger.
  • the efficiency is combined with the flow paths of equal and non-equal paths, which is beneficial to the stability of the flow path in variable working conditions, and there is no occurrence of a small amount of liquid supply due to the leakage of the refrigerant, and the outlets of the various flow paths of the evaporator occur. Large temperature differences cause problems such as condensation and water blowing.
  • the air conditioner of the evaporator flow path structure 1 provided by the invention or the air conditioner of the evaporator or the air conditioner indoor unit achieves the best effect, and the capacity is optimized, and the air conditioner internal machine size of the prior art can be used to meet the requirements.
  • the performance index of the two horses and the reasonable piping arrangement also avoid the condensation problem of the water blowing when the evaporator of the type is operated under high humidity conditions.
  • the measured flow path structure 1 or evaporation provided by the invention is measured.
  • the air conditioner of the indoor unit of the air conditioner or the air conditioner has significantly improved the cooling capacity.
  • the cooling capacity is increased from the original capacity of 3500W to the capacity level of 5000W. At the same time, the capability points of other working conditions also reach the performance of two horses. Claim.
  • the evaporator flow path structure 1, the evaporator, the air conditioner indoor unit and the air conditioner provided by the present invention are connected to the semicircular connecting pipe 12 through the U pipe 10, and are disposed on the fin 14 to form four.
  • the road flow path, and then the refrigerant will exchange heat from the four-in and four-out flow paths, thereby reducing the stroke of the refrigerant, thereby improving the heat exchange efficiency, and at the same time, since the air volume of the heat exchanger cannot be completely uniform, the four-way flow path It can be set according to the difference of air volume in the heat exchanger, which can further improve the heat exchange efficiency, thereby improving the heat exchange efficiency of the air conditioner. Therefore, the performance of the air conditioner is improved while ensuring the compact size of the air conditioner. , to enhance the user experience.
  • connection may be a fixed connection, a detachable connection, or an integral connection; “connected” may be directly connected They can also be connected indirectly through an intermediary medium.
  • connecting may be a fixed connection, a detachable connection, or an integral connection; “connected” may be directly connected They can also be connected indirectly through an intermediary medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种空调蒸发器流路结构,空调器包括风轮和进风格栅,蒸发器流路结构包括:U管(10)、用于连通U管(10)形成流路的半圆形连接管(12)、设置有两行交错的通孔(142)的翅片(14),其中U管(10)穿设于通孔(142)。蒸发器流路结构还包括:设置有第一进流口(202)和第一出流口(204)的第一流路(20)、设置有第二进流口(302)和第二出流口(304)的第二流路(30)、设置有第三进流口(402)和第三出流口(404)的第三流路(40)以及设置有第四进流口(502)和第四出流口(504)的第四流路(50),其中第一流路(20)、第二流路(30)、第三流路(40)及第四流路(50)均设置有至少一个U管(10)以及至少一个半圆形连接管(12)。

Description

蒸发器流路结构、蒸发器、空调器室内机及空调器
本申请要求于2017年2月23日提交中国专利局、申请号为2017100996552、发明名称为“蒸发器流路结构、蒸发器、空调器室内机及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及生活电器领域,具体而言,涉及一种蒸发器流路结构、一种蒸发器、一种空调器室内机及一种空调器。
背景技术
在相关技术中,分体挂壁式房间空调器的换热器通常采用两折、三折或者多折的设计,如果系统配置最优与流路设计最优的情况下仍达不到设计的冷量目标或者需加大冷量时,一般会通过扩大室内机的结构尺寸和增加换热器的长度即增加换热器的面积和室内机的循环风量来达到较大冷量的性能目标,因此,如果要开发冷量大一倍或者是更高的冷量的产品,那么室内机的尺寸就需要调整,而这样就会增加了模具费用和相关的成本,同时尺寸的增大,也影响房间的美观及占用了室内更多的空间。
目前,现有增加空调冷量的方案是,通过提高换热器的换热效率来实现所需冷量,蒸发器流路采用一进两出或者三进三出方案,一进两出蒸发器冷媒压损比较大,造成换热效率比较低,尤其是制冷能力偏低,流路越长,流阻越大,随着管内流速的降低而导致导换热率降低,也容易产生制冷剂偏流,致使难以有效换热,三进三出流路蒸发器的压损比较小,换热效率比较高,但如果流路均匀性设计不合理,换热器各路之间的冷媒会出现分配不均匀的情况,分流不均造成分流温差大,影响整机性能。
除了以上方案以外,也有采用背管的方案来解决,例如采用蒸发器后背或者前背管的方案进行增加换热面积,以达到相应的冷量要求,但背管 后会加大背管一侧的风阻,会导致室内机的循环风量变小,从而影响降低了蒸发器的换热效率,同时,背管后如果分流不均还会出现凝露或者漏水等相关可靠性问题。
发明内容
为了解决上述技术问题至少之一,本发明的一个目的提出了一种蒸发器流路结构。
本发明的另一个目的提出了一种蒸发器。
本发明的另一个目的提出了一种空调器室内机。
本发明的另一个目的提出了一种空调器。
有鉴于此,根据本发明的一个目的,本发明提出了一种蒸发器流路结构,用于空调器,空调器包括风轮与进风格栅,包括:U管;半圆形连接管,用于连通U管形成流路;翅片,设置有两行交错的通孔,U管穿设于通孔;第一流路,设置有第一进流口与第一出流口;第二流路,设置有第二进流口与第二出流口;第三流路,设置有第三进流口与第三出流口;第四流路,设置有第四进流口与第四出流口;其中,第一流路、第二流路、第三流路及第四流路均设置有至少一个U管以及至少一个半圆形连接管。
本发明提供的蒸发器流路结构,通过U管与半圆形连接管连接,并穿设于翅片上形成四路流路,进而冷媒将由四进四出的流路进行换热,减少了冷媒的单循环行程,进而提升了换热效率,同时,由于换热器的风量无法做到完全均匀,而四路流路能够根据换热器各处风量的差异进行设置,能够进一步提升换热效率,并且,由于采用四路流路循环冷媒的方式来增加整体换热面积,能够避免加长U管,使得蒸发器流路结构整体小巧,进而避免增加空调器的整体体积,同时,提升了空调器的性能,提升了用户的使用体验。
另外,本发明提供的上述实施例中的蒸发器流路结构还可以具有如下附加技术特征:
在上述技术方案中,优选地,同行相邻两通孔的中心距为A,A的取值范围为18mm≤A≤21mm;异行相邻两通孔的中心距为B,B的取值范围为16mm≤B≤18mm。
在该技术方案中,通过对各流路的各条管路进行合理布局,能够有效地增大换热器的换热面积,同时,降低了换热器的冷媒压损,进而能够进一步地在保证空调器体积小巧的情况下,提升了空调器的性能。
在上述任一技术方案中,优选地,同行相邻两通孔的中心距为A的取值为18.2mm;异行相邻两通孔的中心距为B的取值为16.17mm。
在该技术方案中,通过将同行相邻两通孔的中心距为A的取值为18.2mm;异行相邻两通孔的中心距为B的取值为16.17mm,增大了换热器的换热面积,以及降低了换热器的冷媒压损,进而能够进一步地使在保证空调器体积小巧的情况下,提升空调器的性能的效果达到最佳。
在上述任一技术方案中,优选地,第一流路、第二流路、第三流路及第四流路形成框式结构;框式结构靠近风轮一侧为背风侧,框式结构靠近进风格栅一侧为迎风侧。
在该技术方案中,通过将四路流路设置为框形结构,使风轮吹出的风能够全面的经由框形结构的四路流路进行换热,进而提升了换热器的换热效率,并且,框形结构能够有效地减小换热器的占用空间,同时,提升了空调器的性能。
在上述任一技术方案中,优选地,第一流路设置有四个U管与三个半圆形连接管;第二流路设置有四个U管与三个半圆形连接管;第三流路设置有五个U管与四个半圆形连接管;第四流路设置有四个U管与三个半圆形连接管。
在该技术方案中,根据蒸发器内部各处的不同的风速,通过四个U管与三个半圆形连接管交替连接形成第一流路;四个U管与三个半圆形连接管交替连接形成第二流路;五个U管与四个半圆形连接管交替连接形成第三流路;四个U管与三个半圆形连接管交替连接形成第四流路,使得四路流路内的冷媒均进行充分地蒸发,同时,也不会出现过渡蒸发的现象。
在上述任一技术方案中,优选地,第一流路位于背风侧的U管数量等于位于迎风侧的U管数量;第二流路位于背风侧的U管数量等于位于迎风侧的U管数量;第三流路位于背风侧的U管数量小于位于迎风侧的U管数量;第四流路位于背风侧的U管数量大于位于迎风侧的U管数量。
在该技术方案中,根据换热器各处的风量不同,将各个流路的迎风侧与背风侧的管路进行合理布局,进而对换热器各处的不同的风量进行充分的利用,以此提升换热器的换热效率,并且,节省了换热器的能耗。
在上述任一技术方案中,优选地,第三流路位于背风侧的U管数量为一个,位于迎风侧的U管数量为四个;第四流路位于背风侧的U管数量为三个,位于迎风侧的U管数量为一个。
在该技术方案中,通过将第三流路位于背风侧的U管数量设置为一个,位于迎风侧的U管数量设置为四个;第四流路位于背风侧的U管数量设置为三个,位于迎风侧的U管数量设置为一个,能够将对换热器各处的不同的风量进行充分的利用,以此提升换热器的换热效率,并且,使得空调器节省了换热器的能耗的效果达到最佳。
根据本发明的另一个目的,本发明提出了一种蒸发器,包括:蒸发器动力组件,设置有进口与出口;四路分流连接器,与出口相连通;笛形管,与进口相连通;及如上述任一项技术方案所述的蒸发器流路结构;其中,第一进流口、第二进流口、第三进流口及第四进流口与四路分流连接器相连通,第一出流口、第二出流口、第三出流口及第四出流口与笛形管相连通。
本发明提供的蒸发器,包括如上述任一技术方案所述的蒸发器流路结构,并通过将四路分流连接器一端与压缩机出口相连接,另一端与四路流路的进流口分别相连接,将笛形管一端与压缩机进口相连接,另一端与四路流路的出流口分别相连接,进而实现了四路流路同时换热,并且,因包括如上述任一项技术方案所述的蒸发器流路结构,因此,本发明提供的蒸发器具有上述任一技术方案提供的蒸发器流路结构的全部有益效果,在此不一一列举。
根据本发明的另一个目的,本发明提出了一种空调器室内机,包括:壳体;风轮,设置在壳体内,位于壳体一侧;进风格栅,设置在壳体内,位于壳体另一侧;及如上述任一技术方案所述的蒸发器流路结构;或如上述任一技术方案所述的蒸发器;其中,蒸发器流路结构或蒸发器位于风轮与进风格栅之间。
本发明提供的空调器室内机,因包括如上述任一技术方案所述的蒸发器流路结构;或如上述任一技术方案所述的蒸发器,因此,本发明提供的空调器室内机具有上述任一技术方案提供的蒸发器流路结构,或如上述任一技术方案所述蒸发器的全部有益效果,在此不一一列举。
根据本发明的另一个目的,本发明提出了一种空调器,包括:如上述任一技术方案所述的蒸发器流路结构;或如上述任一技术方案所述的蒸发器;或如上述任一技术方案所述的空调器室内机。
本发明提供的空调器,因包括如上述任一技术方案所述的蒸发器流路结构;或如上述任一技术方案所述的蒸发器;或如上述任一技术方案所述的空调器室内机,因此,本发明提供的空调器室内机具有上述任一技术方案提供的蒸发器流路结构,或如上述任一技术方案所述蒸发器,或如上述任一技术方案所述的空调器室内机的全部有益效果,在此不一一列举。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出本发明一个实施例提供的蒸发器流路结构的结构示意图;
图2示出图1所示的蒸发器流路结构中第一流路的结构示意图;
图3示出图1所示的蒸发器流路结构中第二流路的结构示意图;
图4示出图1所示的蒸发器流路结构中第三流路的结构示意图;
图5示出图1所示的蒸发器流路结构中第四流路的结构示意图;
图6示出图1所示的蒸发器流路结构中翅片的结构示意图。
其中,图1至图6中附图标记与部件名称之间的对应关系为:
1蒸发器流路结构,10U管,12半圆形连接管,14翅片,142通孔,20第一流路,202第一进流口,204第一出流口,30第二流路,302第二进流口,304第二出流口,40第三流路,402第三进流口,404第三出流口,50第四流路,502第四进流口,504第四出流口。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图6描述根据本发明一些实施例所述蒸发器流路结构1。
根据本发明的第一方面实施例,本发明提出了一种蒸发器流路结构1,用于空调器,空调器包括风轮与进风格栅,包括:U管10;半圆形连接管12,用于连通U管10形成流路;翅片14,设置有两行交错的通孔142,U管10穿设于通孔142;第一流路20,设置有第一进流口202与第一出流口204;第二流路30,设置有第二进流口302与第二出流口304;第三流路40,设置有第三进流口402与第三出流口404;第四流路50,设置有第四进流口502与第四出流口504;其中,第一流路20、第二流路30、第三流路40及第四流路50均设置有至少一个U管10以及至少一个半圆形连接管12。
本发明提供的蒸发器流路结构1,通过U管10与半圆形连接管12连接,并穿设于翅片14上形成四路流路,进而冷媒将由四进四出的流路进行换热,减少了冷媒的单循环行程,进而提升了换热效率,同时,由于换热器的风量无法做到完全均匀,而四路流路能够根据换热器各处风量的差异进行设置,能够进一步地提升换热效率,进而提升了空调器换热效率,并且,由于采用四路流路循环冷媒的方式来增加整体换热面积,能够避免加长U管,使得蒸发器流路结构整体小巧,进而避免了增加空调器的整体体积,同时,提升了空调器的性能,提升了用户的使用体验。
如图6所示,在本发明的一个实施例中,优选地,同行相邻两通孔142的中心距为A,A的取值范围为18mm≤A≤21mm;异行相邻两通孔142 的中心距为B,B的取值范围为16mm≤B≤18mm。其中,优选地,同行相邻两通孔142的中心距为A的取值为18.2mm;异行相邻两通孔142的中心距为B的取值为16.17mm。
在该实施例中,通过对各流路的各条管路进行合理布局,能够有效地增大换热器的换热面积,同时,降低了换热器的冷媒压损,进而能够进一步地在保证空调器体积小巧的情况下,提升了空调器的性能,其中,通过将同行相邻两通孔142的中心距为A的取值为18.2mm;异行相邻两通孔142的中心距为B的取值为16.17mm,使得增大换热器的换热面积,以及,降低换热器的冷媒压损,进而能够进一步地在保证空调器体积小巧的情况下,提升空调器的性能的效果达到最佳。
如图1所示,在本发明的一个实施例中,优选地,第一流路20、第二流路30、第三流路40及第四流路50形成框式结构;框式结构靠近风轮一侧为背风侧,框式结构靠近进风格栅一侧为迎风侧。
在该实施例中,通过将四路流路设置为框形结构,使得风轮吹出的风能够全面的经由框形结构的四路流路进行换热,进而提升了换热器的换热效率,并且,框形结构能够有效地减小换热器的体积,同时,提升了空调器的性能。
如图1至图5所示,在本发明的一个实施例中,优选地,第一流路20设置有四个U管10与三个半圆形连接管12;第二流路30设置有四个U管10与三个半圆形连接管12;第三流路40设置有五个U管10与四个半圆形连接管12;第四流路50设置有四个U管10与三个半圆形连接管12。
在该实施例中,根据蒸发器内部各处的不同的风速,通过四个U管10与三个半圆形连接管12交替连接形成第一流路20;四个U管10与三个半圆形连接管12交替连接形成第二流路30;五个U管10与四个半圆形连接管12交替连接形成第三流路40;四个U管10与三个半圆形连接管12交替连接形成第四流路50,使得四路流路内的冷媒均进行充分地蒸发,同时,也不会出现过度蒸发的现象。
如图1至图5所示,在本发明的一个实施例中,优选地,第一流路20位于背风侧的U管10数量等于位于迎风侧的U管10数量;第二流路30位 于背风侧的U管10数量等于位于迎风侧的U管10数量;第三流路40位于背风侧的U管10数量小于位于迎风侧的U管10数量;第四流路50位于背风侧的U管10数量大于位于迎风侧的U管10数量。
在该实施例中,根据换热器各处的风量不同,将各个流路的迎风侧与背风侧的管路进行合理布局,进而对换热器各处的不同的风量进行充分的利用,以此提升换热器的换热效率,并且,节省了换热器的能耗。
如图1至图5所示,在本发明的一个实施例中,优选地,第三流路40位于背风侧的U管10数量为一个,位于迎风侧的U管10数量为四个;第四流路50位于背风侧的U管10数量为三个,位于迎风侧的U管10数量为一个。
在该实施例中,通过将第三流路40位于背风侧的U管10数量设置为一个,位于迎风侧的U管10数量设置为四个;第四流路50位于背风侧的U管10数量设置为三个,位于迎风侧的U管10数量设置为一个,能够将对换热器各处的不同的风量进行充分的利用,以此提升换热器的换热效率,并且,使得空调器节省了换热器的能耗的效果达到最佳。
在具体实施例中,如图1所示,由长U管10与翅片14组成的四折结构,四折结构构成框式结构,其中,靠近室内机风轮的内侧为背风侧,靠近室内机进风格栅为内侧即迎风侧,如图6所示,蒸发器的翅片14同行通孔142孔距为18.2mm,异行通孔142孔距为16.17mm,并且,如图1所示,蒸发器流路结构1采用四进四出的流程,四进四出的流路以顺流的换热方式设计,流程结合室内机风道的风速分为四路,每路的流路的管数布局形式为第一流路20采用四个U管10,第二流路30采用四个U管10,第三流路40采用五个U管10,第四流路50采用四个U管10,同时,第一流路20与第二流路30的布局为等程流路布局。
在具体实施例中,冷媒的流程为在第一流路20中,如图2所示,以一端U管10的一端口为第一进流口202进入,交替经过四个U管10与三个半圆形连接管12,其中,在迎风侧自上而下通过半圆形连接管12,在背风侧由下而上通过半圆形连接管12,以另一端U管10的一端口为第一出流口204流出;
在第二流路30中,如图3所示,以一端U管10的一端口为第二进流口302进入,交替经过四个U管10与三个半圆形连接管12,其中,在迎风侧自上而下通过半圆形连接管12,在背风侧由下而上通过半圆形连接管12,以另一端U管10的一端口为第二出流口304流出;
在第三流路40中,由于蒸发器内的风速不均匀,因此,如图4所示,以一端U管10的一端口为第三进流口402进入,交替经过五个U管10与四个半圆形连接管12,其中,在迎风侧自上而下通过半圆形连接管12,在背风侧由下而上通过半圆形连接管12,以另一端U管10的一端口为第三出流口404流出;
在第四流路50中,由于蒸发器内的风速不均匀,因此,如图5所示,以一端U管10的一端口为第三进流口402进入,交替经过四个U管10与三个半圆形连接管12,其中,在迎风侧自上而下通过半圆形连接管12,在背风侧由下而上通过半圆形连接管12,以另一端U管10的一端口为第四出流口504流出。
根据本发明的第二方面实施例,本发明提出了一种蒸发器,包括:压缩机,设置有进口与出口;四路分流连接器,与出口相连通;笛形管,与进流口相连通;及如上述任一实施例提供的蒸发器流路结构1;其中,第一进流口202、第二进流口302、第三进流口402及第四进流口502与四路分流连接器相连通,第一出流口204、第二出流口304、第三出流口404及第四出流口504与笛形管相连通。
本发明提供的蒸发器,包括如上述任一实施例提供的蒸发器流路结构1,并通过将四路分流连接器一端与压缩机出口相连接,另一端与四路流路的进流口分别相连接,将笛形管一端与压缩机进口相连接,另一端与四路流路的出流口分别相连接,进而实现了四路流路同时换热,并且,因包括如上述任一实施例提供的蒸发器流路结构1,因此,本发明提供的蒸发器具有上述任一实施例提供的蒸发器流路结构1的全部有益效果,在此不一一列举。
在具体实施例中,第一进流口202、第二进流口302、第三进流口402及第四进流口502通过四路分流连接器与压缩机相连接,并进行分流,第 一出流口204、第二出流口304、第三出流口404及第四出流口504,经由笛形管汇总流入压缩机进口,四进四出的流程布局,降低了换热器的冷媒压损,提高了换热器的换热效率。
根据本发明的第三方面实施例,本发明提出了一种空调器室内机,包括:壳体;风轮,设置在壳体内,位于壳体一侧;进风格栅,设置在壳体内,位于壳体另一侧;及如上述任一实施例提供的蒸发器流路结构1;或如上述任一实施例提供的蒸发器;其中,蒸发器流路结构1或蒸发器位于风轮与进风格栅之间。
本发明提供的空调器室内机,因包括如上述任一实施例提供的蒸发器流路结构1;或如上述任一实施例提供的蒸发器,因此,本发明提供的空调器室内机具有上述任一实施例提供的蒸发器流路结构1,或如上述任一实施例提供的蒸发器的全部有益效果,在此不一一列举。
根据本发明的第四方面实施例,本发明提出了一种空调器,包括:如上述任一实施例提供的蒸发器流路结构1;或如上述任一实施例提供的蒸发器;或如上述任一实施例提供的空调器室内机。
本发明提供的空调器,因包括如上述任一实施例提供的蒸发器流路结构1;或如上述任一实施例提供的蒸发器;或如上述任一实施例提供的空调器室内机,因此,本发明提供的空调器室内机具有上述任一实施例提供的蒸发器流路结构1,或如上述任一实施例提供蒸发器,或如上述任一实施例提供的空调器室内机的全部有益效果,在此不一一列举。
本发明提供的蒸发器流路结构1对相关技术进行改进,由于空调器的冷量与换热器的长度即换热面积及循风量有差,而实际上空调器室内机的尺寸和空间有限,如果不改变换热器的内部结构来增加换热面积只能是通过背管或者加长加宽空调器室内机的尺寸进行解决,而本发明是通过改变换热器的内部结构,即改善蒸发器流路结构1的翅片14孔间距与前后蒸的管间距来增加换热面积,同时空调器室内机的换热器流程的设计与空调器室内机的进风面积及风道有关,换热器流程的设计会影响换热器的分流状况,继而也会影响换热器的换热量、整机能效及凝露的产生情况;如图1至图5所示,由于空调器室内机换热器不是光滑的弧形蒸发器,各折蒸发 器风速分布并不均匀,制冷剂在进入蒸发器流路结构1的各流路之前可能出现汽液分层或者汽液两相混合不均,从而不能均匀地进入蒸发器流路结构1的各流路中,导致部分流路液态制冷剂偏多,蒸发不完全,另一部分流路汽态制冷剂偏多,蒸发过热问题严重。如果各流路结构不合理极易造成蒸发器出口偏流过大,会影响整机系统的可靠性。如图6所示:通过改变换热器的翅片14孔间距与前后蒸的管间,常规的翅片14孔间距在21mm,而本发明采用在18mm至21mm之间的间距范围进行设置孔间距,来增大换热器的面积,同时降低了换热器的冷媒压损,并根据空调器室内机换热器的风量不均匀的情况,采用四进四出的方案来提升换热器的效率,并且,采用等程与不等程的流路进行组合,有利于变工况的流路稳定,不会出现由于冷媒泄露问题导致供液量少而出现蒸发器各个流路出流口温差较大产生凝露及吹水等相关问题。
采用本发明提供的蒸发器流路结构1或蒸发器或空调器室内机的空调器分液达到了最好效果,能力达到最优,能够采用现有技术中一匹的空调内机尺寸,满足了二匹的性能指标,合理的管路布置也避免了此类型蒸发器在高湿度条件下工作时的吹水的凝露问题,经实测,采用本发明提供的蒸发器流路结构1或蒸发器或空调器室内机的空调器,制冷能力明显提升,制冷能力由原来与一进两出3500W的能力,提升到5000W的能力水平,同时,其它工况的能力点也均达到二匹的性能要求。
综上所述,本发明提供的蒸发器流路结构1、蒸发器、空调器室内机及空调器,通过U管10与半圆形连接管12连接,并穿设于翅片14上形成四路流路,进而冷媒将由四进四出的流路进行换热,减少了冷媒的行程,进而提升了换热效率,同时,由于换热器的风量无法做到完全均匀,而四路流路能够根据换热器各处风量的差异进行设置,能够进一步地提升换热效率,进而提升了空调器换热效率,因此,实现了在保证空调器体积小巧的情况下,提升了空调器的性能,提升了用户的使用体验。
在本发明中,术语“相连”、“连接”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而 言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,术语“一个实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种蒸发器流路结构,用于空调器,所述空调器包括风轮与进风格栅,其特征在于,包括:
    U管;
    半圆形连接管,用于连通所述U管形成流路;
    翅片,设置有两行交错的通孔,所述U管穿设于所述通孔;
    第一流路,设置有第一进流口与第一出流口;
    第二流路,设置有第二进流口与第二出流口;
    第三流路,设置有第三进流口与第三出流口;
    第四流路,设置有第四进流口与第四出流口;
    其中,所述第一流路、所述第二流路、所述第三流路及所述第四流路均设置有至少一个所述U管以及至少一个所述半圆形连接管。
  2. 根据权利要求1所述的蒸发器流路结构,其特征在于,
    同行相邻两所述通孔的中心距为A,A的取值范围为18mm≤A≤21mm;异行相邻两所述通孔的中心距为B,B的取值范围为16mm≤B≤18mm。
  3. 根据权利要求2所述的蒸发器流路结构,其特征在于,
    同行相邻两所述通孔的中心距为A的取值为18.2mm;
    异行相邻两所述通孔的中心距为B的取值为16.17mm。
  4. 根据权利要求1至3中任一项所述的蒸发器流路结构,其特征在于,
    所述第一流路、所述第二流路、所述第三流路及所述第四流路形成框式结构;
    所述框式结构靠近所述风轮一侧为背风侧,所述框式结构靠近所述进风格栅一侧为迎风侧。
  5. 根据权利要求1至3中任一项所述的蒸发器流路结构,其特征在于,
    所述第一流路设置有四个所述U管与三个所述半圆形连接管;
    所述第二流路设置有四个所述U管与三个所述半圆形连接管;
    所述第三流路设置有五个所述U管与四个所述半圆形连接管;
    所述第四流路设置有四个所述U管与三个所述半圆形连接管。
  6. 根据权利要求5所述的蒸发器流路结构,其特征在于,
    所述第一流路位于所述背风侧的U管数量等于位于所述迎风侧的U管数量;
    所述第二流路位于所述背风侧的U管数量等于位于所述迎风侧的U管数量;
    所述第三流路位于所述背风侧的U管数量小于位于所述迎风侧的U管数量;
    所述第四流路位于所述背风侧的U管数量大于位于所述迎风侧的U管数量。
  7. 根据权利要求6所述的蒸发器流路结构,其特征在于,
    所述第三流路位于所述背风侧的U管数量为一个,位于所述迎风侧的U管数量为四个;
    所述第四流路位于所述背风侧的U管数量为三个,位于所述迎风侧的U管数量为一个。
  8. 一种蒸发器,其特征在于,包括:
    压缩机,设置有进口与出口;
    四路分流连接器,与所述出口相连通;
    笛形管,与所述进口相连通;及
    如权利要求1至7中任一项所述的蒸发器流路结构;
    其中,所述第一进流口、所述第二进流口、所述第三进流口及所述第四进流口与所述四路分流连接器相连通,所述第一出流口、所述第二出流口、所述第三出流口及所述第四出流口与所述笛形管相连通。
  9. 一种空调器室内机,其特征在于,包括:
    壳体;
    风轮,设置在所述壳体内,位于所述壳体一侧;
    进风格栅,设置在所述壳体内,位于所述壳体另一侧;及
    如权利要求1至7中任一项所述的蒸发器流路结构;或
    如权利要求8所述的蒸发器;
    其中,所述蒸发器流路结构或所述蒸发器位于所述风轮与所述进风格栅之间。
  10. 一种空调器,其特征在于,包括:
    如权利要求1至7中任一项所述的蒸发器流路结构;或
    如权利要求8所述的蒸发器;或
    如权利要求9所述的空调器室内机。
PCT/CN2017/082567 2017-02-23 2017-04-28 蒸发器流路结构、蒸发器、空调器室内机及空调器 WO2018152963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710099655.2 2017-02-23
CN201710099655.2A CN106839529A (zh) 2017-02-23 2017-02-23 蒸发器流路结构、蒸发器、空调器室内机及空调器

Publications (1)

Publication Number Publication Date
WO2018152963A1 true WO2018152963A1 (zh) 2018-08-30

Family

ID=59133393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082567 WO2018152963A1 (zh) 2017-02-23 2017-04-28 蒸发器流路结构、蒸发器、空调器室内机及空调器

Country Status (2)

Country Link
CN (1) CN106839529A (zh)
WO (1) WO2018152963A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3667202B1 (en) * 2017-08-07 2021-06-16 Mitsubishi Electric Corporation Heat exchanger, air conditioner indoor unit, and air conditioner
JP6857747B2 (ja) * 2018-09-03 2021-04-14 広東美的制冷設備有限公司Gd Midea Air−Conditioning Equipment Co.,Ltd. 熱交換器組立品とエアコン室内機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2327942Y (zh) * 1998-02-26 1999-07-07 广东美的集团股份有限公司 分体式空调机的蒸发器
CN201764755U (zh) * 2010-09-02 2011-03-16 海信(山东)空调有限公司 空调换热器及空调器
JP5295207B2 (ja) * 2010-11-19 2013-09-18 三菱電機株式会社 フィンチューブ型熱交換器、およびこれを用いた空気調和機
CN104729155A (zh) * 2015-03-31 2015-06-24 合肥美的电冰箱有限公司 换热器和冰箱
CN204593814U (zh) * 2015-04-10 2015-08-26 广东美的暖通设备有限公司 一种换热器及具有其的空调室内机
CN204854078U (zh) * 2015-06-24 2015-12-09 宁波奥克斯空调有限公司 空调换热器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2327942Y (zh) * 1998-02-26 1999-07-07 广东美的集团股份有限公司 分体式空调机的蒸发器
CN201764755U (zh) * 2010-09-02 2011-03-16 海信(山东)空调有限公司 空调换热器及空调器
JP5295207B2 (ja) * 2010-11-19 2013-09-18 三菱電機株式会社 フィンチューブ型熱交換器、およびこれを用いた空気調和機
CN104729155A (zh) * 2015-03-31 2015-06-24 合肥美的电冰箱有限公司 换热器和冰箱
CN204593814U (zh) * 2015-04-10 2015-08-26 广东美的暖通设备有限公司 一种换热器及具有其的空调室内机
CN204854078U (zh) * 2015-06-24 2015-12-09 宁波奥克斯空调有限公司 空调换热器

Also Published As

Publication number Publication date
CN106839529A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
CN203785329U (zh) 具有低压降分配管的热泵热交换器
US10168083B2 (en) Refrigeration system and heat exchanger thereof
CN206247712U (zh) 多折式换热器、室内机及空调器
WO2018152963A1 (zh) 蒸发器流路结构、蒸发器、空调器室内机及空调器
WO2021103827A1 (zh) 换热器组件和具有其的空调室内机
CN103123188B (zh) 冷凝器及具有该冷凝器的空调器
CN204830581U (zh) 一种储液干燥水冷一体管及一体换热器
WO2021103967A1 (zh) 换热器组件和具有其的空调室内机
JP2014137177A (ja) 熱交換器および冷凍装置
CN210861410U (zh) 换热器组件和具有其的空调室内机
JP7221428B1 (ja) 熱交換器アセンブリ及びそれを備えた空気調和機の室内機
CN207438860U (zh) 室内换热器、空调室内机及空调器
CN207570019U (zh) 空调挂机
CN106592182A (zh) 烘干系统及衣物干燥装置
CN203310165U (zh) 平行流换热器及空调器
CN206160567U (zh) 一种冷凝器
JP3632248B2 (ja) 冷媒蒸発器
CN207438859U (zh) 室内换热器、空调室内机及空调器
CN202328932U (zh) 冷凝器及具有该冷凝器的空调器
JP2020190383A (ja) 熱交換器
CN205227937U (zh) 一种空调室外机换热器
CN220061930U (zh) 换热器组件及空调室内机
CN219913250U (zh) 换热器组件及空调室内机
CN105466084B (zh) 蒸发器及具有其的空调器
CN220061931U (zh) 换热器组件和空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897784

Country of ref document: EP

Kind code of ref document: A1